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a b s t r a c t 

Spontaneous emergence of cell polarity intrinsically lies at the localization of signaling molecules on a 

particular region of cell membrane. Such a process necessarily contains a positive feedback loop to am- 

plify the localized cluster. To describe the polarizing process and explore different f eedback functions in- 

volved, deterministic and stochastic models with non-local kinetics are discussed in this paper. Stochastic 

Simulation Algorithm (SSA) is used to numerically simulate the polarizing behavior and analytical anal- 

ysis by the power spectrum is applied to approximate the parameter regime for the spontaneous emer- 

gence of cell polarity. Compared to the results from the deterministic model, we can understand how 

the stochastic effect extends the parameter regime for achieving cell polarization under different types of 

feedback, including the forms of quadratic function, linear function, and Hill function. Both deterministic 

and stochastic methods fail to yield the polarity at a low number of molecules. Our results suggest that 

the parameter region for cell polarization under the Hill function feedback is smaller than that with the 

quadratic function feedback. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Cell polarity is a crucial attribute of cellular functions for en- 

uing directed growth, locomotion, and differentiation. It intrinsi- 

ally lies at the localization of signaling molecules on a certain re- 

ion of cell membrane [1] . Budding yeast has been proved to be 

 powerful model system for studying the mechanism of cell po- 

arity establishment. In a yeast cell, the budding process funda- 

entally depends on the signaling protein Cdc42. When a yeast 

ell received the indication of intracellular or extracellular cues, 

dc42, which consists of guanosine triphosphate (GTP) and guano- 

ine diphosphate (GDP) bound forms, in the cytoplasm will be re- 

ruited to the membrane. Such recruitment involves the exchange 

f signaling molecules, feedbacks by molecular interactions, molec- 

lar transportation and diffusion. During the process, the positive 

eedback loop by local activation of Cdc42 plays a vital role in gen- 

rating a cluster of concentrated Cdc42 at the cell membrane [2–

] . Moreover, a negative feedback loop has also been investigated 

nd concluded to enhance the robustness of polarity [5,6] . Without 

uidance from the spatial cue, cells can spontaneously go through 

he polarizing process, namely symmetry breaking [7,8] . 
∗ Corresponding author. 
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Mathematical modelings through deterministic and stochas- 

ic systems have been used to study cell polarization in many 

tudies [2,6,9–14] . Based on deterministic reaction-diffusion equa- 

ions (RDEs), Turing mechanism and wave-pinning mechanism 

ave been applied to explain symmetry breaking of yeast polar- 

zation [2,10,14–16] . Another way to understand symmetry break- 

ng is through stochastic modeling. Altschuler et al. [9] showed 

hat a stochastic model with linear positive feedback is sufficient 

o achieve symmetry breaking. Walther et al. [17] considered dis- 

rete molecular distribution with local recruitment in the wave- 

inning model and concluded that the polarizing phenomenon was 

ost due to stochastic fluctuations. Pablo et al. [13] applied particle- 

ased simulations to find that molecular-level fluctuations can fa- 

ilitate cell polarization. A stochastic neutral drift polarity model 

as proposed in [16] which predicted that below a critical density 

f signaling molecules, positive feedback maintained an off state 

obustly and, over this critical threshold, it switched on the re- 

urrent emergence of localized clusters. These studies were mainly 

estricted to their own settings of feedback function but not com- 

are the polarizing behaviors under different forms of feedback. 

herefore, we are motivated to answer the following questions 

n this paper: What are the polarizing behaviors in deterministic 

nd stochastic models with different forms of feedback? How does 

tochastic fluctuation affect the parameter regime for achieving cell 

olarization? Is this behavior affected by different feedback func- 
ions? 

https://doi.org/10.1016/j.chaos.2020.110620
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110620&domain=pdf
mailto:yue.liu@my.cityu.edu.hk
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The paper is organized as follows. In Section 2 , determinis- 

ic and stochastic models incorporating a general feedback form 

or the spontaneous emergence of cell polarity are introduced. In 

ection 3 , we apply the linear noise approximation on the stochas- 

ic model to derive power spectrum. In Section 4.1 , deterministic 

nd stochastic behaviors of cell polarization with quadratic feed- 

ack function are illustrated. Parameter regimes predicted by Tur- 

ng instability analysis, Stochastic Simulation Algorithm (SSA), and 

ower spectrum are compared. Our results demonstrate that the 

arameter regime predicted by the power spectrum fits well with 

hat obtained by SSA. In Sections 4.2 and 4.3 , comparisons of pa- 

ameter region obtained with feedback in the form of linear func- 

ion and Hill function are discussed, respectively. And then the 

omparison of localization behaviors with different limitations of 

ecruitment is given in Section 4.4 . Finally, the main results are 

oncluded in Section 5 . 

. Mathematical models 

.1. The deterministic model with general feedback form 

A continuum model is developed to describe the dynamics of 

olarized signaling molecules on the cell membrane in this section. 

e use a system of RDEs to model the cell polarization process. 

ere the main factors in this process include the membrane-bound 

ignaling molecules in active GTP-bound and inactive GDP-bound 

orms (“active” form indicates that only this form is functional 

o induce the downstream cellular responses, although the “inac- 

ive” molecules are also important in the cycling of molecules). 

esides the membrane-bound molecules, the cytoplasmic inactive 

orm molecules are also implicitly involved through the conser- 

ation of total molecules. The change from an active form to an 

nactive form is initiated by hydrolysis and is reversely regulated 

y guanine nucleotide exchange factors (GEFs). When the signal- 

ng molecules are in an inactive form, guanine nucleotide disasso- 

iation inhibitors (GDIs) bind to the molecules and release them 

rom the cell membrane to cytoplasm. Synthesis and degradation 

f signal molecules are excluded since the timescales are slower 

ompared to the dynamics of polarization [4] . 

The domain in our model is the membrane surrounding a well- 

ixed cytoplasmic region, which is a sphere in two-dimension, or 

or simplicity, it could be the cross-section of the cell, which is 

 circle in one-dimension. Two variables, a (x, t) and b(x, t) , are

sed to represent active and inactive membrane-bound signaling 

olecules and to avoid confusion, they also denote the corre- 

ponding particle concentrations [9] . Dynamics of a and b are thus 

overned by a reaction-diffusion system which is regulated by a 

ositive feedback function F (·) : 
∂a 

∂t 
= D m 

∇ 

2 a + F (a ) b − k of f a, (1a) 

∂b 

∂t 
= D m 

∇ 

2 b − F (a ) b + k of f a + g on (N −˜ a −˜ b ) Q(a, b) − g of f b. (1b) 

here (N −˜ a −˜ b ) is the non-local function with 

˜ a = 

∫ 
a dS and 

 

 = 

∫ 
b dS respectively representing the total numbers of a and b

ver the cell membrane. The first term on the right-hand side in 

1a) and (1b) represents the diffusion of species a and b with the 

ateral surface diffusion rate D m 

and the Laplacian operator ∇ 

2 on 

he cell membrane. Here we consider the same diffusion coefficient 

 m 

for a and b [2,18] . 

In our model, the non-local kinetics of recruiting inactive 

olecules from the whole cytoplasm are considered and the re- 

ruiting rate is g on . We assume that the total number of active and

nactive signaling molecules in the whole cell is conserved to be 

where synthesis and degradation are excluded. Along with the 
2 
act that ˜ a and 

˜ b represent the total number of the membrane- 

ound species, we obtain that ( N −˜ a −˜ b ) stands for the amount of 

ytoplasmic inactive signaling molecules. Since the transportation 

f cytoplasmic molecules is relatively fast, we assume that the re- 

ruitment of inactive signaling molecules from the cytoplasm to 

he membrane is proportional to the amount of cytoplasmic in- 

ctive signaling molecules. To match with the definition of N, the 

nitial value for ˜ a + ̃

 b needs to be less than N. If there is an upper

imit for the particle density at a local position on cell membrane, 

e define the function Q(a, b) as 

Q(a, b) = 1 − a + b 

�
, 

here the parameter � is the carrying capacity for measuring the 

aximum particle concentration at a local position on cell mem- 

rane; if not, i.e., � � (a + b) , then we can set Q(a, b) ≡ 1 to re-

ove the limit on the recruitment of inactive signaling molecules 

rom the cytoplasm. In the last term of Eq. (1b) , g of f is the rate at

hich inactive signaling molecules are extracted from the mem- 

rane into the cytoplasm and this process is facilitated by GDIs. 

he constant k of f is the deactivation rate coefficient of signaling 

olecules from an active form to an inactive form. 

In (1a) –(1b) system, feedback regulation occurs through the 

unction F which represents the activation rate of signaling 

olecules. By assuming that active signaling molecules form a 

eedback loop to promote activation, the function F is thus posi- 

ively correlated with the particle density of a . Experimental stud- 

es [2,18,19] have suggested that two forms of positive regulations 

nable the active signaling molecules to localize and induce the 

ell polarity. One is that the activation of Cdc42-GTP is mediated 

y GEFs in a positive quadratic or linear feedback function form 

oryachev and Pokhilko [2] , Lo et al. [18] : 

F (a ) = k 11 + k 12 a 
n , (2) 

here k 11 represents the basal activation rate of Cdc42, k 12 repre- 

ents the activation rate from the feedback loop, and the degree 

f cooperativity n = 1 or 2 corresponds to linear or quadratic feed- 

ack loop. This function form is direct cooperative feedback de- 

ending on the local density of active molecule a, which has been 

sed in many Turing type systems [15,20] . Another case is that the 

ctivation of Cdc42-GTP can saturate and it obeys a Hill function 

19] : 

F (a ) = k 21 + k 22 
a n 

k n 
23 

+ a n 
. (3) 

here k 21 is the activation rate, k 22 is the magnitude of self- 

ctivation, and k 23 represents the saturation constant. Kinetic in 

ill form is a critical feature for the wave-pinning mechanism 

hich requires the bistability [10] . This form shows a locally in- 

reasing recruitment rate at a low Cdc42-GTP density, but the 

ate is bounded at a high Cdc42-GTP density. Feedback regulations 

2) and (3) include multi-step cooperative interactions such as re- 

ruitment and binding. These multi-step cooperations are modeled 

hrough the term a n with n ≥ 2 . The parameters used in the model 

re listed in Table 1 . 

We apply Turing stability analysis to identify rules of choosing 

arameters for achieving symmetry breaking. Here the cell mem- 

rane is treated as a circle with radius R μm (length of the whole 

embrane L = 2 πR μm and x ∈ [0 , L ] ) in a one-dimensional spatial

omain, so that the curvature effects will be ignored. The details of 

uring stability analysis can be found in Appendix A . Cell polarity 

stablishment relies on the instability of the homogeneous steady 

tate. The eigenvalues of Jacobian matrix evaluated at the homoge- 

eous steady state yield the following two conditions for achieving 

ell polarity: 
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(i) If the perturbation is spatially homogeneous, the homoge- 

neous steady state (a ∗, b ∗) is stable and the real parts of all

eigenvalues of the Jacobian matrix are negative. 

(ii) For the positive wavenumber k, at least one eigenvalue is 

positive, which means the instability of the homogeneous 

solution only occurs with positive wavelengths. A perturba- 

tion will grow and may lead the solution to an inhomoge- 

neous state from the homogeneous steady state. 

These two conditions imply that wave functions perturbed from 

he homogeneous state are moving toward another steady state 

or and only for positive wavelengths. If there exists the critical 

avenumber k c such that for any positive integer k � k c , Turing in-

tability holds if system (1a) –(1b) satisfies the following two con- 

itions 

F ′ b ∗ − k of f −
g on 

N−a ∗L −b ∗L 
� + g on QL 

g on 
N−a ∗L −b ∗L 

� + g on QL + g of f 

F < 0 , (4) 

nd 

−σ1 D m 

+ F ′ b ∗ − k of f −
σm 

D m 

+ g on 
N−a ∗L −b ∗L 

�

σm 

D m 

+ g on 
N−a ∗L −b ∗L 

� + g of f 

F > 0 . (5) 

.2. The stochastic model and the master equation 

For simplicity, we consider the cell membrane as a one- 

imensional domain with length L and the domain is par- 

itioned into K identical compartments with uniform length 

, where h = L/K. The subsystem in each compartment is 

ssumed to be homogeneous. Same types of molecules in 

ifferent com partments are treated as different species, de- 

oted by { A 1 , . . . , A k , . . . , A K , B 1 , . . . , B k , . . . , B K } , where A k 

nd B k are the active and inactive membrane-bound sig- 

aling molecules in the k th compartment, respectively. In 

his section, index k will be used to indicate the k th com- 

artment. The system state is denoted by X (t) = ( 
−→ 

X , 
−→ 

Y ) = 

x 1 (t) , . . . , x k (t) , . . . , x K (t) , y 1 (t) . . . , y k (t) . . . , y K (t)) , where x k (t)

nd y k (t) are the numbers of active and inactive membrane-bound 

ignaling molecules in the k th compartment, respectively. 

Only molecules in the same compartment can react. Thus in 

ach well-mixed compartment, there are four types of reactions: 

ctivation, deactivation, recruitment, and dissociation. We have the 

ollowing 

R k 1 : B k 

γk 1 −→ A k , R k 2 : A k 

γk 2 −→ B k , 

R k 3 : ∅ 
γk 3 −→ B k , R k 4 : B k 

γk 4 −→ ∅ , 
here ∅ represents chemical species which are not further in- 

olved in following process; γk j ( j = 1 , 2 , 3 , 4) is the reaction rate

onstant of reaction R k j in the k th compartment. R k 1 is the ac- 

ivation process and γk 1 = F (x k /h ) ; R k 2 is the deactivation pro-

ess and γk 2 = k of f ; R k 3 is the recruitment process and γk 3 = 

 on (N −∑ 

k (x k + y k )) Q(x k /h, y k /h ) ; R k 4 is the dissociation process

nd γk 4 = g of f . The propensity functions αk j for reactions are de- 

ned as: 

R k 1 : αk 1 ( X , t) = γk 1 y k (t) , R k 2 : αk 2 ( X , t) = γk 2 x k (t) , 

R k 3 : αk 3 ( X , t) = γk 3 , R k 4 : αk 4 ( X , t) = γk 4 y k (t) . 

Diffusion is treated as a reaction in which a molecule jumps 

o one of its neighboring compartments at a constant rate. With 

eriodic boundary conditions, diffusive jumps obey the following 

hain reactions: 

A 1 

γ−⇀ ↽ −
γ

A 2 

γ−⇀ ↽ −
γ

A 3 · · ·
γ−⇀ ↽ −
γ

A K 

γ−⇀ ↽ −
γ

A 1 , 

B 1 

γ−⇀ ↽ −
γ

B 2 

γ−⇀ ↽ −
γ

B 3 · · ·
γ−⇀ ↽ −
γ

B K 

γ−⇀ ↽ −
γ

B 1 . 
3 
where, γ = D m 

/h 2 . If considering no-flux boundary conditions, left 

ump of A 1 or B 1 and right jump of A K or B K will stay in its original

ompartment. Thus the propensity functions for diffusions are: 

αLA k ( X , t) = γ x k (t) , and αRA k ( X , t) = γ x k (t) , for 1 � k � K;
αLB k ( X , t) = γ y k (t) , and αRB k ( X , t) = γ y k (t) , for 1 � k � K. 

The system transfers from one state to another through reaction 

ring or diffusion jump. The net change vector of the state caused 

y one occurrence of reaction R k j is denoted as ̂ νk j and then we 

ave 

 k 1 : ̂  νk 1 = 

⎛ ⎝ 0 , . . . , 0 , 1 ︸︷︷︸ 
kth 

, 0 , . . . , 0 , . . . , 0 , −1 ︸︷︷︸ 
(K+k)th 

, 0 , . . . , 0 

⎞ ⎠ , 

 k 2 : ̂  νk 2 = 

⎛ ⎝ 0 , . . . , 0 , −1 ︸︷︷︸ 
kth 

, 0 , . . . , 0 , . . . , 0 , 1 ︸︷︷︸ 
(K+k)th 

, 0 , . . . , 0 

⎞ ⎠ , 

 k 3 : ̂  νk 3 = 

⎛ ⎝ 0 , . . . , 0 , 1 ︸︷︷︸ 
(K+k)th 

, 0 , . . . , 0 

⎞ ⎠ , 

 k 4 : ̂  νk 4 = 

⎛ ⎝ 0 , . . . , 0 , −1 ︸︷︷︸ 
(K+k)th 

, 0 , . . . , 0 

⎞ ⎠ . 

Similarly, we denote the net change vector of state induced by 

iffusion jump J LA k 
, J RA k 

of A k as ̂ νLA k 
and 

̂ νRA k 
, and J LB k 

, J RB k 
of

 k as ̂ νLB k 
and 

̂ νRB k 
. We now develop a chemical master equation 

CME) which corresponds to system of reactions and diffusions 

resented above: 

∂ 

∂t 
P ( X , t) = 

K ∑ 

k =2 

[ −αLA k ( X , t) P ( X , t) + αLA k ( X + ̂

 νLA k , t) P ( X + ̂

 νLA k , t)] 

+ 

K ∑ 

k =2 

[ −αLB k ( X , t) P ( X , t) + αLB k ( X + ̂

 νLB k , t) P ( X + ̂

 νLB k , t)] 

+ 

K−1 ∑ 

k =1 

[ −αRA k ( X , t) P ( X , t) + αRA k ( X + ̂

 νRA k , t) P ( X + ̂

 νRA k , t)]

+ 

K−1 ∑ 

k =1 

[ −αRB k ( X , t) P ( X , t) + αRB k ( X + ̂

 νRB k , t) P ( X + ̂

 νRB k , t)]

+ 

K ∑ 

k =1 

4 ∑ 

j=1 

[ −αk j ( X , t) P ( X , t) + αk j ( X + ̂

 νk j , t) P ( X + ̂

 νk j , t)] .

(6)

here P ( X , t) is the probability density function. 

. Analysis for stochastic model 

To analytically investigate the stochastic effect, the intrinsic 

oise in cell polarization process will be studied through approx- 

mating the power spectrum. Analytical power spectrum can be 

sed to find the frequency distribution and predict the behavior of 

nherent fluctuations near the deterministic steady state [22–24] . 

or example, the linear noise approximation and the power spec- 

rum have been used to investigate the stochastic oscillations of 

ntracellular calcium and showed the intrinsic noise can derive the 

mergence of stochastic waves [24] . 

In this section, we first apply linear noise approximation to 

btain a Langevin equation for chemical reactions and diffusions. 

hen Fourier transform is utilized to derive the theoretical approx- 

mation for the power spectrum. 
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3

artment as follows: 

 

(t) + 

ξk √ 

�
, (7a) 

 

(t) + 

ηk √ 

�
, (7b) 

w ) and b k (t) are the macroscopic parts of the concentration of active 

a  ηk are real random numbers, which measure the fluctuations around 

a  a zero mean and the covariances will be determined by the equation 

p action and diffusion will be scaled by �. In the following calculation, 

w  Q(x k / �, y k / �) . 

 thus the probability distribution is expressed in terms of (ξk , ηk , t) by 

� ystematic expansion of the master Eq. (6) and scaling the time variable 

b

�

ηk 

1 √ 

�
˙ b k 

)
= 

K ∑ 

k =1 

[ A + B + C + D ] , (8) 

w

∂ 2 

∂ξ 2 
k 

− 2 

∂ 

∂ηk 

∂ 

∂ξk 

)
(k of f a k + F b k )�, 

 k )�, 

 

)
(a k + a j )�

]
, 

D

 

ηk 

)
(b k + b j )�

]
. 

a  k . 

t contributes to the mean-field equations 

 

− k of f a k , 

 

+ k of f a k + G − g of f b k . 

w  . Comparing the two sides with order of 1 / �, it leads to the Fokker- 

P

 

�

) 

+ 

1 

2 

2 ∑ 

r,l=1 

k +1 ∑ 

j= k −1 

∂ 

∂φl,k 

∂ 

∂φr,k 

(
M rl j,k �

)] 

, (9) 

w 2 matrix J k , is given by 

F 

 −F − g of f + 

∂G 
∂b 

+ γ�

)
, 
.1. Langevin equation derivation by linear noise approximation 

Here we approximate the number of molecules in the k th comp

x k 
�

≈ a k

y k 
�

≈ b k

here � is the volume of each compartment; the functions a k (t

nd inactive molecules in the k th compartment; the terms ξk and

 k (t) and b k (t) , respectively. The fluctuations are assumed to have

rovided later. The corresponding transition probability of each re

e use a function G (x k / �, y k / �) to represent g on (N −∑ 

k (x k + y k ))

Recall that we aim to capture the dynamics of fluctuations and

(ξk , ηk , t) = �K/ 2 P (x k (a k (t) , ξk ) , y k (b k (t) , ηk ) , t) . By making the s

y t = �τ to balance the terms on both sides, we obtain 

K ∑ 

k =1 

(
∂�

∂τ

1 

�
− ∂�

∂ξk 

1 √ 

�
˙ a k −

∂

∂

here 

A = 

1 √ 

�

(
∂ 

∂ξk 

− ∂ 

∂ηk 

)
(k of f a k − F b k )�

+ 

1 

�

(
∂ 

∂ξk 

− ∂ 

∂ηk 

)
[ k of f ξk − (F ηk + F ′ ξk b k )]� + 

1 

2�

(
∂ 2 

∂η2 
k 

+ 

B = 

1 √ 

�

∂ 

∂ηk 

(g of f b k − G )�

+ 

1 

�

∂ 

∂ηk 

[ 
g of f ηk −

(
∂G 

∂a k 
ξk + 

∂G 

∂b k 
ηk 

)] 
� + 

1 

2�

∂ 2 

∂η2 
k 

(G + g of f b

C = γ
∑ 

j∈{ k −1 ,k +1 } 

[
1 √ 

�

(
∂ 

∂ξk 

− ∂ 

∂ξ j 

)
(a k − a j )�

+ 

1 

�

(
∂ 

∂ξk 

− ∂ 

∂ξ j 

)
(ξk − ξ j )� + 

1 

2�

(
∂ 2 

∂ξ 2 
k 

+ 

∂ 2 

∂ξ 2 
k 

− 2 

∂ 

∂ξk 

∂ 

∂ξk

 = γ
∑ 

j∈{ k −1 ,k +1 } 

[
1 √ 

�

(
∂ 

∂ηk 

− ∂ 

∂η j 

)
(b k − b j )�

+ 

1 

�

(
∂ 

∂ηk 

− ∂ 

∂η j 

)
(ηk − η j )� + 

1 

2�

(
∂ 2 

∂η2 
k 

+ 

∂ 2 

∂η2 
k 

− 2 

∂ 

∂ηk 

∂

∂

nd F ′ is the derivative of positive feedback function evaluated at a

Comparing the two sides of Eq. (8) with same order of 1 / 
√ 

�, i

˙ a k = 

D m 

h 

2 
�a k + F b k

˙ b k = 

D m 

h 

2 
�b k − F b k

hich agrees with aforementioned deterministic system (1a) –(1b)

lanck equation [25] : 

∂�

∂τ
= 

K ∑ 

k =1 

[ 

−
2 ∑ 

r=1 

∂ 

∂φr,k 

( 

2 ∑ 

m =1 

J rm,k φm,k

here (φ1 ,k , φ2 ,k ) = (ξk , ηk ) ; J rm,k , which is the element of the 2 ×

J k = 

(
F ′ b k − k of f + γ�

−F ′ b k + k of f + 

∂G
∂a 
k k 

4 
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w a k +1 in one-dimensional space and the 2 × 2 block matrix M k is defined 

a
if j = k − 1 , 

 b k + k of f a k ) if j = k, 

if j = k + 1 , 

if j = k − 1 , 

b k + k of f a k + G + g of f b k if j = k, 

if j = k + 1 , 

 − 1 , 

, 

 + 1 , 

 . 

bability distribution, it is not so powerful for analysis. Therefore, we 

c es with actual stochastic variable φr,k for r = 1 , 2 and k = 1 , 2 , . . . , K: 

(10) 

w ty distribution with the first and second moments: 〈 μr,k (τ ) 〉 = 

0  M rl j,k measures the strength of the noise and the delta function claims 

t at is, the Fourier transform of this correlation function is frequency- 

i

3

onveniently and a power spectrum of fluctuation can be deduced after 

t me-dependent and space-dependent. Here we focus on the fluctuations 

a luated at (a ∗, b ∗) and we let them be J ∗
k 

and M 

∗
k 
. Therefore, elements 

J s follows: J ∗
11 ,k 

= F ′ b ∗ − k of f + γ�, J ∗
12 ,k 

= F , J ∗
21 ,k 

= −F ′ b ∗ + k of f + 

∂G 
∂a k 

, 

J the values evaluated at (a ∗, b ∗) and entries in M 

∗
k 

are defined similarly. 

W  compact form: 

 (11) 

w

−(F b ∗ + k of f a 
∗) 

4 γ b ∗ + F b ∗ + k of f a 
∗ + G + g of f b 

∗

)
, 

f a generic function f (·) with 

ˆ f (ω) = 

∫ + ∞ 

0 f (t ) e −iωt dt and 

ˆ f (k 0 ) = 

+

x

plying spatial and temporal Fourier transform to Eq. (10) , it gives 

k 0 ) ̂  φl (k 0 , ω) + ˆ μr (k 0 , ω) , (12) 

w ntinuous and lies in the [0 , 2 π ] and ω is the frequency emerging from 

t cian � is changed to ˆ �. In a one-dimensional space, discrete Laplacian 

i q. (11) is replaced by the form: 

 2 M 

(1) ) + M 

(1) ˆ �, 

w = −(F b ∗ + k of f a 
∗) , ˆ M 

∗
22 

= F b ∗ + k of f a 
∗ + G + g of f b 

∗ − 2 γ b ∗ ˆ �. Note that, 

f  in position to present the power spectrum of the Fourier-transformed 

fl ctive molecule a and inactive molecule b are defined by 

 , P 2 ( k 0 , ω ) = 〈| ̂  φ2 ( k 0 , ω ) | 2 〉 . 
 ω) can be derived and detailed derivations are provided in Appendix B . 

A forms 
here the discrete Laplacian operator works as �a k = a k −1 − 2 a k + 

s 

M 11 j,k = 

⎧ ⎨ ⎩ 

−γ (a k + a k −1 ) 

γ (2 a k + a k −1 + a k +1 ) + (F

−γ (a k + a k +1 ) 

M 22 j,k = 

⎧ ⎨ ⎩ 

−γ (b k + b k −1 ) 

γ (2 b k + b k −1 + b k +1 ) + F 

−γ (b k + b k +1 ) 

M 12 j,k = 

⎧ ⎨ ⎩ 

0 if j = k

−(F b k + k of f a k ) if j = k

0 if j = k
M 21 j,k = M 12 j,k for j = k − 1 , k, k + 1

Although Fokker-Planck Eq. (9) provides the information of pro

onsider the corresponding Langevin equation [25] which formulat

d 

dτ
φr,k ( τ ) = 

2 ∑ 

l=1 

J rl ,k φl,k ( τ ) + μr,k ( τ ) , 

here μr,k (τ ) is a noise term having a Gaussian probabili

 , and 〈 μr,k (τ ) , μl, j (τ
′ ) 〉 = M rl j,k δ(τ − τ ′ ) . In the second moment,

hat no correlation exists between two distinct time τ and τ ′ , th

ndependent. 

.2. Power spectrum estimation of fluctuation 

Langevin equation in (10) allows us to take Fourier transform c

he transformation [26] . In Langevin Eq. (10) , both J k and M k are ti

round homogeneous steady state, and thus J k and M k will be eva

 

∗
rl,k 

with r and l referring to molecule species in matrix J ∗
k 

are a

 

∗
22 ,k 

= −F − g of f + 

∂G 
∂b k 

+ γ�. From now on, F , F ′ , ∂G 
∂a k 

and 

∂G 
∂b k 

are 

ith the definition of M k given in (9) , matrix M 

∗
k 

has the following

M 

∗
rl j,k = M 

(0) 
rl 

δ| k − j| , 0 + M 

(1) 
rl 

δ| k − j| , 1 ,

here 

M 

(0) = 

(
4 γ a ∗ + (F b ∗ + k of f a 

∗) 

−(F b ∗ + k of f a 
∗) 

M 

(1) = 

(−2 γ a ∗ 0 

0 −2 γ b ∗

)
, 

δi, j = 

{
1 if i = j, 

0 otherwise . 

Here we take the temporal and spatial Fourier transform o
 ∞ ∑ 

 =0 

f (x ) e −ik 0 x where ˆ (·) stands for Fourier transform. Thus, after ap

iω ̂

 φr (k 0 , ω) = 

2 ∑ 

l=1 

ˆ J ∗rl (

here 〈 ̂  μr (ω) ̂  μl (ω) 〉 = 

ˆ M 

∗
rl 

. k 0 is the angular frequency which is co

emporal Fourier transform. For the elements ˆ J ∗
rl 
, the discrete Lapla

s transformed to ˆ � = 2( cos (k 0 ) − 1) [27] and thus the matrix in E

ˆ M 

∗ = (M 

(0) +
here the elements are ˆ M 

∗
11 

= (F b ∗ + k of f a 
∗) − 2 γ a ∗ ˆ �, ˆ M 

∗
12 

= 

ˆ M 

∗
21 

or simplicity, we have denoted (φ1 ,k , φ2 ,k ) = (ξk , ηk ) . We are now

uctuations ˆ φ1 (k 0 , ω) and 

ˆ φ2 (k 0 , ω) . Analytical power spectra for a

P 1 ( k 0 , ω ) = 〈| ̂  φ1 ( k 0 , ω ) | 2 〉
Based on the definition, the explicit form of P 1 (k 0 , ω) and P 2 (k 0 ,

fter some algebraic manipulations, it yields the following explicit 
5 
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p
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2  

W

1

s

m

M

t

n

a  

1

a

b

a

4

i

s

f

P 1 (k 0 , ω) = 

C 1 (k 0 ) + 

ˆ M 

∗
11 ω 

2 

(ω 

2 − �2 ) 2 + �2 ω 

2 
, 

P 2 (k 0 , ω) = 

C 2 (k 0 ) + 

ˆ M 

∗
22 ω 

2 

(ω 

2 − �2 ) 2 + �2 ω 

2 
, (13) 

where 

� = 

√ 

det ( ̂ J ∗) , � = −tr ( ̂ J ∗) , 

C 1 (k 0 ) = 

ˆ M 

∗
11 ( ̂

 J ∗22 ) 
2 + 

ˆ M 

∗
22 ( ̂

 J ∗12 ) 
2 − 2 

ˆ M 

∗
12 

ˆ J ∗12 
ˆ J ∗22 , 

C 2 (k 0 ) = 

ˆ M 

∗
22 ( ̂

 J ∗11 ) 
2 + 

ˆ M 

∗
11 ( ̂

 J ∗21 ) 
2 − 2 

ˆ M 

∗
12 

ˆ J ∗21 
ˆ J ∗11 . 

The profile of power spectrum gives information about the dis- 

ribution of fluctuation at different frequencies. Therefore, in the 

ollowing section, we will use the expressions of power spectrum 

n Eq. (13) to analyze and predict the conditions for pattern forma- 

ion. 

. Numerical results 

To verify the aforementioned models, some numerical simula- 

ions for the system of RDEs and SSA are studied here. In the sys- 

em of RDEs, we adopt a second-order central difference approx- 

mation for the Laplacian operator, Riemann sum for the definite 

ntegrals, Adams-Moulton predictor-corrector method with adap- 

ive step size for the temporal discretization, and periodic bound- 

ry conditions for the boundaries. Note that we also employed the 

o-flux boundary conditions and no major differences were ob- 

erved on the results compared to periodic boundary conditions. 

or SSA, a detailed algorithm for stochastic simulation is proposed 

n Appendix C . Experimental observations [28] demonstrate that 

 critical event marking the success of cell polarity is the local- 

zation of signaling molecules to the specific region of the mem- 

rane. In our numerical simulations, the emergence of cell polarity 

s determined by whether 15% of the continuous interval contains 

 50% active signaling molecules on the membrane [16] . For one- 

imensional simulations, the number of spatial points is 200 and 

he temporal step �t is 1 × 10 −3 min. Initial conditions for sim- 

lations are defined as a (x, 0) = 0 and b(x, 0) = 0 . 3(1 + 0 . 2 η(x ))

here η(x ) is a function of uniformly distributed random number 

rom 0 to 1. 

.1. Feedback in the form of quadratic function 

Fig. 1 ABC shows the distribution profiles of active molecules 

btained by solving RDEs. In the simulations of Fig. 1 AB, the stable 

ocalization of active molecules can be achieved within 120 mins, 

hich indicates the emergence of cell polarity; in the simulation of 

ig. 1 C, the solution becomes homogeneous at the end and thus it 

ails to exhibit the polarization. Stochastic simulations are also ob- 

ained by performing SSA and the results at t = 120 mins are dis- 

layed in Fig. 1 DEF. The corresponding spatio-temporal dynamics 

re shown in Fig. 2 BC. Although distribution profiles show much 

oisy localization at 120 mins, it is remarkable that the stochastic 

ystem still produces localization at � = 93 , N = 481 (see Fig. 1 F

nd C) where RDEs fail (see Fig. 1 C). 

The discrepancy at parameter setting � = 93 , N = 481 ( Fig. 1 C 

nd F) indicates that the parameter regimes for achieving cell 

olarity are different in deterministic and stochastic systems. It 

s consistent with the observations from some previous studies 

13,17,29] . Therefore, we further investigate the effect of fluctuation 

n polarity establishment by analyzing the Turing stability in the 

eterministic system and power spectrum in the stochastic system. 

According to the derivation of the power spectrum, we know 

hat the frequency ω mainly affects the term e −iω . Therefore, the 
6 
ower spectrum is periodic regarding ω with a period 2 π . More- 

ver, due to the property of even function, the information in 

he range [0 , π ] is sufficient for analysis. To measure the rela- 

ive change of the power spectrum, P (k 0 , ω) is normalized by 

 (0 , 0) . In the analysis of power spectrum, the profile captured 

y P 1 (k 0 , ω) or P 2 (k 0 , ω) is utilized to measure the effect of ran-

om fluctuations [23,30] . It gives a complete representation of how 

he variance of fluctuation is distributed at different frequencies. If 

here is no order of fluctuations, the profile will be flat or have a 

eak at wavenumber zero (see Fig. 3 AB); otherwise, it will have 

t least one peak at non-zero wavenumber k 0 � = 0 and zero tem- 

oral frequency ω = 0 (see Fig. 3 CD). Here non-zero wavenumber 

ndicates the non-trivial spatial structure. In contrast, if the power 

pectrum presents a peak at zero wavenumber k 0 = 0 and non- 

ero temporal frequency ω � = 0 , it represents the global oscillation. 

The parameter region for achieving cell polarity predicted by 

he power spectrum is shown in Fig. 4 A. It is a phase diagram

f carrying capacity � and the total number of molecules N. The 

ower spectrum analysis suggests that when the total number of 

he molecules is small (less than 93), the localization loses. As the 

mount increases, larger carrying capacity is needed to ensure the 

nset of localization. Moreover, in comparison with the simulation 

esults of SSA (see Fig. 4 B), the parameter range obtained by SSA 

s mostly in accordance with the prediction of the power spectrum 

n spite of variations observed at the boundary (the blue region in 

ig. 4 B). 

To see the difference of parameter regimes between determin- 

stic and stochastic systems, Fig. 4 C compares the results predicted 

y RDEs and SSA where stochastic method leads to a broader pa- 

ameter region for the emergence of cell polarity. This result sup- 

orts that existing intrinsic noise increases robustness during the 

olarization process. In this analysis, we observe that an analytical 

xpression of the power spectrum provides an efficient and accu- 

ate method to investigate the parameter region for achieving the 

uring pattern instead of the time-consuming SSA. 

.2. Feedback in the form of linear function 

Here we also consider a simple feedback form, the linear feed- 

ack function, which means that function (2) has no cooperativity: 

 (a ) = k 11 + k 12 a. Altschuler et al. [9] have proposed that the lin-

ar positive feedback is insufficient to establish localization in the 

eterministic model. Our theory based on linear stability analysis 

rovides the conditions which support the failure in the determin- 

stic system (see Appendix D and [21] ). 

In the stochastic model, we set � = 93 , N = 200 , k 11 =
0 min 

−1 
, varied k 12 , and other parameters are used as Table 1 .

ith weak feedback strength, k 12 = 0 . 987 min 

−1 and k 12 = 

0 min 

−1 
, it fails to establish cell polarity. Whereas with much 

tronger strength k 12 = 40 min 

−1 and k 12 = 100 min 

−1 
, active 

olecules successfully produce the pattern (see Fig. 5 left column). 

ore importantly, prediction by power spectrum method is consis- 

ent with this observation. Specifically, it displays peak profiles at 

on-zero wavenumber when k 12 = 40 min 

−1 and k 12 = 100 min 

−1 

nd no peak profile is observed when k 12 = 0 . 987 min 

−1 and k 12 =
0 min 

−1 (see Fig. 5 right column). Thus this verifies that even with 

 linear feedback regulation in polarizing process, the prediction 

y power spectrum could be useful to determine the condition for 

chieving symmetry breaking. 

.3. Feedback in the form of Hill function 

With the feedback function in Eq. (2) , the amplification strength 

ncreases fast with the increasing concentrated cluster, whereas the 

aturation which represses the recruiting strength may exist in the 

eedback loop. Therefore the feedback regulation is described as a 
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Fig. 1. Distribution profile of active molecules in deterministic system (left column) and stochastic system (right column) with feedback in the form of quadratic function. 

(A) and (D) � = 93 , N = 201 ; (B) and (E) � = 173 , N = 131 ; (C) and (F) � = 93 , N = 481 . 

Fig. 2. Spatio-temporal dynamics of active molecules in deterministic system (A) and stochastic system (B and C) with quadratic feedback function. Color bar shows the 

number of molecules in each compartment on membrane. (A) and (B) � = 93 , N = 201 ; (C) � = 93 , N = 481 . σ1 D m = 0 . 0375 μm 

2 min 
−1 

. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

7 
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Fig. 3. Power spectrum profiles at different carrying capacity � and total number of molecules N. (A) � = 53 , N = 481 ; (B) � = 93 , N = 51 ; (C) � = 93 , N = 481 ; (D) 

� = 53 , N = 301 . Horizontal axis denotes the spatial frequency k 0 ∈ [0 , π ] ; vertical axis denotes the normalized power spectrum of active molecules P 1 (k 0 , ω) . 

Fig. 4. Phase diagram of carrying capacity � and total number of molecules N with feedback in the form of quadratic function. (A) Parameter region (in yellow) predicted 

by the power spectrum. (B) The difference in parameter regions obtained by the power spectrum and SSA. (C) The difference in parameter regions obtained by the power 

spectrum, RDEs, and SSA. Yellow region represents the prediction of power spectrum; purple region denotes failure of the occurrence; blue region in B is the difference 

between the power spectrum and SSA; green region in C denotes the difference between power spectrum and RDEs. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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ill function (3) and considering n = 2 : 

F (a ) = k 21 + 

k 22 a 
2 

k 2 
23 

+ a 2 
. 

here the saturation constant k 23 is introduced. When the density 

f Cdc42-GTP is high, recruiting power will be limited and the re- 

ruiting strength will saturate to a maximal level at k 22 . 

Based on the linear stability analysis and analytical power spec- 

rum, we will explore how this saturation in recruitment will affect 

he parameter regime for polarity establishment. With the above 

erived Turing instability criteria, the sufficient and necessary con- 

itions for achieving pattern formation are as follow s: 

2 k 22 k 
2 
23 a 

∗

(k 2 
23 

+ a ∗2 ) 2 
b ∗ − k of f 

− g on 
N−a ∗L −b ∗L 

� + g on QL 

g on 
N−a ∗L −b ∗L 

� + g on QL + g of f 

(
k 21 + 

k 22 a 
∗2 

k 2 
23 

+ a ∗2 

)
< 0 , (14) 

nd 

σ1 D m 

+ 

2 k 22 k 
2 
23 a 

∗

(k 2 + a ∗2 ) 2 
b ∗ − k of f 
23 

8 
− σ1 D m 

+ g on 
N−a ∗L −b ∗L 

�

σ1 D m 

+ g on 
N−a ∗L −b ∗L 

� + g of f 

(
k 21 + 

k 22 a 
∗2 

k 2 
23 

+ a ∗2 

)
> 0 . (15) 

Conditions for the emergence of cell polarity in (14) –(15) are 

ade use of to disclose the dependencies on the carrying capac- 

ty and total number of molecules (see Fig. 6 ). It can be seen

hat the available parameter region in the system with Hill func- 

ion (in yellow) is completely covered by the one with quadratic 

eedback function (see Fig. 6 A). It implies that the limit on local 

ecruitment of active signaling molecules results in a smaller pa- 

ameter region for pattern formation. In comparison with power 

pectrum prediction in Fig. 6 B, that localization only occurs in the 

tochastic regime is also witnessed although this available range 

in turquoise) is narrow. In particular, the region for the Turing 

attern predicted by the power spectrum only extends a little 

it along the boundary. Repression due to Hill function could not 

elp to amplify the fluctuation such that only a rather small dif- 

erence is observed. Two points, � = 93 , N = 351 and � = 193 , 

 = 426 , are chosen from this gap area and their corresponding 

ower spectrum profiles are illustrated in Fig. 6 CD. The peak pro- 
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Fig. 5. Stochastic spatio-temporal dynamics of active molecules (left column) and the corresponding power spectrum profiles (right column) with feedback in the form 

of linear function. Color bar shows the number of molecules in each compartment on membrane. (A) k 12 = 0 . 987 min 
−1 

; (B) k 12 = 40 min 
−1 

; (C) k 12 = 100 min 
−1 

. � = 93 , 

N = 201 , σ1 D m = 0 . 0375 μm 

2 min 
−1 

. 

Fig. 6. Phase diagram of carrying capacity � and total number of molecules N with feedback in the form of Hill function. (A) Difference in the parameter regions in system 

with Hill function and quadratic feedback function. (B) The difference in the parameter regions obtained by RDEs and power spectrum. Yellow area denotes the occurrence 

of Turing pattern; purple area represents failure of the occurrence. Turquoise area in A represents the region where the system fails to produce pattern with Hill function 

but succeeds with quadratic function; turquoise region in B represents the region where RDEs fails but power spectrum prediction succeeds. And points C and D are picked 

from this gap area with (C) � = 93 , N = 351 ; (D) � = 193 , N = 426 . The peak profiles of power spectrum at nonzero spatial frequency confirm the existence of random 

fluctuation which therefore indicates the emergence of cell localization. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

fi

fl

4

r

a

e  

t
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−

les at nonzero spatial frequency confirm the existence of random 

uctuation, which indicates the emergence of cell localization. 

.4. Comparison of localization behaviors with different limitations of 

ecruitment 

If there is no constraint on the recruitment of cytoplasmic in- 

ctive signaling molecules, carrying capacity on membrane is large 

nough ( Q = 1 as � → + ∞ ). In this case, Turing instability condi-
9 
ions will be 

2 k 22 k 
2 
23 a 

∗

(k 2 
23 

+ a ∗2 ) 2 
b ∗ − k of f −

g on L 

g on L + g of f 

(
k 21 + 

k 22 a 
∗2 

k 2 
23 

+ a ∗2 

)
< 0 , 

nd 

σ1 D m 

+ 

2 k 22 k 
2 
23 a 

∗

(k 2 
23 

+ a ∗2 ) 2 
b ∗ − k of f 

− σ1 D m 

σ1 D m 

+ g of f 

(
k 21 + 

k 22 a 
∗2 

k 2 
23 

+ a ∗2 

)
> 0 . 
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Fig. 7. Distribution profile of active molecules with quadratic feedback function (left column) or Hill function (right column). Upper panel represents the system with local 

carrying capacity Q(a, b) = 1 − a + b 
� (numerically � = 93 ). Lower panel represents the system without carrying capacity, i.e., Q = 1 . In the system with carrying capacity, we 

calculated the Q value at peak. With quadratic feedback function, Q(a, b) is 0.53, 0.53 and 0.45 as total number of molecules increases from 201, 251 to 301. With Hill 

function, Q(a, b) is 0.61, 0.58 and 0.58 as total number of molecules increases from 201, 251 to 301. Other parameters not specified are used according to Table 1 . 

Table 1 

Parameters used in the model; the diffusion rate, recruitment rate and dissociation rate of inactive molecules, 

and deactivation rate of active molecules are taken from Lo et al. [21] . 

Parameter Value/Unit Description 

a mol μm 

−2 Concentration of active molecules 

b mol μm 

−2 Concentration of inactive molecules 

D m 0.15 μm 

2 min 
−1 

Diffusion rate of molecules 

R 2 μm Yeast cell radius 

g on 20 μm 

−2 min 
−1 

Recruitment rate of inactive molecules 

g of f 9 min 
−1 

Dissociation rate of inactive molecules 

k of f 10 min 
−1 

Deactivation rate of active molecules 

n 1 or 2 Degree of cooperativity 

k 11 20 min 
−1 

Basal activation rate of Cdc42 in Eq. (2) 

k 12 0.987 [ mol μm 

−2 ] −n min 
−1 

Activation coefficient through cooperative feedback in Eq. (2) 

k 21 5 min 
−1 

Basal activation rate in Eq. (3) 

k 22 200 min 
−1 

Feedback activation coefficient in Eq. (3) 

k 23 40 mol μm 

−2 Saturation parameter in Eq. (3) 

N – Total number of molecules 

� – Local carrying capacity on cell membrane 
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Based on these conditions, numerical simulation results (which 

re not given here) demonstrate that if the system incorpo- 

ates with quadratic feedback form, the total amount of signal- 

ng molecules N has to be larger than 76 to yield Turing pattern. 

n contrast, if the system is equipped with Hill function, the to- 

al amount of signaling molecules N should be higher than 171. 

urthermore, in previous section considering the local carrying ca- 

acity as Q(a, b) = 1 − a + b 
� , the least number of molecules ensur- 

ng Turing pattern is around 76 and 171 in system with quadratic 

unction and Hill function respectively when � is larger than 90 

see Fig. 6 A). In a word, this reveals that the existence of recruit- 

ng limitation does not influence the lower bound of the num- 

er of molecules for obtaining a pattern. On the other hand, the 

imitation on recruitment inhibits the magnitude of concentrated 

dc42-GTP cluster (see Fig. 7 upper panel). Without the limitation 

n recruitment, i.e., Q = 1 , the localized cluster is much sharper 

han the case incorporating Q(a, b) = 1 − a + b . Hence, when the re- 
�

10 
ruitment of active signaling molecules is limited by saturation, the 

owest number of signaling molecules for achieving polarity may 

ot be affected but the magnitude of the localized cluster is re- 

ressed. 

. Conclusion 

In this paper, we formulated deterministic and stochastic mod- 

ls with non-local kinetics to describe the cell polarization pro- 

ess. Our model consists of active and inactive signaling molecules 

here the recruitment of inactive molecules from the whole cy- 

oplasm is taken into account. Parameter regime and localization 

ehavior were compared and discussed for the models with differ- 

nt positive feedback forms. We used numerical method SSA and 

he analysis of the power spectrum to approximate the parame- 

er ranges and compared the results obtained by Turing instability 

onditions. 
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with quadratic or Hill function form feedback can extend the parameter 

r n the prediction of the power spectrum and the simulations of SSA 

w  to effectively predict the regimes instead of implementing the time- 

c  yields a smaller parameter regime than that with quadratic feedback 

f arry capacity on recruiting signaling molecules, Hill function feedback 

m edback function illustrate that Turing and wave-pinning mechanisms 

r e of the contributions of this paper. 

 unintentionally neglecting the cell shape or curvature may bring some 

l ern formation, as pointed out by recent studies [14,31] . Therefore, our 

n m with varied cell geometries. 
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A

 space, the diffusion terms ∇ 

2 a and ∇ 

2 b vanish. Only reaction terms 

a  homogeneous over space, ˜ a ∗ = 

∫ 
a ∗ dS = a ∗L and 

˜ b ∗ = 

∫ 
b ∗ dS = b ∗L in 

o  be induced from following equation s: 

N − a ∗L − b ∗L ) Q(a ∗, b ∗) − g of f b 
∗. 

ct to small perturbations, we define a (x, t) and b(x, t) as slightly per- 

t

 

∗ + εa 1 (x, t) , (A.2a) 

 

∗ + εb 1 (x, t) , (A.2b) 

w nd b ∗. After substituting (A.2a) and (A.2b) into the model (1a) –(1b) and 

a , F (a ) = F (a ∗) + F ′ (a ∗)(a − a ∗) , the leading term satisfies the following 

s

) b 1 + a 1 b 
∗F ′ (a ∗) − k of f a 1 , (A.3a) 

 1 b 
∗F ′ (a ∗) + k of f a 1 − g on 

(a 1 + b 1 ) 

�

n ( ̃  a 1 + 

˜ b 1 ) Q(a ∗, b ∗) − g of f b 1 , (A.3b) 

ider a particular spatially periodic perturbation 

 αe λ(k ) t E k (x ) , 

 βe λ(k ) t E k (x ) , 

w ansion of the initial conditions in terms of E k (x ) , λ(k ) is the eigenvalue, 

k d E k (x ) is the k th non-zero eigenfunction of Laplace operator. On the 

d ary, we then have 

 for E k | x =0 = E k | x = L 
w d a m 

are constants determined by the initial perturbation. To determine 

t steady state points by evaluating the eigenvalues of Jacobian matrix. 

S

Our results suggest that the stochastic fluctuations in the model 

egime for achieving cell polarization. A good agreement betwee

as observed, and this result allows us to use the power spectrum

onsuming SSA. Also, the model with Hill function feedback form

unction. Moreover, considering systems with and without local c

ight repress the magnitude of localization. The differences in fe

eact distinctly even with the intrinsic fluctuation, which is also on

The simplified model used by assuming the cell as a circle while

imitations to this study as the cell geometry also affects the patt

ext work is intended to explore the polarization process in a syste
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ppendix A. Turing instability analysis 

First, in homogeneous system with uniform density over whole

re remained and also balanced for a and b. Note that since a ∗ is

ne dimension. The steady state solution (a ∗, b ∗) of this system can

0 = F (a ∗) b ∗ − k of f a 
∗, 

0 = −F (a ∗) b ∗ + k of f a 
∗ + g on (

To access the stability of homogeneous steady state with respe

urbed functions from the homogeneous steady state: 

a (x, t) = a

b(x, t) = b

here the perturbation amplitude ε � 1 is much smaller than a ∗ a

pplying Taylor expansion at a ∗ with the first order approximation

ystem: 

∂a 1 
∂t 

= D m 

∇ 

2 a 1 + F (a ∗

∂b 1 
∂t 

= D m 

∇ 

2 b 1 − F (a ∗) b 1 − a

× (N − a ∗L − b ∗L ) − g o

where F ′ (a ∗) denotes the derivative evaluated at a ∗. Here we cons

a 1 (x, t) =
b 1 (x, t) =

here α and β are non-zero parameters determined by Fourier exp

 is a non-negative integer which represents the wavenumber, an

omain x ∈ [0 , L ] in a one-dimensional section with periodic bound

−∇ 

2 E k (x ) = k 2 E k (x ) ,

hich is solved by E m 

(x ) = a m 

cos ( 2 mπx 
L ) . Here m = 0 , ±1 , ±2 , · · · an

he unstable state, we analyze the stability of the homogeneous 

ystem (A .3a) –(A .3b) becomes 
11 
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F 

−σm 

D m 

− F − g on 
N−a ∗L −b ∗L 

� − g on QLδ(k ) − g of f 

)(
α
β

)
, (A.4) 

k ) is a Dirac function, namely, δ(k ) is zero everywhere except at k = 0 

w

dimensional cross section, 

dimensional spherical surface, 

 as J , then Eq. (A.4) becomes 

= λ

(
α
β

)
. (A.5) 

ding eigenvector. Eq. (A.5) has a nonzero solution (α, β) if and only if 

d haracteristic polynomial : 

a ∗L − b ∗L 

�
− g on δ(k ) QL − g of f − k of f 

)
 − b ∗L + g on δ(k ) QL + g of f − F ′ b ∗ + k of f 

)
 + g on δ(k ) QL + g of f 

)
L 

)
= 0 . (A.6) 

rbed from the homogeneous steady state are moving toward another 

s ion is equivalent to that when k = 0 , hence σm 

= 0 and δ(k ) = 1 , the 

t

 

∗L − g on QL − g of f − k of f < 0 , (A.7) 

a

+ g of f 

)
+ F 

(
g on 

N − a ∗L − b ∗L 

�
+ g on QL 

)
> 0 . (A.8) 

−a ∗L −b ∗L 
� + g on QL 

 −b ∗L + g on QL + g of f 

F < 0 . (A.9) 

eds to check the inequality (A.9) for condition (i) . The second condition 

i  = 0 , the trace of J is positive or the determinant of J is negative : 

 − a ∗L − b ∗L 

�
− g of f − k of f > 0 , (A.10) 

o

 on 
N−a ∗L −b ∗L 

� + g of f + k of f 

)
 g of f 

)
+ F g on 

N−a ∗L −b ∗L 
� < 0 , k � 1 . 

(A.11) 

σm 

D m 

+ g on 
N−a ∗L −b ∗L 

�

 

D m 

+ g on 
N−a ∗L −b ∗L 

� + g of f 

F > 0 , (A.12) 

ces to check the inequality (A.12) for condition (ii) . Moreover, if there 

e r k � k c , the second condition can be reduced to the inequality ( A. 14 ) 

b ogeneous solution ( a ∗, b ∗) if the system (1a) –(1b) satisfies the following 

t
−a ∗L −b ∗L 

� + g on QL 
 −b ∗L + g on QL + g of f 

F < 0 , (A.13) 

a

σm 

D m 

+ g on 
N−a ∗L −b ∗L 

�
N−a ∗L −b ∗L 

F > 0 . (A.14) 
λ

(
α
β

)
= 

(
−σm 

D m 

+ F ′ b ∗ − k of f 

−F ′ b ∗ + k of f − g on 
N−a ∗L −b ∗L 

� − g on QLδ(k ) 

where for simplicity, F (a ∗) and F ′ (a ∗) are written in F and F ′ . δ(

here δ(k ) = 1 and the eigenvalu es 

σm 

= 

{
m 

2 / R 

2 for a one-

2 m 

2 / R 

2 for a two-

If we define the Jacobian matrix on the right-hand side of (A.4)

J 

(
α
β

)
Therefore, λ is an eigenvalue of J , and (α, β) T is the correspon

et (J − λI ) = 0 , which means λ should be a root of the following c

λ2 − λ

(
−2 σm 

D m 

+ F ′ b ∗ − F − g on 
N −

+ σ 2 
m 

D 

2 
m 

+ σm 

D m 

(
F + g on 

N − a ∗L

�

− (F ′ b ∗ − k of f ) 

(
g on 

N − a ∗L − b ∗L

�

+ F 

(
g on 

N − a ∗L − b ∗L 

�
+ g on δ(k ) Q

Together, these two conditions imply that wave functions pertu

teady state for and only for positive wavelengths. The first condit

race of J is negative and the determinant of J is positive: 

F ′ b ∗ − F − g on 
N − a ∗L − b

�

nd 

−(F ′ b ∗ − k of f ) 

(
g on 

N − a ∗L − b ∗L 

�
+ g on QL 

Inequality (A.8) can be rewritten as 

F ′ b ∗ − k of f −
g on 

N

g on 
N−a ∗L

�

It is easy to show (A.9) implies (A.7) , and therefore one only ne

s equivalent to the conditions that for some positive k, hence δ(k )

−2 σm 

D m 

+ F ′ b ∗ − F − g on 
N

r 

σ 2 
m 

D 

2 
m 

+ σm 

D m 

(
−F ′ b ∗ + F + g

−(F ′ b ∗ − k of f ) 
(
g on 

N−a ∗L −b ∗L 
� +

Inequality (A.11) can be rewritten as 

−σm 

D m 

+ F ′ b ∗ − k of f −
σm

It can be observed that inequality (A.10) implies (A.12) . So it suffi

xists the critical wavenumber k c such that for any positive intege

elow. Finally, we summarize that Turing instability exists at a hom

wo conditions 

F ′ b ∗ − k of f −
g on 

N

g on 
N−a ∗L

�

nd 

−σ1 D m 

+ F ′ b ∗ − k of f −

σm 

D m 

+ g on � + g of f 

12 
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A

 are shown here. The power spectra of stochastic fluctuations in active 

m  ω) where just let the species index r = 1 and r = 2 in general form of 

p trum of stochastic fluctuation, it gives 

 | 2 〉 = 〈 ̂  φr (k 0 , ω) ̂  φr (k 0 , ω) 〉 
uce �rl (k 0 , ω) and it yields 

−1 
rl 

(k 0 , ω) ̂  μl (k 0 , ω) , 

w is 2 × 2 identity matrix. Since ˆ φr = 

∑ 2 
l=1 �

−1 
rl 

ˆ μl in above equation, here 

f  s: 

1 
l 

ˆ μl 

(
2 ∑ 

m =1 

�−1 
rm 

ˆ μm 

)
1 

l 
ˆ μl 

(
2 ∑ 

m =1 

ˆ μm 

(
�
)

−1 
rm 

)
 

1 

�−1 
rl 

ˆ μl ˆ μm 

(
�−1 

)
H 
rm 

 

1 

�−1 
rl 

ˆ M 

∗
lm 

(
�−1 

)
H 
rm 

. 

, and the inverse �−1 and its conjugate transpose 

(
�−1 

)
H would be 

f

2 �21 

(
�22 −�12 

−�21 �11 

)
, 

�12 �21 

(
�22 −�12 

−�21 �11 

)

�12 = − ˆ J ∗12 , 

�22 = iω − ˆ J ∗22 , 

, �12 = − ˆ J ∗12 , 

�22 = −iω − ˆ J ∗22 . (B.1) 

 

(k 0 , ω) 

 

2 + �−1 
12 

ˆ M 

∗
21 

(
�−1 

)
H 
11 + �−1 

12 
ˆ M 

∗
22 

(
�−1 

)
H 
12 

 

�21 ) 
− �22 

ˆ M 

∗
12 �12 

(�11 �22 − �12 �21 )( �11 �22 − �12 �21 ) 

12 �21 ) 
+ 

�12 
ˆ M 

∗
22 �12 

(�11 �22 − �12 �21 )( �11 �22 − �12 �21 ) 

1 �22 + �12 
ˆ M 

∗
22 �12 

2 − �12 �21 ) 
. 

 spectrum of active molecule can be written explicitly: 

 

∗
22 ( ̂

 J ∗12 ) 
2 − 2 

ˆ M 

∗
12 

ˆ J ∗12 
ˆ J ∗22 + 

ˆ M 

∗
11 ω 

2 

 

− ˆ J ∗
12 

ˆ J ∗
21 

)] 2 + ( ̂  J ∗
11 

+ 

ˆ J ∗
22 

) 2 ω 

2 
. 

lecule in Eq. (13) with the same manner. 
ppendix B. Derivation of power spectrum 

Some details of derivation of power spectrum given in Eq. (13)

olecule and inactive molecule correspond to P 1 (k 0 , ω) and P 2 (k 0 ,

ower spectrum formula. According to the definition of power spec

P r (k 0 , ω) = 〈| ̂  φr (k 0 , ω)

where (·) denotes conjugate. To solve ˆ φr (k 0 , ω) by (10) , we introd

ˆ φr (k 0 , ω) = 

2 ∑ 

l=1 

�

here 〈 ̂  μr (ω) ̂  μm 

(ω) 〉 = 

ˆ M 

∗
rm 

, �rl (k 0 , ω) = iωI rl − ˆ J rl (k 0 , ω) and I rl 

or simplicity (k 0 , ω) was omitted, so the power spectrum become

P r (k 0 , ω) = 

2 ∑ 

l=1 

�−
r

= 

2 ∑ 

l=1 

�−
r

= 

2 ∑ 

l=1 

2 ∑
m =

= 

2 ∑ 

l=1 

2 ∑
m =

where (·) H is the conjugate transpose. Here � is a 2 × 2 matrix

ormulated by the components of � as following : 

�−1 = 

1 

�11 �22 − �1(
�−1 

)
H = 

1 

�11 �22 −
w here 

�11 = iω − ˆ J ∗11 , 

�21 = − ˆ J ∗21 , 

�11 = −iω − ˆ J ∗11 

�21 = − ˆ J ∗21 , 

Active molecule corresponds to r = 1 and its power spectrum P 1

P 1 (k 0 , ω) = 

2 ∑ 

l=1 

2 ∑ 

m =1 

�−1 
1 l 

ˆ M 

∗
lm 

(
�−1 

)
H 
1 m 

= �−1 
11 

ˆ M 

∗
11 

(
�−1 

)
H 
11 + �−1 

11 
ˆ M 

∗
12 

(
�−1 

)
H
1

= 

�22 
ˆ M 

∗
11 �22 

(�11 �22 − �12 �21 )( �11 �22 − �12

− �12 
ˆ M 

∗
21 �22 

(�11 �22 − �12 �21 )( �11 �22 − �

= 

�22 
ˆ M 

∗
11 �22 − �22 

ˆ M 

∗
12 �12 − �12 

ˆ M 

∗
2

(�11 �22 − �12 �21 )( �11 �2

Substitute the value in (B.1) into the above equation, the power

P 1 (k 0 , ω) = 

ˆ M 

∗
11 ( ̂

 J ∗22 ) 
2 + 

ˆ M

[ ω 

2 − ( ̂  J ∗
11 

ˆ J ∗
22

Analogously, we can easily derive the expression for inactive mo
13 



Y. Liu and W.-C. Lo Chaos, Solitons and Fractals 144 (2021) 110620 

A

stochastic process. It can be accessed numerically by SSA. Instead of 

f d on the number of molecules in discrete space. Consider �
 X (t) as a 

v p J will happen in the next time interval [ t , t + dt ) is α(t ) dt where α
i p at time t . In SSA, two random numbers r 1 and r 2 , that are uniformly 

d f next reaction, respectively. The time for next reaction is t + τ, with 

− ln r 1 
α0 (t) 

, 

w

(t) + αRA k (t) + αLB k (t) + αRB k (t) 

) 

. 

st m and q such that 

 

m ∑ 

j=1 

αq j � r 2 α0 (C.1) 

k j + 

q ∑ 

k =1 

αLA k � r 2 α0 (C.2) 

 αLA k 

) 

+ 

q ∑ 

k =1 

αRA k � r 2 α0 (C.3) 

 k 
+ αRA k 

) 

+ 

q ∑ 

k =1 

αLB k � r 2 α0 (C.4) 

 αRA k + αLB k 

) 

+ 

q ∑ 

k =1 

αRB k � r 2 α0 . (C.5) 

nd the state of system is updated as �
 X (t + τ ) = 

�
 X (t) + νqm 

; or if the 

c e state of system is updated as � X (t + τ ) = 

�
 X (t) + νLA q ; or the condition 

( system is updated as � X (t + τ ) = 

�
 X (t) + νRA q ; or if the condition (C.4) is 

s is updated as � X (t + τ ) = 

�
 X (t) + νLB q ; or the condition (C.5) is satisfied, 

t d as � X (t + τ ) = 

�
 X (t) + νRB q . 

A

itive feedback function (2) has no cooperativity: F (a ) = k 11 + k 12 a . Next 

w eous onset of cell polarization based on the linear stability analysis we 

h he following 

 12 a 
∗) b ∗ − k of f a 

∗, 

f f = −k 11 
b ∗

a ∗
. 

 positive, the left-hand term k 12 b 
∗ − k of f is obviously negative. Consid- 

e

−

fied with the induced conclusion that k 12 b 
∗ − k of f < 0 . Therefore, linear 

p larization. 

ngth, (a): k 12 = 0 . 987 min 

−1 and (b): k 12 = 10 min 

−1 
, is insufficient to 

e ngth, (c): k 12 = 40 min 

−1 and (d): k 12 = 100 min 

−1 
, signaling molecules 

d

ppendix C. Stochastic Simulation Algorithm 

The chemical master Eq. (6) provides exact description of the 

ocusing on concentration of molecules at local area, SSA is base

ariable with respect to x, the probability that a reaction R or a jum

s the propensity function corresponding to the reaction or the jum

istributed in [0,1], are generated for determining time and index o

τ = 

here α0 (t) is the sum of all propensity functions : 

α0 (t) = 

K ∑ 

k =1 

( 

4 ∑ 

j=1 

αk j (t) + αLA k 

The index of the next reaction is obtained by finding the smalle

q −1 ∑ 

k =1 

4 ∑ 

j=1 

αk j +

or 

K ∑ 

k =1 

4 ∑ 

j=1 

α

or 

K ∑ 

k =1 

( 

4 ∑ 

j=1 

αk j +

or 

K ∑ 

k =1 

( 

4 ∑ 

j=1 

αk j + αLA

or 

K ∑ 

k =1 

( 

4 ∑ 

j=1 

αk j + αLA k +

If the condition (C.1) is satisfied, then reaction R qm 

happens a

ondition (C.2) is satisfied, then diffusion jump J LA q happens and th

C.3) is satisfied, then diffusion jump J RA q happens and state of the 

atisfied, then diffusion jump J LB q happens and the state of system 

hen diffusion jump J RB q happens and the state of system is update

ppendix D. Linear feedback loop 

Here the linear positive feedback form means that the local pos

e will show this kind feedback form is unable to provide spontan

ave studied above. With the linear feedback function, we obtain t

0 = (k 11 + k

We can obtain that 

k 12 b 
∗ − k o

Since the parameter k 11 and the steady state solution a ∗, b ∗ are

ring the condition (5) with linear feedback function, 

σ1 D m 

+ k 12 b 
∗ − k of f −

σ1 D m 

+ g on 
N−a ∗L −b ∗L 

�

σ1 D m 

+ g on 
N−a ∗L −b ∗L 

� + g of f 

F > 0 . 

This necessary condition for symmetry breaking can not be satis

ositive feedback will be insufficient to lead to spontaneous cell po

Stochastic method by performing SSA with weak feedback stre

stablish localization. Nevertheless, with much larger feedback stre

isplay a clear localization profile. 
14 
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