
Journal of Computational Physics 379 (2019) 392–402
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A hybrid stochastic method with adaptive time step control 
for reaction–diffusion systems

Wing-Cheong Lo ∗, Shaokun Mao

Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 August 2018
Received in revised form 29 November 2018
Accepted 30 November 2018
Available online 12 December 2018

Keywords:
Reaction–diffusion systems
Stochastic simulation
Hybrid method
Biological patterning

Randomness often plays an important role in the spatial and temporal dynamics of biolog-
ical systems. General stochastic simulation methods may lead to excessive computational 
cost for a system in which a large number of molecules involved. Therefore, multi-scale 
hybrid simulation methods become important for stochastic simulations. Here we build a 
spatially hybrid method which couples two approaches: discrete stochastic simulation and 
continuous stochastic differential equations. In our method, the locations of the interfaces 
between the two approaches are changing according to the distribution of molecules in 
a one-dimensional domain. To balance the accuracy and efficiency, the time step of the 
numerical method for the continuous stochastic differential equations is adapted to the 
dynamics of the molecules near the adaptive interfaces. The simulation results for a linear 
system and two nonlinear biological systems in different one-dimensional domains demon-
strate the effectiveness and advantage of our new hybrid method with the adaptive time 
step control.

© 2018 Elsevier Inc. All rights reserved.

Introduction

Many models of biological pattern formation are described by the reaction and diffusion processes. The stochastic be-
haviors in the processes often have substantial effect when the numbers of the molecules involved in the reactions are 
relatively small [2,9,24,32]. The mechanisms for achieving robust biological patterns against the negative effects of a noisy 
environment were discussed in depth in some current studies [3,20,24]. Besides the negative effects, spatial stochastic per-
turbations might provide positive effects for achieving a robust cell polarization [21] and forming a sharper boundary of 
gene expression domains [33]. Therefore, the development of a numerical method for studying stochastic effects in biological 
systems becomes much more important in our future study.

For spatially inhomogeneous systems, the reaction–diffusion stochastic simulation algorithm (SSA) is the popular method 
to simulate stochastic jumps and reactions to obtain the state of the system after each occurrence of stochastic events [12]. 
Although the SSA is convenient in terms of its implementation, its computational cost becomes large when the stochastic 
events in some regions occur significantly more frequently than the events in other regions, as in the case of some regions 
which have relatively large copy numbers of molecules.

For improving the efficiency, several hybrid methods were proposed for stimulating the stochastic dynamics of spatially 
inhomogeneous systems [8,10,11,16,23,26–28]. The most usual approach is a spatially hybrid method which combines the 
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SSA and partial differential equations which provide a mean-field approximation for the stochastic behaviors [13,30]. How-
ever, a relatively small stochastic effect in the high concentration region may result in relatively large perturbation in the 
low concentration region because of the diffusion process in space. So some current studies moved their focus to developing 
a full stochastic hybrid method [28]. The continuous approach using stochastic partial differential equations can be applied 
to approximate the stochastic system at a relatively high concentration and provides an additional ability to incorporate the 
stochasticity in the entire spatial domain. Nevertheless, the coupling of the discrete and continuous approaches and the set-
ting of the time step used in the continuous approach can be improved to be adaptive to different systems for maintaining 
high accuracy and efficiency. Here, we will focus on these two issues to develop a method which is easily implemented and 
adaptive to the settings of different one-dimensional reaction–diffusion systems.

In this paper, we build an adaptive spatially hybrid method coupling continuous stochastic differential equations and the 
SSA. In our hybrid method, the locations of the interfaces between the two numerical methods are adapted to the copy 
numbers of molecules in each compartment. To balance the accuracy and the efficiency, the time step of the numerical 
method for the continuous stochastic differential equations is changing according to the dynamics of the molecules near the 
adaptive interfaces. Then we apply our method to a linear system and two nonlinear biological systems in different one-
dimensional domains to verify the effectiveness of our new approach. The simulation results demonstrate that, comparing 
with the SSA, our hybrid method has a significant improvement in efficiency and the adaptive time step control provides a 
better balance between the accuracy and efficiency than using fixed time step.

Methods

Spatially inhomogeneous reaction–diffusion system

Consider a system with N molecular species {S1, S2, · · · , SN } which are involved in the following M reactions 
{R1, R2, · · · , R M}:

R j : sr
j1 S1 + · · · + sr

jN SN
γ j−→ sp

j1 S1 + · · · + sp
jN SN .

Here, sr
ji and sp

ji are the stoichiometric coefficients of the reactant and product species, respectively, and γ j is the corre-
sponding macroscopic rate constant.

When we are interested in the spatial distribution of the molecules on a one-dimensional domain, the domain with 
length L can be partitioned into K compartments with uniform length h, where h = L/K .

Assumption 1. The diffusion process is fast enough to assume that the subsystem in each compartment is spatially homoge-
neous. In other words, the size of each compartment must be sufficiently small that diffusive jumps occur more rapidly than 
reactions and the inhomogeneity inside each compartment can be ignored [14,15,17]. Molecules in different compartments 
are treated as different species, denoted by

{S11, S12, · · · , Ski, · · · , S K N},
where Ski represents the ith species in the kth compartment. The system state at time t is denoted by K × N-component 
vector

X(t) = (X11(t), X12(t), · · · , Xki(t), · · · , XK N(t)),

where Xki is the number of molecules of Ski .

Assumption 2. We assume that only molecules in the same compartment can react with each other. The M reactions can 
be considered as K × M reactions in the spatial system and denoted by Rkj , the jth reaction in the kth compartment:

Rkj : sr
j1 Sk1 + · · · + sr

jN SkN
γkj−−→ sp

j1 Sk1 + · · · + sp
jN SkN ,

where γkj is the reaction rate constant of the reaction Rkj . The state of the system transfers from one state to another 
through reaction firing. The net change of the state of the system caused by one occurrence of Rkj is denoted as νkj :

νkj = (0, · · · ,0, sp
j1 − sr

j1, · · · , sp
jN − sr

jN︸ ︷︷ ︸
from ((k − 1)N + 1)th to kNth

,0, · · · ,0).

Assumption 3. Diffusion process is treated as a reaction in which a molecule in one compartment jumps to one of its 
neighboring compartments. Assume that species Si diffuses with a diffusion coefficient Di and the boundary conditions of 
the one-dimensional domain are considered as reflective boundary conditions at both ends. Therefore, the diffusive jumps 
obey the following chain reactions:
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J ikL : S1i
Di/h2

←−−−
Di/h2

S2i
Di/h2

←−−−
Di/h2

S3i · · · Di/h2

←−−−
Di/h2

S K i,

J ikR : S1i
Di/h2

−−−→
Di/h2

S2i
Di/h2

−−−→
Di/h2

S3i · · · Di/h2

−−−→
Di/h2

S K i .

We denote the left jump of Si from the kth compartment by J ikL and the right jump of Si from the kth compartment by 
J ikR .

The probability that the reaction Rkj will happen in the next time interval [t, t + dt) is αkj(X(t))dt , where αkj is called 
the propensity function of Rkj and is defined as

αkj(X(t)) = γkj X
sr

j1

k1 X
sr

j2

k2 · · · X
sr

jN

kN ;
the probabilities for the jump J ikL and J ikR are αikL(X(t))dt and αikR(X(t))dt , respectively, where

αikL(X(t)) = Di

h2
Xki, for 1 < k � K ,

αikR(X(t)) = Di

h2
Xki, for 1 � k < K .

This system can be simulated through the stochastic simulation algorithm (SSA) [12]. At time t , X(t) is given. We first 
generate two independent random numbers r1 and r2, which are uniformly distributed in [0, 1] and then calculate the next 
reaction or jump time τ by the following formula

τ = − 1

α0
ln(r1),

where α0 is the sum of all propensity functions of the jumps J and the reactions R . At time t + τ , a reaction Rqm occurs 
when the smallest q and m exist for an inequality

q−1∑
k=1

M∑
j=1

αkj +
m∑

j=1

αqj � r2α0; (1)

if q and m do not exist, a left jump J w1q1 L may occur when the smallest q1 and w1 exist for an inequality

K∑
k=1

M∑
j=1

αkj +
q1−1∑
k=1

N∑
i=1

αikL +
w1∑
i=1

αiq1 L � r2α0; (2)

if q, m, q1 and w1 do not exist, a right jump J w2q2 R may occur when the smallest q2 and w2 exist for an inequality

K∑
k=1

M∑
j=1

αkj +
K∑

k=1

N∑
i=1

αikL +
q2−1∑
k=1

N∑
i=1

αikR +
w2∑
i=1

αiq2 R � r2α0. (3)

Then the state X(t + τ ) is updated according to the corresponding state change. This process is repeated until it reaches the 
stop criterion.

Approximation by stochastic differential equations

Let �u be X/h which represents the distributions of the molecular concentrations, where uki = Xki/h in each component. 
Assume that the numbers of the molecules in each compartment are large, we can approximate the stochastic system by a 
system of stochastic differential equations (SDE) for �u [18,22]:

duki = Di

h2

(
u(k−1)i − 2uki + u(k+1)i

)
dt +

M∑
j=1

rki j(�u)dt

+ n(k−1)i(�u)dW (k−1) J R + n(k+1)i(�u)dW (k+1) J L

− nki(�u)dWk J R − nki(�u)dWk J L +
M∑

j=1

nkij(�u)dWkj,

for 2 ≤ k ≤ K − 1, (4)
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where rki j(�u) is the [(k − 1)N + i]th component of νkjαkj(�uh)/h; nkij(�u) is the [(k − 1)N + i]th component of νkj
√

αkj(�uh)/h; 

nki(�u) equals to 
√

Di
h2 uki/h; the variables W ’s are the Wiener processes which are independent to each other. For the 

reflective boundary conditions, when k = 1, the first term of the right hand side in Eq. (4) is replaced by Di
h2 (−u1i + u2i)dt

and the two terms n(k−1)i(�u)dW (k−1) J R and nki(�u)dWk J L are removed; when k = K , the first term of the right hand side in 
Eq. (4) is replaced by Di

h2

(
u(K−1)i − uK i

)
dt and the two terms n(k+1)i(�u)dW (k+1) J L and nki(�u)dWk J R are removed.

For numerical simulation, we simply use the Euler–Maruyama method to calculate the solution for the system of SDE 
[18]:

uki(t + �t) − uki(t) ≈ Di

h2

(
u(k−1)i(t) − 2uki(t) + u(k+1)i(t)

)
�t

+
M∑

j=1

rki j(�u(t))�t + n(k−1)i(�u(t))
√

�tζ(k−1) J R

+ n(k+1)i(�u(t))
√

�tζ(k+1) J L − nki(�u(t))
√

�tζk J R

− nki(�u(t))
√

�tζk J L +
M∑

j=1

nkij(�u(t))
√

�tζkj,

for 2 ≤ k ≤ K − 1, (5)

where ζ ’s are independent standard normal random variables. When k = 1, the first term of the right hand side in Eq. (5) is 
replaced by Di

h2 (−u1i + u2i)�t , and n(k−1)i(�u(t))
√

�tζ(k−1) J R and nki(�u(t))
√

�tζk J L are removed; when k = K , the first term 
of the right hand side in Eq. (5) is replaced by Di

h2

(
u(K−1)i − uK i

)
�t , and n(k+1)i(�u(t))

√
�tζ(k+1) J L and nki(�u(t))

√
�tζk J R are 

removed.
Here we apply the Euler–Maruyama method as it is easy to be numerically implemented. Actually, we can apply other 

higher order numerical methods to improve the accuracy [4,18,31]. Although the numerical SDE approach is an efficient 
method to approximate the stochastic processes with high molecular concentrations, the accuracy may not be high when 
the number of molecules becomes low. In the later sections, we will develop the hybrid method which couples the SSA and 
numerical SDE to balance the accuracy and efficiency in the simulation.

Adaptive interfaces between SSA and numerical SDE

To decide a method to capture the advantages of the SSA and numerical SDE, we first consider a way to separate the 
domain into two regions that satisfies: 1) the method is efficient in the region with large numbers of molecules; 2) the 
method is accurate in the region with small numbers of molecules. We consider to apply the numerical SDE to approximate 
the dynamics in the kth compartment if

min
1≤i≤N;1≤ j≤M

⎧⎨
⎩

Xki∣∣∣sp
ji − sr

ji

∣∣∣
⎫⎬
⎭ > Nint; (6)

in other compartments, we will apply the SSA for the simulations.
If Nint is large, the condition can reduce the probability that the approximation provides a negative number of molecules 

in the kth compartment after each iteration. A set IC is defined as a set of all the indexes k satisfying the inequality (6); 
a set I D is defined as {1, 2, ..., K } \ I D ; I B R and I BL are the sets of the left boundary points and the right boundary points, 
respectively, in all intervals in IC . A sample of these four sets is illustrated in Fig. 1. Here we simulate the flux between the 
two regions by the SSA. Therefore, the firing time of the jump between IC and I D are stochastic.

In the IC region, we use the numerical SDE to approximate the stochastic dynamics. If each interval in IC is larger than 
one compartment, we use the Euler–Maruyama method, like (5), to build the following iteration for k ∈ IC :

uki(t + �t) − uki(t) ≈ Di

h2

(
u(k−1)i(t) − 2uki(t) + u(k+1)i(t)

)
�t

+
M∑

j=1

rki j(�u(t))�t + n(k−1)i(�u(t))
√

�tζ(k−1) J R

+ n(k+1)i(�u(t))
√

�tζ(k+1) J L − nki(�u(t))
√

�tζk J R



396 W.-C. Lo, S. Mao / Journal of Computational Physics 379 (2019) 392–402
Fig. 1. Illustration of the domain decomposition between the SSA and the stochastic differential equations. I D (yellow) represents the region for the SSA; 
IC (blue, pink, green) represents the region for the SDE; I B R (green) and I BL (blue) are the left boundary points and the right boundary points, respectively, 
in all intervals in IC . (For interpretation of the colors in the figures, the reader is referred to the web version of this article.)

− nki(�u(t))
√

�tζk J L +
M∑

j=1

nkij(�u(t))
√

�tζkj,

for k ∈ IC \ (I B R ∪ I BL); (7)

for k ∈ I BL , the first term of the right hand side in Eq. (7) is replaced by Di
h2

(−uki + u(k+1)i
)
�t , and n(k−1)i(�u(t))

√
�tζ(k−1) J R

and nki(�u(t))
√

�tζk J L are removed; for k ∈ I B R , the first term of the right hand side in Eq. (7) is replaced by 
Di
h2

(
u(k−1)i − uki

)
�t , and n(k+1)i(�u(t))

√
�tζ(k+1) J L and nki(�u(t))

√
�tζk J R are removed. If an interval in IC has only one 

compartment, we apply Eq. (7) without the diffusion term.

Time step selection for numerical differential equations

The selection of the time step �t = �tC for the numerical SDE (7) was not discussed in the previous studies of hybrid 
methods. Based on the study for the efficient τ -selection for the τ -Leaping method [5], we consider that the mean and 
variance of the relative change of the molecular populations in each iteration is bounded by certain threshold ε:

| < ��tC Xki > | ≤ max{ε Xki,1},√var{��tC Xki} ≤ max{ε Xki,1}, (8)

for all k ∈ IC . To satisfy the previous conditions and the condition for the stability of central difference scheme [18]

�tC ≤ �t0 = min
1≤i≤N

{
h2

2Di

}
,

we obtain the following setting for �tC selection:

�tC = min
1≤i≤N,k∈IC

{
max{εhuki,1}

μki(�u)
,
(max{εhuki,1})2

σki(�u)
,�t0

}
(9)

where

μki(�u) = Di

h2

(
u(k−1)i(t) − 2uki(t) + u(k+1)i(t)

)
h +

M∑
j=1

rki j(�u(t))h,

and

σki(�u) = Di

h2

(
u(k−1)i(t) + 2uki(t) + u(k+1)i(t)

)
h +

M∑
j=1

(
nkij(�u(t))h

)2
,

for k ∈ IC \ (I B R ∪ I BL). For k ∈ I BL , the first terms of the right hand sides of μki(�u) and σki(�u) are replaced by

Di

h2

(−uki + u(k+1)i
)

h and
Di

h2

(
uki + u(k+1)i

)
h, respectively;

for k ∈ I B R , the first terms of the right hand sides of μki(�u) and σki(�u) are replaced by

Di
2

(
u(k−1)i − uki

)
h and

Di
2

(
u(k−1)i + uki

)
h, respectively.
h h
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If ε is much less than 1, our time step setting can guarantee that the relative changes of the numbers of the molecules are 
small enough to ensure the numerical stability for the approximation. In the numerical tests, we will take ε = 0.1 which is 
small enough to ensure the numerical stability of the Euler–Maruyama method.

It is worth to remark that although the time step size �tC is controlled to reduce the relative error, a negative value may 
still appear in the iteration (7) with small probability. When a negative value appears, the time step �tC can be reduced 
through dividing by two; if the negative value still exists after �tC decreases, the process can be repeated until the negative 
value does not exist in the iteration (7).

When a jump of a molecule (the process is modeled by the SSA) happens across an interface, the molecular population 
will change in the IC region. To maintain the accuracy of the approximation, we consider that if a jump across an interface 
happens, we will reset the value of �tC to let the iteration run simultaneously with the jump. The details will be explained 
in the algorithm overview.

Algorithm overview

For a system in a one-dimensional domain with length L, given an initial time t = t0, an initial condition X(t0) = X0 and 
a final time T , we perform the following steps:

1. Set a value h for the spatial size of each compartment such that the number of compartments is an integer K = L/h. 
Assign an index from {1, 2, ..., K } for each compartment. Set an error parameter ε and an interface threshold Nint which 
will be used in Eqs. (6) and (9), respectively.

2. By Eq. (6) with Nint , divides {1, 2, ..., K } into four sets of indexes I D , IC , I BL and I B R .
3. If IC is not empty, use Eq. (9) to calculate �tC and set TC = t + �tC ; otherwise, set �tC = TC = ∞ and run the SSA for 

the entire spatial domain until IC is not empty.
4. If I D is not empty, generate two independent random numbers r1 and r2 which are uniformly distributed in [0, 1]. 

Calculate the next reaction time �tD = − 1
α0

ln(r1) for the SSA, where α0 is the sum of the propensity functions of 
the right jumps J ikR (for k ∈ I D ∪ I B R ), the left jumps J ikL (for k ∈ I D ∪ I BL ) and the reactions Rki (for k ∈ I D ) for 
i ∈ {1, 2, ..., M}. Set T D = t + �tD . Use the SSA method with the second random number r2 to find the corresponding 
reaction or jump. If I D is empty, set �tD = T D = ∞.

5. (a) Case 1: If TC < T D , run the iteration (7) with �t = �tC for all the compartments in IC . Set t = TC .
(b) Case 2: If TC = T D , run the iteration (7) with �t = �tC for all the compartments in IC . Set t = TC . Run the SSA for 

updating X in accordance with the reaction or jump found in Step 4.
(c) Case 3: If TC > T D and a jump across the interfaces is selected for the firing reaction in the SSA method, run the 

iteration (7) with �t = �tC − (TC − T D) for all ith compartment, where i ∈ IC . Run the SSA for updating X in 
accordance with the reaction or jump found in Step 4. Set t = T D .

(d) Case 4: Cases 1–3 are not satisfied, update X in accordance with the reaction or jump found in Step 4. Set t = T D .
6. For Cases 1, 2 and 3, reset the four sets I BL , I B R , I D and IC according to Eq. (6). If IC is not empty, use Eq. (9) to 

calculate new �tC and set TC = t + �tC ; otherwise, set �tC = TC = ∞. For Case 4, if IC is empty, the similar update of 
the sets is needed; if IC is not empty, the update of the sets is not needed.

7. Go back to Step 4 until t ≥ T .

Numerical results

Linear system

Here we apply a simple linear system to compare the performance of the hybrid method with different time step settings. 
In the linear system, there is only one type of molecules, S1, in a one-dimensional domain of length L = 50. We divide the 
domain into 100 compartments with uniform size h = 50/100 = 0.5. There are two types of reactions listed as

Rk1 : S1
γ1−→ φ for k ∈ {1,2, ...,100} and R g2 : φ γ2−→ S1 for g ∈ {1,2, ...,20}.

The molecule S1 diffuses with a coefficient D with reflective boundary conditions. We set γ1 = 1, γ2 = 500 and the diffusion 
coefficient D = 10. The initial condition for Xk1 which represents the number of S1 in the kth compartment is:

Xk1(0) = 55 − 0.5k� , for k = 1, ...100.

For this linear system, we can explicitly obtain the exact solutions of the mean and the standard deviation, which will be 
used to calculate the error to verify the accuracy. Also, this type of simple model was often applied to study the stochastic 
effect in biological patterning [20,24].

If we use the SSA to simulate the system from t = 0 to t = 6, the average computational cost per simulation is over 60 
seconds among 5,000 simulations. When we apply our hybrid method with ε = 0.1 and Nint = 10, the computational cost 
is reduced to 8 second which is 13% of the cost of the SSA.
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Fig. 2. The simulation results at t = 6 for the linear system by the hybrid method with different �tC settings: fixed �tC = 0.1h2/D , 0.01h2/D and an 
adaptive �tC defined in (9). A) The mean values of the gradients. B) The standard deviations of the gradients. For each case, 5,000 simulations are collected 
to obtain the statistical results. The dashed lines represent the exact solutions of the mean and the standard deviation.

Fig. 3. The accuracy and the efficiency of the hybrid method with different �tC settings. A) The sums of the error of the mean. B) The sums of the relative 
error of the mean. C) The sums of the error of the standard deviation. D) The sums of the relative error of the standard deviation. E) The computational 
costs at different time t .

To show the advantage of the adaptive �tC , we compare the performance of the hybrid method with different �tC

settings. Fig. 2 shows that the mean values and the standard deviations of the cases with a fixed �tC = 0.1h2/D , 0.01h2/D
and an adaptive �tC defined in (9). For each case, 5,000 simulations are collected to obtain the statistical results.

Fig. 2A shows that all three cases have a similar accuracy when the solutions are compared with the exact mean solution; 
the standard deviations shown in Fig. 2B demonstrate that the case with a fixed �tC = 0.1h2/D does not perform as good 
as the other two cases. To quantify the results, we measure the sum of the error (the absolute differences between the 
approximation and the exact solution in each compartment) in all compartments and the results are shown in Fig. 3.

Fig. 3A shows that the sums of the error do not have a huge change with different �tC settings. This result is consistent 
when we consider the sums of the relative error (the absolute differences between the approximation and the exact solution 
divided by the exact solution in each compartment) shown in Fig. 3B. When we measure the error in the standard deviation 
(Figs. 3C, D), the case with a fixed �tC = 0.1h2/D has a larger error, also a relative error, than the other two cases which 
have similar performance in approximating the standard deviation. However, the efficiency of the case with a fixed �tC =
0.1h2/D is the best among all three cases (Fig. 3E). The average computational cost for this case is around 6 seconds. 
Between the other two cases, the adaptive time step setting has less computational cost than the case with a fixed �tC =
0.01h2/D (the former is 7 seconds per simulation and the latter is over 8 seconds per simulation) although they have 
similar performance in the accuracy. Compared with the SSA (60 seconds per simulation), the hybrid method with the 
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Fig. 4. The simulation results for the system of morphogen-mediated patterning by the SSA and the hybrid method with ε = 0.1 and Nint = 5. For each 
case, 1,000 simulations are collected to obtain the statistical results.

adaptive time step setting saves over 80% of computational cost and provides an advantage on balancing between the 
accuracy and efficiency (Figs. 3C–E).

System of morphogen-mediated patterning

In [19], the system of morphogen-mediated patterning involves three types of molecules, L, E and W , which are free 
ligand, receptor and ligand-receptor complex, respectively. We divide the domain of length 100 μm into 100 compartments 
with size h = 1 μm and a compartment represents a single cell. Free morphogens are produced in a local region [0, 10] and 
diffuse in the domain with a diffusion coefficient D1 = 10 μm2 s−1; receptors and ligand-receptor complexes are fixed on 
the cell membrane. In each compartment, the reactions are listed as

R g1 : φ γ1−→ L, for g ∈ {1, ...,10},
Rk2 : L + E

γ2−→ W , Rk3 : W
γ3−→ L + E, Rk3 : W

γ4−→ φ, for k ∈ {1, ...,100}.
Assume that the number of total receptors is large enough, then the frustration of E + W is relatively small. We simplify 
the system by assuming R + W is a constant number E T = 500 in each compartment. The parameter values are listed 
as follows: γ1 = 10 s−1, γ2 = 10−4 s−1, γ3 = γ4 = 10−2 s−1. The initial conditions for Xk1 and Xk2, which represent the 
numbers of L and W in the kth compartment, respectively, are:

Xk1(0) = Xk2(0) = 100 − k� , for k = 1, ...100.

Fig. 4 shows the results of the means and the standard deviations of the solutions at t = 10 s, which are obtained from 
the SSA and the hybrid method with ε = 0.1 and Nint = 5. For each case, 1,000 simulations are collected to obtain the 
statistical results. From the simulation results, we find that the hybrid method has a good performance as the SSA. On the 
other hand, the average computational cost of the hybrid method per simulation is 3.42 s but the average computational 
cost of the SSA is 15.49 s which is 4 times longer than that of the hybrid method. We also apply the hybrid method with 
two larger threshold values Nint = 10 and Nint = 20 and find that the accuracy does not have any significant change but the 
computational cost increases from 3.42 s to 8.74 s when Nint increases from 5 to 20. Moreover, when the smaller Nint = 2
is considered, the computational cost increases from 3.42 s to 5.29 s as a smaller time step �tC is required for maintaining 
the accuracy of the approximation when Nint decreases. Compared with the SSA, the hybrid method with a suitable Nint
can save over 75% of computational cost for this simulation.

System of yeast polarity

In [1], the stochastic model of cell polarization showed that a positive feedback alone is sufficient to account for the 
spontaneous establishment of a single site of polarity. We apply the model in [1] to verify the accuracy of our method. In 
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Fig. 5. The accuracy and the efficiency of the hybrid method with different numbers of signaling molecules Ns . A) A sample simulation at t = 20 min
through the hybrid method with Ns = 4000. B) A sample simulation at t = 20 min through the SSA method with Ns = 4000. C) The percentage of polarized 
cases within 1,000 independent simulations for different Ns values. D) The average computational cost within 1,000 independent simulations for different 
Ns values.

the model, there is only one type of signaling molecules, S1, and the computational domain represents the cross section 
of cell membrane which is considered as a one-dimensional domain with length 10π μm (the radius of cell is 5 μm). The 
domain is partitioned into 50 identical compartments with uniform length 0.2π μm. Signaling molecules move between 
cytoplasmic states and membrane-bound states. In each compartment, there are three types of reactions: spontaneous 
membrane association (from cytoplasmic state to membrane-bound state), positive-feedback association (from cytoplasmic 
state to membrane-bound state) and spontaneous membrane disassociation (from membrane-bound state to cytoplasmic 
state). Let Xk1 be the number of S1 in the kth compartment. In each compartment, we have

Spontaneous membrane association Rk1 :φ k1(Ns−∑
k Xk1)−−−−−−−−−→ S1,

Positive-feedback association Rk2 :φ k2(Xk1/h)(Ns−∑
k Xk1)−−−−−−−−−−−−−−→ S1,

Spontaneous membrane disassociation Rk3 :S1
k3−→ φ,

with the propensity functions

αk1 = k1(Ns −
∑

k

Xk1),

αk2 = k2(Xk1/h)(Ns −
∑

k

Xk1) and αk3 = k3 Xk1,

where Ns is the total number of signaling molecules. The initial condition is Xk1 = 10 for all k. For our hybrid method, we set 
ε = 0.1 and Nint = 5; for the biological parameters, we set D = 1.2 μm2/min, k1/k2 = 10−4, k3 = 9/min and k2/k3 = 0.9Ns

[1]. The initial condition for S1 is

Xk1(0) = 10δk� , for k = 1, ...100,

where δk ’s are independent random numbers generated from the uniform distribution on [0, 1]. Figs. 5A and B show two 
sample simulations at t = 20 min, obtained by the hybrid method and the SSA, respectively.

In [1], the stochastic model of cell polarization demonstrated that the frequency of polarization inversely depends on the 
number of signaling molecules Ns . Figs. 5C and D show that the hybrid method and the SSA can capture this feature of the 
system. We assume that polarization in simulations at t = 20 min is determined by whether an interval of 10% of the whole 
domain contains more than 50% of the total number of signaling molecules (as the samples in Figs. 5A and B). Fig. 5C shows 
the percentage of polarized cases within 1,000 independent simulations for different Ns values (red line represents the hy-
brid method; the blue line represents the SSA). The frequency of polarization is decreasing from 0.65 to 0 when the number 
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of signaling molecules is increasing from 1,000 to 10,000. For the case with too many signaling molecules, the molecules 
may be able to form more than one clusters at the same time so a single site of polarity cannot be achieved. This result 
is consistent with the experimental observation of yeast cells [1]. This phenomenon was not observed in the deterministic 
models so it may support that the randomness plays an important role in the process of cell polarization. For studying the 
efficiency, when the number of signaling molecules Ns increases from 1,000 to 10,000, the average computational cost for 
the SSA increases from 0.7 seconds to 6.6 seconds (Fig. 5D, the blue line); the average computational cost for the SSA does 
not change a lot and is stable around 3.5 seconds (Fig. 5D, the red line). These results show that the hybrid method has an 
advantage that the computational cost for the simulation does not depend on the number of molecules involved. Moreover, 
the result in Fig. 5D also shows that our hybrid method performs better when the number of the molecules increases (the 
computational cost is reduced to around 50% of the cost of the SSA when the number of the molecules is 10,000) since the 
approximation of the numerical SDE can speed up the simulation process in the region of high concentration.

Conclusion

In this paper, we have developed a hybrid method which combines the SSA and numerical SDE with an adaptive time 
step control. The design principle of this method is to take advantage of strengths in both methods: the SSA is accurate 
when the numbers of molecules are small, and the numerical SDE is efficient when the numbers of molecules are large.

The numerical results showed that our hybrid method provided a good agreement for the first two moments and could 
save the computational cost over 80% when a large number of molecules are involved in the system. The time step control in 
(9) provides an adaptive way to decide the time step size for the numerical SDE to bound the error in the approximations 
of the means and standard deviations. Our results in Fig. 3 showed that the hybrid method with the adaptive time step 
control provides a better balance between the accuracy and the efficiency than using fixed time step.

Although our hybrid method was shown to have a relatively high efficiency in some simulations, certain results (Fig. 5) 
show that our method may need more computational cost than the SSA when the number of molecules involved is relatively 
small. For improving the efficiency, several improvements can be made for further development. In our simulations, we 
found that the computational cost may increase when the threshold Nint is too small or too large, so it is important 
to develop a method to determine a value for Nint for optimizing the performance of our method. Also, although our 
method performed very well for some one-dimensional systems, the performance may not be better than the SSA for two-
or three-dimensional systems. In a higher dimensional domain, we have to consider one- or two-dimensional interfaces for 
separating the two approaches. The increase of the dimension of the interfaces may cause frequent occurrences of stochastic 
jumps across the interfaces. In our setting, we consider that if a stochastic jump across an interface happens, we will reset 
the value of �tC to let the iteration of the numerical SDE occur at the same time of the stochastic jump. So the frequent 
occurrence of a stochastic jump may reduce the efficiency of our method. However, a jump of a molecule may not cause 
a significant change in the reaction rates when Nint is relatively large. According to this observation, we can relax this 
condition by defining a threshold value N J and considering that if stochastic jumps across the interfaces happen more than 
N J times at same location, we will reset the value of �tC to let the iteration occur simultaneously. Overall, our hybrid 
method provides a framework for further development of full stochastic hybrid methods, for example, by coupling with the 
Brownian dynamics simulations [11,26,29] and the τ -Leaping strategy [6,7,10,25].
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