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Abstract
We consider the reconstruction of the Robin impedance coefficient of a heat
conduction system in a two-dimensional spatial domain from the time-average
measurement specified on the boundary. By applying the potential repre-
sentation of a solution, this nonlinear inverse problem is transformed into an
ill-posed integral system coupling the density function for potential and the
unknown boundary impedance. The uniqueness as well as the conditional
stability of this inverse problem is established from the integral system. Then
we propose to find the boundary impedance by solving a non-convex reg-
ularizing optimization problem. The well-posedness of this optimization
problem together with the convergence property of the minimizer is analyzed.
Finally, based on the singularity decomposition of the potential representation
of the solution, two iteration schemes with their numerical realizations are
proposed to solve this optimization problem.

Keywords: inverse problem, heat equation, robin coefficient, uniqueness,
optimization, convergence, numerics

(Some figures may appear in colour only in the online journal)

1. Introduction

Forward heat conduction problems aim to determine the temperature field in media for a
given boundary heat status and an initial temperature distribution. Once the initial distribution
of the temperature is specified, the diffusion process depends both on the media structure and
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on the boundary status of the media. Apart from the well-known Dirichlet and Neumann
boundary conditions, also important is the so-called Robin boundary condition, which
describes the physical phenomenon that the heat flux exchange on the boundary also depends
on the boundary temperature. These problems arise in many applied areas.

Consider the following heat conduction system for the temperature u x t,( ) in a known
bounded domain ÌD 2:
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where n x( ) is the outward normal direction on ¶D and >a 0. For a given boundary
impedance s x( ), (1.1) defines a direct heat conduction system, i.e., u x t,( ) in ´D T0,[ ] is
uniquely determined for a given j x t F x t u x, , , , 0( ( ) ( ) ( )).

When the boundary status is specified, the inverse problems corresponding to the heat
conduction system have been studied thoroughly. For these configurations, there are two
kinds of inverse problems: source detection problems and backward heat conduction pro-
blems. The former aims to detect the source F x t,( ) in the media, while the latter tries to
recover the initial distribution u x0 ( ) from extra measurement data; see [2, 5, 6, 15, 16] for
related studies.

However, in many dynamic heat conduction situations, it is also necessary to recover the
boundary status from additional information. This is the so-called inverse side way heat
conduction problem, which aims to detect ¶D and (or) the impedance defined on ¶D. Unlike
the source detections and backward conduction problems, these side way problems are
nonlinear. For the above system (1.1) with known ¶D, we try to identify the boundary
impedance s x( ) from the following nonlocal inversion input data

ò w = Î ¶t u x t t f x x D, d , , 1.2
T

0
( ) ( ) ( ) ( )

where w Ît L T0 0,1≢ ( ) ( ) is a given weight function.
Due to the importance of the averaging measurement such as (1.2) in many areas of

engineering, the inverse problems related to (1.1) and (1.2) were proposed and first studied by
Kostin and Prilepko in [12, 13]. In [12], the authors considered two inverse problems using
the inversion input data (1.2), which aimed to identify the spatial amplitude of j x t,( ) for a
known s x( ) and to identify s x( ) for a knownj x t,( ). In [13], the other two inverse problems
aiming to reconstruct the time amplitude ofj x t,( ) and s t( ), which are considered with (1.2),
are replaced by the spatial average on the boundary. For these four inverse problems, the
uniqueness results are established. As for the reconstruction schemes and the numerical
realizations for the models in [12, 13], readers are referred to [9, 10], where the least-squares-
penalized variational formulations are proposed to determine the spatial (time) dependent
boundary impedance and the boundary sources. These optimizing problems are solved by the
conjugate gradient method, where two direct boundary value problems at each iteration are
solved by boundary element methods.

The engineering motivation on inversion data in the integral form comes from the
averaging process for instant measurement. More precisely, although the measurement u T, 1(· )
at the specified time T1 is standard in engineering, such a kind of measurement may be very
sensitive to the perturbation of time and a natural way to overcoming this drawback is to take
an average with respect to time t near T1, which leads to (1.2) with some weight function w t( )
of support in the neighborhood of ÎT T0,1 ( ). These averaging data are possible to obtain in
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engineering applications [1]. On the other hand, (1.2) can be considered as the generalization
of instant measurement data =u x T f x, 1( ) ( ) by taking w d= -t t T1( ) ( ). Of course, to ensure
w Ît L T0,1( ) ( ), d -t T1( ) should be replaced mathematically by a Gaussian weight or some
cut-off weight directly, see [9, 10].

Essentially, the problems (1.1) and (1.2) belong to the category of parameter identifi-
cation problems for a specified system. In [19], the authors proposed an algorithm for
recovering the heat flux. When both the geometric shapes and the boundary impedance are
unknown, the simultaneous reconstructions of ¶D and s x( ) from the spectrum data in the
two-dimensional spatial heat conduction system were considered in [22]. In the case of
s ºx 0( ) , the reconstruction of the partial boundary from the Cauchy data in the accessible
part of the boundary is based on the optimization and the boundary integral equation method
given in [4], while the reconstruction of the partial boundary for the Dirichlet boundary
condition is also established in [3]. In the case of the Stefan–Boltzmann boundary condition
for heat conduction, the determination of the impedance coefficient in part of the boundary
can be found in [7]. On the other hand, it is well-known that the properties of the inverse
problems are closely related to the form of the inversion input. Unlike the standard form of
the inversion input where the information about the solution is specified point-wise, the
inversion input (1.2) is the so-called nonlocal condition in the integral form. Currently, the
inverse problems related to the inversion input in the integral form are applied for different
configurations, for example, see [8, 11, 17, 21].

In this paper, we are interested in the following issues of the inverse problems for the
systems (1.1) and (1.2) with ºF x t, 0( ) and ºu x 00 ( ) :

• For the given exact data f x( ), can s x( ) be reconstructed uniquely?
• If f x( ) is contaminated by some noise satisfying

 d-d
¶ f f , 1.3L D2 ( )( )

how do we construct the approximate solution to s x( ) using a suitable regularization
scheme from df x( )?

• What is the approximation behavior of the regularizing solution?
• How do we find the approximate minimizer efficiently?

Since the inverse problem considered here is essentially the same as Problem II in [12]
and Problem I in [9], we would like to clarify the differences between our work and [9, 12]. In
[12], the uniqueness (but not the stability) for Problem II is created by first establishing the
uniqueness for f x( ) in the boundary source j = +x t h x t f x b x t, , ,( ) ( ) ( ) ( ) with known
h x t b x t, , ,( ( ) ( )) and boundary impedance (Problem I there) which is a linear inverse pro-
blem, and then using the difference arguments and the maximum principles by similar
arguments in [18]. As for the reconstruction schemes, [9] considered a regularizing nonlinear
cost functional with the unknown s x( ) as the sole argument, which is optimized by conjugate
gradient schemes. In our researches for (1.1) and (1.2), the inverse problems are transformed
into the reconstructions of sq x t x, ,( ( ) ( )), where q x t,( ) is the introduced potential density
for the direct problems. Such techniques enable us to deal with the uniqueness and the
reconstruction scheme for (1.1) and (1.2) in a unified framework. Moreover, in solving our
cost functionals with sq,( ) as arguments, the proposed alternative iteration scheme (AIS)
solves the standard quadratic optimizing problem by decomposing the nonlinear term
s x u x t,( ) ( ) on the boundary at each iteration, which is numerically shown to be efficient, i.e,
the alternative iteration scheme solves a linear equation at each iteration step.
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2. Uniqueness and stability

The function
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is called the fundamental solution to the two-dimensional equation - D =u a u 0t
2 in2. The

following representation of the solution to (1.1) with ºF x t, 0( ) and ºu x 00 ( ) can be
established from the classical potential theory, see [14] for the Dirichlet boundary condition
and [4] for the Neumann boundary case for a = 1.

Lemma 2.1. Assume that the potential Îq x t C S, T( ) ( ) satisfies
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then the single layer potential
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solves (1.1) provided that ºF x t, 0( ) and ºu x 00 ( ) .

Based on this representation, the original inverse problems (1.1) and (1.2) become the
determination of s x( ) from the following nonlinear integral system
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It should be pointed out that (2.4) is analogous to the ill-posed linear system with respect
to the unknown initial temperature and density function in [6] where the backward heat
conduction problem is considered. However, the system (2.4) here is nonlinear, and therefore
the regularizing strategy will lead to a non-quadratic cost functional, which is much more
difficult to solve.

For exact data f x( ) coming from (1.1) and (1.2), the existence of the solution to (2.4) is
obvious. Let us check the uniqueness of the solution for exact f x( ). Multiplying the second
equation in (2.4) by w t( ) and integrating with respect to Ît T0,[ ], we have

⎜ ⎟⎛
⎝

⎞
⎠ò òw s w j+ ¢ + =t

a
q x t q x t t x f x t x t t

1

2
, , d , d 2.6

T T

0 2 0
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from the first equation in (2.4). Now we can delete s x( ) from the second equation in (2.4) and
(2.6) to yield for Îx t S, T( ) that
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which is a nonlinear integral equation with respect to q x t,( ) representing the nonlinearity of
our inverse problem. Since the inversion input f depends essentially on the boundary
impedance σ for the given boundary excitation j x t,( ) and weight function w t( ), we denote
the inversion data by s=f f [ ]. We introduce the admissible set for σ with two known
positive constants s+ f, 0:

 s s s sS Î ¶ > > Î ¶+x C D x f x f x D, 0 , 0, .0≔ { ( ) ( ) ( ) ∣ [ ]( )∣ }

The set Σ is well-defined. For example, if we take j x t0 , 0≢ ( ) and w t0 0≢ ( ) ,
then the strong maximum principle for the heat equation yields >¶ ´u x t, 0D T0,( )∣ ( ] , so

òs w s= >sf x t u x t dt C, 0
T

0
[ ]( ) ( ) [ ]( ) in ¶D.

First, we give the property for the operators  and ¢.

Lemma 2.2. For the domain D with a C2 smooth boundary, both  and ¢ defined by (2.5)
are compact from C ST( ) into C ST( ) as well as from L ST
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which verify the weak singularity of the kernel functions in ¶ ´D t0,[ ] by taking any
b Î 0, 1 2( ) and b Î 1, 3 2( ) in these two estimates, respectively. So and¢ are compact
from C S L ST T

2( )( ( )) into C S L ST T
2( )( ( )).
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Especially, by taking b = 1 3 in (2.8) and b = 4 3 in (2.9), we have
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uniformly for any s Î S. Based on this estimate, by using the same technique in the proof of
theorem 9.9 in [14], we state that (2.11) has only a trivial solution ºq x t, 0( ) for any s Î S,
i.e.,   s+ ¢ + =I 0
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Now we can state the uniqueness result for our inverse problem.
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due to (2.10) for s Î Si . On the other hand, it follows from (2.7) that
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T T T

T

1

1

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

which generates

⎛
⎝⎜

⎞
⎠⎟



s w j

s j w

- -

-

+

+ ¶

     

     

C
f

q q

C
f

f f

1
1

1
. 2.18

L T C S C S

S L T C D

0
0, 1 2

0
2

2
0, 1 2

T T

T

1

1

( )

( ) ( )

( ) ( ) ( )

( ) ( )

That is, under the condition (2.12), it follows that ºq x t q x t, ,1 2( ) ( ) inC ST( ) if ºf x f x1 2( ) ( )
in ¶C D( ). Finally the equation (2.6) yields s sºx x1 2( ) ( ) from ºq q1 2, noticing that we have

º =f x f x 01 2∣ ( )∣ ∣ ( )∣ . The proof is complete. ,

We also have the Lipschitz conditional stability.
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Theorem 2.4. Let f xi ( ) be the exact measurement data from the systems (1.1) and (1.2) with
º ºF x t u x, 00( ) ( ) corresponding to s Î Sxi ( ) for =i 1, 2. If (2.12) holds, then we have

the Lipschitz stability

s s- -¶ ¶   C f f . 2.19C D C D1 2 1 2 ( )( ) ( )

Proof. Using (2.14) and (2.6) for s x f x q x t, , ,i i i( ( ) ( ) ( )), we have

⎜ ⎟
⎛
⎝⎜

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟





ò ò

ò

s s

wj w

w

-

= - - + ¢

- - + ¢ -

x x

f x f x
f x f x t

q

a
q t

f x a
q q q q t

1
d

2
d

1 1

2
d 2.20

T T

T

1 2

1 2
2 1

0 0

1
2 1

2 0 2 1 2 1 2

( ) ( )

( ) ( )
( ( ) ( )) [ ]

( )
( ) [ ] ( )

owing to > >f x f 0i 0∣ ( )∣ . Using  s j+   q Ci C S C ST T
( )( ) ( ) and (2.15) for s Î Si , we have

s s w s j

s w j

-
-

+ -

+

+

   

     

x x
f x f x

f
C

C
f

q q
1

.

L T C S

L T C S C S

1 2
2 1

0
2 0,

0
0, 1 2

T

T T

1

1

∣ ( ) ( )∣
∣ ( ) ( )∣

( )

( )

( ) ( )

( ) ( ) ( )

Now combining with (2.18), the proof is complete under condition (2.12). ,

Remark 2.5. It is worthwhile to compare our theorem 2.3 with the uniqueness result given
in [12] under the condition >f x 0( ) , but no stability result is obtained there due to the lack
of the uniform positive lower bound on f with respect to σ. By our theorems 2.3 and 2.4, both
the uniqueness and the Lipschitz stability are set up by the much stronger assumption that
s Î S which means s >f x f 00∣ [ ]( )∣ and (2.12), i.e., we establish the conditional stability
for the ill-posed problems (1.1) and (1.2). However, it should be emphasized that we consider
the special case ºF x t u x, , 0, 00( ( ) ( )) ( ), and our theorems 2.3 and 2.4 need assumption
(2.12), as compared with the works [12, 13].

3. Optimization formulation and convergence

For noisy data df x( ) satisfying (1.3), we consider the cost functional



 

òs w

s j a

= -

+ + ¢ + - +

a
d

¶

 

J q t q t t f

a
q q q q

, : , d

1

2
3.1

T

L D

L S
L S

0

2

2

2
2

T

T

2

2

2

( ) ( ) [ ](· ) (·)

[ ] [ ] ( )

( )

( )
( )

with the regularizing parameter a > 0. This cost functional regularizing only the argument q
is motivated by the structure of our ill-posed integral system (2.4). More precisely, the ill-
posedness of the system (2.4) comes essentially from the determination of q x t,( ) from the
first equation, although the determinations of s x( ) from the second equation at some special
points where  q x t,[ ]( ) almost vanishes are also unstable. Therefore we introduce the so-
called semi-Tikhonove regularizing functional (3.1) for the system (2.4). This kind of
technique has also been applied for other ill-posed problems, see [6].
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We will find the minimizer sd dq x t x, ,( ( ) ( )) of saJ q,( ) with a specified small α. Then
sd x( ) will be taken as the approximate solution to our inverse problem. The meaning
‘approximation’ will be clarified in the following.

Our first result in this section is the following

Theorem 3.1. Let ¶V D( ) be the compact set of ¶L D2 ( ). Then the optimization version

s sÎ Î ¶aJ q q L S V Dinf , : , 3.2T
2{ ( ) ( ) ( )} ( )

of the original inverse problems (1.1)–(1.3) have a solution s Î ¶a d x L D, 2( ) ( ) for
given a d >, 0.

Proof. Noticing saJ q, 0( ) , define

s sÎ Î ¶aJ q q L S V D Minf , : , 0,T
2

0{ ( ) ( ) ( )} ≔

where the constant a= dM M f,0 0 ( ). Let s Î ´ ¶q L S V D,n n T
2( ) ( ) ( ) be the minimizing

sequence, i.e., s =a¥ J q Mlim ,n n n 0( ) , which generates

a s   ¥a q J q M n, as .n L S n n
2

0T
2 ( )( )

Therefore there exists a subsequence of Îq n:n{ } converging weakly to some
* Îq L ST

2 ( ). For simplicity of the notation, we still denote this subsequence as
Îq n:n{ }. Noticing that both  and ¢ are the compact forms of L ST

2 ( ) into L ST
2 ( ),

we have [14]

* *    ¢  ¢q q q q L S, in . 3.3n n T
2[ ] [ ] [ ] [ ] ( ) ( )

On the other hand, since s Î Ì ¶n V D:n{ } ( ) is compact in ¶L D2 ( ), there exists some
subsequence of s În:n{ } (still denoted by s În:n{ }) such that *s s Î ¶V Dn ( ) in

¶L D2 ( ). Using the above convergence results and *q qn , it follows from the identity

* *

* *



 

 

òa s w

s j

s j

º - -

- + ¢ + - -
-

- - + ¢ + -

a
d

¶

 q J q t q t t f

q

a
q q

q q

a

a
q q

a
q q q

, , d

2 2

1
,

1

2

n L S n n

T

n
L D

n n n
L S

n

L S

n n n n

2

0

2

2

2

2

2

2 2

T

T T

2

2

2 2

( ) ( ) [ ](· ) (·)

[ ] [ ]

⟨ [ ] [ ] ⟩

( )
( )

( ) ( )

that

*

* * * * *

* * *

* * * * *

* *



 

 

 

ò

ò

a w

s j

s w

s j

a

º - -

- + ¢ + - - -

- -

- + ¢ + - - -

= - -

d

a
d

¥

¥

¥

¥

 

 

 

   

q M t q t t f

a
q q q

a
q q

J q t q t t f

a
q q q

a
q q

q
a

q q

lim , d

1

2
lim

1

4

, , d

1

2
lim

1

4

lim
1

4
,

n
n

T

n
n

T

n
n

n
n

2
0

0

2

2

2

4
2

0

2

2

2

4
2

2
4

2

( ) [ ](· ) (·)

[ ] [ ]

( ) ( ) [ ](· ) (·)

[ ] [ ]
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which leads to *q qn such that

* * *
a

- = - - -
¥ ¥ ¥

       q q q q
a

q qlim lim lim
1

4
,

n
n

n
n

n
n

2 2 2
4

2[ ]

i.e., *q qn in L ST
2 ( ). Finally the continuity of Jα in ´ ¶L S L DT

2 2( ) ( ) yields
* *s s= =a a

¥
J q J q M, lim , ,

n

n n
0( ) ( )

i.e., * *sq ,( ) is the minimizer of saJ q,( ) in ´ ¶L S V DT
2 ( ) ( ). Therefore we can take *s x( ) as

sa d x, ( ), the approximate solution of the inverse problems (1.1)–(1.3) for noisy input data
df x( ). The proof is complete. ,

The introduction of the regularizing term with a > 0 ensures the existence of the
minimizer. Consequently, the value a dM f,0 ( ) is also different from =M f0, 00 ( ) provided
that the exact solution be also in ¶V D( ). So we need to estimate a dM f,0 ( ), which reveals the
difference between our approximate solution from the optimization formulation and the exact
solutions of (1.1)–(1.3) by data matching.

Theorem 3.2. Assume that the exact solution s x( ) to the inverse problems (1.1) and (1.2) is
also in ¶V D( ) and sa d a dq ,, ,( ) is the minimizer of the cost functional saJ q,( ) from theorem
3.1, i.e., a s=d

a
a d a dM f J q, ,0

, ,( ) ( ). Then we have

a d
a

d


M flim , 2 . 3.4
0

0
2( ) ( )

Proof. Denote by f x( ) the exact nonlocal measurement data corresponding to exact
impedance s Î ¶x V D( ) ( ) and the boundary value j x t,( ). It is obvious for all

s Î ´ ¶q L S V D, T
2( ) ( ) ( ) that

 

 



òs w

s j a

s s

-

+ + ¢ + - +

+ - + -

a

d

¶

¶

 

   

J q t q t t f

a
q q q q

f f q

, 2 , d

2
1

2

2 2 . 3.5

T

L D

L S
L S

L D L S

0

2

2

2
2

2 2
T

T

T

2

2

2

2 2

( ) ( ) [ ](· ) (·)

[ ] [ ]

( ) [ ] ( )

( )

( )
( )

( ) ( )

Since    s+ ¢ + = 0
a

1

2 2( ) { } in terms of lemma 2.2, it follows from the Fredholm

alternative principle that there exists a unique potential function Î ¶ ´q x t L D T, 0,2( ) ( ( ))
for given j Îx t L S, T

2( ) ( ) satisfying

 s j+ ¢ + - = Î
a

q q q x t S
1

2
0, , .T2

[ ] [ ] ( )

Moreover, u x t q x t, ,( ) ≔ [ ]( ) in ´D T0,[ ] solves the direct problem (1.1) with Robin
coefficient s from the potential theory and therefore we have

ò w = Î ¶t q x t t f x x D, d , .
T

0
( ) [ ]( ) ( )
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The above two equalities generate

 s a a d+ - +a
d

¶     J q q f f q, 2 2 .L S L D L S
2 2 2 2

T T
2 2 2( ) ( ) ( ) ( )

Therefore we have from (3.5) that

 
a s s

s a d

= Î Î ¶

+

d
a

a  
M f J q q L S V D

J q q

, inf , : ,

, 2 .
T

L S

0
2

2 2
T

2

( ) { ( ) ( ) ( )}
( ) ( )

By letting a  0, the proof is complete. ,

Based on theorems 3.1 and 3.2, we know that for any sequence a   ¥n0 :n{ },
there exists a minimizer sequence s Îq n, :n n{( ) } (which may not be unique) such that

s a d=a
d

¥ ¥
J q M flim , lim , 2 . 3.6

n

n n

n
n0

2
n
( ) ( ) ( )

Now we establish the relations between sn and the exact boundary impedance s from
which the exact input data f x( ) are generated.

Theorem 3.3. Let a În:n{ } be the positive sequence converging to 0 and sq ,n n( ) be the
correspondent minimizer of saJ q,n ( ), which may not be unique. Then there exists a
convergent subsequence  s sÎ Ì Îk n: :n nk{ } { } converging to *s in ¶L D2 ( ) as
 ¥k , where *s satisfies

⎧
⎨
⎪⎪

⎩
⎪⎪ *

 

  

ò w d

s j d

-

+ ¢ + -

¶

¶

t q t t f

q q q

, d 3 ,

2

3.7

T

L D

a L D

0

1
2

2

2 2

( ) [ ](· ) (·)

[ ] [ ]
( )( )

( )

for some Î ¶ ´q x t L D T, 0,2( ) ( ( )).

Proof. Since s Î Ì ¶n V D:n{ } ( ) which is compact, there exists a convergent
subsequence  s sÎ Ì Îk n: :n nk{ } { } such that

*s s  ¥k, . 3.8nk ( )
For the corresponding density function sequence Îq k:n

1k1{ }, we have from theorem
3.2 that s da¥ J qlim , 2k

n n 2
nk

k k( ) , which yields from the definition (3.1) that

 ò w d- d
¥ ¶

t q t t flim , d 2 3.9
k

T
n

L D0
k

2

( ) [ ](· ) (·) ( )
( )

and

  s j d+ ¢ + -
¥ a

q q qlim
1

2
2 . 3.10

k

n n n n

L S
2

k k k k

T
2

[ ] [ ] ( )
( )

Denote by *u x t,( ) the unique solution of the direct heat conduction problem (1.1)
corresponding to the boundary impedance *s x( ), i.e.,

*
* *

n
s j

¶
¶

+ = Î ¶ ´
u

x
x u x t x t D T, , , 0, .

( )
( ) ( ) ( ) ( )
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Using the potential expression

* * Î ´u x t q x t x t D T, , , , 0,( ) ≔ [ ]( ) ( ) [ ]

for the direct problem, the above boundary condition says that there exists a unique
* Îq L ST

2 ( ) satisfying

* * * * s j+ ¢ + = Î
a

q x t q x t x q x t x t x t S
1

2
, , , , , , .T2

( ) [ ]( ) ( ) [ ]( ) ( ) ( )

Using this identity, we have

* * * *

*

 

  

s

s j s s

- + ¢ - + -

= + ¢ + - + -

a
q q q q x t x q q

a
q q x t x q q

1

2
,

1

2
, .

n n n

n n n n n n

2

2

k k k

k k k k k k

[ ] [ ]( ) ( ) [ ]

[ ]( ) ( ) [ ] ( ) [ ]

Therefore, by using (3.10), the convergence *s snk as  ¥k together with

*  s+ ¢ +
-

 I C
a

1

2

1

2( ) , we have *  d-¥  q q Climk
n

L Sk
T

2 ( ) . This estimate means

Îq k:nk{ } is ¶L D2 ( ) bounded. Applying the same techniques in the proof of theorem 3.1,
there exists some Îq L ST

2 ( ) such that

- =
¥

 q qlim 0, 3.11
k

n
L Sk

T
1

1 2 ( )( )

where  Î Ì Îq k q k: :n n
1k k1{ } { }. Finally, by taking subsequence nk1{ } in (3.9) and

(3.10) and using (3.8) and (3.11), we get (3.7) noticing  d-d f f . The proof is
complete. ,

Remark 3.4. Since there is no uniqueness for the minimizer of (3.1), the meaning of
‘approximate impedance’ determined by the minimizer of saJ q,n ( ) should be clarified. Based
on theorem 3.3, s xnk ( ) for a large k can be considered as the approximation to some
impedance *s x( ) (this does not need to be s x( ) which yields exact measurement f x( )) in the
sense that both the impedance boundary condition and the nonlocal measurement data are
matched up to the error level d > 0. Although we can only ensure theoretically the
convergence in the general sense (3.7), s xnk ( ) can indeed approximate s x( ) well in many
numerical tests.

In this section, we establish the well-posedness of the optimization formulation with a
regularizing penalty; namely, if the measurement data contain some noise up to the level
d > 0, then our optimization problem for a > 0 is small enough for the minimizer sa d, to
exist, which can be considered as the approximation to the exact impedance s in the sense
that both the boundary condition and the nonlocal measurement data are satisfied approxi-
mately up to error d > 0. However, it is very difficult to estimate s s-a d, by standard norm.
In the next section, we will discuss how to find this minimizer by some iteration schemes.

4. Iterative schemes for optimizing problem

The functional saJ q,( ) is nonlinear with respect to two arguments, namely, the artificially
introduced density function q x t,( ) and s x( ) for our inverse problem. Since we introduce the
density function for the expression of the solution of the direct problem, this cost functional is
nonlinear in the general form due to the impedance boundary condition, rather than a
quadratic functional. However, the advantage of dealing with such a nonlinear functional is
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that we do not need to solve the direct problem at each iteration step compared with the
conjugate gradient method [9] applied for the same inverse problem, where only the unknown
σ is introduced in the cost functional. Therefore we propose the following two iteration
schemes for our cost functional saJ q,( ), provided that the exact boundary impedance s x( )
producing the input data f x( ) is in the admissible set ¶V D( ).

The first scheme is based on the standard steepest descent scheme (SDS), while the
second one is the alternative iteration which is useful to approximate the minimizer of the cost
functional with multi-variables. For example, see [20] in the application of thermography. For
fixed σ, since (3.1) is quadratic with respect to q x t,( ), the alternative iteration scheme (AIS)
is quite efficient.

Scheme 1: SDS for minimizing saJ q,( ).

• Step 1: Set m= 0, tolerance  > 0, the initial guess s Î ¶x V D0 ( ) ( )
and Îq x t C S, ;T

0 ( ) ( )
• Step 2: Update sq x t x, ,m m( ( ) ( )) in terms of the cost functional saJ q,( ) by the method
of steepest descent, i.e.,

s s s b-  s a
+ +q q J q, , , ,m m m m

q
m m

m
1 1

,( ) ≔ ( ) ( )

where s s aJ q ,q
m m

, ( ) is the unified gradient vector, and the step size bm at the mth step is
taken as

b s s b- 
b

a s a
>

J q J qmin , , .m
m m

q
m m

0
,≕ (( ) ( ) )

• Step 3: If saJ q ,m m( ) , input s sax J q, ,m m m( ( ) ( )) and stop.
• Step 4: Set + m m1 and go to step 2.

Scheme 2: AIS for minimizing saJ q,( ).

• Step 1: Set m = 0, tolerance  > 0 and the initial guess s Î ¶x V D ;0 ( ) ( )
• Step 2: Generate qm by minimizing the cost functional saJ q, m( ) about q, i.e., qm is
solved from

s =aJ q, 0. 4.1q
m( ) ( )

• Step 3: If saJ q ,m m( ) , input sq ,m m( ) and stop;
• Step 4: Update sm to yield

⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭

 s s j s+ ¢ + - Î ¶+

a
q q q V Dargmin

1

2
: ,m m m m

L S

1
2

2

T
2

≔ [ ] [ ] ( )
( )

which solves

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟  ò s j- - - ¢ =q x t x q x t

a
q q x t s x t, ,

1

2
, d d 0. 4.2

S

m m m m
2

T

[ ]( ) ( ) [ ]( ) [ ] ( ) ( ) ( )

• Step 5: Set + m m1 and go to step 2.

By our theoretical results in section 3, the above iteration schemes will produce some
reasonable approximation to exact impedance. We will realize them in a finite dimensional
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space in the next section. To implement the process efficiently, we need to compute the
potential expressions in the cost functional at each iteration step. Noticing that both  and¢
are operators with kernel of weak singularity, here we apply Nystromʼs method for computing
these potentials, which are essential for SDS and AIS.

For ¶D smooth enough with the parametrization

p¶ = = = ÎD x x s x s x s R s s s s: , cos , sin , 0, 2 4.31 2{ ( ) ( ( ) ( )) ( )( ) [ ]} ( )

with p  +R s : 0, 2( ) [ ] the p-2 periodic function. More precisely, we assume that
p x : 0, 2 2[ ] is of smooth derivatives of the second order with

¢ ¢ + ¢ >x s x s x s 01
2

2
2∣ ( )∣ ≔ ( ( )) ( ( )) . For Î ¶x s D( ) , its unified outward normal direction

is n = ¢ - ¢ ¢x s x s x s x s,2 1( ( )) ( ( ) ( )) ∣ ( )∣ for   ps0 2 . Introduce

g q n q q q m q t q t- -s x s x x s r s x s x q x, , , , , ,( ) ≔ ( ( )) · [ ( ) ( )] ( ) ≔ ∣ ( ) ( )∣ ( ) ≔ ( ( ) )

for q p tÎ >s, 0, 2 , 0[ ] , then the kernels for the operators  ¢, have the representations
under the q ts t, ; ,( ) coordinates with the density m q t,( ):

  ò ò q t q t m q t q t¢ =
p

q s t K s t L s t, , , ; , , , ; , , d d , 4.4
t

0 0

2
( )[ ]( ) ( ( ) ( )) ( ) ( )

where

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭q t q t

q
p t

g q q
p t

q
t

=
¢

-
¢

-
-

-
K s t L s t

x

a t

s x

a t

r s

a t
, ; , , , ; ,

4
,

,

8
exp

,

42 4 2

2

2
( ( ) ( )) ∣ ( )∣

( )
( )∣ ( )∣

( )
( )
( )

for t>t .
To compute the integrals (4.4) of weak singular kernels with high accuracy, we firstly

compute the integral with respect to τ approximately. Divide the time interval T0,[ ]
equivalently by grids = t n n N: 0, 1, ,n

T

N
≔ . Then we approximate the function m ts,( )

by

å åm t m t m t» F F
= =

s s t s, , , 4.5
n

N

n n
n

N

n n
1 1

( ) ( ) ( ) ≔ ( ) ( ) ( )

where

⎧⎨⎩
 t t

F = -t t1, ,
0, elsewhere,

4.6n
n n1( ) ( )

i.e., we assume that the function m ts,( ) depends only on the spatial variable s at each small
time interval -t t,n n1[ ].

For = m n1, , and = n N1, 2, , , define

òq q q t q t t- -

-

K s L s K s t L s t, , , , ; , , , ; , d , 4.7n m n m

t

t

n n
m

m

1

( ( ) ( )) ≔ ( ( ) ( )) ( )( ) ( )

then it follows from (4.4)–(4.7) that

  òå q q m q q¢ »
p

=

- -q q s t K s L s, , , , , d . 4.8n
m

n
n m n m

m
1 0

2
( [ ] [ ])( ) ( ( ) ( )) ( ) ( )( ) ( )

Using the expressions for q tK s t, ; ,n( ) and q tL s t, ; ,n( ), we can compute the right-
hand side of (4.7) to generate
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⎧
⎨
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q

q
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= - - -
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q
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q q

g q q
p q

q q

-
- -

-
- -

-

-

K s E E

L s
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, exp exp ,
4.9

n m x

a

r s

a t t

r s

a t t

n m s x

a r s

r s

a t t

r s

a t t

4 1
,

4 1
,

4

,

2 ,
,

4
,

4

n m n m

n m n m

2

2

2
1

2

2

2 2

2

2
1

2

2

( ) ( )
{ } { }

( )

( )
( )

( ) ∣ ( ) ∣ ( )
( )

( )
( )

( ) ( ) ∣ ( ) ∣
( )

( )
( )

( )
( )

where

ò å
-

= - - -
-

>
+¥

=

¥

E x
t

t
t C x

x

n n
x

exp
d ln

1
, 0 4.10

x
e

n

n n

1
1

( ) ≔ { } ( )
!

( )

with = C 0.577 21e the Euler constant.
Define = -p n m. Then all the possible singularity points for functions

q qK s L s, , ,p p( ) ( )( ) ( ) are either p = 0 or q=s . The integrals in (4.8) can be rewritten as in the
vector form for = n N1, 2, , that

  òå q q m q q¢ »
p

=

-

-q q s t K s L s, , , , , d . 4.11n
p

n
p p

n p
0

1

0

2
( [ ] [ ])( ) ( ( ) ( )) ( ) ( )( ) ( )

To compute the above integrals, we need the following singularity decompositions,
which can be verified by the expansion (4.10) and the series expansion of -e x, see also [3, 4]
for the case of a = 1.

Lemma 4.1. The functions q qK s L s, , ,p p( ) ( )( ) ( ) have the following decompositions:

1. For p = 0, qL s,0 ( )( ) is of removable singularity at q=s satisfying

⎧
⎨⎪

⎩⎪
q q

q

= - ¹

=

¢

¢ ¢ ¢ ¢
¢

g q q
p q

q

q p

-

L s s

L s

, exp , ,

lim , ,
4.12

s x

a r s

Nr s

a T

s

x s x s x s x s

a x s

0 ,

2 ,
,

4

0
4

2 2

2

2

2 1 1 2
2 2

{ }( )

( )
( )

( ) ( ) ∣ ( ) ∣
( )

( )

( ) ( ) ( ) ( ) ( )
∣ ( ) ∣

while the function qK s,0 ( )( ) is of logarithm singularity at q=s satisfying

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

q q

q q q

= ¹

= - + 

= - -

¢
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q
p

q-

K s E s

K s K s s
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, ln sin , , ,

, ln ,

4.13

x
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x
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s

e
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a T

0
4 1

,
4

0
4

4 2
2
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4

2

2

2

2

2
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( )
( )( )

( )

( ) ( )

( )

( )

( ) ∣ ( ) ∣ ( )

( ) ∣ ( ) ∣ ( )

( ) ∣ ( ) ∣

where qK s,0,1 ( )( ) is continuous in p0, 2 2[ ] .

2. For = -p N1, 2, , 1, both qL s,p ( )( ) and qK s,p ( )( ) are of removable singularity at
q=s satisfying

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

⎡
⎣⎢

⎤
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+
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K s E E s
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,
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,
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From this singularity decomposition result, we know that all the integrands in (4.11) can
be considered as continuous functions, except

⎜ ⎟⎛
⎝

⎞
⎠

ò

ò ò

q m q q

q q
p

m q q
q

p
q m q q=

- - ¢
+

¢
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p p

K s

e
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a
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, d
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4
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2 4

d
4

, d .

n

n n

0

2
0

0

2
2

2 0

2

2
0,1

( ) ( )

∣ ( )∣ ( ) ∣ ( )∣ ( ) ( )

( )

( )

The second integral is also for continuous function, which can be computed by

ò åp
q q »

p

=

-

g
M

g s
1

2
d

1

2
4.15

k

M

k
0

2

0

2 1

( ) ( ) ( )

with = ps kk M
for = -k M0, 1, ,2 1. As for the first integral with a weak singular kernel

q-ln sin
e

s4 2
2( ), we take the quadrature formula for the p-2 periodic function

q pÎg C 0, 2( ) [ ] as [3, 14]
⎧

⎨
⎪⎪
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⎪⎪
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Combining all of the above formulas (4.9)–(4.16) together, we finally get that
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The above two expressions can be written as for = n N1, 2, , that
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with the coefficients
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Define

m m = - =  s k M n N: 0, , 2 1, 1, , ,n k≔ { ( ) }
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h h = - s k M: 0, , 2 1 .k≔ { ( ) }

Now we approximate the cost functional. For the first term in (3.1), we have
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while the second term can be approximated by
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and the third term
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Thus we finally have in terms of (4.17)–(4.21) that

s m h m m h a m» = + +a a
     

J q J J J J, , : , , 4.221 2 3( ) ˜ ( ) ( ) ( ) ( ) ( )

with the arguments  m h Î ´ + 
, MN M2 2( ) ( ) .

Now we apply the SDS for m ha
 

J ,˜ ( ) in a +MN M2 2 dimensional space. In each
iteration, we need to determine the iteration direction m hm h a

  J ,, ˜ ( ) as well as the corre-
spondent step size b > 0. To have a uniform algorithm for computing β at all iterations, we
always assume that the direction m hm h a

  J ,, ˜ ( ) has been unified in L2 sense.
Assume we are given m h

 
,m m( ) at the mth iteration. Then the gradient of the cost

functional at this point can be computed from the expression of

m h m m h a m =  +  + m h a m h m h m h
            J J J J, , 4.23, , 1 , 2 , 3˜ ( ) ( ) ( ) ( ) ( )

explicitly. As for the iteration step when updating the approximate minimizer m h
 

,m m( ), it is
well known from the method of the steepest descent that bm can be chosen as the zero point of
the equation

b
m h b m h-  =a m h a

  J J
d

d
, , 0 4.24m m m m

,˜ (( ) ˜ ( )) ( )

at each step, with m hm h a
  J ,, ˜ ( ) given by (4.23).

The above iteration procedure for a number of iterations = m 0, 1, yields finally our
approximate impedance h s s» -

 x s x s, ,m
M0 2 1( ( ( )) ( ( ))).

Analogously, the formulas (4.17) and (4.23) can be used to compute (4.1) and (4.2) for
AIS, we omit the details.
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5. Numerical implementations

In this section, we give the numerical implementations for SDS and AIS for a given domain
by (4.3) with the exact solution

⎪
⎪

⎧
⎨
⎩

=
- >

=
p

-

u x t
t

t
,

exp , 0

0, 0,
5.1

A

a t

x b

a t4 42

2

2( )( ) ( )
∣ ∣

where Îb D and >A 0 is some constant. It is obvious that Î ´u x t C D T, 0,( ) ( [ ]) and
meets the equation = Du a ut

2 in ´D T0,( ]. For s Î ¶x C D( ) ( ), it follows from simple
computations for Î ¶ ´x t D T, 0,( ) [ ] that the corresponding heat flux is

⎪

⎪

⎧
⎨
⎩

j h
=

- >

=

n-

x t
s u x s t t

t
,

, , 0

0, 0
5.2

x s b x s

a t2 2( )( ) ( ) ( ( ) ) ( )
( ( ) )· ( ( ))

with h s pÎs x s C 0, 2( ) ≔ ( ( )) ([ ]), while the simulated inversion input data (1.2) can also
be parameterized by pÎs 0, 2[ ].

Noticing that the minimizing sequence sq x t x, ,n n{( ( ) ( ))} of the cost functional saJ q,( )
is not equivalent to the convergence of s sn in any reasonable norm, as explained in our
theoretical analysis, much numerical behavior should be analyzed for this nonlinear (espe-
cially non-quadratic)) optimization.

On the other hand, our theoretical results for the conditional stability and the convergence
property of the minimizers of the cost functional require some a priori restrictions on σ such
as s Î S and s Î ¶V D( ). In our numerical implementations except example 3, such
requirements are guaranteed for suitably chosen j and ¶V D( ), since we always take s x( ) as a
known function of some smoothness.

Example 1: We consider a very simple model to test SDS for exact inversion input data,
with the configuration

s w= º º = = = =A R s x t t a T b1, 1, 1, , 1, 1, 1.2, 0 . 5.32( ) ( ) ( ) ( ) ( )

That is, the domain is assumed to be a unique circle with unit impedance on the boundary.
Then the boundary heat fluxj x t,( ) as well as the inversion input can be simulated in terms of
(5.1)–(5.3).

We take a= = =M N16, 10, 0.001 for the discretization and

m h s pº º Î Îs t q x s t s x s s t, , 0.001, 1.5, 0, 2 , 0, 10 0 0 0( ) ≔ ( ( ) ) ( ) ≔ ( ( )) [ ] [ ]

as the initial value for iteration. As for the step size bm for each iteration step, it can be chosen
theoretically in terms of (4.24), which can indeed improve the approximation rate. In fact, in
the numerical implementations, we can use any b Î 0, 1m ( ) for the normalized iteration
direction m hm h a

  J ,m m
, ˜ ( ), so we test two ways to the choice of iteration step: one is to fix

b = 0.5m for all steps, and the other one is to determine bm from (4.24) at each iteration step.
We present the performance for optimization in figure 1, where the approximation error

for the boundary impedance at the mth step is measured by

å h h-
=

-

err m
s s

M2
.i

M m
i i0

2 1 2

( ) ≔
( ( ) ( ))

It can be seen that, roughly speaking, m ha
 

J ,m m( ) always decreases as m increases.
However, the values of m ha

 
J ,m m( ) oscillate seriously for fixed b = 0.5m . These bad oscil-

lations are much improved by our strategy (4.24). To show the oscillations and improvements
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quantitatively, their values for some m with bm chosen both by b = 0.5m and by (4.24) are
listed in table 1. We guess that such oscillations come from the strong nonlinearity due to the
multiplication of σ and q[ ] in the objective functional, as the cost of avoiding the solution to
the direct problem at each iteration. On the other hand, the strategy (4.24) cannot ensure that
h h- m is also decreasing for m large enough, and this is natural since we optimize m ha

 
J ,( )

by iteration. Also the strategy (4.24) yields the good approximation for small m, see the error
for h h- m in figure 1.

The reconstruction performances for h ss x s( ) ≔ ( ( )) at several iteration steps are pre-
sented in figure 2, which also support the fact that the iteration with the strategy (4.24) for
choosing bm gets to the exact solution quickly, as compared with the fixed step size b = 0.5m

for all iteration steps. However, there is still no theoretical guarantees for the norm
convergence.

It is well-known that the choice of initial values for iteration is crucial to the convergence
of the minimizer sequence. We also find such phenomena in implementations. In our reali-
zations, we take initial values for the density functionj º 0.0010 and h º 1.50 , which means
we begin from a very small temperature distribution and the boundary impedance with 50%
error. On the other hand, here we realize our algorithm only for constant boundary impedance
in a unit circle with the exact input data f x( ), as an initial try for checking the performance of
the optimization technique based on the potential scheme. Noticing the severe drawback of
the method of steepest descent, which requires a great number of iterations for functions of
long narrow valley structures, the conjugate gradient method is considered for our iteration
process, even though the shape of m h b m h- a m h a

    J J, ,m m m m
,(( ) ( )) with respect to β may

not be of the long narrow valley structure.
Now we present some numerical examples for the AIS with nonconstant boundary

impedances of different smoothness. The domain D in the following examples is always taken
as the kite-shape domain with the boundary representation

= - - + +R s s s s s s0.45 0.36 cos 0.18 cos 2 0.09 cos 2 0.36 cos cos 2 ,2( ) ( ) ( ) ( ) ( ) ( )

while the noisy inversion input data df x( ) is generated from the noisy data
Î ¶ ´du x t x t D T, : , 0,{ ( ) ( ) [ ]} by

Figure 1. Numerical performance for fixed b = 0.5m and bm via (4.24): the values of
cost functional (left) and the error of reconstructions (right) with respect to the number
of iterations.
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d= + ´du x t randn x u x t, 1 , ,( ) [ ( )] ( )
where randn x( ) for Îx D is the standard normal distribution, u x t,( ) is the exact value
obtained by solving the direct problem.

Example 2. We take the configuration as

s w= =
+
+

= + = = = -A x
x x

x
t t a T b1000,

2

3
, 1, 16, 1, 4, 8 . 5.41 2

2
2

2 2( )
( )

( ) ( ) ( )

In the discretization, we take = =M N32, 10 and the initial value for AIS is
s ºx 0.20 ( ) . The reconstructions are given in figure 3. For the different noise level δ, the
regularizing parameters α and the number of iterations It are

d a = ´ ´ ´- - -It, , 0, 0, 600 , 0.05, 5 10 , 15 , 0.1, 1 10 , 10 , 0.2, 5 10 , 5 .6 5 5( ) ( ) ( ) ( ) ( )
We also check the performance of AIS by changing s x( ) in (5.4) as

⎧⎨⎩s p
p p p

=
+ Î
+ - Î

x s
s s

s s
0.1, 0,

2 0.1 , , 2
5.5( ( )) [ ]

( ]
( )

Figure 2. Reconstructions of impedance by a different number of iterations.

Table 1. Some error values for different choice strategies for bm.

m m ha
b  

J ,m mm ( ) berr mm ( ) bm m ha
b  

J ,m mm ( ) berr mm ( ) bm

63 1.1076 7.4854E-2 0.50 1.3047 3.2968E-2 0.801
64 0.8916 7.4318E-2 0.50 1.3125 3.3852E-2 0.801
65 1.0980 7.3856E-2 0.50 1.2489 3.4875E-2 0.801
66 0.8830 7.3318E-2 0.50 1.2559 3.6025E-2 0.801
67 1.0884 7.2854E-2 0.50 1.1931 3.7279E-2 0.793
68 0.8743 7.2315E-2 0.50 1.1550 3.8615E-2 0.793
69 1.0787 7.1849E-2 0.50 1.1389 3.9999E-2 0.793
70 0.8657 7.1308E-2 0.50 1.1011 4.1490E-2 0.793
71 1.0691 7.0841E-2 0.50 1.0847 4.3013E-2 0.793
72 0.8570 7.0298E-2 0.50 1.0473 4.4643E-2 0.793
73 1.0594 6.9830E-2 0.50 1.0307 4.6296E-2 0.785
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and keeping the other parameters in (5.4) unchanged, while the initial guess s ºx 1.50 ( ) . The
reconstructions are given in figure 4. In the implementations, the values of α and the number
of iterations It corresponding to different δ are

d a = ´ ´- -It, , 0, 0, 600 , 0.01, 1 10 , 800 , 0.05, 5 10 , 800 .7 7( ) ( ) ( ) ( )

It can be seen that even if we begin from the constant initial guess for the impedance, the
shape of σ is recovered very well. As for the numerical behavior of the cost functional

sa
dJ q,m m( ) with respect to the number of iterations, we give the values for two configurations

of s x( ) in example 2 in figure 5. Obviously, to get the satisfactory reconstructions, more
iterations are required for non-smooth s x( ) given in (5.5) from a constant initial guess.

Example 3. Finally we consider a special example with discontinuous s x( ) on ¶D
represented by

Figure 3. Reconstructions of σ for d = 0, 0.05, 0.1, 0.2 with respect to pÎs 0, 2[ ].

Figure 4. Reconstructions of σ for d = 0, 0.01, 0.05 with respect to pÎs 0, 2[ ].
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and the other configuration parameters are the same as those in example 2. In the numerical
realizations, we take different values of α and the number of iterations It for different noise
levels by

d a = ´ ´ ´- - -It, , 0, 0, 600 , 0.05, 5 10 , 15 , 0.1, 1 10 , 10 , 0.2, 5 10 , 5 .6 5 5( ) ( ) ( ) ( ) ( )

The reconstructions are given in figure 6. Although the smoothness for our theoretical
analysis is not satisfied in this configuration, the numerical results are still satisfactory for a
small noise level.

In the numerical realizations for the AIS scheme, we find that the numerical solutions are
not sensitive to the regularizing parameter α and the most important issue is to stop at some

Figure 5. The values of cost functionals for s x( ) given in (5.4) (left) and (5.5) (right)
with respect to the number of iterations.

Figure 6. Reconstruction of σ for d = 0, 0.01, 0.05 with respect to pÎs 0, 2[ ].
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iteration step for the good approximation to exact boundary impedance. The choice strategies
for α in terms of the noise level δ are important theoretical issues for our reconstruction
schemes, which are worthy of further research.
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