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Abstract
We define piecewise continuous almost automorphic (p.c.a.a.) functions in the manners of
Bochner, Bohr and Levitan, respectively, to describe almost automorphic motions in impul-
sive systems, and prove that with certain prefixed possible discontinuities they are equivalent
to quasi-uniformly continuous Stepanov almost automorphic ones. Spatially almost auto-
morphic sets on the line, which serve as suitable objects containing discontinuities of p.c.a.a.
functions, are characterized in the manners of Bochner, Bohr and Levitan, respectively, and
shown to be equivalent. Two Favard’s theorems are established to illuminate the importance
and convenience of p.c.a.a. functions in the study of almost periodically forced impulsive
systems.

Keywords Piecewise continuous and Stepanov almost automorphic functions · Spatially
almost automorphic sets · Favard’s theorems · Impulsive differential equations
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1 Introduction

Impulsive differential equations model suitably a class of real world evolutionary processes
in which the parameters undergo relatively long periods of smooth variation followed by a
short-term rapid change in their values [1]. It is in the study of almost periodic motions in
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systems with impulses at fixed times{
x ′ = f (x, t), t �= τn,

x(τ+
n ) − x(τn) = g(x(τn), n), n ∈ Z,

that the almost periodicity of both the impulse times {τ j } j∈Z and the piecewise continu-
ous solutions are encountered. The class of piecewise continuous almost periodic functions
(p.c.a.p., for short, see Definition 4.4) generalizing Bohr almost periodic ones, first intro-
duced in [15], characterizes successfully almost periodic motions in impulsive systems. As
well known in researches on continuous systems, almost automorphic dynamics are stud-
ied in depth by R. Johnson [16,17], et. al., which have stimulated later works that almost
automorphic phenomenon is a fundamental property occurring in almost periodically forced
differential equations [28,29]. From this point of view, we aim at in this paper investigating
almost automorphic solutions of impulsive differential equations and thus p.c.a.a. functions
naturally occur. To the best of our knowledge, the important notion of almost automorphy,
is only studied in one specific piecewise continuous setting [6], in which the discontinuities
are contained in Z. So, in the present paper, we shall introduce the notions of general almost
automorphy of both impulse times and piecewise continuous functions and then explore
relations among various almost automorphy and establish the important Favard’s theorems.

The concept of almost automorphy (Definition 2.1) is defined by S. Bochner [4] in relation
to aspects of differential geometry. Bochner almost automorphy has a close relationwithBohr
almost automorphy (Definition 2.8) and Levitan’s N -almost periodicity (Definition 2.11). In
the classical work of W. A. Veech [30], the essential equivalence between Bochner and
Bohr almost automorphic structures are revealed and corresponding harmonic analysis is
established. In a series of papers [2,24,29,31], it is shown that numerical uniformly continuous
almost automorphic functions are bounded uniformly continuous N -almost periodic, and vice
versa. The Bochner almost automorphic functions on groups discussed in [30] are bounded.
The impulse times, however, constitute an unbounded sequence in R. So we plan at the
same time to define almost automorphy for unbounded sequences {τ j } j∈Z in the manners
of Bochner and Bohr and Levitan, respectively, and similarly p.c.a.a. functions are also
characterized in three different ways.

As investigating various almost automorphy and impulsive differential equations, many
concepts are found equivalent. This makes researches on almost automorphic topics
convenient. We first define Bochner and Bohr and Levitan spatial almost automorphy (Def-
inition 3.1, 3.3 and 3.12) for unbounded sequences {τ j } j∈Z which serve as suitable objects
containing discontinuities of p.c.a.a. functions and prove that they are equivalent (Theo-
rems 3.10 and 3.15). The idea of the proof comes from that in Veech’s paper [30] with
nontrivial improvements since two different groups are involved in our case. These discrete
sets not only make the study of p.c.a.a. functions accessible but also provide new mathe-
matically almost automorphic structure of physical quasicrystals. On the other hand, it is
natural to impose the quasi-uniform continuity condition directly on Bochner almost auto-
morphic functions to obtain a generalization. With a little modification, this is indeed the
right way of investigation. We intend in this paper to adopt the ideas of our previous work
[23] in proving the equivalence of p.c.a.p. and quasi-uniformly continuous Stepanov almost
periodic functions. Our first task is to extend the equivalence of almost automorphy and
N -almost periodicity to vector-valued functions so that the technique of common translation
sets locating positions of variables and discontinuities works well. Then we shall make use
of the method of quasi-uniform approximation in [23] to show that Bochner and Bohr and
Levitan (Definition 4.2, 4.3 and 4.6) piecewise continuous almost automorphy are equivalent
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(Theorem 4.8), which verifies the reasonability of various new piecewise continuous almost
automorphy to some extent. In view of [23], we continue to study the connection between
Stepanov functions and the others. An important generalization of Bochner almost automor-
phic functions in the sense of Stepanov is introduced in [5], and subsequently studied by
[10,18,22]. Note that Stepanov almost periodic functions are indicated useful in impulsive
differential equations [25]. Bochner proves an important theorem that Bohr almost periodic
and uniformly continuous Stepanov almost periodic functions are equivalent ([7, p. 174], [19,
p. 34]). We shall show in this paper the equivalence of Levitan p.c.a.a. and quasi-uniformly
continuous Stepanov almost automorphic functions (Theorem 8.2).

Different characterizations of piecewise continuous almost automorphy are convenient to
utilize in different situations. Favard’s theorems [11,12] are important contents in the theory
of almost periodic differential equations. Many works have been devoted to this direction.
ImposingFavard’s separation condition on a single almost periodic linear differential equation
usually results almost automorphic solutions [29,31]. We shall show that the same condition
for impulsive differential equations is sufficient for the existence of Bochner p.c.a.a. solutions
(Theorem 9.4). Then Favard’s theorem on p.c.a.p. solutions and module containment follows
naturally (Theorem 9.5).

This paper is organized as follows. Section 2 introduces basics of Bochner and Bohr
almost automorphic and N -almost periodic functions. Other concepts and notations shall
be introduced at their first use. In Sect. 3 we characterize for discontinuities of functions
the Bochner and Bohr and Levitan spacial almost automorphy, and prove two of our main
results about their equivalence. In Sect. 4 we define Bochner and Bohr and Levitan p.c.a.a.
functions on the basis of spacial almost automorphy. Section 5 extends the equivalence
of almost automorphy and N -almost periodicity to vector-valued functions. In Sect. 6 we
prove the third main result on the equivalence of Bochner and Bohr and Levitan piecewise
continuous almost automorphy. In Sect. 7 we investigate necessary properties of Stepanov
almost automorphic functions. In Sect. 8 we prove the forth main result on the equivalence of
Levitan piecewise continuous and quasi-uniformly continuous Stepanov almost automorphy.
In Sect. 9 we establish the last two main results on Favard’s theorems. Some technical proofs
are put in Appendix A to avoid influences on main themes.

2 Bochner and Bohr Almost Automorphy and N-Almost Periodicity

Our newly defined notions of various almost automorphy are, of course, based on the classical
ones. We first introduce some basic properties. Let G = R or Z, and (X , | · |) be a Banach
space over R or C.

Definition 2.1 [21, p. 11], [30]. A function f : G → X is called (Bochner) almost auto-
morphic if given any sequence α′ ⊂ G, there exists a subsequence α ⊂ α′ and a function
g ∈ XG such that Tα f = g and T−αg = f pointwise on G.

Remark 2.2 The operator Tα f = g is adopt here to ease the notation for taking limits, which
means that g(t) = limk→∞ f (t+αk), t ∈ G, α = {αk}∞k=1 ⊂ G, and is written only when the
limit exists [14, p. 3]. The mode of convergence will be specified at each use of the symbol,
e.g. uniformly on R and pointwise for t ∈ R\Z. The symbol β ⊂ α means that β = {βk}∞k=1
is a subsequence of α = {αk}∞k=1, and −α is defined to be the sequence {−αk}∞k=1. g is called
a generalized translation of f .
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Denote by A(G, X) the set of all almost automorphic functions from G to X , and by
AA(G, X) the ones which are continuous on G. Equipped with the uniform convergence
norm ‖ f ‖ = supt∈G | f (t)|, AA(G, X) is a Banach space.

It is well-known that the continuity of g implies the uniform continuity of f ∈ AA(R, X)

[30]. We prove the converse by uniform continuity.

Lemma 2.3 An almost automorphic function on R is uniformly continuous if and only if all
of its generalized translations are uniformly continuous.

Proof Suppose that Tα f = g and T−αg = f pointwise on R. From the equality

| f (s) − f (t)| = lim
k→∞ |g(s − αk) − g(t − αk)|, ∀s, t ∈ R

it follows that the uniform continuity of g yields that of f .
Conversely, use

|g(s) − g(t)| = lim
k→∞ | f (s + αk) − f (t + αk)|, ∀s, t ∈ R.


�
Clearly, AAuc(R, X) := AA(R, X) ∩ BUC(R, X) is a Banach subspace, where

BUC(R, X) is the space of bounded and uniformly continuous functions from R to X .
Bohr almost automorphy has proved to be powerful in studying Bochner almost automor-

phic functions. The following two definitions are elementary.

Definition 2.4 [19,25]. A set E ⊂ G is said to be relatively dense if there is a positive number
l = l(E) ∈ G such that [a, a + l] ∩ E �= ∅ for all a ∈ G. l is called an inclusion length for
E .

Definition 2.5 A subset E of a group G is called strongly relatively dense if there exist
elements {si }mi=1 ∪ {t j }nj=1 ⊂ G such that ∪m

i=1si E = G = ∪n
j=1Et j .

Definition 2.5 is the same as Definition 2.1.1 in [30] except for the name. We use the
term “strongly relatively dense” to distinguish from that in [19,25]. The symbol G denotes
a general group, while G denotes R or Z. Clearly, Z is relatively dense, but not strongly
relatively dense in R.

Although Definitions 2.4 and 2.5 look different, they are closely related.

Lemma 2.6 Considered in Z, a set E ⊂ Z is relatively dense if and only if it is strongly
relatively dense.

Proof Sufficiency. Suppose that Z = ∪n
j=1(s j + E) and M = max1≤ j≤n |s j |. For every

interval of length 2M and with midpoint t ∈ Z, there exists 1 ≤ k ≤ n and τ ∈ E so that
t = sk + τ . Therefore, τ = t − sk ∈ [t − M, t + M] ∩ E . Hence 2M is an inclusion length
for the relatively dense set E .

Necessity. Suppose that E is relatively dense and has an inclusion length l. For every
t ∈ Z find a τ ∈ [t − l, t] ∩ E . Thus t − τ ∈ [0, l] ∩ Z. It follows that Z = ∪l

j=0( j + E). 
�
Lemma 2.7 The following statements are true when considered in R.

(i) A strongly relatively dense set E ⊂ R is relatively dense.
(ii) If E ⊂ R is relatively dense and δ > 0, then E + [0, δ] is strongly relatively dense.
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Proof (i) Replace Z by R in the proof of the sufficiency in Lemma 2.6.
(ii) Suppose that E is relatively dense with an inclusion length l, and n is an integer satisfying

0 < l/n < δ. It suffices to show the subset E + [0, l/n] to be strongly relatively dense.
For any t ∈ R, there is a τ ∈ [t − l, t] ∩ E . Consequently, there exists an integer
0 ≤ k ≤ n − 1 such that t − τ ∈ [kl/n, (k + 1)l/n] ⊂ [0, l]. Thus t = kl/n + τ + s,
where 0 ≤ s ≤ l/n < δ. Therefore, R = ∪n−1

j=0( jl/n + E + [0, l/n]).

�

Definition 2.8 A function f : G → X with a relatively compact range on a groupG is called
Bohr almost automorphic if for each finite set E ⊂ G and prescribed ε > 0 there is a set
Bε = Bε(E) ⊂ G such that

(i) Bε is strongly relatively dense.
(ii) Bε = B−1

ε := {τ−1; τ ∈ Bε}.
(iii) If τ ∈ Bε , then maxs,t∈E | f (sτ t) − f (st)| < ε.
(iv) If τ1, τ2 ∈ Bε , then maxs,t∈E | f (sτ1τ−1

2 t) − f (st)| < 2ε.

Correspondingly, the definition of a Bochner almost automorphic function f : G → X
is given by Definition 2.1 with G and sequences replaced by G and nets of group elements,
respectively. Note that complex almost automorphic functions can be generalized naturally
to functions taking values in a Banach space except for the property of being pointwise limit
of a jointly almost automorphic net of almost periodic functions, which involves the Tietze
extension theorem for real valued functions. The following result essentially due to Veech
[30] is important.

Theorem 2.9 A function f : G → X is Bochner almost automorphic if and only if it is Bohr
almost automorphic.

Remark 2.10 Definition 2.8 is a mimic of Definition 2.1.2 of [30]. The notion of relative
denseness in [30] is replaced by the notion of strongly relative denseness here. We have also
replaced the boundedness condition of f in Definition 2.1.2 of [30] by having a relatively
compact range. One verifies readily that Theorem 2.9 is true with the same proof as Theorem
2.2.1 in [30] since the boundedness condition is proposed only to guarantee the relative
compactness.

Levitan introduces the notion of N -almost periodicity, which is intended to be a general-
ization of Bohr almost periodic one. Because the translation set has a non-uniform restriction
on variables, it is convenient to use N -almost periodicity to study almost automorphy.

Definition 2.11 [19, p. 53]. A function f ∈ C(R, X) is called N -almost periodic if it satisfies
the following two conditions:

(i) For all ε, N > 0 there exists a relatively dense set of ε, N -almost periods of f ,

T ( f , ε, N ) := {τ ∈ R; | f (t ± τ) − f (t)| ≤ ε, |t | ≤ N }.
(ii) For all ε, N > 0 there exists an η = η(ε, N ) > 0 such that

T ( f , η, N ) ± T ( f , η, N ) ⊂ T ( f , ε, N ).

Remark 2.12 The set T ( f , η, N ) could be replaced by a relatively dense subset. See the
footnote in [19, p. 54] and Bogolyubov’s theorem in [19, p. 55]. Furthermore, such a sub-
set could be made symmetric with respect to 0. Indeed, if B( f , η, N ) ⊂ T ( f , η, N ) and
B( f , η, N ) ± B( f , η, N ) ⊂ T ( f , ε, N ), then

B( f , η, N ) ∪ B( f , η, N )−1 ⊂ T ( f , η, N )
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[B( f , η, N ) ∪ B( f , η, N )−1] ± [B( f , η, N ) ∪ B( f , η, N )−1]
= ±[B( f , η, N ) ± B( f , η, N )] ⊂ T ( f , ε, N ),

where B( f , η, N )−1 = {−τ ; τ ∈ B( f , η, N )}.
Denote by N AP(R, X) the set of all N -almost periodic functions fromR to X . [31] proves

the following important equality by a jointly almost automorphic net of almost periodic
functions.

Theorem 2.13 [31]. AAuc(R, C) = N AP(R, C) ∩ BUC(R, C).

Now the following basic observation is clear and shall be used later. If f ∈ AAuc(R, C)

and δ > 0 is chosen for ε > 0 in the statement of uniform continuity, from

| f (t ± (τ + s)) − f (t)| ≤ | f (t ± (τ + s)) − f (t ± τ)| + | f (t ± τ) − f (t)|
< 2ε, |t | ≤ N , s ∈ [0, δ], τ ∈ T ( f , ε, N )

it follows that T ( f , 2ε, N ) is strongly relatively dense since it contains such a subset
T ( f , ε, N ) + [0, δ].

3 Equivalence of Bochner and Bohr and Levitan Spatial Almost
Automorphy

In this section we characterize three new classes of spatially almost automorphic sets on the
line which serve as suitable objects containing possible discontinuities of p.c.a.a. functions.
The main results are about their equivalence (Theorems 3.10 and 3.15). There are two dif-
ferent ways in defining the discontinuities of p.c.a.p. functions. One is via equi-potentially
almost periodicity [25, p. 195] (Definition 3.11) and the other one is to introduce a distance
between almost periodic sets on the line [13,26]. It is easy to check that our spatially almost
automorphic sets are Delone sets. So physical quasicrystals may have such a structure. For
researches on quasicrystals, see e.g. [9,20] and the references therein.

To make our goal clear, let us briefly introduce the function class that solutions of impul-
sive differential equations belong to. A sequence {τ j } j∈Z ∈ R

Z is called admissible if
lim j→±∞ τ j = ±∞ and τ j < τ j+1 for all j ∈ Z. Put τ kj = τ j+k − τ j for j , k ∈ Z.
Let PC(R, X) be the set of all piecewise continuous functions h : R → X which have
discontinuities of the first kind (both h(t +0) and h(t −0) exist) only at the points of a subset
of an admissible sequence {τ j = τ j (h)} j∈Z and are continuous from the left at {τ j } j∈Z, i.e.
limt→τ j−0 h(t) = h(τ j ) for all j ∈ Z. Since the empty set is a subset of every admissible
sequence, PC(R, X) contains all continuous functions.

To the best of our knowledge, there are no results on the almost automorphy of unbounded
sequences. In the present section we shall focus on the spatial almost automorphy of the class
of admissible sequences.

3.1 Bochner and Bohr Spatial Almost Automorphy

Bochner almost automorphic functions on groups are bounded, but admissible sequences
containing possible discontinuities of piecewise continuous functions are unbounded. In this
subsection we first introduce the notions of Bochner and Bohr spatial almost automorphy for
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admissible sequences and then prove their equivalence. Levitan spatial almost automorphy
and its equivalent relation with the Bohr one shall be discussed in the next subsection.

The following definition will be fully understood later when the generalized translations
of a piecewise continuous function are considered.

Definition 3.1 An admissible sequence {τ j } j∈Z ∈ R
Z with inf j∈Z τ 1j > 0 is called Bochner

spatially almost automorphic (Bochner s.a.a., for short) if for any α′ ⊂ R, there are sequences
α ⊂ α′, {mk}∞k=1 ⊂ Z and {τ ∗

j } j∈Z ∈ R
Z such that for each n ∈ Z,

lim
k→∞ |τn+mk + αk − τ ∗

n | = 0, lim
k→∞ |τ ∗

n−mk
− αk − τn | = 0.

The following lemma gives an example of spatially almost automorphic sequences.

Lemma 3.2 Suppose that ξ > 0, ζ ∈ AA(Z, R) and the sequence given by

τn = ξn + ζ(n), n ∈ Z

satisfies inf j∈Z τ 1j > 0. Then {τ j } j∈Z is Bochner s.a.a.

Proof Given any α′ ⊂ R, there are unique m′
k ∈ Z and ϑ ′

k ∈ [0, ξ) such that

−α′
k = ξm′

k + ϑ ′
k, k ∈ Z+.

Hence there are subsequences α ⊂ α′, {mk} ⊂ {m′
k}, {ϑk} ⊂ {ϑ ′

k}, a sequence ζ ∗ ∈ R
Z and

a number ϑ ∈ [0, ξ ] such that
lim
k→∞ ζ(· + mk) = ζ ∗(·), lim

k→∞ ζ ∗(· − mk) = ζ(·), lim
k→∞ ϑk = ϑ

and

−αk = ξmk + ϑk, k ∈ Z+.

Define a sequence by

τ ∗
n = ξn + ζ ∗(n) − ϑ, n ∈ Z.

A direct calculation shows that for each n ∈ Z,

lim
k→∞ |τn+mk + αk − τ ∗

n | = lim
k→∞ |ζ(n + mk) − ζ ∗(n) − ϑk + ϑ | = 0,

lim
k→∞ |τ ∗

n−mk
− αk − τn | = lim

k→∞ |ζ ∗(n − mk) − ζ(n) − ϑ + ϑk | = 0.


�
On the basis of Definition 2.8, we propose the following new concept.

Definition 3.3 An admissible sequence {τ j } j∈Z satisfying

0 < inf
j∈Z τ 1j ≤ sup

j∈Z
τ 1j < ∞ (1)

is called Bohr spatially almost automorphic (Bohr s.a.a., for short) if for any ε > 0 and
N ∈ Z+ there is a set Bε,N ⊂ R such that

(i) Bε,N is strongly relatively dense.
(ii) Bε,N = B−1

ε,N := {−r; r ∈ Bε,N }.
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(iii) If r ∈ Bε,N , then there exists p ∈ Z such that

max|n|≤N
|τn+p + r − τn | < ε.

(iv) If r , s ∈ Bε,N and p, q ∈ Z satisfy

max|n|≤N
|τn+p + r − τn | < ε, max|n|≤N

|τn+q + s − τn | < ε,

then

max|n|≤N
|τn+p−q + r − s − τn | < 2ε.

Remark 3.4 Condition (1) is a little like the condition of having a relatively compact range
in Definition 2.8 and guarantees the convergence and equivalent relative denseness (see the
proof of Theorem 3.10). Obviously, in (iii) the p attached to r is unique if 2ε < inf j∈Z τ 1j .

The following result corresponds the property that a Bochner almost automorphic function
naturally has a relatively compact range.

Lemma 3.5 Suppose that {τ j } j∈Z is Bochner s.a.a., then it satisfies (1).

Proof It suffices to show the sequence {τ 1j } j∈Z to be relatively compact. For any sequence
{l ′′k }∞k=1 ⊂ Z, let α′′ = {−τl ′′k }∞k=1 ⊂ R. By Definition 3.1, there are sequences α′ =
{−τl ′k }∞k=1 ⊂ α′′, {m′

k}∞k=1 ⊂ Z and {τ ∗
j } j∈Z ∈ R

Z such that for each n ∈ Z,

lim
k→∞ |τn+m′

k
− τl ′k − τ ∗

n | = 0.

Thus {τm′
k

− τl ′k }∞k=1 converges to τ ∗
0 . From the assumption inf j∈Z τ 1j > 0 it follows that

the sequence of integers {m′
k − l ′k}∞k=1 is bounded. Consequently, there are p ∈ Z and

subsequences {lk}∞k=1 ⊂ {l ′k}∞k=1, {mk}∞k=1 ⊂ {m′
k}∞k=1 such that mk = lk + p for all k ∈ Z+.

Therefore,

lim
k→∞ |τ1−p+lk+p − τlk − τ ∗

1−p| = lim
k→∞ |τlk+1 − τlk − τ ∗

1−p| = 0.

Therefore, the sequence {τ 1j }n∈Z is relatively compact whence bounded. 
�
The following four lemmas are elementary in proving the equivalence of Bochner and

Bohr spatial almost automorphy.

Lemma 3.6 Suppose that {τ j } j∈Z is Bochner s.a.a., α ⊂ R, {mk}∞k=1 ⊂ Z, {τ ∗
j } j∈Z ∈ R

Z

and n ∈ Z is fixed. If

lim
k→∞ |τn+mk + αk − τ ∗

n | = 0,

then already

lim
k→∞ |τ ∗

n−mk
− αk − τn | = 0.

Proof Assume the contrary that there are ε > 0 and two subsequences {β j = αk( j)}∞j=1 and{l j = mk( j)}∞j=1 with

|τ ∗
n−l j − β j − τn | > ε.
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If {γi = β j(i)}∞i=1, {pi }∞i=1 ⊂ Z and {τ ′
j } j∈Z ∈ R

Z satisfy

lim
i→∞ |τn+pi + γi − τ ′

n | = 0,

then the sequence {τn+l j(i) −τn+pi }∞i=1 is bounded and sowill be the one {l j(i)− pi }∞i=1 by (1).
There are a subsequence, denoting by {pi }∞i=1 again, and an integer q such that pi = l j(i) +q
for each i ∈ Z+. Consequently, τ ′

n = τ ∗
n+q . However, it can never happen that

lim
i→∞ |τ ′

n−pi − γi − τn | = lim
i→∞ |τ ∗

n−l j(i) − γi − τn | = 0.

This contradicts Definition 3.1. 
�
Lemma 3.7 Suppose that {τ j } j∈Z is Bochner s.a.a., then for any ε > 0 and N ∈ Z+, the set

T ({τ j } j∈Z, ε, N ) :=
{
r ∈ R; max|n|≤N

|τn+p + r − τn | < ε for some p ∈ Z

}
is strongly relatively dense in R.

Proof Assume the contrary that there are ε > 0 and N ∈ Z+ so that the set T ({τ j } j∈Z, ε, N )

is not strongly relatively dense. Let r1 ∈ R be arbitrary, there would be an r2 ∈ R with
r2 /∈ T ({τ j } j∈Z, ε, N ) + r1 by assumption. Having chosen {r j }lj=1 ⊂ R with rk − rm /∈
T ({τ j } j∈Z, ε, N ) for 1 ≤ m < k ≤ l, there exists rl+1 ∈ R satisfying

rl+1 /∈
l⋃

j=1

[T ({τ j } j∈Z, ε, N ) + r j ].

This produces a sequence {r j }∞j=1 with rk−rl /∈ T ({τ j } j∈Z, ε, N ) for k > l. ByDefinition3.1,

there are sequences {αk = r j(k)}∞k=1 ⊂ {r j }∞j=1, {mk}∞k=1 ⊂ Z and {τ ∗
j } j∈Z ∈ R

Z such that
for each n ∈ Z,

lim
k→∞ |τn+mk + αk − τ ∗

n | = 0, lim
k→∞ |τ ∗

n−mk
− αk − τn | = 0.

Let l be large so that

max|n|≤N
|τ ∗
n−ml

− αl − τn | <
ε

2
,

then find k > l with

max|n|≤N+|ml |
|τn+mk + αk − τ ∗

n | <
ε

2
.

Therefore,

max|n|≤N
|τn+mk−ml + αk − αl − τn | ≤ max|n|≤N

|τn+mk−ml + αk − τ ∗
n−ml

|
+ max|n|≤N

|τ ∗
n−ml

− αl − τn | < ε,

which contradicts the fact that αk − αl /∈ T ({τ j } j∈Z, ε, N ) by construction. 
�
Lemma 3.8 Suppose that {τ j } j∈Z is Bochner s.a.a., then for any ε > 0 and N ∈ Z+, there
are δ > 0 and M ≥ N such that r , s ∈ T ({τ j } j∈Z, δ, M) with

max|n|≤M
|τn+p + r − τn | < δ, max|n|≤M

|τn+q + s − τn | < δ
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yield r − s ∈ T ({τ j } j∈Z, ε, N ) with

max|n|≤N
|τn+p−q + r − s − τn | < ε.

Proof Assume the contrary that there are ε > 0 and N ∈ Z+ so that given any δ > 0 and
M ≥ N there must exist r , s ∈ R and l, m ∈ Z with

max|n|≤M
|τn+l + r − τn | < δ,

max|n|≤M
|τn+m + s − τn | < δ,

max|n|≤N
|τn+l−m + r − s − τn | > ε.

Let {δ j }∞j=1 ⊂ R be a sequence decreasing to 0 and
∑∞

j=1 δ j < ∞. Put M1 = N , there
would be r1, s1 ∈ R and l1, m1 ∈ Z with

max|n|≤2M1
|τn+l1 + r1 − τn | < δ1,

max|n|≤2M1
|τn+m1 + s1 − τn | < δ1,

max|n|≤N
|τn+l1−m1 + r1 − s1 − τn | > ε.

Letting M2 > M1 + max{|l1|, |m1|}, there are r2, s2 ∈ R and l2, m2 ∈ Z with

max|n|≤2M2
|τn+l2 + r2 − τn | < δ2,

max|n|≤2M2
|τn+m2 + s2 − τn | < δ2,

max|n|≤N
|τn+l2−m2 + r2 − s2 − τn | > ε.

Inductively, there are sequences

{Mk}∞k=1 ⊂ Z+, {rk, sk}∞k=1 ⊂ R, {lk,mk}∞k=1 ⊂ Z

such that

Mk+1 > Mk + max{|lk |, |mk |}, lim
k→∞ Mk = ∞,

max|n|≤2Mk+1
|τn+lk+1 + rk+1 − τn | < δk+1,

max|n|≤2Mk+1
|τn+mk+1 + sk+1 − τn | < δk+1,

max|n|≤N
|τn+lk+1−mk+1 + rk+1 − sk+1 − τn | > ε.

Define two sequences α ⊂ R and {pk}∞k=1 ⊂ Z by

α1 = r1, α2 = s1, p1 = l1, p2 = m1,

α2k+1 =
k+1∑
j=1

r j , α2k+2 = α2k−1 + sk+1,

p2k+1 =
k+1∑
j=1

l j , p2k+2 = p2k−1 + mk+1, k ∈ Z+.
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A direct calculation shows that

max|n|≤Mk+1
|(τn+p2k+1 + α2k+1) − (τn+p2k+2 + α2k+2)|

= max|n|≤Mk+1
|(τn+l1+l2+···+lk+lk+1 + rk+1) − (τn+l1+l2+···+lk+mk+1 + sk+1)|

≤ max|n|≤Mk+1
|τn+l1+l2+···+lk+lk+1 + rk+1 − τn+l1+l2+···+lk |

+ max|n|≤Mk+1
|τn+l1+l2+···+lk+mk+1 + sk+1 − τn+l1+l2+···+lk | < 2δk+1

for k ∈ Z+ and for k > j ,

max|n|≤Mj+2
|(τn+p2k+1 + α2k+1) − (τn+p2 j+1 + α2 j+1)|

= max|n|≤Mj+2
|τn+l1+l2+···+lk+lk+1 + rk+1 + · · · + r j+2 − τn+l1+l2+···+l j+1 |

≤ max|n|≤Mj+2
|τn+l1+l2+···+lk+lk+1 + rk+1 − τn+l1+l2+···+lk | + · · ·

+ max|n|≤Mj+2
|τn+l1+l2+···+l j+2 + r j+2 − τn+l1+l2+···+l j+1 |

<

k− j∑
i=1

δ j+1+i ,

(2)

which tends to 0 as j → ∞. Consequently, {τn+pk + αk}∞k=1 is a Cauchy sequence for each
n ∈ Z. There is a sequence {τ ∗

j } j∈Z ∈ R
Z so that

lim
k→∞ |τn+pk + αk − τ ∗

n | = 0, ∀n ∈ Z.

By Lemma 3.6, already

lim
k→∞ |τ ∗

n−pk − αk − τn | = 0, ∀n ∈ Z.

Let j be so large that

max|n|≤N
|τ ∗
n−p2 j − α2 j − τn | <

ε

4
,

then choose large k > j with

max|n|≤N
|τn−p2 j+p2k+1 + α2k+1 − τ ∗

n−p2 j | <
ε

4
,

it follows that

max|n|≤N
|τn−p2 j+p2k+1 + α2k+1 − α2 j − τn |

= max|n|≤N
|τn−p2 j+p2k+1 + rk+1 + · · · + r j − s j − τn | <

ε

2
.

By (2) and N + |p2 j | < Mj+1,

max|n|≤N
|τn−p2 j+p2k+1 + rk+1 + · · · + r j+1 − τn−p2 j+p2 j−1 |

= max|n|≤N
|τn−p2 j+p2k+1 + rk+1 + · · · + r j+1 − τn+l j−m j |
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<

k− j∑
i=0

δ j+1+i <
ε

2

for large j . Therefore,

max|n|≤N
|τn+l j−m j + r j − s j − τn | < ε,

which contradicts the construction. 
�
Lemma 3.9 Suppose that {τ j } j∈Z is Bochner s.a.a., then for any ε > 0 and N ∈ Z+, there
are δ > 0 and M ≥ N such that {ri }νi=1 ⊂ T ({τ j } j∈Z, δ, M) with

max|n|≤M
|τn+pi + ri − τn | < δ, i = 1, . . . , ν

yield
∑ν

i=1 ωi ri ∈ T ({τ j } j∈Z, ε, N ) with

max|n|≤N

∣∣∣τn+∑ν
i=1 ωi pi +

ν∑
i=1

ωi ri − τn

∣∣∣ < ε

for any {ωi }νi=1 ⊂ {−1, 0, 1}.
Proof We prove it by induction. If ν = 1, use Lemma 3.8 and the fact that 0 ∈
T ({τ j } j∈Z, δ, M) with

max|n|≤M
|τn+0 + 0 − τn | < δ.

Suppose the conclusion holds for some ν ∈ Z+. By Lemma 3.8, there are 0 < δ2 < δ1 <

ε =: δ0 and M2 ≥ M1 ≥ N =: M0 such that r , s ∈ T ({τ j } j∈Z, δi , Mi ), i = 1, 2, with

max|n|≤Mi
|τn+p + r − τn | < δi , max|n|≤Mi

|τn+q + s − τn | < δi

yield r − s ∈ T ({τ j } j∈Z, δi−1, Mi−1) with

max|n|≤Mi−1
|τn+p−q + r − s − τn | < δi−1.

Using induction assumption there are δ > 0 and M ≥ M2 such that {ri }νi=1 ⊂
T ({τ j } j∈Z, δ, M) with

max|n|≤M
|τn+pi + ri − τn | < δ, i = 1, . . . , ν

yield
∑ν

i=1 ωi ri ∈ T ({τ j } j∈Z, δ2, M2) with

max|n|≤M2

∣∣∣τn+∑ν
i=1 ωi pi +

ν∑
i=1

ωi ri − τn

∣∣∣ < δ2

for any {ωi }νi=1 ⊂ {−1, 0, 1}. Let {ri }ν+1
i=1 ⊂ T ({τ j } j∈Z, δ, M) with

max|n|≤M
|τn+pi + ri − τn | < δ, i = 1, . . . , ν + 1.

Then both
∑ν

i=1 ωi ri and ων+1rν+1 ∈ T ({τ j } j∈Z, δ2, M2) with respectively

max|n|≤M2

∣∣∣τn+∑ν
i=1 ωi pi +

ν∑
i=1

ωi ri − τn

∣∣∣ < δ2, max|n|≤M2
|τn+ων+1 pν+1 + ων+1rν+1 − τn | < δ2.
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From the choice of (δ2, M2) and (δ1, M1) it follows that

−
ν∑

i=1

ωi ri ∈ T ({τ j } j∈Z, δ1, M1), ων+1rν+1 ∈ T ({τ j } j∈Z, δ1, M1)

with respectively

max|n|≤M2

∣∣∣τn−∑ν
i=1 ωi pi −

ν∑
i=1

ωi ri − τn

∣∣∣ < δ1, max|n|≤M2
|τn+ων+1 pν+1 + ων+1rν+1 − τn | < δ1,

and ων+1rν+1 − (−∑ν
i=1 ωi ri ) ∈ T ({τ j } j∈Z, ε, N ) with

max|n|≤N

∣∣∣τn−(− ∑ν
i=1 ωi pi )+ων+1 pν+1

−
(

−
ν∑

i=1

ωi ri
)

+ ων+1rν+1 − τn

∣∣∣ < ε.


�
The following is our first main result.

Theorem 3.10 A sequence {τ j } j∈Z is Bohr s.a.a. if and only if it is Bochner s.a.a.

Proof Suppose that {τ j } j∈Z is Bohr s.a.a. By (1), the sequence {τ 1j } j∈Z is bounded and there
are unique m′

k ∈ Z and ϑ ′
k such that

α′
k = −τm′

k
+ ϑ ′

k, ϑ ′
k ∈ [−τm′

k
,−τm′

k−1), k ∈ Z+.

Consequently, there are subsequences α ⊂ α′, {mk} ⊂ {m′
k}, {ϑk} ⊂ {ϑ ′

k}, a sequence u and
a number ϑ ∈ [0, sup j∈Z τ 1j ] such that limk→∞ ϑk = ϑ and

lim
k→∞ τ 1n+mk

= u(n), ∀n ∈ Z

and

αk = −τmk + ϑk, ϑk ∈ [−τmk ,−τmk−1), k ∈ Z+.

Define an admissible sequence by

τ ∗
n =

⎧⎪⎨
⎪⎩

ϑ + ∑n−1
j=0u( j), n ≥ 1;

ϑ, n = 0;
ϑ − ∑−1

j=nu( j), n ≤ −1.

It is easy to check that

τn+mk − τmk + ϑk =

⎧⎪⎨
⎪⎩

ϑk + ∑n−1
j=0τ

1
j+mk

, n ≥ 1;
ϑk, n = 0;
ϑk − ∑−1

j=nτ
1
j+mk

, n ≤ −1.

Therefore,

lim
k→∞ |τn+mk + αk − τ ∗

n | = lim
k→∞ |τn+mk − τmk + ϑk − τ ∗

n | = 0, ∀n ∈ Z. (3)

Let N ∈ Z+ be fixed and ε > 0 be arbitrary. There is a set Bε,N ⊂ R
d satisfying (i)–(iv)

of Definition 3.3. Since Bε,N is strongly relatively dense, the sequence α could be written as

αk = rk + s j(k), rk ∈ Bε,N , s j(k) ∈ R, k ∈ Z+,
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where j(·) maps Z+ to a finite index set. By passing to subsequences if necessary, we may
assume that s j(k) = s j0 is independent of k. Consequently, there is a sequence {lk}∞k=1 ⊂ Z

such that

max|n|≤N
|τn+lk + rk − τn | < ε, (4)

max|n|≤N
|τn+lk−l j + rk − r j − τn | < 2ε, j, k ∈ Z+. (5)

By (3) and (4), for each |n| ≤ N the sequence {τn+lk − τn+mk }∞k=1 is bounded, so is the
sequence of integers {lk −mk}∞k=1 by (1). Therefore, by passing to subsequences if necessary,
we may assume that lk −mk is a constant integer p ∈ Z for all k ∈ Z+. Consequently, using
(3) and (5), letting j be fixed then k be large in the refined sequence {mk}∞k=1,

max|n|≤N
|τ ∗
n−m j

− α j − τn | ≤ max|n|≤N
|τn−m j+mk + αk − α j − τn |

+ max|n|≤N
|τn−m j+mk + αk − τ ∗

n−m j
|

= max|n|≤N
|τn−l j+lk + rk − r j − τn |

+ max|n|≤N
|τn−m j+mk + αk − τ ∗

n−m j
| < 3ε.

Because ε is arbitrarily small, τn is a limit point of the sequence {τ ∗
n−mk

− αk}∞k=1. Hence
letting N be free diagonal process produces a subsequence, denoting by {τ ∗

n−mk
− αk}∞k=1

again, converging to τn for each n ∈ Z. Thus

lim
k→∞ |τ ∗

n−mk
− αk − τn | = 0, n ∈ Z.

Conversely, let {τ j } j∈Z be Bochner s.a.a. and ε > 0, N ∈ Z+ be given. Find δ > 0 and
M ≥ N so that Lemma 3.9 holds for ν = 2. Put

Bε,N = T ({τ j } j∈Z, δ, M) ∪ T ({τ j } j∈Z, δ, M)−1. (6)

Then Bε,N is strongly relatively dense by Lemma 3.7 and Bε,N = B−1
ε,N by definition.

Obviously, 0 ∈ T ({τ j } j∈Z, δ, M) with

max|n|≤M
|τn+0 + 0 − τn | < δ.

For any r ∈ Bε,N , either r ∈ T ({τ j } j∈Z, δ, M) or −r ∈ T ({τ j } j∈Z, δ, M). If l ∈ Z fulfills

max|n|≤M
|τn+l + r − τn | < δ or max|n|≤M

|τn+l − r − τn | < δ,

then r − 0 ∈ T ({τ j } j∈Z, ε, N ) or 0 − (−r) ∈ T ({τ j } j∈Z, ε, N ) with respectively

max|n|≤N
|τn+l + r − τn | < ε or max|n|≤N

|τn−l + r − τn | < ε.

If r , s ∈ Bε,N with l, m ∈ Z such that

max|n|≤M
|τn+l + r − τn | < δ, max|n|≤M

|τn+m + s − τn | < δ,

then by Lemma 3.9 r − s ∈ T ({τ j } j∈Z, ε, N ) with

max|n|≤N
|τn+l−m + r − s − τn | < ε.

In view of Lemma 3.5, {τ 1j } j∈Z is bounded. Thus it is Bohr s.a.a. 
�
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3.2 Bohr and Levitan Spatial Almost Automorphy

In this subsection, we introduce the notion of Levitan spatial almost automorphy and reveal
its equivalence with the Bohr one.

Our definition is a nontrivial improvement of notions of equi-potentially and N -almost
periodicity. In the study of p.c.a.p. solutions to impulsive differential equations, requirements
on the discontinuities of functions are as follows.

Definition 3.11 [25, p. 195]. Given an admissible sequence {τ j } j∈Z, the family of derived
sequences

{{τ kj }} := {{τ kj } j∈Z}k∈Z
is called equi-potentially almost periodic, if for each ε > 0 the common ε-translation set of
all the sequences {{τ kj }},

T ({{τ kj }}, ε) = {
p ∈ Z; |τ kj+p − τ kj | < ε for all j, k ∈ Z

}
is relatively dense.

In view of Definitions 2.11 and 3.11 and Theorem 2.13, we propose

Definition 3.12 Anadmissble sequence {τ j } j∈Z satisfying (1) shall be calledLevitan spatially
almost automorphic (Levitan s.a.a., for short), if the family of derived sequences {{τ kj }} is
equi-potentially almost automorphic (e.p.a.a., for short), that is, it satisfies the following two
conditions:

(i) For any ε, N > 0 the common translation set of a finite number of sequences of the
family {{τ kj }},

T ({{τ kj }}, ε, N ) := {
p ∈ Z; |τ kj±p − τ kj | < ε for all | j |, | j + k| ≤ N

}
is relatively dense.

(ii) For any ε, N > 0, there are an η > 0 and a relatively dense subset B({{τ kj }}, η, N ) ⊂
T ({{τ kj }}, η, N ) such that

B({{τ kj }}, η, N ) = −B({{τ kj }}, η, N ),

B({{τ kj }}, η, N ) ± B({{τ kj }}, η, N ) ⊂ T ({{τ kj }}, ε, N )

and

|τ p
0 ± τ

q
0 − τ

p±q
0 | < ε

for all p, q ∈ B({{τ kj }}, η, N ).

Remark 3.13 Condition (ii) corresponds to (iv) of Definition 3.3 and Lemma 3.8. They are
all essentially requirements on the pairs (r , p) ∈ R × Z.

Note that the two sets T ({τ j } j∈Z, ε, N ) and T ({{τ kj }}, ε, N ) consists respectively of real
and integer numbers. The following lemma relates together the strongly relative denseness
of a set in R and the relative denseness of a set in Z.
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Lemma 3.14 Suppose that {τ j } j∈Z is Bohr s.a.a., then for any ε > 0 and N ∈ Z+, the set

P({τ j } j∈Z, ε, N ) :=
{
p ∈ Z; max|n|≤N

|τn+p + r − τn | < ε for some r ∈ R

}
is relatively dense in Z.

Proof By Lemma 3.7 and Lemma 2.6, the set T ({τ j } j∈Z, ε, N ) is relatively dense in R. The
inequalities

|τ0+p + r − τ0| < ε, r ∈ T ({τ j } j∈Z, ε, N )

yield the relative denseness of the set {τp; p ∈ P({τ j } j∈Z, ε, N )} in R. Arrange the integers
in P({τ j } j∈Z, ε, N ) as an increasing sequence {pk}k∈Z. By (1), limk→±∞ pk = ±∞ and
{pk+1 − pk}k∈Z is bounded since {τpk+1 − τpk }k∈Z is. Thus P({τ j } j∈Z, ε, N ) is relatively
dense in Z. 
�

The following is our second main result.

Theorem 3.15 A sequence {τ j } j∈Z is Bohr s.a.a. if and only if it is Levitan s.a.a.

Proof Firstly, (1) is already fulfilled.
Suppose that {τ j } j∈Z is Bohr s.a.a., then it is Bochner s.a.a. byTheorem3.10. For any small

ε > 0 and N ∈ Z+ there is a set Bε,N ⊂ R given by (6) satisfying (i)–(iv) of Definition 3.3.
By (i) of Lemma 2.6, Bε,N is relatively dense. Put

B∗
ε,N = {p ∈ Z; max|n|≤N

|τn+p + r − τn | < ε for some r ∈ Bε,N }.

Because ε is small, the integer p attached to r is unique. Furthermore, the inequalities
connecting r and p imply the relative denseness of the set {τp; p ∈ B∗

ε,N }. (6) and the proof
of Lemma 3.14 imply that B∗

ε,N is relatively dense. If r , s ∈ Bε,N with p, q ∈ B∗
ε,N such

that

max|n|≤N
|τn+p + r − τn | < ε, max|n|≤N

|τn+q + s − τn | < ε,

the constructed (6) implies −r ∈ Bε,N and already

max|n|≤N
|τn±p ± r − τn | = max|n|≤N

|τ±p
n ± r | < ε.

Hence B∗
ε,N = −B∗

ε,N and using (iii) and (iv) of Definition 3.3,

|τ p
0 ± τ

q
0 − τ

p±q
0 | < 4ε.

A straightforward computation shows that

|τ kj±p − τ kj | = |(τ j+k±p − τ j±p) − (τ j+k − τ j )| = |τ±p
j+k − τ

±p
j |

≤ |τ±p
j+k ± r | + |τ±p

j ± r | < 2ε,

for all | j |, | j + k| ≤ N . Thus the relatively dense set B∗
ε,N is contained in T ({{τ kj }}, 2ε, N ).

By (iv) of Definition 3.3 and the same calculation as above,

B∗
ε,N ± B∗

ε,N ⊂ T ({{τ kj }}, 4ε, N ).

Summing up, {τ j } j∈Z is Levitan s.a.a.
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Conversely, suppose that {τ j } j∈Z is Levitan s.a.a., then for any small ε > 0, N ∈ Z+, there
are an η ∈ (0, ε) and a symmetric relatively dense subset B({{τ kj }}, η, N ) ⊂ T ({{τ kj }}, η, N )

satisfying (ii) of Definition 3.12. Define

B3ε,N = {±τ
p
0 ; p ∈ B({{τ kj }}, η, N )} + (−η, η).

Clearly, B3ε,N = −B3ε,N . By τ
p
0 = τp − τ0, (1) and (ii) of Lemma 2.6, the set B3ε,N

is strongly relatively dense. Let p, q ∈ B({{τ kj }}, η, N ) and r = −τ
p
0 , s = −τ

q
0 and δ,

δ′ ∈ (−η, η). From Definition 3.12 it follows that

|τ p
0 + τ

−p
0 − 0| = |τ−p

0 − r | < ε,

|τ p
0 ± τ

q
0 − τ

p±q
0 | = |r ± s + τ

p±q
0 | < ε,

|τ−p−q
0 − r − s| ≤ |τ−p−q

0 − τ
−p
0 − τ

−q
0 |

+ |τ−p
0 + τ

−q
0 − r − s| < 3ε.

Consequently, using the definition of T ({{τ kj }}, η, N ),

max|n|≤N
|τn+p + r + δ − τn | ≤ max|n|≤N

|(τn+p − τn) − (τp − τ0)| + η

= max|n|≤N
|τ n0+p − τ n0 | + η < 2η < 3ε,

max|n|≤N
|τn−p − r − δ − τn | ≤ max|n|≤N

|(τn−p − τn) − (τ−p − τ0)| + |τ−p
0 − r | + η

< max|n|≤N
|τ n0−p − τ n0 | + 2ε < 3ε,

which implies (iii) of Definition 3.3. Moreover,

max|n|≤N
|τn+p−q + (r + δ) − (s + δ′) − τn | ≤ max|n|≤N

|(τn+p−q − τn) − (τp−q − τ0)|

+ |τ p−q
0 + r − s| + 2η

< max|n|≤N
|τ n0+p−q − τ n0 | + 3ε < 6ε,

max|n|≤N
|τn±(p+q) ± [(r + δ) + (s + δ′)] − τn | ≤ max|n|≤N

|(τn±(p+q) − τn) − (τ±(p+q) − τ0)|

+ |τ±(p+q)
0 ± (r + s)| + 2η

< max|n|≤N
|τ n0±(p+q) − τ n0 | + 5ε < 6ε,

which yields (iv) of Definition 3.3. Summing up, {τ j } j∈Z is Bohr s.a.a. 
�

4 Piecewise Continuous Almost Automorphy

On the basis of spatially almost automorphic sequences in R
Z, we are able to propose the

new classes of Bochner and Bohr and Levitan p.c.a.a. functions and to state the third main
result on equivalence (Theorem 4.8). These functions are natural generalizations of classical
almost automorphic functions in the study of almost periodic impulsive differential equations
and shall be shown important via establishing Favard’s theorems.

The concept of quasi-uniform continuity plays an important role in approximating piece-
wise continuous functions and turns out to be a basic property.
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Definition 4.1 [23]. A function f ∈ PC(R, X) which has discontinuities at the points of a
subset of an admissible sequence {τ j } j∈Z is said to be quasi-uniformly continuous if for each
ε > 0 there exists δ = δ(ε) > 0 such that | f (s) − f (t)| < ε whenever s, t ∈ (τ j , τ j+1] for
some j ∈ Z and |s − t | < δ.

Definition 4.2 A function f ∈ PC(R, X) is called Bochner piecewise continuous almost
automorphic (Bochner p.c.a.a., for short) if the following conditions hold:

(i) f has possible discontinuities at the points of a subset of a Bochner s.a.a. sequence
{τ j } j∈Z.

(ii) f is quasi-uniformly continuous.
(iii) Given any sequence α′ ⊂ R, there are a subsequence α ⊂ α′ and a function g ∈

PC(R, X) which has possible discontinuities at the points of an admissible sequence
{τ ∗

j } j∈Z given by Definition 3.1 for −α, such that Tα f = g pointwise on R\{τ ∗
j } j∈Z and

T−αg = f pointwise on R\{τ j } j∈Z.
The reasonability of (iii) above shall be verified by Theorem 6.5 later. { f (· + αk)}k∈Z+

may diverge at the points of {τ ∗
j } j∈Z because of possible discontinuities of f at the points

of {τ j } j∈Z (Remark 6.8). The class of Bochner p.c.a.a. functions are convenient to establish
Favard’s theorems.

Definition 4.3 A function f ∈ PC(R, X) with a relatively compact range is called Bohr
piecewise continuous almost automorphic (Bohr p.c.a.a., for short) if the following conditions
hold:

(i) f has possible discontinuities at the points of a subset of a Bohr s.a.a. sequence {τ j } j∈Z.
(ii) f is quasi-uniformly continuous.

and for any ε > 0 and finite set E ⊂ R\{τ j } j∈Z, there is a set Bε = Bε(E) ⊂ R such that

(iii) Bε is strongly relatively dense.
(iv) Bε = B−1

ε := {−τ ; τ ∈ Bε}.
(v) If r ∈ Bε , then maxt∈E | f (t + r) − f (t)| < ε.
(vi) If r , s ∈ Bε , then maxt∈E | f (t + r − s) − f (t)| < 2ε.

Since we do not require the convergence on {τ j } j∈Z and have imposed an additional
condition on the finite set E , Definitions 4.2 and 4.3 are clearly weaker than Definitions 2.1
and 2.8, respectively.

Our notion of Levitan piecewise continuous almost automorphy arises with improvements
from the concepts of p.c.a.p. and N -ρ-a.p.p.c. Levitan functions in impulsive differential
equations.

Definition 4.4 [25, p. 201]. A function f ∈ PC(R, X) is called piecewise continuous almost
periodic (p.c.a.p.) if the following conditions hold:

(i) f has possible discontinuities at the points of a subset of an admissible sequence
{τ j } j∈Z which has an equi-potentially almost periodic family (Definition 3.11) of derived
sequences {{τ kj }}.

(ii) f is quasi-uniformly continuous.
(iii) For each ε > 0, the ε-translation set of f ,

Ť ( f , ε) := {τ ∈ R; | f (t + τ) − h(t)| < ε for all t ∈ R

such that |t − τ j | > ε, j ∈ Z}
is relatively dense.
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Definition 4.5 [27]. A function f ∈ PC(R, R) with discontinuities of the first kind on an
almost periodic discrete set D [13,25,26] is called an N -ρ-a.p.p.c. Levitan function if the
following conditions hold:

(i) ∀ε, N > 0 there exists a relatively dense set of ε-N -almost periods

�ε,N := {τ ∈ R; | f (t ± τ) − f (t)| ≤ ε, ∀t ∈ (
R\Fε(s(D))

) ∩ [−N , N ]},
where s(D) is the set obtained from arranging members of D in a strictly increasing
sequence, and Fε(s(D)) is a closed ε-neighbourhood of the set s(D).

(ii) ∀ε, N > 0, ∃η(ε, N ) > 0: �η,N ± �η,N ⊂ �ε,N .

Our new concept is formulated as follows.

Definition 4.6 A function f ∈ PC(R, X) with a relatively compact range is called Levi-
tan piecewise continuous almost automorphic (Levitan p.c.a.a., for short) if the following
conditions hold:

(i) f has possible discontinuities at the points of a subset of a Levitan s.a.a. sequence {τ j } j∈Z.
(ii) f is quasi-uniformly continuous.
(iii) For any ε, N > 0, the ε, N -translation set of f ,

Ť ( f , ε, N ) := {τ ∈ R; | f (t ± τ) − f (t)| < ε for all |t | ≤ N

such that |t − τ j | > ε, j ∈ Z}
is relatively dense.

(iv) For any ε, N > 0, there are an η > 0 and a relatively dense subset B( f , η, N ) ⊂
Ť ( f , η, N ) such that

B( f , η, N ) = −B( f , η, N ),

B( f , η, N ) ± B( f , η, N ) ⊂ Ť ( f , ε, N ).

Remark 4.7 Note that the symbol Ť ( f , ε, N ) for the ε, N -translation set of a Levitan p.c.a.a.
function is different from that of a continuous one. If the symmetry of B( f , η, N ) is not
assumed, it can also be obtained as we do in Remark 2.12. Clearly, our definition generalizes
the possible discontinuities on almost periodic sets of N -ρ-a.p.p.c. Levitan functions to the
ones with some kind of almost automorphy.

Denote by PCAA(R, X) and PCAAB(R, X) and PCAAL(R, X) the sets of Bochner
and Bohr and Levitan p.c.a.a. functions, respectively.

The following is the third main result in this paper. Its proof is put in Sect. 6.

Theorem 4.8 PCAA(R, X) = PCAAB(R, X) = PCAAL(R, X).

5 Equivalence of Bochner Almost Automorphy and N-Almost
Periodicity

As mentioned before Definition 2.11, it is sometimes convenient to use N -almost periodicity
to study almost automorphy. For later use, our goal in this section is to extend Theorem 2.13
to vector-valued functions.

Bohr almost automorphy and N -almost periodicity look similar. In [30], it is not clear
what the relationship between the two classes is. We shall analyze basic definitions and show
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that they are equivalent under suitable conditions. If G is commutative, Definition 2.8 has a
simpler form.

Lemma 5.1 Suppose that G is an abelian group, then a function f : G → X with a relatively
compact range is Bohr almost automorphic if and only if for any finite set E ⊂ G and ε > 0
there is a set Bε = Bε(E) ⊂ G such that

(i) Bε is strongly relatively dense.
(ii) Bε = B−1

ε .
(iii) If τ ∈ Bε , then maxt∈E | f (t + τ) − f (t)| < ε.
(iv) If τ1, τ2 ∈ Bε , then maxt∈E | f (t + τ1 − τ2) − f (t)| < 2ε.

Proof Let a finite E ⊂ G and ε > 0 be given.
Suppose (i)–(iv) in Definition 2.8 for E ∪ {0} and ε. Then (i)–(iv) in Lemma 5.1 follows

by setting s = 0.
Suppose (i)–(iv) in Lemma 5.1 for E ′ = E+ E and ε. Then (i)–(iv) in Lemma 5.1 follows

by setting t ′ = s + t . 
�
Lemma 5.2 Suppose that f ∈ BUC(R, X) has a relatively compact range, then it is Bohr
almost automorphic if and only if for any compact set K ⊂ R and ε > 0 there is a set
Bε = Bε(K ) ⊂ R such that

(i) Bε is strongly relatively dense.
(ii) Bε = B−1

ε .
(iii) If τ ∈ Bε , then maxt∈K | f (t + τ) − f (t)| < ε.
(iv) If τ1, τ2 ∈ Bε , then maxt∈K | f (t + τ1 − τ2) − f (t)| < 2ε.

Proof It suffices to prove the necessity. One verifies readily that results in [30] extends
naturally to vector-valued functions if none of particular properties of real valued functions
are concerned. By Corollary 2.1.2’ in [30, p. 742], if ε > 0 is given, then for any integer
n > 0 there exists a compact set K ′ ⊃ K and a δ > 0 such that if {τ j }nj=1 ⊂ Cδ(K ′) and if
{ω j }nj=1 ⊂ {0,±1}, then ∑n

j=1 ω jτ j ∈ Cε(K ), where

Cε(K ) :=
{
τ ∈ R;max

t∈K | f (t + τ) − f (t)| < ε
}
.

Define Bε(K ) = Cδ(K ′) ∪ Cδ(K ′)−1, which yields directly Bε = B−1
ε . Because Cδ(K ′) is

strongly relatively dense, so is Bε . (iii) and (iv) follows from the relation between Cδ(K ′)
and Cε(K ) with n = 2. 
�

The following is a vector-valued version of Theorem 2.13, crucial in characterizing almost
automorphy by N -almost periodicity.

Theorem 5.3 AAuc(R, X) = N AP(R, X) ∩ KUC(R, X), where KUC(R, X) denotes the
set of uniformly continuous functions with a relatively compact range.

Proof Suppose that f ∈ AAuc(R, X), then f has a relatively compact range and Theo-
rem 2.9 yields (i)–(iv) of Lemma 5.2 for any ε > 0 and compact interval [−N , N ]. By (i) of
Lemma 2.6, Bε is relatively dense. (ii) and (iii) of Lemma 5.2 imply Bε ⊂ T ( f , ε, N ). So
T ( f , ε, N ) is relatively dense. (iv) of Lemma 5.2 yields Bε ± Bε ⊂ T ( f , 2ε, N ). In view of
Remark 2.12, f ∈ N AP(R, X) ∩ KUC(R, X).
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Conversely, suppose that f ∈ N AP(R, X) ∩ KUC(R, X), then (i) and (ii) of Defini-
tion 2.11 hold for any ε, N > 0 and a suitable 0 < η < ε. By uniform continuity, find a
δ > 0 such that | f (s) − f (t)| < η/2 for all |s − t | ≤ δ. Therefore,

T ( f , η/2, N ) + [−δ, δ] ⊂ T ( f , η, N ).

Put Bε([−N , N ]) = T ( f , η, N ). Then Bε is strongly relatively dense since it contains such
a subset by (ii) of Lemma 2.6. By definition of T ( f , η, N ) and η < ε, Bε = B−1

ε and it
satisfies (iii) of Lemma 5.2. (ii) of Definition 2.11 yields (iv) of Lemma 5.2. Because ε and
N are arbitrary, f ∈ AAuc(R, X) by Lemma 5.2 and Theorem 2.9. 
�

6 Equivalence of Bochner and Bohr and Levitan Piecewise Continuous
Almost Automorphy

In this section, we prove the third main Theorem 4.8. We first introduce the method of
quasi-uniform approximation in the study of piecewise continuous functions.

Lemma 6.1 Suppose that h ∈ PC(R, X) is quasi-uniformly continuous with possible
discontinuities at the points of a subset of an admissible sequence {τ j } j∈Z satisfying
θ = inf j∈Z τ 1j > 0. Then given any ε > 0, there is δ ∈ (0,min{ε, θ/2}) such that the
function defined by

hσ (t) := 1

σ

∫ σ

0
h(t + s)ds, 0 < σ < δ (7)

satisfies

|hσ (t) − h(t)| < ε, ∀t ∈ R, |t − τ j | > ε, j ∈ Z.

Remark 6.2 [23] proves Lemma 6.1 with {τ j } j∈Z being a Wexler sequence, which is admis-
sible, has an equi-potentially almost periodic derived family and satisfies inf j∈Z τ 1j > 0. If

{τ j } j∈Z is only admissible and inf j∈Z τ 1j > 0, the proof is exactly the same. See Lemma 3.5
in [23].

The following theorem provides a basic tool in locating positions of variables and dis-
continuities. It indicates that different almost automorphic objects have a relatively dense
common translation set. Its technical proof, however, is a little deviate from our main topics
here and put in Appendix A. Given any λ, ε, N > 0, f ∈ AAuc(R, X) and Bochner s.a.a.
sequence {τ j } j∈Z, define

T λ( f , ε, N ) := T ( f , ε, N ) ∩ (λZ)

= {mλ;m ∈ Z, | f (t ± mλ) − f (t)| < ε for all |t | ≤ N },
T λ−({τ j } j∈Z, ε, N ) : = −T ({τ j } j∈Z, ε, N ) ∩ (λZ)

= −
{
mλ;m ∈ Z, max|n|≤N

|τn+p + mλ − τn | < ε for some p ∈ Z

}
.

Theorem 6.3 Suppose that f ∈ AAuc(R, X), {τ j } j∈Z is a Bochner s.a.a. sequence. Then for
any ε1, ε2, N1, N2 > 0, there are η ∈ (0, ε1), δ ∈ (0, ε2) so that for any λ ∈ (0,min{η, δ}),
both the sets T λ( f , ε1, N1) ∩ T λ−({τ j } j∈Z, ε2, N2) and

Pλ( f , {τ j } j∈Z; ε1, ε2, N1, N2) := {p ∈ Z; there exists m ∈ Z such that
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− mλ ∈ T λ( f , ε1, N1) and max|n|≤N2
|τn+p + mλ − τn | < ε2}

are relatively dense.

Let K PUCA(R, X) be the set of all functions h ∈ PC(R, X) which have a relatively
compact range and are quasi-uniformly continuous with possible discontinuities at the points
of a subset of a Levitan s.a.a. sequence. Note that Bochner and Bohr and Levitan s.a.a.
sequences are equivalent by Theorems 3.10 and 3.15.

Theorem 6.4 (Quasi-uniform approximation). Suppose that h ∈ K PUCA(R, X) with pos-
sible discontinuities at the points of a subset of a Levitan s.a.a. sequence {τ j } j∈Z. If for
each ε > 0 there exists an fε ∈ AAuc(R, X) such that | fε(t) − h(t)| < ε for all t ∈ R,
|t − τ j | > ε, j ∈ Z, then h ∈ PCAAL(R, X).

Proof It suffices to prove that h satisfies (iii) and (iv) of Definition 4.6. Let θ = inf j∈Z τ 1j ,
ε ∈ (0, θ/6), and N1, N2 > 0 with N2 = 1 + max{| j |; |τ j | ≤ N1} be given. Find an
η ∈ (0, ε) with

T ( fε, η, N1) ± T ( fε, η, N1) ⊂ T ( fε, ε, N1).

Choose a pair (δ, M) according to Lemma 3.9 for (ε, N2) and ν = 2 so that

max|n|≤M
|τn+p − r − τn | < δ, max|n|≤M

|τn+q − s − τn | < δ

yield

max|n|≤N2
|τn±p ∓ r − τn | < ε max|n|≤N2

|τn±(p±q) ∓ (r ± s) − τn | < ε. (8)

By Theorem 6.3, for sufficiently small λ, both T λ( fε, η, N1) ∩ T λ−({τ j } j∈Z, δ, M) and
Pλ( fε, {τ j } j∈Z; η, δ, N1, M) are relatively dense, so will be the symmetric set

B(h, η, N1) := [T λ( fε, η, N1) ∩ T λ−({τ j } j∈Z, δ, M)]
∪ [−T λ( fε, η, N1) ∩ T λ−({τ j } j∈Z, δ, M)].

If r , s ∈ B(h, η, N1), then

| fε(t ± r) − fε(t)| ≤ η, | fε(t ± (r ± s)) − fε(t)| ≤ ε, ∀|t | ≤ N1

and there are p, q ∈ Z satisfying (8). Let |t | ≤ N1 and τk + 3ε < t < τk+1 − 3ε for some
k ∈ Z, then |k|, |k + 1| ≤ N2. It follows that

|τ±p
j ∓ r | < ε, |τ±(p±q)

j ∓ (r ± s)| < ε

for | j | ≤ N2. Hence

τk±p − τk − ε < ±r < τk+1±p − τk+1 + ε,

τk±p + 2ε < t ± r < τk+1±p − 2ε,

τk±(p±q) − τk − ε < ±(r ± s) < τk+1±(p±q) − τk+1 + ε,

τk±(p±q) + 2ε < t ± (r ± s) < τk+1±(p±q) − 2ε.

Therefore, |t − τ j | > 3ε > η, |t ± r − τ j | > 2ε > η and |t ± (r ± s) − τ j | > 2ε > η for
all j ∈ Z. Consequently,

|h(t ± r) − h(t)| ≤ |h(t ± r) − fε(t ± r)| + | fε(t ± r) − fε(t)|
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+ | fε(t) − h(t)| < ε + η + ε < 3ε,

|h(t ± (r ± s)) − h(t)| ≤ |h(t ± (r ± s)) − fε(t ± (r ± s))| + | fε(t ± (r ± s)) − fε(t)|
+ | fε(t) − h(t)| < 3ε

for all |t | ≤ N1. Thus the relatively dense set B(h, η, N1) fufills

B(h, η, N1) = −B(h, η, N1) ⊂ Ť (h, 3ε, N1),

B(h, η, N1) ± B(h, η, N1) ⊂ Ť (h, 3ε, N1).


�
The following result is elementary in understanding Bochner piecewise continuous almost

automorphic functions. Moreover, it is also a completeness theoremwhen combined with the
later Lemma 9.2 for functions of which possible discontinuities are contained in a Wexler
sequences.

Theorem 6.5 Suppose that h ∈ K PUCA(R, X)with possible discontinuities at the points of
a subset of a Bochner s.a.a. sequence {τ j } j∈Z, then for any α′ ⊂ R, there are a subsequence
α ⊂ α′ and a function h∗ ∈ PC(R, X) such that

(i) Tαh = h∗ pointwise on R\{τ ∗
j } j∈Z, where {τ ∗

j } j∈Z is an admissible sequence with
inf j∈Z(τ ∗

j+1 − τ ∗
j ) > 0 containing possible discontinuities of h∗ and given by Defini-

tion 3.1 for −α.
(ii) h∗ is quasi-uniformly continuous and has a relatively compact range.
(iii) The values of h∗ on R\{τ ∗

j } j∈Z depend only on the values of h on R\{τ j } j∈Z.
Proof The proof is divided into four steps.

1. We seek for the limits. Since h has a relatively compact range and is bounded and inte-
grable, Tychnoff product and Lebesgue dominated convergence theorems yield the existence
of a subsequence α ⊂ α′ and an integrable function h∗ with a relatively compact range such
that Tαh = h∗ pointwise on R. From Definition 3.1 for −α and by passing to subsequence
if necessary, we may assume that

lim
k→∞ |τn+mk − αk − τ ∗

n | = 0, lim
k→∞ |τ ∗

n−mk
+ αk − τn | = 0, ∀n ∈ Z,

for some sequences {mk}∞k=1 ⊂ Z and {τ ∗
j } j∈Z ∈ R

Z. Clearly,

inf
j∈Z(τ

∗
j+1 − τ ∗

j ) ≥ inf
j∈Z inf

n∈Z τ 1n > 0.

2. We prove that h∗ is uniformly continuous on the set

{t ∈ R; |t − τ ∗
j | > η, ∀ j ∈ Z}

for each η > 0. Given η > 0, let δ > 0 be chosen for h and ε > 0 in the statement of
quasi-uniform continuity and s, t ∈ (τ ∗

n +η, τ ∗
n+1−η) for some n ∈ Z, |s− t | < δ. It follows

that

s + αk, t + αk ∈ (τ ∗
n + η + αk, τ

∗
n+1 − η + αk) ⊂ (τn+mk , τn+1+mk ) (9)

for large k. Therefore, |h(s + αk) − h(t + αk)| < ε and

|h∗(s) − h∗(t)| ≤ |h∗(s) − h(s + αk)| + |h(s + αk) − h(t + αk)|
+ |h(t + αk) − h∗(t)| < 2ε
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using large k.
3.We prove the property that for any ε > 0 there exists δ > 0 such that |h∗(s)−h∗(t)| < ε

whenever s, t ∈ (τ ∗
j , τ

∗
j+1) for some j ∈ Z and |s − t | < δ. Assume the contrary that there

is an ε0 > 0 so that for any δ > 0 there are s, t ∈ (τ ∗
j , τ

∗
j+1) for some j ∈ Z, |s − t | < δ

with |h∗(s) − h∗(t)| > ε0. Let δ0 ∈ (0, inf j∈Z τ 1j ) be chosen for h and ε0/3 in the statement
of quasi-uniform continuity. By Step 2, there are a sequence {δl}∞l=1 ⊂ (0, δ0) decreasing to
0, three sequences {nl}∞l=1 ⊂ Z, {sl}∞l=1, {tl}∞l=1 such that either

τ ∗
nl < sl , tl < τ ∗

nl + δl , |h∗(sl) − h∗(tl)| ≥ ε0, l ∈ Z+

or

τ ∗
nl − δl < sl , tl < τ ∗

nl , |h∗(sl) − h∗(tl)| ≥ ε0, l ∈ Z+.

We only prove the first case. The proof of the other one is similar. Let l ∈ Z+ be fixed, it
follows that

sl + αk, tl + αk ∈ [τ ∗
nl + (sl − τ ∗

nl ) + αk, τ
∗
nl + δ0 + αk) ⊂ (τnl+mk , τnl+1+mk )

for large k. Therefore, |h(sl + αk) − h(tl + αk)| < ε0/3 and by using large k,

|h∗(sl) − h∗(tl)| ≤ |h∗(sl) − h(sl + αk)| + |h(sl + αk) − h(tl + αk)|
+ |h(tl + αk) − h∗(tl)| < ε0,

which is a contradiction.
4. The property in Step 3 implies the existence of lateral limits limt→τ∗

j ± h∗(t) for j ∈ Z.

Change the values of h∗ at {τ ∗
j } j∈Z so that h∗ is continuous from left. There results h∗ ∈

PC(R, X) satisfying (i)–(iii). 
�
On the basis of Theorem 6.5, the following result verifies our original idea.

Lemma 6.6 If f ∈ A(R, X) ∩ PC(R, X) is quasi-uniformly continuous with possible dis-
continuities at the points of a subset of a Bochner s.a.a. sequence {τ j } j∈Z, then it is Bochner
p.c.a.a.

Proof By Definition 2.1, suppose that Tα f = g and T−αg = f pointwise on R for some
α ⊂ R and g ∈ XR. From Theorem 6.5 it follows that g has possible discontinuities at
the points of a subset of an admissible sequence {τ ∗

j } j∈Z given by Definition 3.1 for −α

by passing to subsequences if necessary. With a modification of the values on {τ ∗
j } j∈Z, g

could be in PC(R, X). Moreover, the values of f on R\{τ j } j∈Z will not be influenced by
an argument similar to that of (iii) of Theorem 6.5. Thus (iii) of Definition 4.2 is true for
( f , {τ j } j∈Z, α, g, {τ ∗

j } j∈Z). 
�
The proof of Theorem 4.8 is divided into the following five lemmas.

Lemma 6.7 Functions in PC AA(R, X) have a relatively compact range.

Proof Suppose that f ∈ PCAA(R, X) with possible discontinuities at the points of a subset
of a Bochner s.a.a. sequence {τ j } j∈Z. For any α′ ⊂ R, let α ⊂ α′, g ∈ PC(R, X) and
{τ ∗

j } j∈Z ∈ R
Z satisfy (iii) of Definition 4.2. If 0 /∈ {τ ∗

j } j∈Z, then limk→∞ f (αk) = g(0).
Otherwise, without loss of generality we may assume that τ ∗

0 = 0 and

lim
k→∞ |τn+mk − αk − τ ∗

n | = 0, lim
k→∞ |τ ∗

n−mk
+ αk − τn | = 0, n ∈ Z
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for some sequence {mk}∞k=1 ⊂ Z. Thus limk→∞ |τmk − αk | = 0 and at least one of the
two sets {αk;αk ≤ τmk } and {αk;αk > τmk } has infinitely many elements. By passing to
subsequences if necessary we may assume that αk ≤ τmk for all k ∈ Z+. The proof of the
other case is similar and so we omit it. For any ε > 0 let δ ∈ (0, inf j∈Z τ 1j ) be chosen for f
and ε in the statement of quasi-uniform continuity and fix a t ∈ (−δ/2, 0). It follows that

τmk − δ < t + αk < αk ≤ τmk , | f (t + αk) − f (αk)| < ε

for large k. Since limk→∞ f (t + αk) = g(t), the sequence { f (t + αk)}k∈Z+ has a finite
ε-net. Hence { f (αk)}k∈Z+ has a finite 2ε-net. Because ε is arbitrary, { f (αk)}k∈Z+ is totally
bounded and contains a convergent subsequence. 
�
Remark 6.8 The above proof indicates { f (αk + τ ∗

n )}k∈Z+ may have two limit points for each
n ∈ Z due to possible discontinuities of f at {τ j } j∈Z.

The following lemma extends a basic integration technique in [3, p. 80] to Bochner p.c.a.a.
functions.

Lemma 6.9 Suppose that f ∈ PCAA(R, X), then for each σ > 0, the function fσ defined
by (7) belongs to AAuc(R, X).

Proof Suppose that f ∈ PCAA(R, X) with possible discontinuities at the points of a subset
of aBochner s.a.a. sequence {τ j } j∈Z,α ⊂ R, g ∈ PC(R, X) and {τ ∗

j } j∈Z ∈ R
Z satisfy (iii) of

Definition 4.2. By Lemma 6.7 and Definition 4.2, f is bounded and locally integrable. Hence
g is locally integrable by Lebesgue’s dominated convergence theorem. Define a continuous
function by

gσ (t) = 1

σ

∫ σ

0
g(t + s)ds, t ∈ R.

Again by using Lebesgue’s dominated convergence theorem as k → ∞,

| fσ (t + αk) − gσ (t)| ≤ 1

σ

∫ σ

0
| f (t + αk + s) − g(t + s)|ds → 0,

|gσ (t − αk) − fσ (t)| ≤ 1

σ

∫ σ

0
|g(t − αk + s) − f (t + s)|ds → 0.

In view of gσ ∈ C(R, X), fσ ∈ AAuc(R, X) by Lemma 2.3. 
�
Lemma 6.10 PCAA(R, X) ⊂ PCAAL(R, X).

Proof Lemmas 6.1 and 6.9 imply that the quasi-uniform approximation Theorem 6.4 holds
for functions in PCAA(R, X), whence the inclusion holds. 
�
Lemma 6.11 PCAAB(R, X) ⊃ PCAAL(R, X).

Proof Let h be in PCAAL(R, X) and {τ j } j∈Z be the Levitan s.a.a. sequence containing
possible discontinuities of h. It suffices to verify (iii)–(vi) of Definition 4.3 for h. Given any
finite set E ⊂ R\{τ j } j∈Z, find ε, N > 0 with

ε < min
j∈Z,t∈E |t − τ j |, E ⊂ (−N + ε, N − ε). (10)

By (iv) of Definition 4.6 there are an η, 0 < η < ε/2, and a relatively dense set B(h, η, N ) ⊂
Ť (h, η, N ) such that

B(h, η, N ) = −B(h, η, N ),
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B(h, η, N ) ± B(h, η, N ) ⊂ Ť (h, ε/2, N ).

Next we construct a set from B(h, η, N ) which fulfills all the requirement. Because h is
quasi-uniformly continuous, there exists a δ, 0 < δ < ε/2 such that |h(s) − h(t)| < ε/2
whenever s, t ∈ (τ j , τ j+1] for some j ∈ Z and |s − t | < δ. If r ∈ Ť (h, ε/2, N ), s ∈
(r −δ, r +δ) and |t | ≤ N −δ, |t−τ j | > ε, j ∈ Z, a direct calculation shows that |s−r | < δ,
|t ± (s − r)| ≤ N , and

|t ± (s − r) − τ j | ≥ |t − τ j | − |s − r | > ε − δ >
ε

2

for all j ∈ Z. Therefore, using r ∈ Ť (h, ε/2, N ) and quasi-uniform continuity,

|h(t ± s) − h(t)| ≤ |h(t ± (s − r) ± r) − h(t ± (s − r))|
+ |h(t ± (s − r)) − h(t)| < ε.

Consequently, using η < ε/2 and monotonicity,

Ť (h, η, N ) + (−δ, δ) ⊂ Ť (h, ε/2, N ) + (−δ, δ) ⊂ Ť (h, ε, N − δ).

Define

Bε = Bε(E) := B(h, η, N ) +
(

− δ

2
,
δ

2

)
,

then

Bε ⊂ Ť (h, η, N ) +
(

− δ

2
,
δ

2

)
⊂ Ť (h, ε, N − δ).

(ii) of Lemma 2.6 implies that the set Bε is strongly relatively dense and by definition
Bε = B−1

ε . Properties of B(h, η, N ) imply

Bε ± Bε ⊂ Ť (h, ε/2, N ) + (−δ, δ) ⊂ Ť (h, ε, N − δ).

At last, (10) implies

max
t∈E |h(t + r) − h(t)| < ε,

max
t∈E |h(t + r − s) − h(t)| < ε

for all r , s ∈ Bε . 
�
Lemma 6.12 PCAAB(R, X) ⊂ PCAA(R, X).

Proof We make use of the method in proving the sufficiency of Theorem 2.2.1 in [30]. Let
f ∈ PCAAB(R, X) with possible discontinuities at the points of a subset of a Bohr s.a.a.
sequence {τ j } j∈Z,which is alreadyBochner s.a.a., andα′ ⊂ R. Bydefinition f has a relatively
compact range, which implies that there are a subsequence α ⊂ α′ and two functions g,
h ∈ XR satisfying Tα f = g and T−αg = h pointwise on R. Given arbitrary t ∈ R\{τ j } j∈Z
and ε > 0, find a set Bε = Bε({t}) satisfying (iii)–(vi) of Definition 4.3. Because Bε is
strongly relatively dense, there exsits {s j }mj=1 ⊂ R such that R = ∪n

j=1(s j + Bε). For each
k ∈ Z+ we may write αk = rk + s j , where rk ∈ Bε and j = j(k). There are but finitely
many s j , so there is a subsequence β ⊂ α such that βk = r ′

k + s j0 , where r
′
k ∈ Bε and j0 is

independent of k. Obviously, T−βTβ f = h pointwise on R. Let k then j be chosen so large
that

| f (t − βk + β j ) − h(t)| < ε.
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By β j − βk = r ′
j − r ′

k and (vi) of Definition 4.3,

| f (t − βk + β j ) − f (t)| < 2ε,

which yields |h(t) − f (t)| < 3ε. Since ε then t ∈ R\{τ j } j∈Z are arbitrary, f = h on
R\{τ j } j∈Z. At last, by Theorem 6.5, g has possible discontinuities at the points of a subset of
an admissible sequence {τ ∗

j } j∈Z given by Definition 3.1 for −α by passing to subsequences
if necessary and with a modification of its values on {τ ∗

j } j∈Z it could be in PC(R, X).
Moreover, the values of h on R\{τ j } j∈Z will not be influenced by an argument similar to that
of (iii) of Theorem 6.5. Thus (iii) of Definition 4.2 is true for ( f , {τ j } j∈Z, α, g, {τ ∗

j } j∈Z). 
�

7 Stepanov Almost Automorphy

In this section, we mainly reduce Stepanov almost automorphic functions to vector-valued
Bochner almost automorphic ones (Lemma 7.4) so that Theorem 5.3 is applicable for the
next section.

For any p, 1 ≤ p < ∞, consider function spaces L p
loc(R, X), Y = L p([0, 1], X) and

C(R, Y ). For every f ∈ L p
loc(R, X), put

f̃ (t)(s) = f (t + s), a.e. s ∈ [0, 1],∀t ∈ R.

f̃ is called the Bochner transform of f . It is easy to see that f̃ ∈ C(R, Y ) and

f̃ (t)(s) = f̃ (τ )(t − τ + s) (11)

for a.e. s ∈ [0, 1] ∩ [τ − t, τ − t + 1] and all t ∈ R. If f̃ ∈ AA(R, Y ), for any sequence
α′ ⊂ R, there would exist a subsequence α ⊂ α′ and a measurable function h ∈ YR such
that Tα f̃ = h and T−αh = f̃ pointwise, i.e.,

lim
k→∞ ‖ f̃ (t + αk) − h(t)‖p

Y = lim
k→∞

∫ 1

0
| f (t + αk + s) − h(t)(s)|pds = 0,

lim
k→∞ ‖h(t − αk) − f̃ (t)‖p

Y = lim
k→∞

∫ 1

0
|h(t − αk)(s) − f (t + s)|pds = 0

for all t ∈ R. In general, we do not know whether h is the Bochner transform of a function
in L p

loc(R, X) or not. To clarify this basic fact, define independently

Definition 7.1 A function f ∈ L p
loc(R, X), p ≥ 1, is called S p-uniformly continuous almost

automorphic (S p-u.c.a.a., for short) if given any sequence α′ ⊂ R, there exists a subsequence
α ⊂ α′ and a function g ∈ L p

loc(R, X) such that Tα f = g and T−αg = f pointwise in the
sense of Stepanov, that is,

lim
k→∞

∫ 1

0
| f (t + αk + s) − g(t + s)|pds = 0,

lim
k→∞

∫ 1

0
|g(t − αk + s) − f (t + s)|pds = 0

for all t ∈ R.

A function f ∈ L p
loc(R, X) with f̃ ∈ AA(R, Y ) will be called S p-a.a. [5]. Denote by

S p AA(R, X) and S p AAuc(R, X) the sets of all Stepanov a.a. and u.c.a.a. functions (of
order p), respectively. It is obvious that S p AAuc(R, X) ⊂ S p AA(R, X). Next we show that
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equipped with a suitable norm, S p AA(R, X) and S p AAuc(R, X) are isometrically isomor-
phic to corresponding complete subspaces of AA(R, Y ) and AAuc(R, Y ), respectively.

The translation invariant property (11) of f̃ is crucial in constructing spaces isometrically
isomorphic to S p AA(R, X) and S p AAuc(R, X), respectively. As in [23], set

C̃(R, Y ) = {g ∈ C(R, Y ); g satisfies (11)}
and define a linear map by

� : L p
loc(R, X) → C̃(R, Y ), f �→ f̃ .

Let

Mp(R, X) =
{
f ∈ L p

loc(R, X); sup
t∈R

∫ 1

0
| f (t + s)|pds < ∞

}
be the Banach space [8, p. 39] of functions bounded in the mean (of order p) equipped with
the norm

‖ f ‖Mp = sup
t∈R

[ ∫ 1

0
| f (t + s)|pds

] 1
p

and

B̃C(R, Y ) = C̃(R, Y ) ∩ BC(R, Y )

be a subspace of bounded and continuous functions equipped with the uniform convergence
norm ‖ · ‖. [23] proves the following
Lemma 7.2 � : L p

loc(R, X) → C̃(R, Y ) is an isomorphism and� : (Mp(R, X), ‖·‖Mp ) →
(̃BC(R, Y ), ‖ · ‖) is an isometric isomorphism.

Define

ÃA(R, Y ) = C̃(R, Y ) ∩ AA(R, Y ),

ÃAuc(R, Y ) = C̃(R, Y ) ∩ AAuc(R, Y ).

To show the corresponding relations between the spaces ÃA(R, Y ), ÃAuc(R, Y ) and
S p AA(R, X), S p AAuc(R, X), respectively, we need the following result.

Lemma 7.3 Generalized translations of functions in ÃA(R, Y ) also satisfy (11).

Proof Suppose that h ∈ ÃA(R, Y ) and Tαh = g, T−αg = h pointwise on R. Given any t ,
τ ∈ R, put It,τ = [τ − t, τ − t + 1], I = [0, 1] and ν = t − τ + s. It is easy to see that
s ∈ I ∩ It,τ if and only if ν ∈ I ∩ Iτ,t . By (11),

h(t)(s) = h(τ )(ν), h(t + αk)(s) = h(τ + αk)(ν)

for a.e. s ∈ I ∩ It,τ and all t ∈ R, k ∈ Z+. A direct calculation shows that∫
I∩It,τ

|h(t + αk)(s) − g(τ )(ν)|pds =
∫
I∩Iτ,t

|h(τ + αk)(ν) − g(τ )(ν)|pdν

≤
∫
I
|h(τ + αk)(ν) − g(τ )(ν)|pdν

= ‖h(τ + αk) − g(τ )‖p
Y
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and ∫
I∩It,τ

|h(t + αk)(s) − g(t)(s)|pds ≤ ‖h(t + αk) − g(t)‖p
Y .

Since Tαh = g pointwise on R, both g(t)(·) and g(τ )(t − τ + ·) are limits of h(t + αk)(·)
in L p(I ∩ It,τ , X). Therefore,

g(t)(s) = g(τ )(t − τ + s), a.e. s ∈ I ∩ It,τ ,∀t ∈ R.


�

Lemma 7.4 Both� : (S p AA(R, X), ‖·‖Mp ) → (̃AA(R, Y ), ‖·‖)and� : (S p AAuc(R, X), ‖·
‖Mp ) → (̃AAuc(R, Y ), ‖ · ‖) are isometric isomorphisms.

Proof We shall show that f ∈ S p AAuc(R, X) if and only if f̃ ∈ ÃAuc(R, Y ). Then
S p AAuc(R, X) ⊂ Mp(R, X) and by Lemma 7.2, � : S p AAuc(R, X) → ÃAuc(R, Y )

is injective. If h ∈ ÃAuc(R, Y ), h is the Bochner transform of �−1(h). So �−1(h) ∈
S p AAuc(R, X) and � : S p AAuc(R, X) → ÃAuc(R, Y ) is surjective. The final conclusion
follows from Lemma 7.2. The proof of the other case of � : S p AA(R, X) → ÃA(R, Y ) is
similar, since by definition f ∈ S p AA(R, X) if and only if f̃ ∈ ÃA(R, Y ).

Suppose that f ∈ S p AAuc(R, X) and Tα f = g, T−αg = f pointwise in the sense
of Stepanov. By definitions of norms and almost automorphy, f̃ ∈ AA(R, Y ). Clearly, f̃
satisfies (11) and g̃ ∈ C(R, Y ). Thus f̃ ∈ ÃAuc(R, Y ).

Conversely, let f̃ ∈ ÃAuc(R, Y ) and Tα f̃ = h, T−αh = f̃ pointwise on R. By Lem-
mas 2.3 and 7.3, h ∈ C̃(R, Y ). So, h is the Bochner transform of �−1(h) by Lemma 7.2.
Consequently, Tα f = �−1(h), T−α�−1(h) = f pointwise in the sense of Stepanov. 
�

The following lemma is a basic integration technique like Lemma 6.9.

Lemma 7.5 Suppose that f ∈ S p AAuc(R, X), then for each σ > 0,

fσ (t) := 1

σ

∫ σ

0
f (t + s)ds ∈ AAuc(R, X).

Proof Suppose that Tα f = g, T−αg = f pointwise in the sense of Stepanov. Define

gσ (t) = 1

σ

∫ σ

0
g(t + s)ds, t ∈ R.

Using Hölder’s inequality for 0 < σ ≤ 1,

| fσ (t + αk) − gσ (t)| ≤ 1

σ

∫ σ

0
| f (t + αk + s) − g(t + s)|ds

≤ 1

σ

[ ∫ 1

0
| f (t + αk + s) − g(t + s)|pds

]1/p → 0,

|gσ (t − αk) − fσ (t)| ≤ 1

σ

[ ∫ 1

0
|g(t − αk + s) − f (t + s)|pds

]1/p → 0, k → ∞.

If σ > 1, divide the integrals above into a finite sum. In view of gσ ∈ C(R, X), fσ ∈
AAuc(R, X) by Lemma 2.3. 
�
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8 Equivalence of Levitan Piecewise Continuous and Stepanov Almost
Automorphy

In this section, we prove our fourth main result on equivalence relations.
To get a good understanding, one verifies readily that Levitan p.c.a.a. functions include

the uniformly continuous almost automorphic ones.

Lemma 8.1 AAuc(R, X) ⊂ PCAAL(R, X).

Proof For every h ∈ AAuc(R, X), h has discontinuities at the points of the empty set, which
is a subset of any Levitan s.a.a. sequence {τ j } j∈Z. Uniform continuity of h implies quasi-
uniform continuity. Assume by Theorem 5.3 that ε, η, N > 0 satisfy

T (h, η, N ) ± T (h, η, N ) ⊂ T (h, ε, N ).

Let B(h, η, N ) = T (h, η, N ). Then B(h, η, N ) = −B(h, η, N ) ⊂ Ť (h, η, N ) by defini-
tions. Moreover,

B(h, η, N ) ± B(h, η, N ) ⊂ T (h, ε, N ) ⊂ Ť (h, ε, N ).


�
Define for every bounded h ∈ PC(R, X) a quantity

‖h‖ = sup
t∈R

|h(t)| = sup
j∈Z

sup
τ j<t≤τ j+1

|h(t)|,

The following is the fourthmain result in this paper. It generalizes corresponding theorems
of Bochner and [23] (see Remark 8.3) respectively on Bohr and piecewise continuous almost
periodicity.

Theorem 8.2 For any p ≥ 1,

S p AAuc(R, X) ∩ K PUCA(R, X) = PCAAL(R, X).

Proof Let h ∈ PCAAL(R, X) have discontinuities at the points of a subset of a Levitan
s.a.a. sequence {τ j } j∈Z. Using Theorem 5.3 and Lemma 7.4, we show h ∈ S p AAuc(R, X)

by proving that h̃ ∈ N AP(R, Y ) ∩ KUC(R, Y ). Let L > sup j∈Z τ 1j , θ = inf j∈Z τ 1j and
m ∈ Z+ satisfy mθ > 1. A direct calculation shows that

τn+m − τn =
m−1∑
j=0

(τn+ j+1 − τn+ j )

=
m−1∑
j=0

τ 1n+ j ≥ mθ > 1

for all n ∈ Z. For every |t | ≤ N1 there exists a unique k ∈ Z with τk < t ≤ τk+1, then
t + 1 ≤ τk+m+1. Because the number of k = k(t) with |t | ≤ N1 is finite, there is a number
N2 independent of |t | ≤ N1 satisfying |τ j | ≤ N2 for j = k, . . ., k + m + 1. Consequently,

‖h̃(t ± r) − h̃(t)‖p
Y =

∫ t+1

t
|h(s ± r) − h(s)|pds ≤

∫ τk+1+m

τk

|h(s ± r) − h(s)|pds
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=
k+m∑
j=k

[ ∫ τ j+ε

τ j

|h(s ± r) − h(s)|pds

+
∫ τ j+1−ε

τ j+ε

|h(s ± r) − h(s)|pds +
∫ τ j+1

τ j+1−ε

|h(s ± r) − h(s)|pds
]

≤
k+m∑
j=k

[2ε(2‖h‖)p + (τ 1j − 2ε)ε p]

< (m + 1)[2p+1‖h‖p + (L − 2ε)ε p−1]ε =: ε∗(ε)

for all r ∈ Ť (h, ε, N2) and |t | ≤ N1, where 0 < ε < θ/2 and ‖h‖ < ∞ by assumption.
Thus T (h̃, ε∗(ε), N1) contains a relatively dense subset Ť (h, ε, N2).

Let η be a number such that 0 < η < θ/2, ε∗(η) < ε∗(ε) and there exists relatively dense
set B(h, η, N2) ⊂ Ť (h, η, N2) satisfying

B(h, η, N2) ± B(h, η, N2) ⊂ Ť (h, ε, N2).

By the argument above,

B(h, η, N2) ⊂ Ť (h, η, N2) ⊂ T (h̃, ε∗(η), N1).

Therefore,

B(h, η, N2) ± B(h, η, N2) ⊂ T (h̃, ε∗(ε), N1).

Hence h̃ ∈ N AP(R, Y ). By a similar estimate for ‖h̃(t ± r) − h̃(t)‖p
Y as above,

‖h̃(t + s) − h̃(t)‖p
Y ≤ ε∗(ε)

for |s| < δ < ε, where δ is chosen for ε in the statement of quasi-uniform continuity. Thus
considering ‖h‖ < ∞, h̃ ∈ BUC(R, Y ).

Given any sequence {t ′k}∞k=1 ⊂ R, because h has a relatively compact range, there exists
a subsequence {tk}∞k=1 ⊂ {t ′k}∞k=1 such that {h(tk + s)}∞k=1 is convergent for all s ∈ [0, 1]
by Tychnoff product theorem. Therefore, {h̃(tk)}∞k=1 converges in Y = L p([0, 1], X) by
Lebesgue’s dominated convergence theorem.

For the reverse containment, assume that h ∈ S p AAuc(R, X) ∩ K PUCA(R, X) has
discontinuities at the points of a subset of a generalized Wexler sequence {τ j } j∈Z with
inf j∈Z τ 1j = θ . From Lemma 6.1 it follows that for every ε > 0 there exists a δ, 0 < δ <

min{θ/2, ε} such that |hσ (t) − h(t)| < ε for all σ ∈ R, 0 < σ < δ and t ∈ R, |t − τ j | > ε,
j ∈ Z. Moreover, Lemma 7.5 implies that hσ ∈ AAuc(R, X) for 0 < σ < δ. Therefore,
h ∈ PCAAL(R, X) by Theorem 6.4. 
�

Remark 8.3 Bochner proves S p(R, X) ∩ BUC(R, X) = AP(R, X) ([7, p. 174], [19, p.
34]) and Theorem 3.2 in [23] proves S p(R, X) ∩ PUCW (R, X) = PCAP(R, X) ∩
PUCW (R, X), where AP(R, X), S p(R, X) and PCAP(R, X) denote the set of Bohr,
Stepanovandpiecewise continuous almost periodic functions, respectively, and PUCW (R, X)

is the set of functions h ∈ PC(R, X) which are quasi-uniformly continuous with possible
discontinuities at the points of a subset of a Wexler sequence (see Remark 6.2 for definition).
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9 Favard’s Theorems

In this section we study p.c.a.a. solutions of almost periodic impulsive differential equations
and establish two Favard’s theorems.

Favard’s theorem on almost periodic differential equations reads as follows.

Theorem 9.1 Consider the following linear differential equation

x ′ = A(t)x + f (t), (12)

where A ∈ AP(R, R
d×d), f ∈ AP(R, R

d). If for any B in the hull of A, any nontrivial
bounded solution x of

x ′ = B(t)x

satisfies inf t∈R |x(t)| > 0 and (12) admits a bounded solution, then (12) has at least one
almost periodic solution φ such that mod(φ) ⊂ mod(A, f ), where mod (ϕ) denotes the
frequency module defined as the additive group generated by the spectrum of an almost
periodic function ϕ.

[14] proposes Question A on the truth of Theorem 9.1 if only x ′ = A(t)x is required
inf t∈R |x(t)| > 0 for nontrivial solutions. [17] construct a scalar differential equation of the
form (12) which admits bounded solutions, but no almost periodic solutions. [29] proves the
existence of almost automorphic soluitons under the condition of [14]. [31] extends Theorem
4.2 of [29] to differential equations with piecewise constant argument. As for impulsive
differential equations, we shall consider the linear differential equation with impulses at
fixed times {

x ′ = A(t)x + h(t), t �= τn,

x(τ+
n ) − x(τn) = B(n)x(τn) + b(n), n ∈ Z,

(13)

and its homogeneous system{
x ′ = A(t)x, t �= τn,

x(τ+
n ) − x(τn) = B(n)x(τn), n ∈ Z,

(14)

which satisfy the following conditions:

(H1) {τ j } j∈Z ⊂ R is a Wexler sequence such that

τn = ξn + ζ(n), n ∈ Z,

where ξ > 0, ζ ∈ AP(Z, R) and θ = inf j∈Z τ 1j .

(H2) A ∈ PCAP(R, R
d×d), h ∈ PCAP(R, R

d) has discontinuities at the points of a subset
of {τ j } j∈Z, B ∈ AP(Z, R

d×d), b ∈ AP(Z, R
d), where d ∈ Z+. det[I + B(n)] �= 0 for

all n ∈ Z.

Theorem 6 in [27] proves that if (14) has only trivial bounded solution, then any bounded
solution of (13) is an N -ρ-a.p.p.c. Levitan function (Definition 4.5). N -ρ-a.p.p.c. Levitan
functions, when considered as bounded solutions of impulsive differential equations, are
already quasi-uniformly continuous and hence form a subclass of our Levitan p.c.a.a. solu-
tions. The theorem in [27], although lack of details, has indicated this class of solutions to
be natural in almost periodically forced impulsive differential equations. We provide here a
completely new and easily accessible approach and further results.
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Wexler sequences are Bochner s.a.a. by Lemma 3.2. See [13,25,26] for more about almost
periodic sets on the line. The following result is adequate for use.

Lemma 9.2 Suppose that {τ j } j∈Z is a Wexler sequence defined by

τn = ξn + ζ(n), n ∈ Z,

where ξ > 0, ζ ∈ AP(Z, R), then for any α′ ⊂ R, there are sequences α ⊂ α′, {mk}∞k=1 ⊂ Z

and a Wexler sequence {τ ∗
j } j∈Z of the form

τ ∗
n = ξn + ζ ∗(n) + ϑ, n ∈ Z

with ζ ∗ in the hull of ζ , ϑ ∈ [0, ξ ], such that
lim
k→∞ sup

n∈Z
|τn+mk + αk − τ ∗

n | = 0, lim
k→∞ sup

n∈Z
|τ ∗
n−mk

− αk − τn | = 0.

Proof Given any α′ ⊂ R, there are unique m′
k ∈ Z and ϑ ′

k ∈ [0, ξ) such that

−α′
k = ξm′

k + ϑ ′
k, k ∈ Z+.

Hence there are subsequences α ⊂ α′, {mk} ⊂ {m′
k}, {ϑk} ⊂ {ϑ ′

k}, a sequence ζ ∗ in the hull
of ζ and a number ϑ ∈ [0, ξ ] such that

lim
k→∞ ζ(· + mk) = ζ ∗(·), lim

k→∞ ζ ∗(· − mk) = ζ(·), lim
k→∞ ϑk = ϑ

and

−αk = ξmk + ϑk, k ∈ Z+.

Define a Wexler sequence by

τ ∗
n = ξn + ζ ∗(n) − ϑ, n ∈ Z.

A direct calculation shows that

sup
n∈Z

|τn+mk + αk − τ ∗
n | = sup

n∈Z
|ζ(n + mk) − ζ ∗(n) − ϑk + ϑ |

≤ ‖ζ(· + mk) − ζ ∗(·)‖ + |ϑk − ϑ |,
sup
n∈Z

|τ ∗
n−mk

− αk − τn | = sup
n∈Z

|ζ ∗(n − mk) − ζ(n) − ϑ + ϑk |
≤ ‖ζ ∗(· − mk) − ζ(·)‖ + |ϑk − ϑ |,

which imply the final conclusion. 
�
The following theorem obtains nearly the same result as Theorem 6 in [27] on N -ρ-a.p.p.c.

Levitan solutions by a new and simpler approach.

Theorem 9.3 Suppose that (13) satisfies (H1) and (H2), and the homogeneous system (14)
has only trivial bounded solutions. Then any bounded solution of (13) is Bochner p.c.a.a.

Proof Let φ be a bounded solution of (13) and α ⊂ R. For each k ∈ Z+ the function
φk(·) := φ(· + αk) has possible discontinuities at the points of a subset of {τ j − αk} j∈Z, and
satisfies{

d
dt φk(t) = A(t + αk)φk(t) + h(t + αk), t �= τn − αk,

φk((τn − αk)
+) − φk(τn − αk) = B(n)φk(τn − αk) + b(n), n ∈ Z.

123



Journal of Dynamics and Differential Equations

From the proof of Lemma 9.2 and by passing to subsequence if necessary, we may assume
that

−αk = ξmk + ϑk, k ∈ Z+,

where mk ∈ Z and ϑk ∈ [0, ξ), and using the fact that p.c.a.p. functions are Stepanov almost
periodic (Theorem 3.2 in [23]),

lim
k→∞ sup

t∈R

∫ t+1

t
|A(αk + s) − A∗(s)|ds = 0,

lim
k→∞ sup

t∈R

∫ t+1

t
|h(αk + s) − h∗(s)|ds = 0,

lim
k→∞ ‖B(· − mk) − B∗(·)‖ = 0,

lim
k→∞ ‖b(· − mk) − b∗(·)‖ = 0,

lim
k→∞ ‖ζ(· − mk) − ζ ∗(·)‖ = 0, lim

k→∞ ϑk = ϑ,

(15)

where B∗, b∗, ζ ∗ are in the hull of B, b, ζ , respectively, ϑ ∈ [0, ξ ] and A∗, h∗ satisfy all
the conclusions of Theorem 6.5 with possible discontinuities at the points of a subset of a
Wexler sequence defined by

τ ∗
n = ξn + ζ ∗(n) + ϑ, n ∈ Z

such that

lim
k→∞ sup

n∈Z
|τn−mk − αk − τ ∗

n | = 0, lim
k→∞ sup

n∈Z
|τ ∗
n+mk

+ αk − τn | = 0.

Since φ is bounded, so is φ′ onR\{τ j } j∈Z by (13). Hence φ is quasi-uniformly continuous
with possible discontinuities at the points of a subset of {τ j } j∈Z. Given η > 0 and s, t ∈
[τ ∗

n + η, τ ∗
n+1 − η] for some n ∈ Z, it follows that

s + αk, t + αk ∈ [τ ∗
n + η + αk, τ

∗
n+1 − η + αk] ⊂ (τn−mk , τn+1−mk )

for large k. Thus the family {φ(· + αk)}, where k >> 1, are uniformly bounded and equi-
continuous on [τ ∗

n + η, τ ∗
n+1 − η]. Consequently, by the Arzela-Ascoli theorem and passing

to subsequences if necessary, {φ(· + αk)}k>>1 converges uniformly on [τ ∗
n + η, τ ∗

n+1 − η]
to a function φ∗. By the equation {dφ(· + αk)/dt}k>>1 also converges uniformly. Hence φ∗
is differentiable and dφ∗/dt = limk→∞ dφ(· + αk)/dt . Therefore,

d

dt
φ∗(t) = A∗(t)φ∗(t) + h∗(t), t �= τ ∗

n , n ∈ Z.

By Theorem 6.5, with a modification of the values taking at {τ ∗
j } j∈Z if necessary, φ∗ ∈

PC(R, R
d). For any n ∈ Z and ε > 0, there is a small δ > 0 such that

(i) |φ∗(t) − φ∗(τ ∗+
n )| < ε for t ∈ (τ ∗

n , τ ∗
n + 2δ).

(ii) |φ∗(s) − φ∗(τ ∗
n )| < ε for t ∈ (τ ∗

n − 2δ, τ ∗
n ].

(iii) |φ(s) − φ(t)| < ε whenever s, t ∈ (τ j , τ j+1] for some j ∈ Z and |s − t | < 3δ, which
further yields |φ(t) − φ(τ+

j )| ≤ ε for t ∈ (τ j , τ j + 3δ).

Let t ∈ (τ ∗
n + δ, τ ∗

n + 2δ) and s ∈ (τ ∗
n − 2δ, τ ∗

n − δ), then

t + αk ∈ (τ ∗
n + δ + αk, τ

∗
n + 2δ + αk) ⊂ (τn−mk , τn−mk + 3δ),
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s + αk ∈ (τ ∗
n − 2δ + αk, τ

∗
n − δ + αk) ⊂ (τn−mk − 3δ, τn−mk )

for large k. Consequently, fixing s and t ,

|φ(τ+
n−mk

) − φ∗(τ ∗+
n )| ≤ |φ(τ+

n−mk
) − φ(t + αk)| + |φ(t + αk) − φ∗(t)|

+ |φ∗(t) − φ∗(τ ∗+
n )| < 3ε,

|φ(τn−mk ) − φ∗(τ ∗
n )| ≤ |φ(τn−mk ) − φ(s + αk)| + |φ(s + αk) − φ∗(s)|

+ |φ∗(s) − φ∗(τ ∗
n )| < 3ε

for large k. From

φ(τ+
n−mk

) − φ(τn−mk ) = B(n − mk)φ(τn−mk ) + b(n − mk)

it follows that

φ∗(τ ∗+
n ) − φ∗(τ ∗

n ) = B∗(n)φ∗(τ ∗
n ) + b∗(n)

for all n ∈ Z. Therefore, φ∗ ∈ PC(R, R
d) is a bounded solution of{

x ′ = A∗(t)x + h∗(t), t �= τ ∗
n ,

x(τ ∗+
n ) − x(τ ∗

n ) = B∗(n)x(τn) + b∗(n), n ∈ Z.

Conversely, since dφ∗/dt is bounded on R\{τ ∗
j } j∈Z, φ∗ is quasi-uniformly continuous

with possible discontinuities at the points of a subset of {τ ∗
j } j∈Z. From the argument above

and the almost periodicity of A, h, B, b, {τ j } j∈Z it follows that {φ∗(· − αk)}∞k=1 converges
pointwise on R\{τ j } j∈Z to a bounded solution ϕ of (13). Since the homogeneous system
(14) has only trivial bounded solutions, φ = ϕ. Thus Tαφ = φ∗ pointwise on R\{τ ∗

j } j∈Z
and T−αφ∗ = φ pointwise on R\{τ j } j∈Z. So φ is Bochner p.c.a.a. by definition. 
�

The following is the fifth main result on Favard’s theorem concerning almost automorphic
solutions as [29,31]. It goes further than Theorem 6 in [27] and shows advantages of our
Bochner p.c.a.a. functions.

Theorem 9.4 Suppose that (13) satisfies (H1) and (H2), and any nontrivial bounded solution
x of the homogeneous system (14) satisfies inf t∈R |x(t)| > 0. If (13) admits a bounded
solution, then (13) has a Bochner p.c.a.a. solution.

Proof We first show that if (13) has a bounded solution x0, then it admits a bounded solution
x∗ with minimum norm ‖x∗‖ = supt∈R |x∗(t)|. Let K ⊂ R

n be the closed ball centered at
0 with radius ‖x0‖. Put

λ = inf{‖x‖; |x(t)| ≤ ‖x0‖,∀t ∈ R and x is a solution of (13)}
and let {xk}k∈Z+ be a sequence of solutions of (13) such that limk→∞ ‖xk‖ = λ. Since
{xk}k∈Z+ are uniformly bounded, so are their derivatives {x ′

k}k∈Z+ on R\{τ j } j∈Z by (13).
Consequently, given ε > 0 there is a δ > 0 such that for all k ∈ Z+, |xk(s) − xk(t)| < ε

whenever s, t ∈ (τ j , τ j+1] for some j ∈ Z and |s − t | < δ. For each n ∈ Z, redefining
xk(τn) = xk(τ+

n ) makes the family {xk}k∈Z+ uniformly bounded and equi-continuous on
[τn, τn+1]. By the Arzela-Ascoli theorem and passing to subsequences if necessary, {xk}k∈Z+
converges uniformly on [τn, τn+1] to a function x∗

n for each n ∈ Z. By the equation {x ′
k}k∈Z+

also converges uniformly. Hence x∗
n is differentiable and x∗

n
′ = limk→∞ x ′

k . Define

x∗(t) = x∗
n (t), t ∈ (τn, τn+1], n ∈ Z.
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It follows that

x∗′
(t) = A(t)x∗(t) + h(t), t �= τn, n ∈ Z

and

x∗(τ+
n ) = x∗

n (τn) = lim
k→∞ xk(τ

+
n ) = lim

k→∞[I + B(n)]xk(τn) + b(n)

= [I + B(n)]x∗
n−1(τn) + b(n) = [I + B(n)]x∗(τn) + b(n),

where the xk(τn) above is the original value, not the modified one. Therefore, x∗ is a solution
of (13) and

‖x∗‖ = sup
n∈Z

sup
t∈(τn ,τn+1]

|x∗(t)| = sup
n∈Z

sup
t∈[τn ,τn+1]

|x∗
n (t)|

= sup
n∈Z

lim
k→∞ sup

t∈(τn ,τn+1]
|xk(t)| ≤ sup

n∈Z
lim
k→∞ ‖xk‖ = λ.

Clearly, ‖x∗‖ ≤ ‖x0‖. Thus ‖x∗‖ = λ by definition.
The separation condition inf t∈R |x(t)| > 0 implies that the bounded solution x∗ of (13)

with minimum norm is unique. Otherwise, if φ1 and φ2 are two such solutions, then (φ1 +
φ2)/2 is a solution of (13) and (φ1 − φ2)/2 is a nontrivial solution of (14). By assumption
|φ1(t) − φ2(t)|/2 ≥ ρ for all t and some ρ > 0. The parallelogram law implies∣∣∣φ1(t) + φ2(t)

2

∣∣∣2 +
∣∣∣φ1(t) − φ2(t)

2

∣∣∣2 = |φ1(t)|2 + |φ2(t)|2
2

≤ ‖x∗‖2.
Thus ∥∥∥φ1 + φ2

2

∥∥∥2 ≤ ‖x∗‖2 − ρ2

which contradicts the minimum property of x∗.
At last, the proof of Theorem 9.3 shall yield that x∗ is Bochner p.c.a.a. 
�
The following is the last main result on Favard’s theorem concerning almost periodic

solutions and module containment.

Theorem 9.5 Suppose that (13) satisfies (H1) and (H2) with det[I + B(n)] �= 0, n ∈ Z,
replaced by infn∈Z | det[I + B(n)]| > 0, and consider the families of impulsive systems
obtained in the proof of Theorem 9.3,{

x ′ = A∗(t)x + h∗(t), t �= τ ∗
n ,

x(τ ∗+
n ) − x(τ ∗

n ) = B∗(n)x(τn) + b∗(n), n ∈ Z,
(16)

and {
x ′ = A∗(t)x, t �= τ ∗

n ,

x(τ+
n ) − x(τn) = B∗(n)x(τn), n ∈ Z,

(17)

called a hull of (13) and (14), respectively. If for every (17), any bounded solution x of it
satisfies inf t∈R |x(t)| > 0, and (13) admits a bounded solution, then (13) has a p.c.a.p.
solution φ such that

mod(φ) ⊂ span
(
mod(A, h) ∪

[1
ξ

· {[mod(B, b, ζ )](r) ∪ {2π}}]),

where E (r) = {β ∈ [0, 2π); (β + 2πZ) ∈ E} denotes a representative set of E ⊂ R/2πZ

and span(F) is the additive group generated by F ⊂ R.
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Proof First note that (16) is an almost periodic impulsive system. From the proof of Theo-
rem 9.3, B∗ and b∗ are in the hull of B and b, respectively, and {τ ∗

j } j∈Z is a Wexler sequence.
Moreover, A∗ and h∗ are Stepanov almost periodic since they are generalized translation
of such functions A and h, respectively. By Theorem 6.5, A∗ and h∗ are quasi-uniformly
continuous with possible discontinuities at the points of a subset of {τ ∗

j } j∈Z. Theorem 3.2

in [23] implies A∗ ∈ PCAP(R, R
d×d) and h∗ ∈ PCAP(R, R

d). Thus (16) satisfies (H1)
and a modified (H2) with infn∈Z | det[I + B∗(n)]| > 0. Consequently, the Bochner p.c.a.a.
solution x∗ with minimum norm of (13) has all its generalized translations being solutions
with minimum norm of systems of the form (16). Hence they are Bochner p.c.a.a. by The-
orem 9.4. From Lemma 6.9 and its proof it follows that for each σ > 0, the uniformly
continuous almost automorphic function

x∗
σ (t) = 1

σ

∫ σ

0
x∗(t + s)ds, t ∈ R,

has all its generalized translations uniformly continuous almost automorphic. Thus x∗
σ ∈

AP(R, R
d) by Theorem 3.3.1 in [30]. Lemma 3.6 in [23] asserts that if f ∈ PC(R, X)

is quasi-uniformly continuous with possible discontinuities at the points of a subset of a
Wexler sequence {τ ′

j } j∈Z and for each ε > 0 there exists an fε ∈ AP(R, X) such that
| fε(t) − f (t)| < ε for all t ∈ R, |t − τ ′

j | > ε, j ∈ Z, then f ∈ PCAP(R, X). Combined

with Lemma 6.1 it follows that x∗ ∈ PCAP(R, R
d).

As for the module containment, by filling in the gaps linearly define Bohr almost periodic
functions

B̄(t) = (n + 1 − t)B(n) + (t − n)B(n + 1), n < t ≤ n + 1, n ∈ Z,

b̄(t) = (n + 1 − t)b(n) + (t − n)b(n + 1), n < t ≤ n + 1, n ∈ Z,

ζ̄ (t) = (n + 1 − t)ζ(n) + (t − n)ζ(n + 1), n < t ≤ n + 1, n ∈ Z.

Let α′ ⊂ ξZ be a sequence such that∫ t+1

t
|A(s + α′

k) − A(s)|ds → 0,
∫ t+1

t
|h(s + α′

k) − h(s)|ds → 0,

∫ t+1

t

∣∣∣B̄( s + α′
k

ξ

)
− B̄

( s

ξ

)∣∣∣ds → 0,
∫ t+1

t

∣∣∣b̄( s + α′
k

ξ

)
− b̄

( s

ξ

)∣∣∣ds → 0,

∫ t+1

t

∣∣∣ζ̄( s + α′
k

ξ

)
− ζ̄

( s

ξ

)∣∣∣ds → 0, ∀t ∈ R,

(18)

as k → ∞. There would be sequences α ⊂ α′, {mk}k∈Z+ ⊂ Z with −αk = ξmk , k ∈ Z+
such that (15) holds for B∗, b∗, ζ ∗ in the hull of B, b, ζ , respectively, and functions A∗, h∗
satisfying all the conclusions of Theorem 6.5 with possible discontinuities at the points of a
subset of a Wexler sequence defined by

τ ∗
n = ξn + ζ ∗(n), n ∈ Z.

Because ζ̄ is Bohr almost periodic, (18) and Theorem 4.10 in [23] yield

‖ζ(· − mk) − ζ(·)‖ =
∥∥∥ζ

( · + αk

ξ

)
− ζ

( ·
ξ

)∥∥∥ ≤
∥∥∥ζ̄

( · + αk

ξ

)
− ζ̄

( ·
ξ

)∥∥∥ → 0

as k → ∞. Thus ζ = ζ ∗ and similarly B = B∗, b = b∗. Hence A, h, A∗, h∗ have possible
discontinuities contained in the sameWexler sequence {τ j } j∈Z. From (15) and (18) it follows
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that A = A∗ and h = h∗. The proof of Theorem 9.3 implies the p.c.a.p. solution x∗ with
minimum norm of (13) has its translation sequence {x∗(· + αk)}k∈Z+ converging uniformly
to itself on each interval [τn + η, τn+1 − η] with η > 0, n ∈ Z. Therefore,

lim
k→∞

∫ t+1

t
|x∗(s + αk) − x∗(s)|ds = 0, ∀t ∈ R.

Theorem 2.1 of [31] and Theorem 4.7 and Lemma 5.8 of [23] imply the final module con-
tainment relation. 
�
Acknowledgements Supported by The National Nature Science Foundation of China (No. 11771044,
11871007). The authors thank the anonymous referee for valuable comments.

Appendix A: Common Translation Sets

We prove in this section the basic tool Theorem 6.3. The following lemma concerns an
elementary property of an auxiliary function.

Lemma A.1 Suppose that g(n) = (−1)n, n ∈ Z, is a 2-periodic sequence and

g(t) = (n + 1 − t)(−1)n + (t − n)(−1)n+1, n ≤ t ≤ n + 1, n ∈ Z.

Then for any 0 < ε < 1 and N > 0,

T (g, ε, N ) =
⋃
m∈2Z

(
m − ε

2
,m + ε

2

)
.

Proof For any τ ∈ R, there is a unique m ∈ Z so that m ≤ τ < m + 1. Thus n + m ≤
n + τ < n + m + 1 and n − m − 1 < n − τ ≤ n − m for all n ∈ Z. From the definition of
the function g it follows that

g(n + τ) = (m + 1 − τ)(−1)n+m + (τ − m)(−1)n+m+1

= (−1)n+m(m + 1 − τ − τ + m)

= (−1)n+m(2m − 2τ + 1),

g(n − τ) = (τ − m)(−1)n−m−1 + (m + 1 − τ)(−1)n−m

= (−1)n−m(m + 1 − τ − τ + m)

= (−1)n−m(2m − 2τ + 1), n ∈ Z.

Therefore,

|g(n + τ) − g(n)| = |(−1)n[(−1)m(2m − 2τ + 1) − 1]|
= |(−1)m(2m − 2τ + 1) − 1|,

|g(n − τ) − g(n)| = |(−1)n[(−1)−m(2m − 2τ + 1) − 1]|
= |(−1)−m(2m − 2τ + 1) − 1|, n ∈ Z,

which are independent of n.
The proof of the “⊂” part is divided into two cases.
Case 1. If τ ∈ T (g, ε, N ) and m is odd, from equalities above for |n| ≤ N it follows that

|2m − 2τ + 1 + 1| < ε, m + 1 − ε

2
< τ < m + 1.
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Case 2. If τ ∈ T (g, ε, N ) and m is even, it follows that

|τ − m| <
ε

2
, m ≤ τ < m + ε

2
.

Summing up, there is an even integer m′ such that |τ − m′| < ε/2.
Conversely, suppose that there is an even integer m′ such that |τ − m′| < ε/2. Let

t ∈ [n, n + 1), n ∈ Z and |t | ≤ N . It is obvious that

n + m ≤ t + τ < n + m + 2, n − m − 1 < t − τ < n − m + 1.

The proof of the “⊃” part is divided into six cases.
Case 1. m is odd and t + τ < n + m + 1.
Case 2. m is odd and t + τ ≥ n + m + 1, t − τ < n − m.
Case 3. m is odd and t + τ ≥ n + m + 1, t − τ ≥ n − m.
Case 4. m is even and t + τ ≥ n + m + 1.
Case 5. m is even and t + τ < n + m + 1, t − τ ≥ n − m.
Case 6. m is even and t + τ < n + m + 1, t − τ < n − m.
We only prove Case 1. The proofs of the other cases are similar, so we omit them. Con-

ditions of Case 1 imply m′ = m + 1 and

m + 1 − ε

2
< τ < m + 1, n + m < n + m + 1 − ε

2
< t + τ < n + m + 1,

n − ε

2
< t < n + ε

2
, n ≤ t < n + ε

2
,

n − m − 1 < t − τ < n − m − 1 + ε < n − m.

Therefore,

|g(t + τ) − g(t)| = |[(n + m + 1 − t − τ)(−1)n+m + (t + τ − n − m)(−1)n+m+1]
− [(n + 1 − t)(−1)n + (t − n)(−1)n+1]|

= |[(t + τ − n − m) − (n + m + 1 − t − τ)]
− [(n + 1 − t) − (t − n)]|

= | − 2(n + m + 1 − t − τ) + 2(t − n)| < ε,

|g(t − τ) − g(t)| = |[(n − m − t + τ)(−1)n−m−1 + (t − τ − n + m + 1)(−1)n−m]
− [(n + 1 − t)(−1)n + (t − n)(−1)n+1]|

= |[(n − m − t + τ) − (t − τ − n + m + 1)]
− [(n + 1 − t) − (t − n)]|

= 2|τ − m − 1| < ε.

Summing up, τ ∈ T (g, ε, N ). 
�

The following two lemmas generalize an almost periodic result in [14, p. 164]: for any
almost periodic function f , T ( f , ε) ∩ Z is relatively dense.

Lemma A.2 Suppose that f ∈ AAuc(R, X), then for any ε, N > 0, the set T ( f , ε, N ) ∩ Z

is relatively dense, and there is an η > 0 such that

[T ( f , η, N ) ∩ Z] ± [T ( f , η, N ) ∩ Z] ⊂ T ( f , ε, N ) ∩ Z.
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Proof Let ε > 0 and the auxiliary function g inLemmaA.1be given. Since f ∈ KUC(R, X),
there is a δ > 0 such that | f (s) − f (t)| < ε/2 for all s, t ∈ R with |s − t | < δ. For any
s ∈ R, |s − τ | < δ, where τ ∈ T ( f , ε/2, N ), it is easy to see that

| f (t ± s) − f (t)| ≤ | f (t ± s) − f (t ± τ)| + | f (t ± τ) − f (t)| < ε

for all |t | ≤ N . Thus T ( f , ε/2, N ) + (−δ, δ) ⊂ T ( f , ε, N ).
Because the pair ( f , g) is almost automorphic, Theorem 5.3 implies that the set S :=

T ( f , ε/2, N ) ∩ T (g, 2δ, N ) is relatively dense. For any τ ∈ S, by Lemma A.1 there is an
m ∈ 2Z such that |τ −m| < δ. Therefore, m ∈ T ( f , ε, N ) and T ( f , ε, N ) ∩ Z is relatively
dense.

Let η > 0 satisfy T ( f , η, N ) ± T ( f , η, N ) ⊂ T ( f , ε, N ). It is easy to check that

[T ( f , η, N ) ∩ Z] ± [T ( f , η, N ) ∩ Z] ⊂ [T ( f , η, N ) ± T ( f , η, N )] ∩ Z

⊂ T ( f , ε, N ) ∩ Z.


�
Lemma A.3 Suppose that f ∈ AAuc(R, X), then for any λ, ε, N > 0, the set

T λ( f , ε, N ) : = T ( f , ε, N ) ∩ (λZ)

= {mλ;m ∈ Z, | f (t ± mλ) − f (t)| < ε for all |t | ≤ N }
is relatively dense, and there is an η > 0 such that

T λ( f , η, N ) ± T λ( f , η, N ) ⊂ T λ( f , ε, N ). (19)

Proof For any λ > 0, define a function F(t) = f (λt), t ∈ R. So F ∈ AAuc(R, X). From
the equality

F(t ± τ) − F(t) = f (λt ± λτ) − f (λt)

it follows that T ( f , ε, N ) = λT (F, ε, λN ) for all ε, N > 0. By Lemma A.2, the set
T (F, ε, λN ) ∩ Z is relatively dense. Therefore, the set

T ( f , ε, N ) ∩ (λZ) = λ[T (F, ε, λN ) ∩ Z]
is relatively dense for all ε, N > 0.

By Lemma A.2, there is an η > 0 such that

[T (F, η, λN ) ∩ Z] ± [T (F, η, λN ) ∩ Z] ⊂ T (F, ε, λN ) ∩ Z,

which yields by multiplying both sides a factor λ,

T λ( f , η, N ) ± T λ( f , η, N ) ⊂ T λ( f , ε, N ).


�
Similar results also hold for Bochner s.a.a. sequences. But we do not state results like (19)

since the set concerned is not symmetric with respect to 0. A desired symmetric set could be
constructed by using Lemma 3.9.

Lemma A.4 Suppose that {τ j } j∈Z is a Bochner s.a.a. sequence. Then for any ε > 0, N ∈ Z+
and any λ ∈ (0, ε), the set

T λ−({τ j } j∈Z, ε, N ) : = −T ({τ j } j∈Z, ε, N ) ∩ (λZ)
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= −
{
mλ;m ∈ Z, max|n|≤N

|τn+p + mλ − τn | < ε for some p ∈ Z

}
is relatively dense.

Proof By Lemma 3.7 and (ii) of Lemma 2.6, the set T ({τ j } j∈Z, ε/2, N ) is relatively dense.
Hence there is an l > 0 such that for any a ∈ R, there exists r(p) ∈ [a + ε/2, a + ε/2 +
l] ∩ T ({τ j } j∈Z, ε/2, N ) with

max|n|≤N
|τn+p + r(p) − τn | <

ε

2
.

Put I = [r(p) − ε/2, r(p) + ε/2]. Then I ⊂ [a, a + l + ε], and for all r ∈ I ,

max|n|≤N
|τn+p + r − τn | ≤ max|n|≤N

|τn+p + r(p) − τn | + |r − r(p)| < ε,

which implies I ⊂ T ({τ j } j∈Z, ε, N ). For any 0 < λ < ε, there is a number r0 ∈ I such
that r0 + λ ∈ I . If r0 is not a multiple of λ, then by adding a number small than λ we obtain
r = mλ ∈ [r0, r0 + λ] ⊂ I . Since every interval of length l + ε contains a subinterval
I ⊂ T ({τ j } j∈Z, ε, N ) of length ε, the set T λ−({τ j } j∈Z, ε, N ) is relatively dense. 
�

Now we prove Theorem 6.3 which is indispensable in locating positions of variables and
discontinuities.

Proof of Theorem 6.3 First choose a pair (δ, M), δ ∈ (0, ε2), M ≥ N2, satisfying Lemma 3.9
for (ε2, N2) and ν = 2. By Lemmas A.3 and A.4, there is η ∈ (0, ε1), so that for any
λ ∈ (0,min{η, δ}), both T λ( f , η, N1) and T λ−({τ j } j∈Z, δ, M) are relatively dense and

T λ( f , η, N1) ± T λ( f , η, N1) ⊂ T λ( f , ε1, N1),

T λ−({τ j } j∈Z, δ, M) ± T λ−({τ j } j∈Z, δ, M) ⊂ T λ−({τ j } j∈Z, ε2, N2).

Let L1 = L1(η, , N1), L2 = L2(δ, M) ∈ Z be such that L1λ and L2λ are the inclusion
lengths for T λ( f , η, N1) and T λ−({τ j } j∈Z, δ, M) respectively. Put L3 = max{L1, L2} and

Sn =
{
(m1,m2) ∈ Z

2;m1λ ∈ [nλ, (n + L3)λ] ∩ T λ( f , η, N1),

m2λ ∈ [nλ, (n + L3)λ] ∩ T λ−({τ j } j∈Z, δ, M), n ∈ Z

}
,

S =
⋃
n∈Z

Sn .

It follows from the relative denseness property that Sn �= ∅ for all n ∈ Z. We say that
two pairs of the numbers (m1,m2), (m′

1,m
′
2) ∈ S are equivalent if m1 − m2 = m′

1 − m′
2.

Because |m1 − m2| ≤ L3, the difference m1 − m2 can take only a finite number of values.
Hence the number of equivalence classes of this relation is finite. Choose the representative
elements for these classes,

(
m(ν)

1 ,m(ν)
2

)
, ν = 1, 2, . . . , s. Set L4 = max1≤ν≤s

∣∣m(ν)
1

∣∣ and
L5 = L3 + 2L4. For any n ∈ Z let (m1,m2) ∈ Sn+L4 and

(
m(ν)

1 ,m(ν)
2

)
be the representative

of the equivalence class containing the pair (m1,m2) such that m1 −m2 = m(ν)
1 −m(ν)

2 . Put

m = m1 − m(ν)
1 = m2 − m(ν)

2 . From
∣∣m(ν)

1

∣∣ ≤ L4 it follows that

n ≤ m = m1 − m(ν)
1 ≤ n + 2L4 + L3,

nλ ≤ mλ ≤ (n + L5)λ.
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The number mλ defined in this way will be in T λ( f , ε1, N1) ∩ T λ−({τ j } j∈Z, ε2, N2). Indeed,

m1λ, m
(ν)
1 λ ∈ T λ( f , η, N1) yield mλ = m1λ − m(ν)

1 λ ∈ T λ( f , ε1, N1), and similarly m2λ,

m(ν)
2 λ ∈ T λ−({τ j } j∈Z, δ, M) yield mλ = m2λ − m(ν)

2 λ ∈ T λ−({τ j } j∈Z, ε2, N2). Because
the set of numbers m defined above is relatively dense with an inclusion length L5, the set
T λ( f , ε1, N1)∩T λ−({τ j } j∈Z, ε2, N2) is relatively dense. Using (1) and by a similar argument
in proving Lemma 3.14, the set Pλ( f , {τ j } j∈Z; ε1, ε2, N1, N2) is also relatively dense. 
�
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