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Abstract
Computing uniformization maps for surfaces has been a challenging problem and has many
practical applications. In this paper, we provide a theoretically rigorous algorithm to compute
suchmaps via combinatorial Calabi flow for vertex scaling of polyhedral metrics on surfaces,
which is an analogue of the combinatorial Yamabe flow introduced by Luo (Commun Con-
temp Math 6(5):765–780, 2004). To handle the singularies along the combinatorial Calabi
flow, we do surgery on the flow by flipping. Using the discrete conformal theory established
in Gu et al. (J Differ Geom 109(3):431–466, 2018; J Differ Geom 109(2):223–256, 2018),
we prove that for any initial Euclidean or hyperbolic polyhedral metric on a closed surface,
the combinatorial Calabi flow with surgery exists for all time and converges exponentially
fast after finite number of surgeries. The convergence is independent of the combinatorial
structure of the initial triangulation on the surface.

Keywords Polyhedral metricsa · Discrete uniformization · Combinatorial Calabi flow ·
Surgery by flipping

Mathematics Subject Classification 53C44 · 52B70

1 Introduction

1.1 Backgrounds andmain results

One of the central topics in modern geometry concerns with the canonical metrics on a given
manifold, which is related to special geometric structures on manifolds. The flow method
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is an important approach for such problems. To achieve this goal, Hamilton [34] introduced
the Ricci flow and Calabi [5,6] introduced the Calabi flow. The Ricci flow has been used to
solvemany longstanding problems in differential geometry, including the Poincaré conjecture
[41–43] and the sphere theorem [4]. The Calabi flow is

∂g

∂t
= �gK · g (1.1)

on a Riemannian surface, where g is the Riemannianmetric, K is the Gauss curvature and�g

is the Laplace–Beltrami operator of g. The long time existence and convergence of the Calabi
flow (1.1) on closed Riemannian surfaces were established in [9,13]. The readers can also
refer to [7,8,10] and the references therein for more information on Calabi flow on surfaces.

However, computing special geometric structures on manifolds has been a challenging
problem, even for the uniformization maps on surfaces. Different from the smooth approach,
one works on polyhedral manifolds to compute geometric structures on manifolds. This
idea dates at least back to Thurston [50], who used the circle packing metric (a type of
polyhedral metric) to study hyperbolic structures on three dimensional manifolds. Thurston
([50], Section 13.7) obtained the combinatorial obstruction for the existence of constant
combinatorial curvature circle packing metrics. Motivated by Ricci flow on surfaces [11,
35], Chow-Luo [12] introduced the combinatorial surface Ricci flow for Thurston’s circle
packingmetrics on triangulated surfaces, which provides an effective way to computemetrics
with prescribed combinatorial curvatures (specially the uniformization maps) and has many
applications (see for example [56] and the references therein). Inspire by [12], Ge [16,17]
introduced a combinatorial Calabi flow for Thurston’s Euclidean circle packing metrics on
triangulated surfaces and proved the longtime existence and convergence of the flow. Then
Ge and the second author [24] and Ge-Hua [18] studied the convergence of combinatorial
Calabi flow for Thurston’s hyperbolic circle packingmetrics on triangulated surfaces. Similar
to combinatorial Ricci flow, the combinatorial Calabi flow can also be used to compute circle
packingmetrics with prescribed combinatorial curvatures [57]. Combinatorial Ricci flow and
Calabi flow are further used to study α-curvatures of circle packings on triangulated surfaces
and sphere packings on 3-dimensional manifolds [23,25–27].

To study the discrete conformal geometry of polyhedral metrics on maniflods, Rǒcek-
Williams [47] and Luo [37] introduced a notion of discrete conformality for Euclidean
polyhedral metrics (piecewise linear metrics or PLmetrics for short) on triangulated surfaces
independently, which is now called vertex scaling. Luo [37] further defined the combina-
torial Yamabe flow for PL metrics. Based on Bobenko–Pinkall–Springborn’s work [2] on
vertex scaling and Penner’s work [40] on decorated Teichimüller spaces, Gu–Luo–Sun–Wu
[32] and Gu–Guo–Luo–Sun–Wu [31] recently proved a discrete uniformization theorem for
Euclidean and hyperbolic polyhedral metrics on surfaces respectively, which provides a con-
structive proof of the classical uniformization theorem on closed surfaces. Combinatorial
Yamabe flows with surgery were introduced in [31,32], where the long-time existence and
convergence were proved. The finiteness of surgeries along the combinatorial Yamabe flow
was proved by Wu [51]. The combinatorial Yamabe flow with surgery provides an effective
algorithm to compute the uniformization maps on surfaces [49]. Unlike the circle pack-
ing case [12,16–18,24], the convergence of the combinatorial Yamabe flow with surgery in
[31,32] is independent of the combinatorial structure of the initial triangulation on the surface.
Following [37], Ge [16] introduced the combinatorial Calabi flow for vertex scaling of PL
metrics on triangulated surfaces and proved the short time existence. In this paper, by doing
surgery along the combinatorial Calabi flow by flipping, we prove the combinatorial Calabi
flow with surgery for vertex scaling exists for all time and converges as time tends to infinity.
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One of the main results of the paper is the following theorem on Euclidean combinatorial
Calabi flow with surgery.

Theorem 1.1 Suppose (S, V ) is a closed connected marked surface and d0 is any initial
piecewise linear metric on (S, V ). Then the combinatorial Calabi flow with surgery exists
for all time and converges exponentially fast to a piecewise linear metric d∗ with constant
combinatorial curvature after finite number of surgeries.

Note that the convergence is independent of the combinatorial structure of the triangulation
on the surface, which improves the convergence of combinatorial curvature flows for circle
packing metrics on surfaces [12,16–18,24]. The combinatorial Calabi flow with surgery
gives an effective way to compute polyhedral metrics on a surface with given combinatorial
curvatures [48]. Especially, the combinatorial Calabi flow provides an algorithm to compute
the uniformization maps on surfaces.

We further define the hyperbolic combinatorial Calabi flow and the corresponding hyper-
bolic combinatorial Calabi flow with surgery. Please refer to Sect. 4 for the definitions. The
main result for hyperbolic combinatorial Calabi flow with surgery is as follows.

Theorem 1.2 Suppose (S, V ) is a closed connected marked surface with χ(S) < 0 and d0 is
any initial piecewise hyperbolic metric on (S, V ). Then the hyperbolic combinatorial Calabi
flow with surgery exists for all time and converges exponentially fast to a hyperbolic metric
d∗ on S after finite number of surgeries.

Theorem1.2 is an analogue of the results obtained in [9,13] with initial metric given by a
piecewise hyperbolic metric, which is a hyperbolic cone metric. In Sect. 4, we will prove a
generalization of Theorem1.2.

The main idea of the paper comes from reading of [16,17,31,32,37]. As the main tools
used in this paper come from [31,32], many notations are taken from [31,32] for consistence.

1.2 Notations and definitions

Here we give some notations and definitions used in the main results. Suppose S is a closed
surface and V is a finite subset of S, (S, V ) is called a marked surface. A piecewise linear
metric on (S, V ) is a flat cone metric with cone points contained in V . The combinatorial
curvature Ki at vi ∈ V is 2π less the cone angle at vi . Suppose T = (V , E, F) is a triangu-
lation of (S, V ), where V , E, F represent the set of vertices, edges and faces respectively.
We use (S, V , T ) to denote a marked surface (S, V ) with a fixed triangulation T . If a map
l : E → (0,+∞) satisfies that lrs < lr t + lst for {r , s, t} = {i, j, k}, where {i, j, k} is any
triangle in F , then l determines a piecewise linear metric on (S, V ). Given (S, V ) with a
triangulation T and a map l : E → (0,+∞) determined by a piecewise linear metric d on
(S, V ), the vertex scaling [37,47] of d by a function u : V → R is defined to be the piecewise
linear metric u ∗ d on (S, V ) determined by u ∗ l : E → (0,+∞) with

(u ∗ l)i j := eui+u j li j , ∀{i j} ∈ E .

The function u : V → R is called a conformal factor. Note that the vertex scaling of a
piecewise linear metric on a surface depends on the triangulation of the surface.

The Calabi flow (1.1) on smooth Riemannian surfaces deforms the metrics conformally.
If g is conformal to a background metric g0 with g = eug0, where u is the conformal factor,
then the Calabi flow (1.1) translates into an evolution equation

du

dt
= �gK
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of the conformal factor. The Euclidean combinatorial Calabi flow for piecewise linearmetrics
is defined similarly.

Definition 1.1 ([16]Definition 2.11) Suppose d0 is a piecewise linearmetric on a triangulated
surface (S, V , T ). The Euclidean combinatorial Calabi flow on (S, V , T ) is defined as{ dui

dt = �E,T Ki

ui (0) = 0
, (1.2)

where u : V → R is the conformal factor and �E,T is the Euclidean discrete Laplace
operator of u ∗ d0 on (S, V , T ) defined as

(�E,T f )i =
∑
j; j∼i

ω
E,T
i j ( f j − fi ), ∀ f ∈ R

V
(1.3)

with

ω
E,T
i j = cot θ i jk + cot θ i jl .

Here θ
jk
i is the inner angle at the vertex vi in a triangle �i jk ∈ F .

The Euclidean discrete Laplace operator �E,T is the well-known finite-elements Laplace
operator. The Euclidean combinatorial Calabi flow (1.2) is defined for a fixed triangulation
T of (S, V ) and may develop singularities, including the conformal factor tends to infinity
and some triangle degenerates along the flow. To handle the possible singularities along the
flow, we do surgery on the flow by flipping, the idea of which comes from [31,32,37]. Note
that the weightωE,T

i j may be negative andω
E,T
i j ≥ 0 if and only if θ i jk +θ

i j
l ≤ π , which is the

locally Delaunay condition of T on the edge {i j} [3]. To ensure that the Euclidean discrete
Laplace operator�E,T has good properties, we require the triangulations along the Euclidean
combinatorial Calabi flow (1.2) to be Delaunay, which is equivalent to every edge satisfies
the locally Delaunay condition [3]. Note that each piecewise linear metric on (S, V ) has at
least one Delaunay triangulation [1,3], so this additional condition is reasonable. Along the
Euclidean combinatorial Calabi flow (1.2) on (S, V )with a triangulation T , if T is Delaunay
in u(t) ∗ d0 for t ∈ [0, T ] and not Delaunay in u(t) ∗ d0 for t ∈ (T , T + ε), ε > 0, there
exists an edge {i j} ∈ E such that θ i jk (t) + θ

i j
l (t) ≤ π for t ∈ [0, T ] and θ

i j
k (t) + θ

i j
l (t) > π

for t ∈ (T , T + ε). We replace the triangulation T by a new triangulation T ′ at time t = T
by replacing two triangles �i jk and �i jl adjacent to {i j} by two new triangles �ikl and
� jkl. This is called a surgery by flipping on the triangulation T , which is an isometry of
(S, V ) in the piecewise linear metric u(T ) ∗ d0. After the surgery at time t = T , we run the
Euclidean combinatorial Calabi flow (1.2) on (S, V , T ′) with initial metric coming from the
Euclidean combinatorial Calabi flow (1.2) on (S, V , T ) at time t = T .

Vertex scaling, combinatorial Calabi flow and surgery by flipping can also defined for
piecewise hyperbolic metrics on surfaces. Please refer to Sects. 2 and 4 for more details.

1.3 Organization of the paper

Thepaper is organized as follows. InSect. 2,wegive somepreliminaries ondiscrete conformal
geometry, including the definitions of polyhedral metrics, vertex scaling, discrete curvature
and discrete Laplace operators. In Sect. 3, we study the Euclidean combinatorial Calabi flow
on surfaces and prove a generalization of Theorem1.1. In Sect. 4, we study the hyperbolic
combinatorial Calabi flow on surfaces and prove a generalization of Theorem1.2. In Sect. 5,
we give some remarks and propose an interesting question.
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2 Polyhedral metrics, discrete curvatures and discrete Laplace
operators

2.1 Polyhedral metrics on surfaces

The definition of piecewise linear metric on marked surfaces has been given in Sect.1. Here
we extend the definition to polyhedral metrics on surfaces.

Definition 2.1 ([31,32]) Suppose (S, V ) is a marked surface. A piecewise linear (hyperbolic
and spherical respectively) metric on (S, V ) is a flat (hyperbolic and spherical respectively)
conemetric on Swhose cone points are contained inV . Piecewise linear, piecewise hyperbolic
and piecewise spherical metrics on marked surfaces are all called polyhedral metrics.

In this paper, we concern only about piecewise linear and piecewise hyperbolic metrics.
For simplicity, piecewise linear and piecewise hyperbolic metrics are denoted by PL and PH
metrics respectively in the following.

A marked surface (S, V ) with a triangulation T = {V , E, F} is called a triangulated
surface and denoted by (S, V , T ). In this paper, a function defined on vertices V is regarded
as a column vector and n = #V is used to denote the number of vertices. Moreover, all
vertices, marked by v1, . . . , vn , are supposed to be ordered one by one and we often write i
instead of vi . We use {i j} to denote the edge between vi and v j in E and use �i jk to denote
the face determined by vi , v j and vk in F .

Geometrically, PL metrics on (S, V ) are obtained by isometrically gluing Euclidean tri-
angles along their edges so that the cone points are contained in V , which gives a geometric
triangulation T of (S, V )whose simplices are quotients of the simplices in the disjoint union.
A triangulation T of (S, V ) is geometric in a PL metric d on (S, V ) if each triangle in T
is isometric to a Euclidean triangle in d . PH metrics on (S, V ) are obtained similarly with
Euclidean triangles replaced by hyperbolic triangles. A geometrical triangulation of (S, V )

with a PL metric is said to be a Delaunay triangulation if the sum of two angles facing
each edge is at most π . A geometrical triangulation of (S, V ) with a PH metric is said to be
a Delaunay triangulation if for each edge e adjacent to two hyperbolic triangles t and t ′ ,
the interior of the circumball of t does not contain the vertices of t ′ when the quadrilateral
t ∪ t ′ is lifted to H

2. See [1,3,31,32,36,45] for further discussions on Delaunay triangula-
tions of surfaces. Note that a polyhedral metric on a marked surface is independent of the
triangulations.

Suppose T = {V , E, F} is a geometric triangulation of (S, V ) with a PL or PH metric d ,
then the metric d determines a map

d : E −→ (0,+∞)

{i j} 
→ di j � d({i j})
such that for any topological triangle �i jk ∈ F , the triangle inequalities di j < dik +
d jk, dik < di j+d jk, d jk < di j+dik are satisfied. Conversely, given amap d : E → (0,+∞)

satisfying the triangle inequalities di j < dik + d jk, dik < di j + d jk, d jk < di j + dik for each
triangle �i jk ∈ F , the map d : E → (0,+∞) uniquely determines a PL metric on (S, V )

by the construction of the polyhedral metrics. Then for a triangulated surface (S, V , T ), the
space of PL metrics is given by

R
E(T )
� = {d ∈ R

E(T )
>0 |di j , dik, d jk satisfy the triangle

inequalities for any �i jk ∈ F}.
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And there is an injective map 
T : RE(T )
� −→ TPL(S, V ) between the subspace R

E(T )
�

and the Teichimüller space TPL(S, V ) of PL metrics on (S, V ). Note that RE(T )
� is a proper

subset of RE(T )
>0 .

2.2 Discrete curvature

On a marked surface, the well-known combinatorial curvature is defined as follows.

Definition 2.2 Suppose (S, V ) is a marked surface with a polyhedral metric, the combinato-
rial curvature Ki at vi ∈ V is 2π less the cone angle at vi .

If T is a geometric triangulation of (S, V ), the combinatorial curvature Ki at vi is

Ki = 2π −
∑

�i jk∈F
θ
jk
i ,

where the summation is taken over triangles with vi as vertex and θ
jk
i is the inner angle

of �i jk at vi . Note that the combinatorial curvature Ki is independent of the geometric
triangulations of (S, V ) with a given polyhedral metric. Combinatorial curvature K satisfies
the following discrete Gauss–Bonnet formula [12]

n∑
i=1

Ki = 2πχ(S) − λArea(S),

where Area(S) is the area of the marked surface (S, V ) with polyhedral metric d and λ =
−1, 0,+1 respectively when d is a hyperbolic, Euclidean or spherical polyhedral metric
respectively.

2.3 Vertex scaling of polyhedral metrics

Vertex scaling of PLmetrics on a triangulated surface was introduced by Luo [37] and Rǒcek-
Williams [47] independently as an analogy of the conformal transformation of Riemannian
metrics.

Definition 2.3 ([37,47]) Suppose d is a PL metric on a triangulated surface (S, V , T ) and u
is a function defined on the vertices V . The vertex scaling of d by u for (S, V , T ) is defined
to be the PL metric u ∗ d such that

(u ∗ d)i j := di j e
ui+u j

determines a PL metric u ∗ d on (S, V , T ). u is called a conformal factor.

Note that u ∗ d determines a PL metric on a triangulated surface (S, V , T ) is equivalent to
u : V → R is in the following admissible space of the conformal factors

�E,T (d) � {u ∈ R
V |drseut + drt e

us > dst e
ur , {r , s, t} = {i, j, k},∀�i jk ∈ F}.

Luo–Sun–Wu [39] showed that the vertex scaling of the PL metric is an approximation
of the conformal transformation in the smooth case.

Vertex scaling of PH metrics on a triangulated surface was introduced by Bobenko–
Pinkall–Springborn [2].
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Definition 2.4 ([2]) Suppose d is a PH metric on a triangulated surface (S, V , T ) and u is a
function defined on the vertices V . The vertex scaling of d by u is defined to be u ∗ d such
that

sinh
(u ∗ d)i j

2
:= eui+u j sinh

di j
2

determines a PH metric u ∗ d on (S, V , T ). u is called a conformal factor.

Similar to the PL metrics, u ∗d determines a PH metric if and only if the conformal factor
u is in the admissible space �H,T (d) of conformal factors

�H,T (d) � {u ∈ R
V |(u ∗ d)rs + (u ∗ d)r t > (u ∗ d)st ,

{r , s, t} = {i, j, k},∀�i jk ∈ F}.
The combinatorial curvature K is rigid with respect to the conformal factor.

Theorem 2.1 ([2]) Suppose (S, V , T ) is a triangulated surface with a PL or PH metric, then
the conformal factor is uniquely determined by the combinatorial curvature K (up to scaling
for the PL metric).

Vertex scaling for spherical polyhedral metrics was defined by Bobenko–Pinkall–
Springborn [2]. Gu–Luo–Sun–Wu [32] observed that the notions of vertex scaling are related
to the Ptolemy identities for all polyhedral surfaces. Note that the definition of vertex scaling
for polyhedral metrics depends on the triangulation of the marked surface (S, V ).

2.4 Laplace operators on triangulated surfaces

The discrete Laplace operator of a PL metric on a triangulated surface, known as finite
elements Laplacian, has been extensively studied in geometry and computer graphics and is
defined as follows.

Definition 2.5 Suppose (S, V , T ) is a triangulated surface with a PLmetric d . The Euclidean
discrete Laplace operator of d on (S, V , T ) is defined to be the map

�E,T : RV −→ R
V

f 
→ �E,T f ,

where f : V → R is a function defined on the vertices and the value of �E,T f at vi is

(�E,T f )i =
∑
j; j∼i

ω
E,T
i j ( f j − fi ) (2.1)

with weight

ω
E,T
i j = cot θ i jk + cot θ i jl .

Here θ
jk
i is the inner angle at the vertex vi in a triangle �i jk ∈ F .

Remark 2.1 Generally, for a triangulated surface (S, V , T )with a PLmetric d , the Euclidean
discrete Lapalce operator of d depends on the triangulation T . However, if the triangulation T
isDelaunay, even though there exists differentDelaunay triangulations for the samePLmetric
d on a marked surface (S, V ), the Euclidean discrete Laplace operator �E,T is independent
of the Delaunay triangulations of d on (S, V ) [3]. In this case, the Euclidean discrete Laplace
operator �E,T is intrinsic in the sense that it is independent of the Delaunay triangulations.
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Suppose u : V → R is a conformal factor defined on the vertices and the vertex v j is
adjacent to vi , Luo [37] proved

∂θ
jk
i

∂u j
= cot θ i jk ,

∂Ki

∂u j
= −(cot θ i jk + cot θ i jl ),

where �i jk and �i jl are adjacent triangles in F .
Set

L = (Li j )N×N = ∂(K1, · · · , KN )

∂(u1, · · · , uN )
=

⎛
⎜⎜⎝

∂K1
∂u1

· · · ∂K1
∂uN

...
. . .

...
∂KN
∂u1

· · · ∂KN
∂uN

⎞
⎟⎟⎠ (2.2)

be the Jacobian of K with respect to u. For Euclidean polyhedral metrics, the matrix L has
the following property.

Lemma 2.1 ([37]) For a triangulated surface (S, V , T ) with a PL metric d, the matrix L
is symmetric and positive semi-definite on �E,T (d) with kernel {t1|t ∈ R}, where 1 =
(1, · · · , 1)T .

By Lemma2.1, we have
∑N

j=1
∂Ki
∂u j

= 0. Then the Euclidean discrete Laplace operator
(2.1) translates into

(�E,T f )i =
∑
j; j∼i

(
−∂Ki

∂u j

)
( f j − fi ) = −

∑
j∈V

∂Ki

∂u j
f j ,

which implies that

�E,T = −L

in matrix form. In this way, we can take the Euclidean discrete Laplace operator �E,T as
a matrix-valued map defined on the admissible space of conformal factors �E,T (d). If the
triangulation T is Delaunay in u ∗ d , then the Euclidean discrete Laplace operator �E,T , as
a matrix-valued map, is defined on

�
E,T
D (d) � {u ∈ R

V |T is Delaunay in u ∗ d},
which is a subspace of the admissible conformal factors�E,T (d) [32,40]. The idea of writing
the discrete Laplace operator in matrix form comes from Ge [16,17].

Note that L is the Jacobian of the curvature K with respect to the conformal factor u, we
define the hyperbolic discrete Laplace operator similarly.

Definition 2.6 Suppose (S, V , T ) is a triangulated surfacewith a PHmetric d . The hyperbolic
discrete Laplace operator is defined to be the map

�H,T : RV −→ R
V

f 
→ �H,T f ,

where f : V → R is a function defined on the vertices and the value of �H,T f at vi is

(�H,T f )i = −(L f )i (2.3)

with L formally given by (2.2).
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For hyperbolic polyhedral metrics, the matrix L has the following property.

Lemma 2.2 ([2], Proposition 6.1.5) For a triangulated surface (S, V , T ) with a PH metric
d, the matrix L is symmetric and strictly positive definite on �H,T (d).

Similar to the Euclidean discrete Laplace operator �E,T , the hyperbolic discrete Laplace
operator �H,T is a matrix-valued map defined on the admissible space of conformal factors
�H,T (d). If the triangulation T is Delaunay in u ∗ d , then the hyperbolic discrete Laplace
operator �E,T , as a matrix-valued map, is defined on

�
H,T
D (d) � {u ∈ R

V |T is Delaunay in u ∗ d},
which is a subspace of the admissible conformal factors �H,T (d) [31].

Remark 2.2 Generally, for a triangulated surface (S, V , T )with a PHmetric d , the hyperbolic
discrete Lapalce operator �H,T depends on the triangulations. However, if the triangulation
T is restricted to be Delaunay, the hyperbolic discrete Laplace operator�H,T is independent
of the Delaunay triangulations of (S, V ) for the PHmetric d [31]. In this case, the hyperbolic
discrete Laplace operator by �H,T is intrinsic in the sense that it is independent of the
Delaunay triangulations.

3 Euclidean combinatorial Calabi flow

3.1 Euclidean combinatorial Calabi flow on triangulated surfaces

The definition of Euclidean combinatorial Calabi flow on a triangulated marked surface
(S, V , T ) is given in Definition1.1, which could be written in the following matrix form
[16]

du

dt
= −LK .

Note that this is essential an ODE system, therefor the Euclidean combinatorial Calabi flow
exists in a short time [16]. By direct calculations, we have the combinatorial curvature K
evolves according to

dK

dt
= −(�E,T )2K

along the Euclidean combinatorial Calabi flow (1.2). By Proposition2.1,
∑n

i=1 ui is invariant
along the Euclidean combinatorial Calabi flow (1.2) [16].

Similar to the fact that combinatorial Calabi flow for Thurston’s circle packing metrics
is the negative gradient flow of combinatorial Calabi energy [16,17,24], the combinatorial
Calabi flow (1.2) for PL metrics is also the negative gradient flow of combinatorial Calabi
energy.

Definition 3.1 ([16,17]) Suppose d is a polyhedral metric on a marked surface (S, V ), the
combinatorial Calabi energy of d on (S, V ) is defined to be

C = ||K ||2 =
n∑

i=1

K 2
i .
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If K ∗ is a function defined on V , the modified combinatorial Calabi energy is defined to be

C = ||K − K ∗||2 =
n∑

i=1

(Ki − K ∗
i )2.

Remark 3.1 Combinatorial Calabi energy C and modified combinatorial Calabi energy C are
independent of the geometric triangulations of d on (S, V ).

Note that

∇uC = 2LK = −2�E,T K .

The Euclidean combinatorial Calabi flow (1.2) can be written as

du

dt
= −1

2
∇uC.

Proposition 3.1 ([16]) The Euclidean combinatorial Calabi flow (1.2) on a triangulated
surface (S, V , T ) is the negative gradient flow of combinatorial Calabi energy C and the
combinatorial Calabi energy C is decreasing along the flow.

Similar to the stability results in [23,24,26–28], we have the following result for Euclidean
combinatorial Calabi flow (1.2).

Theorem 3.1 If the solution of Euclidean combinatorial Calabi flow (1.2) on a triangulated
surface (S, V , T ) converges as time tends to infinity, then the limit metric is a constant
combinatorial curvature PL metric. Furthermore, suppose there is a constant combinatorial
curvature PL metric d∗ = u∗ ∗ d0 on (S, V , T ) with

∑n
i=1 u

∗
i = 0, there exists a constant

δ > 0 such that if the initial modified combinatorial Calabi energy ||K (u(0))−K (u∗)||2 < δ,
then the Euclidean combinatorial Calabi flow (1.2) on (S, V , T ) exists for all time and
converges exponentially fast to u∗.

Proof If u(t) converges as time tends to infinity, then u(+∞) = limt→+∞ u(t) ∈ �E,T (d0)
exists. As K is a smooth function of u ∈ �E,T (d0), we have K (+∞) = limt→+∞ K (u(t))
and L(+∞) = limt→+∞ L(u(t)) exist. Similarly, C(+∞) and C′(+∞) exist. Note that

C′(t) = −2KT L2K ≤ 0

and C(t) is uniformly bounded, we have

C′(+∞) = −2KT (+∞)L2(+∞)K (+∞) = 0.

By Lemma2.1, we have K (+∞) = 2πχ(S)
n (1, 1, · · · , 1)T , which implies that u(+∞) ∗ d0

is a PL metric with constant combinatorial curvature.
By Theorem2.1, we know that u∗ = u(+∞) is the unique conformal factor such that

u∗ ∗ d0 has constant combinatorial curvature. Set �(u) = �E,T K = −LK , then �(u∗) = 0
and

Du�(u∗) = −LT L ≤ 0. (3.1)

Note that rank (Du�(u∗)) = n−1 and the kernel of Du�(u∗) is exactly c(1, 1, · · · , 1)T , c ∈
R. Along the Euclidean combinatorial Calabi flow (1.2),

∑n
i=1 ui is a constant. This implies

that u∗ is a local attractor of the Euclidean combinatorial Calabi flow (1.2) and the conclusion
follows from the Lyapunov Stability Theorem ([44], Chapter 5). ��
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Theorem3.1 does not give the long time existence and convergence of the Euclidean
combinatorial Calabi flow (1.2) for general initial PLmetrics. To study the long time behavior
of the flow for general initial PL metrics, we need to analysis the Euclidean discrete Laplace
operator �E,T . Note that, for j ∼ i , the weight of the Euclidean discrete Laplace operator
�E,T is

ω
E,T
i j = −∂Ki

∂u j
= cot θ i jk + cot θ i jl = sin(θ i jk + θ

i j
l )

sin θ
i j
k sin θ

i j
l

,

which may be negative and unbounded along the Euclidean combinatorial Calabi flow (1.2)
for general initial PL metric. Even through discrete Laplace operators with negative coef-
ficients has many applications in the study of combinatorial curvatures on two and three
dimensional manifolds (see [15,28–30,33,38,46,52,53,58] for example), a discrete Laplace
operator is generally defined with nonnegative weights [14]. For �E,T , the weight is non-
negative is equivalent to θ

i j
k + θ

i j
l ≤ π, which is the Delaunay condition [3]. So it is natural

to require the triangulation to be Delaunay, otherwise the coefficients of the discrete Laplace
operator will be negative. Note that the admissible space for a Delaunay triangulation

DPL(T ) = {[d] ∈ TPL(S, V )|T is isotopic to a Delaunay triangulation of d}
is a subspace of the admissible space

�(T ) = {[d]|di j , dik, d jk satisfy the triangle inequalities for any �i jk ∈ F}.

3.2 Gu–Luo–Sun–Wu’s work on discrete uniformization theorem

One of the main tools used in the proof of Theorem1.1 for convergence of combinatorial
Calabi flow with surgery is the discrete conformal theory developed by Gu–Luo–Sun–Wu
[32]. In this subsection, we will briefly recall the theory. For details of the theory, please refer
to [32].

Definition 3.2 ([32] Definition 1.1) Two piecewise linear metrics d, d ′ on (S, V ) are discrete
conformal if there exist sequences of PL metrics d1 = d , · · · , dm = d ′ on (S, V ) and
triangulations T1, · · · , Tm of (S, V ) satisfying

(a): (Delaunay condition) each Ti is Delaunay in di ,
(b): (Vertex scaling condition) if Ti = Ti+1, there exists a function u : V → R so that if
e is an edge in Ti with end points v and v′, then the lengths ldi+1(e) and ldi (e) of e in di
and di+1 are related by

ldi+1(e) = ldi (e)e
u(v)+u(v′),

(c): if Ti �= Ti+1, then (S, di ) is isometric to (S, di+1) by an isometry homotopic to
identity in (S, V ).

The space of PL metrics on (S, V ) discrete conformal to d is called the conformal class of d
and denoted by D(d).

Recall the following result for Delaunay triangulations.

Lemma 3.1 ([1,3]) If T and T ′ are Delaunay triangulations of d, then there exists a sequence
of Delaunay triangulations T1 = T , T2, · · · , Tk = T ′ so that Ti+1 is obtained from Ti by a
diagonal switch.
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The diagonal switch in Lemma3.1 is the surgery by flipping described in the introduction.
The following discrete uniformization theorem was established in [32].

Theorem 3.2 ([32] Theorem 1.2) Suppose (S, V ) is a closed connectedmarked surface and d
is a PL metric on (S, V ). Then for any K ∗ : V → (−∞, 2π) with

∑
v∈V K ∗(v) = 2πχ(S),

there exists a PL metric d ′, unique up to scaling and isometry homotopic to the identity
on (S, V ), such that d ′ is discrete conformal to d and the discrete curvature of d ′ is K ∗.
Furthermore, the metric d ′ can be found using a finite dimensional (convex) variational
principle.

Denote the Teichimüller space of all PL metrics on (S, V ) by TPL(S, V ) and decorated
Teichimüller space of all equivalence class of decorated hyperbolic metrics on S − V by
TD(S − V ). In the proof of Theorem3.2, Gu–Luo–Sun–Wu proved the following result.

Theorem 3.3 ([32]) There is a C1-diffeomorphism A : TPL(S, V ) → TD(S, V ) between
TPL(S, V ) and TD(S − V ). Furthermore, the space D(d) ⊂ TPL(S, V ) of all equivalence
classes of PL metrics discrete conformal to d is C1-diffeomorphic to {p} × R

V
>0 under the

diffeomorphism A, where p is the unique hyperbolic metric on S − V determined by the PL
metric d on (S, V ).

Set ui = lnwi for w = (w1, w2, · · · , wn) ∈ R
n
>0. Using the map A, Gu–Luo–Sun–Wu

[32] defined the curvature map

F : Rn → (−∞, 2π)n

u 
→ KA−1(p,w(u))

and proved the following property of F.

Proposition 3.2 ([32])

(1) For any k ∈ R, F(v + k(1, 1, · · · , 1)) = F(v).
(2) There exists a C2-smooth convex function W = ∫ ∑n

i=1 Fi (u)dui : Rn → R so that
its gradient ∇W is F and the restriction W : {u ∈ R

n | ∑n
i=1 ui = 0} → R is strictly

convex.

Theorem3.3 implies that the union of the admissible spaces�
E,T
D (d ′) of conformal factors

such that T is Delaunay for d ′ ∈ D(d) is Rn . It is further proved that Rn = ∪T �
E,T
D (d ′) is

an analytic cell decomposition ofRn [32]. Furthermore, F defined onRn is aC1-extension of
the curvature K defined on the space of conformal factors �

E,T
D (d ′) for d ′ ∈ D(d). Then we

can extend the Euclidean discrete Laplace operator to be defined on R
n , which is the space

of the conformal factors for the discrete conformal class D(d).

Definition 3.3 Suppose (S, V ) is a marked surface with a PL metric d . For a function f :
V → R on the vertices, the Euclidean discrete conformal Laplace operator of d on (S, V ) is
defined to be the map

�E : RV −→ R
V

f 
→ �E f ,

where the value of �E f at vi is

�E fi =
∑
j∼i

(
− ∂Fi

∂u j

)
( f j − fi ) = −(L̃ f )i ,

where L̃i j = ∂Fi
∂u j

is an extension of Li j = ∂Ki
∂u j

for u ∈ �
E,T
D (d ′), d ′ ∈ D(d).
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Remark 3.2 Note that F is C1-smooth on R
n and �E,T is independent of the Delaunay

triangulations of a PL metric, the operator �E is well-defined on R
n . Furthermore, �E is

continuous and piecewise smooth on Rn as a matrix-valued function ([32], Lemma 5.1).

3.3 Euclidean combinatorial Calabi flowwith surgery on surfaces

We can extend the definition of combinatorial Calabi flow to be defined on a conformal class
of d as follows.

Definition 3.4 Suppose (S, V ) is a marked surface with a PL metric d0. The Euclidean
combinatorial Calabi flow with surgery defined on the conformal class D(d0) is{ dui

dt = �EFi ,

ui (0) = 0,
(3.2)

where �E is the Euclidean discrete conformal Laplace operator in Definition3.3 defined for
the PL metric d(t) = A−1(({p}, eu(t))) ∈ D(d0).

By Proposition3.2,
∑n

i=1 ui is invariant along the Euclidean combinatorial Calabi flow
with surgery (3.2).

We can modify the definition of combinatorial Calabi flow with surgery to search for PL
metrics with prescribed combinatorial curvatures and prove a generalization of Theorem1.1.

Definition 3.5 Suppose (S, V ) is a closed connected marked surface with a PL metric d0 and
K ∗ is a function defined on V . The Euclidean combinatorial Calabi flow with surgery for K ∗
defined on the conformal class D(d0) is defined to be

{ dui
dt = �E(F − K ∗)i ,
ui (0) = 0.

(3.3)

If K ∗ = 0, the flow (3.3) is reduced to the flow (3.2). The Euclidean combinatorial Calabi
flow with surgery for K ∗ (3.3) is also a negative gradient flow. The flow (3.3) can be written
as

dui
dt

= �E(F − K ∗)i = −1

2
∇ui (||F − K ∗||2) = −1

2
∇ui C,

where C = ||F − K ∗||2. This implies that (3.3) is the negative gradient flow of C and C is
decreasing along the flow (3.3).

We have the following generalization of Theorem1.1 for the Euclidean combinatorial
Calabi flow with surgery for K ∗ (3.3).

Theorem 3.4 Suppose (S, V ) is a closed connected marked surface and d0 is a PL metric
on (S, V ). For any K ∗ : V → (−∞, 2π) with

∑
v∈V K ∗(v) = 2πχ(S), the combinatorial

Calabi flow with surgery for K ∗ (3.3) exists for all time and converges exponentially fast
to a unique PL metric d∗ ∈ D(d0) with combinatorial curvature K ∗ after finite number of
surgeries.

Proof Note that
∑n

i=1 ui is invariant along the combinatorial Calabi flow with surgery for
K ∗ (3.3), then the solution u(t) of (3.3) lies in the hyperplane�0 = {u ∈ R

n | ∑n
i=1 ui = 0}.

As K ∗ is a given function on (S, V ) with
∑n

i=1 K
∗
i = 2πχ(S), there exists a unique u∗ ∈
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�0 such that F(u∗) = K ∗ by Gu–Luo–Sun–Wu’s Theorem3.2. Define the Ricci potential
function W ∗ on Rn as

W ∗(u) = W (u) −
∫ u

u∗

n∑
i=1

K ∗
i dui =

∫ u

u∗

n∑
i=1

(Fi − K ∗
i )dui .

W ∗ is well-defined and C2 on R
n with ∇W ∗ = F − K ∗ by Proposition3.2. Furthermore,

W ∗ is convex on Rn and strictly convex on �0. So we haveW ∗(u∗) = 0, ∇W ∗(u∗) = 0 and
W ∗(u) ≥ 0 for any u ∈ �0.

On the other hand, the following lemma is a well-known fact from analysis. The reader
could refer to [28] (Lemma 4.6) for a proof.

Lemma 3.2 Suppose f (x) is a C1-smooth convex function on R
n−1 with ∇ f (x0) = 0 for

some x0 ∈ R
n−1, f (x) is strictly convex in a neighborhood of x0, then limx→∞ f (x) = +∞.

By Lemma3.2, we have limu→∞ W ∗|�0 = +∞ andW ∗|�0 is a nonnegative proper function
on �0.

Set ψ(t) = W ∗(u(t)). Then

ψ ′(t) = ∇uW
∗ · du

dt
= −(F − K ∗)T · L̃ · (F − K ∗) ≤ 0

by Proposition3.2. As
∑n

i=1 ui is invariant along the flow and ψ(t) ≥ 0, by the properness
ofW ∗|�0 on �0, we have the solution u(t) lies in a compact subset of�0, which implies that
the solution of the combinatorial Calabi flow (3.3) exists for all time.

By the C1-smoothness of F and the boundness of the solution u(t) of the flow (3.3), to
prove the convergence of the combinatorial Calabi flow with surgery (3.3), we just need to
prove the convergence of the curvature. As the solution u(t) of the combinatorial Calabi flow
(3.3) lies in a compact subset of �0 and L̃ is strictly positive definite on �0, we have the first
nonzero eigenvalue λ1 of L̃ , which is continuous in u(t), has a uniform positive lower bound√

λ
2 > 0 along the Euclidean combinatorial Calabi flow with surgery (3.3). So we have

C′
(t) = −2(F − K ∗)T · L̃2 · (F − K ∗) ≤ −2λ21(t)C(t) ≤ −λC(t),

which implies

C(t) ≤ C(0)e−λt .

So the curvature F converges exponentially fast to K ∗, which implies that u(t) converges
exponentially fast to u∗ by the C1-smoothness of F.

In [51], Wu proved the following result.

Theorem 3.5 Suppose R
n = ∪Di is an analytic cell decomposition. f (x) ∈ C1(Rn) is

analytic on each cell Di , and has a unique minimum point where f has positive hession.
Then its gradient flow γ (t), which satisfies γ ′(t) = −∇ f (γ (t)), intersects the cell faces Di

finitely many times.

Combining Theorem3.5, C(u∗) = 0, (3.1), the fact that the combinatorial Calabi flow is a
negative gradient flow and the fact that Rn = ∪T �

E,T
D (d ′) is an analytic cell decomposition

of Rn [32], we get the finiteness of the surgeries along the combinatorial Calabi flow with
surgery (3.3). ��
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Remark 3.3 Ge-Jiang [19] used another extension method introduced by Bobenko–Pinkall–
Springborn [2] to extend the combinatorial curvature to the whole space by extending the
inner angle of a triangle by constant. This method ensures the long time existence of the
extended combinatorial Yamabe flow andwas then used to study the combinatorial Ricci flow
of inversive distance circle packing metrics [20–22,28]. Comparing to Ge-Jiang’s method to
extend combinatorial curvature flow, the extension of Gu–Luo–Sun–Wu has the following
two advantages. The first is that Ge-Jiang’s method is used to study the curvature for a
fixed triangulation, where there may exist no constant curvature polyhedral metric on the
triangulation,whileGu–Luo–Sun–Wu’s extension ensures the existence of constant curvature
polyhedral metric. The second is that the extension method used by Ge-Jiang can be used to
give a continuous extension of the combinatorial curvature, but the derivative of curvature
may blow up along the flow, the bound of which is crucial for the long time existence and
convergence of combinatorial Calabi flow. The C1-smoothness of F is crucial for the proof
of Theorem3.4.

4 Hyperbolic combinatorial Calabi flow

In this section, we introduce the combinatorial Calabi flow for piecewise hyperbolic metrics.
To handle the singularities that may develop along the flow, we do surgery by flipping again.
Then we prove the long time existence and convergence of the hyperbolic combinatorial
Calabi flow with surgery. As the results are paralleling to the Euclidean case and the proofs
are almost the same, the results in this section are stated without proof.

4.1 Hyperbolic combinatorial Calabi flow on triangulated surfaces

We define the combinatorial Calabi flow for PH metrics similar to the PL case.

Definition 4.1 Suppose d0 is a PHmetric on a triangulated surface (S, V , T ). The hyperbolic
combinatorial Calabi flow on (S, V , T ) is defined as{ dui

dt = �H,T Ki ,

ui (0) = 0,
(4.1)

where�H,T is the hyperbolic discrete Laplace operator (2.3) defined by the PHmetric u ∗d .
Similar to the PL case, we have the short time existence of the hyperbolic combinatorial

Calabi flow and the combinatorial curvature K evolves according to

dK

dt
= −(�H,T )2K

along the hyperbolic combinatorial Calabi flow (4.1). The hyperbolic combinatorial Calabi
flow is also a negative gradient flow of the combinatorial Calabi energy.

Proposition 4.1 The combinatorial Calabi flow (4.1) for hyperbolic polyhedral metrics on a
triangulated surface (S, V , T ) is the negative gradient flow of combinatorial Calabi energy
C and the combinatorial Calabi energy C is decreasing along the flow.

Theorem 4.1 If the solution of hyperbolic combinatorial Calabi flow (4.1) on a triangulated
surface (S, V , T ) converges as time tends to infinity, then the limit metric is a hyperbolic
metric. Furthermore, suppose there exists a hyperbolicmetric d∗ = u∗∗d0 on (S, V , T ), there
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exists a constant δ > 0 such that if the initial modified Calabi energy ||K (u(0))−K (u∗)||2 <

δ, then the hyperbolic combinatorial Calabi flow (4.1) on (S, V , T ) exists for all time and
converges exponentially fast to u∗.

4.2 Gu–Guo–Luo–Sun-Wu’s work on discrete uniformization theorem

Definition 4.2 ([31], Definition 1) Two PH metrics d , d ′ on a closed marked surface (S, V )

are discrete conformal if there exists sequences of PH metrics d1 = d , d2, · · · , dm = d ′ on
(S, V ) and triangulations T1, · · · , Tm of (S, V ) satisfying

(a): each Ti is Delaunay in di ,
(b): if Ti = Ti+1, there exists a function u : V → R, called a conformal factor, so that
if e is an edge in Ti with end points v and v′, then the lengths xdi (e) and xdi+1(e) of e in
metrics di and di+1 are related by

sinh
xdi+1(e)

2
= eu(v)+u(v′) sinh

xdi (e)

2
,

(c): if Ti �= Ti+1, then (S, di ) is isometric to (S, di+1) by an isometry homotopic to the
identity in (S, V ).

The space of PH metrics on (S, V ) discrete conformal to d is called the conformal class
of d and denoted by D(d).

Recall the following result of Delaunay triangulations for PH metrics.

Lemma 4.1 ([31], Proposition 16) Suppose (S, V ) is a marked surface with a PH metric
d. If T and T ′ are Delaunay triangulations of d, then there exists a sequence of Delaunay
triangulations T1 = T , T2, · · · , Tk = T ′ so that Ti+1 is obtained from Ti by a diagonal
switch.

A diagonal switch in Lemma4.1 is referred to a surgery by flipping in the hyperbolic case.
The following discrete uniformization theorem was established by Gu–Guo–Luo–Sun–

Wu [31].

Theorem 4.2 ([31], Theorem 3) Suppose (S, V ) is a closed connected surface with marked
points and d is a PH metric on (S, V ). Then for any K ∗ : V → (−∞, 2π) with∑

v∈V K ∗(v) > 2πχ(S), there exists a unique PH metric d ′ on (S, V ) so that d ′ is discrete
conformal to d and the discrete curvature of d ′ is K ∗. Furthermore, the discrete Yamabe flow
with surgery associated to curvature K ∗ having initial value d converges to d ′ linearly fast.

Denote the Teichimüller space of all PH metrics on (S, V ) by Thp(S, V ) and decorated
Teichimüller space of all equivalence class of decorated hyperbolic metrics on S − V by
TD(S − V ). In the proof of Theorem4.2, they prove the following result.

Theorem 4.3 ([31], Theorem 22, Corollary 24) There is a C1-diffeomorphism A :
Thp(S, V ) → TD(S, V ) between Thp(S, V ) and TD(S − V ). Furthermore, the space
D(d) ⊂ Thp(S, V ) of all equivalence classes of PH metrics discrete conformal to d is C1-
diffeomorphic to {p} × R

V
>0 under the diffeomorphism A, where p is the unique hyperbolic

metric on S − V determined by the PH metric d on (S, V ).

Set ui = lnwi , 1 ≤ i ≤ n, for w = (w1, w2, · · · , wn) ∈ R
n
>0 and P = {x ∈

(−∞, 2π)n | ∑n
i=1 xi > 2πχ(S)}. Using the map A, Gu–Guo–Luo–Sun–Wu defined the
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curvature map

F : Rn → P

u 
→ KA−1(p,w(u))

and proved the following property of F.

Proposition 4.2 ([31]) There exists a C2-smooth strictly convex function W : Rn → R so
that its gradient ∇W is F.

Theorem4.3 implies that the union of the admissible spaces �
H,T
D (d ′) of conformal

factors such that T is Delaunay for d ′ ∈ D(d) is R
n . Similar to the Euclidean case,

R
n = ∪T �

H,T
D (d ′) is an analytic cell decomposition of Rn [31]. Furthermore, F defined on

R
n is a C1-extension of the curvature K defined on the space of conformal factors �

H,T
D (d ′)

for d ′ ∈ D(d). Then we can extend the hyperbolic discrete Laplace operator to be defined
on Rn , which is the total space of the conformal factors for the conformal class D(d).

Definition 4.3 Suppose (S, V ) is a marked surface with a PH metric d . For a function f :
V → R on the vertices, the hyperbolic discrete conformal Laplace operator is defined to be
the map

�H : RV −→ R
V

f 
→ �H f ,

where the value of �H f at vi is

�H fi =
∑
j∼i

(
− ∂Fi

∂u j

)
( f j − fi ) = −(L̃ f )i ,

where L̃i j = ∂Fi
∂u j

is an extension of ∂Ki
∂u j

for a single Delaunay triangulation T without
surgery.

Remark 4.1 F is C1-smooth on Rn and �H,T is independent of the Delaunay triangulations
of a PH metric [31], the operator �H is well-defined on Rn . Furthermore, �H is continuous
and piecewise smooth on Rn as a matrix-valued function ([31], Lemma 26).

4.3 Hyperbolic combinatorial Calabi flowwith surgery on surfaces

We can extend the definition of hyperbolic combinatorial Calabi flow to be defined on the
discrete conformal class D(d0) as follows.

Definition 4.4 Suppose (S, V ) is a marked surface with a PH metric d0. The hyperbolic
combinatorial Calabi flow with surgery defined on the conformal class D(d0) is defined to
be { dui

dt = �HFi ,

ui (0) = 0.

We can modify the definition of hyperbolic combinatorial Calabi flow with surgery to
search for PH metrics with prescribing combinatorial curvatures and prove a generalization
of Theorem1.2.
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Definition 4.5 Suppose (S, V ) is a marked surface with a PH metric d0 and K ∗ is a function
defined on V . The hyperbolic combinatorial Calabi flow with surgery for K ∗ defined on the
discrete conformal class D(d0) is defined as

{ dui
dt = �H(F − K ∗)i ,
ui (0) = 0.

(4.2)

The hyperbolic combinatorial Calabi flow with surgery for K ∗ (4.2) is also a negative
gradient flow. The flow (4.2) could be written in the following form

dui
dt

= �E(F − K ∗)i = −1

2
∇ui (||F − K ∗||2) = −1

2
∇ui C,

where C = ||F − K ∗||2. This implies that (4.2) is the negative gradient flow of C and C is
decreasing along the flow (4.2).

We have the following generalization of Theorem1.2 for the hyperbolic combinatorial
Calabi flow with surgery for K ∗ (4.2).

Theorem 4.4 Suppose (S, V ) is a closed connected marked surface and d0 is a PH metric
on (S, V ). For any K ∗ : V → (−∞, 2π) with

∑
v∈V K ∗(v) > 2πχ(S), the hyperbolic

combinatorial Calabi flow with surgery (4.2) exists for all time and converges exponentially
fast to a unique PH metric d∗ ∈ D(d0) with combinatorial curvature K ∗ after finite number
of surgeries.

5 Remarks and questions

We use the discrete uniformization theorems established in [31,32] to prove the long time
existence and convergence of the combinatorial Calabi flow with surgery in Theorem1.1 and
Theorem1.2. For the combinatorial Yamabe flow with surgery, the long time existence and
convergence were proved similarly [31,32]. Similar results were proved for smooth surface
Ricci flow [11,35] and smooth surface Calabi flow [9,13]. However, the smooth Ricci flow
and Calabi flow can be used to prove the uniformization theorem on Riemannian surfaces
[7,8,10]. So it is interesting to ask the following question.

Question: Can we reprove the discrete uniformization theorems via the combinatorial
Yamabe flow or the combinatorial Calabi flow with surgery?

In [54,55], the second author generalizes the definition of α-curvatures in [26,27] for
Thurston’s circle packing metrics to polyhedral metrics on surfaces. Similar properties of
α-curvatures on polyhedral surfaces to those in [26,27] are established in [54,55] using com-
binatorial Yamabe flow and combinatorial Calabi flow with surgery. Furthermore, based
on the discrete uniformization theorems in [31,32], we prove a parameterized discrete uni-
formization theorem for α-curvatures in [54,55].
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