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non-obtuse intersection angles. The requirement of prescribed intersection angles cor-
responds to the fact that the intersection angle of two circles is invariant under the
Mobius transformations. For triangulated surfaces with Thurston’s circle packing met-
rics, there are singularities at the vertices. The classical combinatorial curvature K; is
introduced to describe the singularity at the vertex v;, which is defined as the angle
deficit at v;. Thurston’s work generalized Andreev’s work on circle packing metrics on
a sphere [1,2] and gave a complete characterization of the space of the classical com-
binatorial curvature. As a corollary, he obtained the combinatorial-topological obstacle
for the existence of a constant curvature circle packing with non-obtuse intersection an-
gles, which could be written as combinatorial-topological inequalities. Zhou [37] recently
generalized Andreev—Thurston Theorem to the case that the intersection angles are in
[0, 7). Chow and Luo [9] introduced a combinatorial Ricci flow, a combinatorial analogue
of the smooth surface Ricci flow, for triangulated surfaces with Thurston’s circle packing
metrics and established the equivalence between the existence of a constant curvature
circle packing metric and the convergence of the combinatorial Ricci flow.

Inversive distance circle packing on triangulated surfaces was introduced by Bow-
ers and Stephenson [7] as a generalization of Thurston’s circle packing. Different from
Thurston’s circle packing, adjacent circles in inversive distance circle packing are allowed
to be disjoint and the relative distance of the adjacent circles is measured by the inversive
distance, which is a generalization of intersection angle. See Bowers—Hurdal [6], Stephen-
son [33] and Guo [22] for more information. The inversive distance circle packings have
practical applications in medical imaging and computer graphics, see [24,35,36] for ex-
ample. Bowers and Stephenson [7] conjectured that the inversive distance circle packings
are rigid. Guo [22] proved the infinitesimal rigidity and then Luo [27] solved affirmably
the conjecture for nonnegative inversive distance with Euclidean and hyperbolic back-
ground geometry. For the spherical background geometry, Ma and Schlenker [29] had
a counterexample showing that there is in general no rigidity and John C. Bowers and
Philip L. Bowers [4] obtained a new construction of their counterexample using the
inversive geometry of the 2-sphere. John Bowers, Philip Bowers and Kevin Pratt [5]
recently proved the global rigidity of convex inversive distance circle packings in the
Riemann sphere. Ge and Jiang [12,13] recently studied the deformation of combinatorial
curvature and found a way to search for inversive distance circle packing metrics with
constant cone angles. They also obtained some results on the image of curvature map
for inversive distance circle packings. Ge and Jiang [14] and Ge and the author [19]
further extended a combinatorial curvature introduced by Ge and the author in [16-18]
to inversive distance circle packings and studied the rigidity and deformation of the
curvature.

In this paper, based on an obversion of Zhou [37], we prove Bowers and Stephenson’s
rigidity conjecture for inversive distance in (—1, 400). The main tools are the variational
principle established by Guo [22] for inversive distance circle packings and the exten-
sion of locally convex function introduced by Bobenko, Pinkall and Springborn [3] and
systematically developed by Luo [27]. We refer to Glickenstein [20] for a nice geomet-
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ric interpretation of the variational principle in [22]. There are many other works on
variational principles on circle packings. See Bragger [8], Rivin [31], Leibon [25], Chow—
Luo [9], Bobenko—Springborn [7], Marden—Rodin [30], Spingborn [32], Stephenson [33],
Luo [28], Guo-Luo [23], Dai-Gu-Luo [10], Guo [21] and others.

1.2. Inversive distance circle packings

In this subsection, we briefly recall the inversive distance circle packing introduced
by Bowers and Stephenson [7] in Euclidean and hyperbolic background geometry. For
more information on inversive distance circle packing metrics, the readers can refer to
Stephenson [33], Bowers and Hurdal [6] and Guo [22].

Suppose M is a closed surface with a triangulation 7 = {V, E, F}, where V,E, F
represent the sets of vertices, edges and faces respectively. Let I : E — (—1,400)
be a function assigning each edge {ij} an inversive distance I;; € (—1,+00), which is
denoted as I > —1 in the paper. The triple (M, T, I) will be referred to as a weighted
triangulation of M below. All the vertices are ordered one by one, marked by vy, - , vy,
where N = |V] is the number of vertices, and we often use ¢ to denote the vertex v; for
simplicity below. We use ¢ ~ j to denote that the vertices ¢ and j are adjacent, i.e., there
is an edge {ij} € E with ¢, j as end points. All functions f : V — R will be regarded
as column vectors in R and f; = f(v;) is the value of f at v;. And we use C(V) to
denote the set of functions defined on V. R+ denotes the set of positive numbers in the
paper.

Each map r : V — (0,+00) is a circle packing, which could be taken as the radius r;
of a circle attached to the vertex i. Given (M, T, I), we assign each edge {ij} the length

lij = \/’)"12 -+ T’]2- -+ 27"1'7“inj (11)
for Euclidean background geometry and
l;j = cosh™ ! (cosh(r;) cosh(r;) + I;; sinh(r;) sinh(r;)) (1.2)

for hyperbolic background geometry, where I;; is the Euclidean and hyperbolic inversive
distance of the two circles centered at v; and v; with radii r; and r; respectively. Note that
the length [;; in (1.1) and (1.2) is well-defined for all 7; > 0,7; > 0 under the condition
I;; > —1.If I;; € (—1,0), the two circles attached to the vertices ¢ and j intersect with an
obtuse angle. If I;; € [0, 1], the two circles intersect with a non-obtuse angle. We can take
I;j = cos @;; with ®;; € [0, 7] and then the inversive distance circle packing is reduced
to Thurston’s circle packing. If I;; € (1,400), the two circles attached to the vertices
1 and j are disjoint. See Fig. 1 for possible arrangements of the circles. Guo [22] and
Luo [27] systematically studied the rigidity of inversive distance circle packing metrics
for nonnegative inversive distance I > 0, i.e. I;; > 0 for every edge {ij} € E. In this
paper, we focus on the case that I > —1.
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Fig. 1. Inversive distance circle packings.

The following is our main result, which solves Bowers and Stephenson’s rigidity con-
jecture for inversive distance in (—1, 400).

Theorem 1.1. Given a closed triangulated surface (M,T,I) with inversive distance I :
E — (—1,400) satisfying

Lij + Lip ik > 0, Lip + 1ijLi, > 0, L + 11 > 0 (13)
for any topological triangle Nijk € F.

(1) A Euclidean inversive distance circle packing on (M, T) is determined by its combi-
natorial curvature K : V. — R up to scaling.

(2) A hyperbolic inversive distance circle packing on (M, T) is determined by its combi-
natorial curvature K : V. — R.

Remark 1. For I € [0, 1], the above result was Andreev and Thurston’s rigidity for circle
packing with intersection angles in [0, F]. For I € (-1, 1], the above result was the rigidity
for circle packing with intersection angles in [0, 7) recently obtained by Zhou [37]. For
I > 0, the above result was the rigidity for inversive distance circle packing obtained by
Guo [22] and Luo [27]. Our result unifies these results and allows the inversive distances
to take values in a larger domain.

Remark 2. It is interesting to note that in Theorem 1.1, for a topological triangle Aijk €
F, if one of I;;, I;, I is negative, the other two must be nonnegative. So at most one
of I;j, Iiy, Iji is negative.

We further extend the rigidity to combinatorial a-curvature introduced in [14-19],
which is defined as

=

i
Rai:

’ S

<5

for a € R, where s; = r; for the Euclidean background geometry and s; = tanh 3 for
the hyperbolic background geometry.
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Theorem 1.2. Given a closed triangulated surface (M,T,I) with inversive distance I :
E — (—1,+00) satisfying

Lij + Ligljx = 0, iy + Lij L > 0, Lj + LijLig > 0

for any topological triangle Nijk € F. R is a given function defined on the vertices of
(M, T).

(1) IfaR = 0, there exists at most one Euclidean inversive distance circle packing metric
with combinatorial a-curvature R up to scaling. If aR < 0 and aR # 0, there exists
at most one Fuclidean inversive distance circle packing metric with combinatorial
a-curvature R.

(2) If aR <0, there exists at most one hyperbolic inversive distance packing metric with
combinatorial o-curvature R.

1.3. Plan of paper

The paper is organized as follows. In Section 2, we study the Euclidean inversive
distance circle packing metrics and prove Theorem 1.1 and 1.2 for the Euclidean back-
ground geometry. In Section 3, we study the hyperbolic inversive distance circle packing
metrics and prove Theorem 1.1, 1.2 for the hyperbolic background geometry.

2. Euclidean inversive distance circle packings

2.1. Admissible space of Fuclidean inversive distance circle packing metrics for a single
triangle

Given a weighted triangulated surface (M, T, I) with weight I > —1. Suppose Aijk is
a topological triangle in F'. Here and in the following, to simplify notations, when we are
discussing a triangle Aijk, we use l; to denote the length of the edge {jk} and use I; to
denote the inversive distance of the two circles at the vertices j and k. In the Euclidean
background geometry, the length I; of the edge {jk} is then defined by

l; = \/TJQ + ’1“12C + 2Tj’l“kli. (2'1)
For I > —1, in order that the lengths ;,1;, 1 for Aijk € I satisfy the triangle inequali-

ties, there are some restrictions on the radii. Denote the admissible space of the radius
vectors for a face Aijk € F as

OF = {(ri,rjore) € REgI < 1+ D, by < L+ L, I < L+ 15} (2.2)
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In the case of T € [0, 1], as noted by Thurston [34], Qib;k = R3,. However, in general,

ng #R3 for I € (—1,400). It is proved [22] that the admissible space ng for I >0

is a simply connected open subset of R3 ) and ng may not be convex. Set
QF = ﬂAijkeFQiEjk (2.3)

to be the space of admissible radius function on the surface. Q¥ is obviously an open
subset of RY,. Every r € Q) is called an inversive distance circle packing metric.

As noted in [22], in order that the edge lengths ;,1;, ), satisfy the triangle inequalities,
we just need

0< (ll + lj + lk>(l1 + lj — lk)<ll + 1 — lj)(lj + 1 — ll)
=4l — (Z+ R -15)? (2.4)
= 20202 4+ 20707 + 2307 — 1f — 15 — 1.

Substituting the definition of edge length (2.1) in the Euclidean background geometry
into (2.4), by direct calculations, we have

1
Z(li + 1+ U)o+ = L) (L 4+l = ) (G + 1 — 1)
= rfr?(l — I3 +r2ri(l - IJQ) + r?r%(l —1?)

+ 2TZ-2Tka(IZ- + IjIk) + QTiT?Tk(Ij + L;I;) + 272777“,%(.@ + Ii.[j) > 0.

Denote

Yigk = Li + Lilk, vjik = Ij + Iilk, Ykij = I, + Li1, (2.5)
then we have the following result on Euclidean triangle inequalities.

Lemma 2.1 (/22]). Suppose (M,T,I) is a weighted triangulated surface with weight I >
—1 and Aijk is a topological triangle in F. The edge lengths l;,1;, 1 defined by (2.1)
satisfy the triangle inequalities if and only if

rfr?(l — I;g) + r?r,%(l — IJ2) + 7"]2-7“%(1 — 122) + QTijTk%jk + 2rirj2-rk'yjik 26)
=+ 27‘,‘7“]‘7“%7]91‘]' > 0.

We have the following direct corollary obtained in [37] by Lemma 2.1.

Corollary 2.2. If I;,I;, I}, € (—1,1] and vijr > 0, vjir > 0, Ykij > 0, then the triangle
inequalities are satisfied for any (ri,rj, 1) € R2.



482 X. Xu / Advances in Mathematics 332 (2018) 476-509

Remark 3. Specially, if I; = cos ®;, I; = cos ®;, I = cos ), with ®;, ®;, &, € [0, 7], then
we have I;, I, I}, € (—1,1] and ;. > 0, vjir. > 0, Yrij > 0. So the triangle inequalities are
satisfied for all radius vectors in R? , which was obtained by Thurston in [34]. However,
if we only require ®;, ®;, ®; € [0, 7), then (2.6) is equivalent to

rir? sin® @, + rirg sin® ®; + rirg sin® ®; + 2r7r;ry(cos ®; + cos ®; cos )

+ Qrirjrk(cos ®,; + cos ®; cos Py) + Qrirjrk(cos Oy, + cos @; cos @;) > 0.

Specially, if ®; + ®; < 7,®; + & < 7, ®; + &, < 7 [37], or &; = &; € [0, F] [37], or
®; = ®; = @), € [0,7), the triangle inequalities are satisfied.

By Lemma 2.1, the admissible space Q7

not be the whole space R?;O. Furthermore, it is not always convex for all I;, I;, I} €

for the topological triangle Aijk € F may

(—1,400). However, we have the following useful lemma on the structure of the admis-
sible space Qf;k

Lemma 2.3. Given a weighted triangulated surface (M,T,I) with I > —1. For a topolog-
ical triangle Nijk € F, if

Yijk = 0,%ik = 0,vkij; > 0, (2.7)

then the admissible space QEk is a simply connected open subset of ]R . Furthermore,

for each connected component V of RS\ QF, , the intersection V N Q jk 18 a connected

ijk’

component of Q”k \ QE, . on which 0; is a constant function.

ijk?’

Proof. Define

F:R}, - RS,
(ri,rj,7TK) — (7’]2 + 12 +2Tj7’kfl, 242 +2rlrk1], ; +r + 2rr;1y)

and

G:R}, - R,
(lialeZk) (112,1]27l2)

then G is a diffeomorphism of R and H = G~' o F is the map sending (r;,r;,7%) to
(lis 1, k).

We first prove that H is injective. To prove this, we just need to prove that F is
injective. Note that

0 T + ril; T’k+7“jfi
=2 ’r’i+7’kfj 0 rkJrrin s
ri—|—7’jfk T + ril 0

8(Fi, Fy, Fk)
O(rs,75,7%)
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which implies that

(9(Fi,Fj, Fk)
O(ri,75,7k)

= 8(rj + ridi)(ri + 7ily) (rie + 1idy) + 8(ri + v L) (ri + ridy) (ry + ridy)
= 16Ti7“j7’k(1 + IZIJI]C) + 8Ti7ijk(74]2‘ + T%) + 8Tj7jik(ri2 + T‘,%) + 8rk'7kij (7«22 + 7“]2)

By the condition (2.7) and the Cauchy inequality, we have

O(F;, F;, F)
’M > 16rrjr (1 + Lili Ik + vijk + Yjik + Vrig)

O(rs,75,7Tk)

= 167"7;7’j’l"k(1 + Iz)(l + [j)(l + Ik).

8(F1-,Fj,Fk)
a(TiVTjﬂ”k)

By the condition that I, I;, I € (—1,400), we have ‘ > 0 for any r € R3 . If

there are r = (r;,7;,7%) € RS and 7/ = (v}, 7", 7,) € RS satisfying F(r) = F(r’), then

'R j?

we have

O(F;, Fj, Fy,)

0= F(T’) - F(T/) = m‘erH(Tfr’) ’ (

r—1)T, 6€(0,1),

which implies r = 7’ by the nondegeneracy of W on Ri

injective on R? ,, which implies that H is injective on R3 .
Note that

o- So the map F' is

F; = 7’]2 + 7")% + 27"ka[¢ > 27‘ka(1 + Ii)z
F; = rz.2 + Ti + 2ryri ), > 2rir (1 + Ij)v
F, = r? + 7"]2» + 2rrily > 2 (1 + I).

By the condition that I;,I;, I}, € (—1,400), if F' is bounded, we have r;rj, riry, rjrg
are bounded, which implies that 72 + rjz, r? + r%, r]z + ri are bounded. Similarly, we have
F; < (1+ |Li])(r7 + r3). This implies that F is a proper map from R%, to R,. By the
invariance of domain theorem, we have F is a diffeomorphism between R3 j and F(R2 ).
And then H is a diffeomorphism between R3 , and H(R3 ).

Set
L= {(li,lj7lk)|lz‘ + lj > e, b+ 1 > lj,lj + 1l > ll},

then Qf’;k = H ' (H(R2,)NL). To prove that Qﬁk is simply connected, we just need to
prove that H(R2,) N L is a cone. Note that £ is a cone in R j bounded by three planes
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Lj = {(lul]alk) € R3>0|l_7 =1 +lk}>

Ly = {(Li,1j, 1) € RE |lx = 1; + 15}

Note that H is a diffeomorphism between R? ; and H(R32 ), H(R2) is a cone bounded
by three quadratic surfaces

i = {1, 1) € R2 (|17 = z? + 13+ 211},
Si = {(li, 1, k) €REG|Z =17 + 17 + 20l 1},

Si = {(l, 1, k) € REQ|IE =12 + 13 + 241,11}

In fact, if r; = 0, then I; = 74,0 = r; and lz-Q = r? + ri + 2rrpd; = 132- + lz + 21l 1;.
Y; is in fact the image of r; = 0 under H. By the diffeomorphism of H, ¥;, ¥;, ¥} are
mutually disjoint. Furthermore, if I; € (—1,1], we have (I; — Ix)? < 12 < (I; + I)? on
Y. And if I; € (1,+00), we have [? > (I; + lx)? on ¥;. This implies that ¥; C L if
Iie (1,1l and ;N L =0 if I; € (1,+00). Similar results hold for ¥; and Xj.

To prove that H (Rio) N L is a cone, we just need to consider the following cases by
the symmetry between i, j, k.

If I;,I;, I € (—1,1], H(R2,) N L is a cone bounded by %;,3;, %) and H(R3 )N L =
H(RL,).

If I;,I; € (—1,1] and I, € (1,+00), H(R3,) N L is a cone bounded by X;,%; and Ly.

If I; € (—1,1] and I;, I}, € (1,+00), H(R2,)N L is a cone bounded by ¥;, L; and Ly.

If I;,I;, I € (1,400), H(R2,) N L is a cone bounded by L;, L; and L. In this case,
HR3)NL=L.

For any case, H(R2,) N L is a cone in R3 . By the fact that H is a diffeomorphism
between R? ; and H(R?2,), we have the admlbs1ble space Q% = H '(H(RZ,) N L) is
simply connected.

By the analysis above, if H(R2,) C £, then Q”k = H Y HRS,)NL) = RS, If
H(R3,)\ L # 0, then QF "~} 1s a proper subset of R3 . If I; > 1, the boundary component
¥ = {I7 = I3+13+20;1:I;} is out of the set L. By the fact that Qz = H Y(H(R3,)NL)
and H : R3 ) — H(R3 ) is a diffeomorphism, we have H~'(L;) is a connected boundary
component of Qijk, on which 6; = m,0; = 0, = 0. This completes the proof of the
lemma. O

Corollary 2.4. For a topological triangle Aijk € F with inversive distance I > —1 and
Vijk = 0,%jik = 0,7k > 0, the functions 6;,0;,0; defined on Q Sk could be continuously
extended by constant to Hi, Gj, Hk defined on R2 .
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Remark 4.

(1) If I, I;, I, € [0,+00), obviously we have v;;x > 0, vjir > 0, yki; > 0. So Lemma 2.3
generalizes Lemma 3 in [22] obtained by Guo.

(2) If I;, I;, I, € (—1,1] and 7,55 > 0, vjir > 0, Yrij > 0, by the proof of Lemma 2.3,
Qf, =R, which is obtained by Zhou [37].

(3) The condition I;,I;, I € (—1,400) and v,k > 0, vjir > 0, Yki; > 0 contains more
cases, for example, I; = —%, I; = 1 and I, = 2, in which case the admissible space
ng is still simply connected.

2.2. Infinitesimal rigidity of Euclidean inversive distance circle packings

Set u; = Inr;, then we have Uﬁk = ln(QiEjk) is a simply connected subset of R by
Lemma 2.3. If (r;,7;,7r,) € ng li,1;,1i satisfy the triangle inequalities and forms a
Fuclidean triangle. Denote the inner angle at the vertex i as ;. We have the following
useful lemma.

Lemma 2.5. For any topological triangle Nijk € F', we have

00; 00; 1
Bu; = our = A T30 O ririmiign + i 23)

on Uﬁk, where A = 11}, sin6;.

Proof. By the cosine law, we have [? = l?— + 12 — 2l;1), cos 6;. Taking the derivative with

respect to [;, we have g?: = %, where A = [;l};sin§; is two times of the area of Aijk.
Similarly, we have g?J = %, g?k = 71%0561'. By the definition of I;,1;, 1, we have
ol; _Tj+Tin %_ %_rj+m]k
8Tj ll ’Brj o 8rj o lk '
Then
00, 00,

Ou; — or;
=G + )

— {Tj +reli  licosO;(r; + Tifk)]
oA Al
B4+
21y,

1
_ A—lk lk(’f']z — Tjrk-[i) — (7’]2 + T‘Z’T'j.[k)‘|

1
=2 [7"127"32'(1 — I}) + riririvige + TiTJZ'Tk’ink} )
k
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where the cosine law is used in the third line and the definition of the length (2.1) is

used in the fourth line. This also implies gz; = %- g

Remark 5. The equation 33? = au] has been obtained under different conditions in [9,
J

11,22] and the formulas for gle?- and g‘lg?‘ was obtained by Chow and Luo [9]. In general,

for I;, I;, I € (—=1,4+00), 5 ae'i have no sign However, if I;, I;, I}, € (—1,1] and ~;;, > 0,
Yiik > 0, Yi; > 0, by (2. 8) we have 99; > (). Furthermore, 32“ =0ifand only if I}, = 1
and I;+1; = 0. Especially, if I; = cos <I>ZJ, I; = cos ®;, I}, = cos <I>k with <I>1, ;, P €0, T,
we have gz; >0, and 33; = 0 if and only if &, =0 and ®; = &; =

Remark 6. Geometrically, the three circles at the vertices have a power center O. It is

known [35,36] that gzi = f[—k’“, where hy, is the signed distance of the power center O to
p ‘

the edge {ij}, which is positive if O is in the interior of the triangle Aijk and negative if
the power center O is out of the triangle Aijk. So under the condition I;, I;, I, € (—1,1]
and vk > 0, vjir > 0, yxi; > 0, the power center O is in the triangle Adjk.

Lemma 2.5 shows that the matrix

90;  00; 00,

c’)ui a’U,j (')uk

B, = Q000500 | o0, 00, oo
ij 8(,““ uj, Uk) Ou; Ou;j Ouy
90, 99, 06y

ou; Ouj Oug

is symmetric on UZ, . For the matrix A%, , we have the following useful property.

ijk* ijk>

Lemma 2.6. For any topological triangle Aijk € F with inversive distance I;,1;, 1), €
(—1,400) and vijk > 0, Vjir > 0, Ygi; > 0, the matric Agk is negative semi-definite with
rank 2 and kernel {t(1,1, )T |t € R} on Z/{f;k

Proof. The proof is parallel to that of Lemma 6 in [22] with some modifications. By the
calculations in Lemma 2.5, for a triangle Aijk € F', we have

db; 1 l;, 0 0 —1  cosf cosb;
dd; |=—10 1, O cos Oy, -1 cos b;
J A J
dfy, 0 0 I cosf; cosb; -1
J
0 lerr?frZ l?Jr'r'ifr?
2li7‘j 20T T O 0 dul
12472 —p2 12472 —p2
X J i k J k i . .
Qlj Ti 0 2lj Tk 0 rj 0 duj
Bar2—r?  2r2og? 0 0 0 7 dug,
Qlk’l‘i QI)CTi

Write the above formula as
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d@l 1 dul
d9j - — Z N duj
dek duk

By the cosine law, we have

22 B4+p-B -2\ [(# 0 0

1
AN = | B+15 =13 —212 G+3R-10 0 l_2 0
B2 24— -2 00 &

0

2 2 2
li—l—rj—rk

2 2 2
IZ+r,—r;

J
2.2 _ .2
5 +rg—r;

2 2 2
X lj—l—ri—rk 0 :

l,%—l—r?—r]z li—i—r?—rf 0
By Lemma 2.5, we have 4N is symmetric. Furthermore, note that 0; + 6; + 0, = 7, we

_ 98, | 00; | 96, _ 06; 20; 20, :
have 0 = LI + I + e = ou + ou T Bup- Then we can write 4N as

—-A-B A B
AN = A —-A-C C
B C -B-C

To prove Ag i is negative semi-definite, we just need to prove that 4N is positive semi-
definite. By direct calculations, we have

A+A+B A -B
M —4N|=| -A r+A+C  —C
-B -C  A+B+C

=AM +2(A+ B+ C)\+3(AB + AC + BC)).
We want to prove that the equation
N +2(A+B+C)A+3(AB+ AC+BC)=0
has two positive roots. Note that for this quadratic equation, we have
A=4(A+B+C)? —12(AB+ AC + BC) = 4(A* + B> + C? — AB - AC — BC) >0,

so we just need to prove that A+ B+ C <0 and AB + AC + BC > 0.
By direct calculations, we have
2 r? —r? r? — rjz

r 2 — p?
k+(li—l§)JT+(li2—ly2‘) 2
i k

2
re —
—2(A+B+C):l?-i-l]z-i-li-f—(l?—li)]T

i
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So A+ B + C < 0 is equivalent to

7'2—7']% TZ—TZ-Q 7’1‘2_7'2‘
BG4 (G~ )= + = )~ 4 (F ~ )= > 0,
7 J

which is equivalent to

BRI+ 0+ 5+ Erf (G0 + B0 =15 = 0) + Gy (B0 + DR =1 — 1)
+ B GR+ G -1 —15) > 0.

Note that

ZI2F(12 + 12+ 13) + BrP (212 + 213 — 1 —1})
F PG+ PR -1 =)+ e (B + BR =1 —19)]
=2+ 4+ ) + Crf (1 — 1 — Uy = 201) + i (1] — I} — U — 20713)
PR - U1 = 20202) (2 4 B2 22 (20202
+ 270 + 220 — 1 — 1 — 1),

By the triangle inequalities, we have
0+ 2T + 25 — U =15 — ;>0
on ng So to prove A+ B + C < 0, we just need to prove

WERE + 1+ 1)+ i (1 — 15 — Iy = 221) + vy (I — I — 1i — 21717)

+ il — 1 =15 = 2021%) > 0.
By direct calculations, we have

LW+ +1R)+ Eri(lf — 1] — I — 21217)
PG — U — 1 =2 0) + Grp (e — U =15 = 21213)
=4y (L+ D+ I+ I + ALL L) + rirjre(L 4 L) (v +137)
+ririre(ly + L) (rf + %) + rorgri (e + L) (rf +75)]
>4+ I + I + I} + ALIT + 21 + 210, + 215 + 2L 1 + 213, + 21 15)
=4r7rird (L4 L)1+ L)X + L) + (1 + L)vijie + (14 L) vgin + (14 Ii)Yeij)
>0,

where the condition I;, I;, I, € (—1,+00) and vijx = I; + LI > 0,7 = I; + LI, >
0,Vkij = I + 1;1; > 0 is used. So we have A+ B+ C < 0.
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For the term AB + AC + BC, by direct calculations, we have

AB+ AC + BC

1

= ep T (0702 + 2171 + 20515 — 1 — 1 — Iy)

< [ = P2 = 1202+ (% = 1) (53— 2 + (o~ )2 — ) + ]

So by the triangle inequalities, AB + AC' + BC' > 0 is equivalent to
(12 = )0F = )2 + (F = )02 = D)2 + (F = )2 — )R + 2R >0

By direct calculations, combining with the condition I;, I;, I}, € (—=1,400) and Vijk =
0,7vjik = 0,7%i; = 0, we have

(T2 - r2)(rk — 73 )l2 (1" - 7’]2)(7’2 — ri)lZ + (7’,2€ - rz)(r - rk)lk Jrl 12 lk

= 8r2r2r (1 + LI L) + drryrp(L; + ;1) (72 + 1)

+ 4rir-rk(]» + LiIp)(r? +73) + drrjri(Ie + L) (r? + 7”]2)
> 8} (L4 LT+ I+ L+ I + Ll + I+ L)
=8ririri(1+ L) (1 + I;) (1 + I)
> 0.

So we have AB + AC + BC > 0. Then the matrix Agk has a zero eigenvalue with
eigenvector (1,1,1)T and two negative eigenvalues on L{gk. O

Now suppose that for each topological face Aijk € F, the triangle inequalities are
satisfied, i.e. 7 € QF | then the weighted triangulated surface (M, T, I) could be taken as
gluing many triangles along the edges coherently, which produces a cone metric on the
triangulated surface with singularities at V. To describe the singularity at the vertex 4,
the classical discrete curvature is introduced, which is defined as

Ki=2r— > 0", (2.9)

NijkeF

where the sum is taken over all the triangles with i as one of its vertices and 6 " is the
inner angle of the triangle Aijk at the vertex i. Lemma 2.6 has the following corollary.

Corollary 2.7. Given a triangulated surface (M,T) with inversive distance I > —1 and

Yijk = 0,7%jik > 0,75 = 0 for any topological triangle Aijk € F. Then the matriz
AE — (K, ,Kn)
= 9(ur,unN)

{t1|t € R} on UF for the Euclidean background geometry.

is symmetric and positive semi-definite with rank N — 1 and kernel
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Proof. This follows from the fact that AF = — D AijkeF Az-b;k, Lemma 2.5 and

Lemma 2.6, where AZ, is extended by zeros to a N x N matrix so that AiEjk acts

ijk
on a vector (v1,--- ,vy) only on the coordinates corresponding to vertices v;, v; and vy

in the triangle Aijk. 0O

Remark 7. Guo [22] obtained a result paralleling to Corollary 2.7 for nonnegative inver-
sive distance.

By Lemma 2.3 and Lemma 2.5, we can define an energy function

Eij(u) = /Gidui + 0,du; + Orduy,

Uuo

on Z/lmk

function as

Lemma 2.6 ensures that &;;, is locally concave on U £

ijk- Define the Ricci energy

- Y Einlu /Z (21 — K;)du;, (2.10)

NijkeF

then V,& = K — K and &(u) is locally convex on UF = mAijkeFu k- The local convexity
of £ implies the infinitesimal rigidity of K with respect to u, which is the infinitesimal
rigidity of inversive distance circle packings.

2.8. Global rigidity of Fuclidean inversive distance circle packings

In this subsection, we shall prove the global rigidity of inversive distance circle packings
under the condition I > —1 and ;1 > 0,7vjir > 0,7%i; > 0 for any triangle Aijk € F.
We need to extend the energy function defined on U¥ to be a convex function defined
on R3. Before going on, we recall the following definition and theorem of Luo in [27].

Definition 2.8. A differential 1-form w = " | a;(z)dz" in an open set U C R™ is said to
be continuous if each a;(x) is continuous on U. A differential 1-form w is called closed if
J5, w = 0 for each triangle 7 C U.

Theorem 2.9 (/27] Corollary 2.6). Suppose X C R™ is an open conver set and A C X
is an open subset of X bounded by a C' smooth codimension-1 submanifold in X. If
w =YY", a;(x)dz; is a continuous closed 1-form on A so that F(z) = [ w is locally
convex on A and each ai can be extended continuous to X by constant functions to a
function a; on X, then F f Zl 1Gi(z)dz; is a C'-smooth convez function on X
extending F'.
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Combining Lemma 2.3, Corollary 2.4 and Theorem 2.9, we have the following useful
lemma.

Lemma 2.10. For any triangle Nijk € F with inversive distance I > —1 and

Yijk = 0,¥5ik = 0,vki; > 0,

the energy function E;;,(u) defined on Z/{gk by (2.10) could be extended to the following
function

u

Eiji(u) = /azdul + @duj + gkduk, (2.11)

uo

which is a C'-smooth concave function defined on R3 with
Vuliji = (03,05, 01)7 .

Using Lemma 2.10, we can prove the following global rigidity of Euclidean inversive
distance circle packings, which is the Euclidean part of Theorem 1.1.

Theorem 2.11. Given a triangulated surface (M,T) with inversive distance I > —1 and
Yijk = 0,7%ik = 0,7ki; = 0 for any topological triangle Aijk € F. Then for any K ¢
C(V) with Zl]\il K; = 2wx(M), there exists at most one Euclidean inversive distance
circle packing metric r up to scaling with K(r) = K.

Proof. By Lemma 2.10, the Ricci potential function £(u) in (2.10) could be extended
from UP to the whole space RY as follows

v N

Ew=— Y Euw +/Z(27T—Fi)dui.
NijkeF o =1

As g’ijk(u) is C'l-smooth concave by Lemma 2.10 and LZ) 21111(27 — K;)du; is a well-

defined convex function on RN, we have £ (u) is a C'-smooth convex function on R¥.

By Corollary 2.7, we have &(u) is locally strictly convex on UZ N {Zf;l u; = 0}. Fur-

thermore,

where I~(i =27 — ZAijkeF 5,», which implies that » € QF is a metric with curvature K

if and only if the corresponding v € UF is a critical point of E.
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If there are two different inversive distance circle packing metrics 74,75 € QF with
the same combinatorial Curvature K, then T4 = In74 € U¥, i = InTp € UF are both
critical points of the extended Ricci potential £(u). It follows that

VE(ua) = VE(up) = 0.

Set,
f(t) =E((1 = t)ua + tug)
(l—t)ﬂA-‘rtﬂB N
= Y )+ / S (@2r — Ki)dus,
NijkeF o i=1
where

fiie(t) = =& (1 — £)Ta + tup).

Then f(t) is a C! convex function on [0,1] and f/(0) = f’(1) = 0, which implies that
f'(t) = 0 on [0,1]. Note that 74 belongs to the open set U¥, so there exists ¢ > 0 such
that (1 —t)ua +tup € UF for t € [0,¢] and f(¢) is smooth on [0, €].

Note that f(t) is C' convex on [0,1] and smooth on [0,€]. f/(¢) = 0 on [0, 1] implies
that f”(¢t) = 0 on [0, ¢]. Note that, for ¢ € [0, €],

f'(t) = (@a —up) A" (ua —up)",

where AP = — Yo nijkeF A, By Corollary 2.7, we have T4 —up = ¢(1,--- , 1) for some
constant ¢ € R, which implies that 74 = e¢/27 5. So there exists at most one Euclidean
inversive distance circle packing metric with combinatorial curvature K up to scaling. O

Remark 8. The proof of Theorem 2.11 is based on a variational principle, which was
introduce by Colin de Verdiere [11]. Guo [22] used the variational principle to study the
infinitesimal rigidity of inversive distance circle packing metrics for nonnegative inversive
distances. Bobenko, Pinkall and Springborn [3] introduced a method to extend a local
convex function on a nonconvex domain to a convex function and solved affirmably a
conjecture of Luo [26] on the global rigidity of piecewise linear metrics. Based on the
extension method, Luo [27] proved the global rigidity of inversive distance circle packing
metrics for nonnegative inversive distance using the variational principle.

2.4. Rigidity of combinatorial a-curvature in Fuclidean background geometry
As noted in [16], the classical definition of combinatorial curvature K; with Euclidean

background geometry in (2.9) has two disadvantages. The first is that the classical com-
binatorial curvature is scaling invariant, i.e. K;(Ar) = K;(r) for any A > 0; The second is
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that, as the triangulated surfaces approximate a smooth surface, the classical combina-
torial curvature K; could not approximate the smooth Gauss curvature, as we obviously
have K; tends zero. Motivated by the observations, Ge and the author introduced a new
combinatorial curvature for triangulated surfaces with Thurston’s circle packing metrics
in [16-18]. Ge and Jiang [14] and Ge and the author [19] further generalized the curvature
to inversive distance circle packing metrics. Set

(2.12)

tanh 2

T Euclidean background geometry
si(r) =
2

hyperbolic background geometry

We have the following definition of combinatorial a-curvature on triangulated surfaces
with inversive distance circle packing metrics.

Definition 2.12. Given a triangulated surface (M, T) with inversive distance I > —1 and
an inversive distance circle packing metric r € €2, the combinatorial a-curvature at the
vertex ¢ is defined to be

=

Roi=—, (2.13)

’ S

)

where a € R is a constant, K; is the classical combinatorial curvature at i given by (2.9)
and s; is given by (2.12).

Specially, if a = 0, then R, ; = K;. As the inversive distance generalizes Thurston’s
intersection angle, the Definition 2.12 of combinatorial a-curvature naturally generalizes
the definition of combinatorial curvature in [16-18].

For the a-curvature R, ;, we have the following global rigidity of Euclidean inversive
distance circle packing metrics for inversive distance in (—1, 4-00), which is the Euclidean
part of Theorem 1.2.

Theorem 2.13. Given a closed triangulated surface (M, T) with inversive distance I > —1
and Yijr > 0,7%jik > 0,vki; > 0 for any topological triangle Aijk € F. R is a given
function defined on the vertices of (M, T). If aR = 0, there exists at most one Euclidean
inversive distance circle packing metric ¥ € QF with a-curvature R up to scaling. If
aR <0 and aR # 0, there exists at most one Euclidean inversive distance circle packing
metric T € QF with a-curvature R.

As the proof of Theorem 2.13 is almost parallel to that of Theorem 2.11 using the
energy function

~ ~ N _
Ealu) =— Z Eijk(u)—l—/z:(%r—Rirf‘)dui,

NijkEF

we omit the details of the proof.
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3. Hyperbolic inversive distance circle packing metrics

3.1. Admissible space of hyperbolic inversive distance circle packing metrics for a single
triangle

In this subsection, we investigate the admissible space of hyperbolic inversive dis-
tance circle packings for a single topological triangle Aijk € F with inversive distance
I;,I;, I, € (—1,400) and

Yijk = 0,%jik = 0,vki; > 0. (3.1)

Suppose Aijk is a topological triangle in F'. In the hyperbolic background geometry, the
length I; of the edge {jk} is defined by

l; = cosh™ " (coshr; cosh g + I; sinhr; sinh ry,), (3.2)

where I; is the hyperbolic inversive distance between the two circles attached to the
vertices j and k. In order that the edge lengths l;,1;,[; satisfy the triangle inequalities,
there are some restrictions on the radius vectors. So we first study the triangle inequalities
for the hyperbolic background geometry. To simplify the notations, we use the following
simplification

C; = coshr;, S; = sinhr;,

when there is no confusion. We have the following lemma on the hyperbolic triangle
inequalities.

Lemma 3.1. Suppose (M, T, 1) is a weighted triangulated surface with hyperbolic inversive
distance I > —1 and Aijk is a topological triangle in F. Suppose l;, 1,1 are the edge
lengths defined by the hyperbolic inversive distance I;, 1, I}, using the radius r;,r;, i, by
(3.2), then the triangle inequalities are satisfied if and only if

2525252(1 + LI;I) + S?52(1 — I?) + S2S3(1 — I2) + §252(1 — I2)

(3.3)
+ 2CjCkSi25jSk'y¢jk + 2CZ‘C]€S¢SJZSIC’Y]‘¢1€ + QCiCjSiSjS;%’Ykij > 0.

Proof. In order that I; +1; > Iy, l; + 1 > 1;,1; + 1 > 1;, we just need

AL Bl S N el Sk W sl el Y
2 2 2
Note that I; > 0,1; > 0,1 > 0, this is equivalent to
Li+1;+1 Li+li—lp . L4+l —10 . Li+lg—1;
sinh Tyt k sinh R * sinh Rl L sinh it > 0.

2
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By direct calculations, we have

li+lj+lksinhli+lj_lksinhli+lk_lj Sinhlj+lk_li

4 sinh
sin 5

= (cosh(l; +1;) — coshly)(cosh i — cosh(l; —1;))

= (cosh?l; — 1)(cosh ljg- — 1) — (cosh; coshl; — cosh)?

= (2C7C3CE — CRCF = CICR = C3CE +1) — (S}STI; + ST SPT7 + S7SRIY)
+2C;CeS7 88k 1i + 2C;CSiS7 Skl + 2C;C;.S:5; ¢ I
+2C5C;8:8; Sy Iid; + 2CiCySi 3 SpLily + 2C;CS7 S S L I + 257 52 Sp LI I,

where the definition of edge length (3.2) is used in the last line. Note that

C? = cosh?®r; = sinh?r; +1 = Sf +1,

7

we have

Li+1l;+ 1k .
S

li+1:—1
inh th k

li-l-lk—lj lj“‘lk_li

2
= 287820 (1 + LI;Iy) + SPS7 (1 — I7) + SPSR(1 — I7) + S7Sp(1 — I7)

+2C5CeS7 88k (Ii + IiIy) + 2C;CrSiS7Sk(Lj + Lily) + 2C;C3.8:S; Sk (I + L 1)

4 sinh sinh sinh

This completes the proof of the lemma. O

Denote the admissible space of hyperbolic inversive distance circle packing metrics for
a triangle Aijk € F as Q[T i.e.

ng = {(ri,rj,rk) € Rio‘li +lj > g, i+ 1 > lj,lj + 1y > ll}

By Lemma 3.1, we have the following direct corollary, which was obtained by Zhou [37].

Corollary 3.2. Suppose Aijk is a topological triangle in F with hyperbolic inversive dis-
tance I;, I;, I, € (—1,1] and vijr > 0,75 > 0,7i; > 0, then ng = R3,, i.e. the
triangle inequalities are satisfied for all radius vectors in Rio.

Specially, if I; = cos ®;, I; = cos ®;, I = cos @ with &;, ®;, &y € [0, 5], the triangle
inequalities are satisfied for all radius vectors, which was obtained by Thurston in [34].
By Lemma 3.1, we can also get the following useful result.

Corollary 3.3. Suppose ANijk is a topological triangle in F with hyperbolic inversive dis-
tance I > —1 and vijr > 0,7vji > 0,7ki; > 0. Suppose the edge lengths l;,1;,1; are
generated by the radius vector (s, s,s) with s € Rsq. If s € Rsq satisfies
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R+I2+17 -3
20+ L)1+ )1+ 1;)’

sinh? s > (3.4)

H
ijk*

we have (s,s,s) € Q
Proof. By Lemma 3.1, for s > 0, (s, s,s) € ng if and only if

2 cosh® s(Yijk + Vjik + Veij) + 2sinh? s(1 + LI 1) + 3 — I7 — I7 — I > 0.
By vijk > 0, vjir > 0, vkij > 0, we have vijx + Vjit + Yri; > 0. Then

2 cosh? s(Yijk + Vjik + Vhig) + 2sinh® s(1+ LI Iy) +3 — I — IF — I}
> 2sinh® s(1 + LT + yije + Yjik + ig) +3 = I = I = I}
=2sinb?s(1+ L)(1+ L)1+ L) +3 - IF — I] - I},

Note that I;, I;, I € (—1,4+00), to ensure the triangle inequalities, we just need

R+ +1; -3
20+ L)1+ L)1+ 1)’

sinh? s >

Guo [22] obtained a result similar to Corollary 3.3 for I > 0.

By Lemma 3.1, ng #+ ]R?;O for general I;,1;,I; € (—1,400). Furthermore, ng is
not convex. Similar to the case of Euclidean background geometry, we have the following
lemma on the structure of ng

Lemma 3.4. Suppose Aijk is a topological triangle in F' with hyperbolic inversive distance
I > =1 and vz > 0,vjk > 0,75 > 0, then the admissible space ng is simply

connected. Furthermore, for each connected component V of RS o\ QI | the intersection

ijk’
H

—H —H
V' N Q) is a connected component of ;5.\ ., on which 6; is a constant function.
Proof. Define the map

F:R3) = RS,

(risrj,m8) — (F, Fj, Fy)
where

F; = coshr; coshry, + I; sinh r; sinh g,
F; = coshr; coshry, + I; sinh r; sinh 7y,

F}, = coshr; coshr; + I sinh r; sinh 7;.

By direct calculations, we have
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0 S;Cr + I,C; S,  C;Sk + 1;S;Cy

d F;, F;, F J J J j

8((7“4 ! k)) = | S,Ck +I,Ci5y 0 CiSy, + I, SiC,

A Sicj + IkCiSj CiSj + IkSiCj 0
and

F,, F;, F
ok B 1) =2C;C;CpSiS;Sk(1+ LI Ii) 4+ YaijCrSk(CFS? + C357)
i, i, i) J J

+ ’inijSj(C,fS? + C282) + 'YijkCiSi<C]%SJ2 + C’fS,f).
By I > —1 and 7;jx > 0,v;i > 0,7%i; = 0, we have

O(rs, 75, 7%)

> 2C;C;CLS;: S8k (1 + LI + ~iji + Vjik + Vrij)
= QCZOJCkSZS]Sk(l + Il)(l + IJ)(I + Ik) > 0,

which implies that F is globally injective. In fact, if there are two different r = (r;, T, T k)
and 7' = (r},r%, r}) satisfying F(r) = F(r'), then we have

79 j7
O(F;, Fy, Fy,)
0=F(r)—F@)=22222 0 - (r=r)T,0<0 <1,
()= F0') = G M (= 7)
which implies » = 7’ by the nondegeneracy of W on R2,. So the map F is

injective on R .
Note that F' has the following property

0 < (14 I;)sinhr;sinhr, < F; < (1 + |I;]) cosh(r; 4+ 7;),

which implies that F' is a proper map. By the invariance of domain theorem, we have
F:R3, — F(R3,) is a diffeomorphism.
Define

G:R%, —+ R,
(l5,15, 1) — (coshl;, cosh lj, cosh ),
then G : R3; — G(R2,) is a diffeomorphis and H = G~ o F' is the map defining the

edge length by the inversive distance which maps (r;,7;,7%) to (1,15, k).
Set

L= {(li,lj,lk)ﬂi + >l L+l > 1,05+ > li},

then ng = H ' (H(R2,)NL). To prove that ng is simply connected, we just need to

prove that H(R2 ) N L is simply connected.
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Note that £ is a cone in Rio bounded by three planes

Li = {(l“l]alk) S R3>0|lz = ZJ =+ lk};
Lj = {(lhljalk) S R?;OUJ = lz +lk},

L = {(li,1j, 1) € REo|lx = 1; + 1;}.

By the fact that H is a diffeomorphism between R2, and H(R2,), H(R3 ) is the set
bounded by three surfaces

¥ = {(li,1,1x) € R | coshl; = coshl; coshly + I; sinh; sinh .},
Y ={,1,lk) € ]R?;O| coshl; = coshl; cosh i + I sinh[; sinh [}, },
Y ={,1,lk) € R§O| coshly = coshl; coshlj + I}, sinh [; sinh [, }.

In fact, if 7; = 0, then l; = 74, = r; and coshl; = coshr; coshry 4 I; sinhr; sinhry, =
coshlj coshiy + I;sinhl;jsinhl;. ¥; is in fact the image of 7; = 0 under H. By the
diffeomorphism of H, ¥;, ¥;, Xj are mutually disjoint. Furthermore, if I, € (—1,1],
we have cosh(l; — l) < coshl; < cosh(l; + ;) on ;. And if I; € (1,+00), we have
cosh; > cosh(l; + l;) on ¥;. This implies that £; C LifI; € (~1,1]and ;N L = 0 if
I; € (1,400). Similar results hold for ¥; and ¥4. To prove that H(R2,) N L is simply
connected, we just need to consider the following cases by the bymmetry between ¢ j, k.

If I;, I;, I, € (—1,1], H(R2 ;)N L is bounded by ¥;,%;, ¥y and H (RS ,)NL = H(R3).

If I;,I; € (—1,1] and I}, € (1, +00), H(R2,) N L is bounded by El,Z] and Ly.

If I, € (=1,1] and I;, I} € (1,400), H(R2,) N L is bounded by ¥;, L; and Ly.

IfI;, I, I, € (1,+00), H(R2)NL is bounded by L;, Lj and Ly. In this case, H(R3 j)N
L=L.

For any case, H(R2 ) N L is a simply connected subset of R3 . By the fact that H
is a diffeomorphism between R3 and H(R2), we have the admlssible space ng =
H~'(H(R%,) N L) is simply connected.

By the analysis above, if H(R%)) C £, then Q/f, = H '(H(R%,) N L) = RE,. If
H(R3 )\ L # 0, then Q”k is a proper subset of RS . If I; > 1, the boundary component
¥ = {(lz, lj,lx) € RS | coshi; = coshlj coshly + I; sinh; sinh [} is out of the set £. By
the fact that ng =H Y (HR3,)NL)and H : R3 ) — H(R2) is a diffeomorphism, we
have H~1(L;) is a connected boundary component of QH,  on which 0; = 7,0, = 0, = 0.
This completes the proof of the lemma. O

ijk>

Corollary 3.5. For a topological triangle Aijk € F with inversive distance I > —1 and
Yijk = 0,%jik = 0,745 = 0, the functions 8;,0;,0;, defined on Q”k could be continuously
extended by constant to 0“ Hj, 0 defined on R3 .
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3.2. Infinitesimal rigidity of hyperbolic inversive distance circle packings

Set u; = Intanh %, then we have Z/ng = u(ng) is a simply connected subset of R .
If (ri,rj,r5) € ng, li, 1,1, form a hyperbolic triangle. Denote the inner angle at the
vertex i as ;. We have the following lemma.

Lemma 3.6. For any triangle Aijk € F', we have

00, 00; 1
Ou;  Ou;  Asinh®l

[CkS7SF(1 — I}) + CiS:iS3 Skvjin + C;S7 S Sivijn] (3.5)

on U,

ks where A = sinhl; sinh [, sin 6;.

Proof. By cosine law, we have coshl; = coshl; coshlj — sinhl; sinh i cos §;. Taking the
derivative with respect to [; gives

891 sinh ll

o, A

where A = sinh; sinh; sin 6;. Similarly, taking the derivative with respect to I; and [
and using the cosine law again, we have

09; _ —sinhlicosty 06; _ —sinhl;cosd;
Blji A ’alki A '

By the definition of edge length [;,[; and [}, we have
ol; sinh r; cosh 7y, + I; cosh r; sinh ry, % B
87’j sinh lz ’ 87"]' N

Ol sinhr;coshr; + Iy coshr; sinhr;
or; sinh I, '

0,

Then

A

aei . [
ou, = Asinh Tja—rj
0; 9l 00, 0l
8l2 87"]' 8lk 87"]'

= Asinhr;( )

= sinh r;(sinh r; coshry + I; cosh r; sinh ry,)

- sinh 7; sinh l; cos 6 (sinh r; cosh r; 4+ I, cosh r; sinh r;),
sinh [,

which implies that
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. 2 891‘ 2 . . .
sinh® Iy A—— = (cosh” [y — 1) sinh r;(sinh r; coshry + I; cosh r; sinh ry,)
Uj
+ (coshl; — coshl; cosh i) sinh r;(sinh r; cosh r; 4+ Iy, coshr; sinh ;)

Note that

sinh r;(sinh r; cosh ry + I; coshrj sinh ry) = coshr; cosh{; — coshry,

sinh r; (sinh r; cosh r; + Iy, cosh r; sinh r;) = coshr; cosh ), — coshr;.
Using the definition of edge lengths l;,{; and [i, by direct calculations, we have

o6, 1
Ou;  Asinh®l,

[CkaSf(l -3+ C’isiS?Sk’ink + C;57 5 Skvijil;

. . . 00, __ 9Y;
which implies also bu; = ou; D

Remark 9. For I;,1;,I; € (—1,1] and Yijk = 0, vk = 0, Yri; = 0, by Lemma 3.6,
we have gzi_ > 0, and gz; = 0 if and only if I = 1 and I; + I; = 0. Especially, if

I; = cos®;, I; = cos®;, [y = cos Py with @;, ®;,®; € [0, 5], we have Fii > 0, and
%:Oifandonlyif(l)k:()andq)i:q)j:%.
J

Lemma 3.6 shows that the matrix

90, 00; 99

u; Ou Juyg

g 000i,0;,0k) | o0, 00, 00,
ijk = T dwi Ou; 0

’ Oy, uk) ag aZJ azk

k k k

Ou; Ou; Ouy

A

is symmetric on L{gk. Similar to the case of Euclidean background geometry, we have

the following lemma for the matrix Ag k-

Lemma 3.7. In the hyperbolic background geometry, for any triangle Nijk € F with

Ii, I;, I, > —1 and ik > 0, Vi > 0, yrej > 0, the matriz Agk is negative definite on
Uty

Proof. The proof is parallel to that of Lemma 12 in [22] with some modifications. By

the proof of Lemma 3.6, we have
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do; 1 sinh I; 0 0 —1  cosf cosb;
do; | =— 1 0 sinh /; 0 cosfp —1 cosb;
doy, 0 0 sinh [, cosf; cosb; -1
Sinilli 0 0 0 Rijr R
X 0 St I 0 Rji 0 Ry (3.6)
0 0 ST Riij Rykji 0
sinh r; 0 0 du;
X 0 sinhr; 0 du; |,
0 0 sinh ry, duy,

where
A = sinh; sinhl; sin 0y, R;;, = sinhr; cosh 7, + I; cosh r; sinh ry,.

Write the equation (3.6) as

d9i 1 duz
d9k duk

and denote the second and fourth matrix in the product of the right hand side of (3.6)
as © and R respectively. Then Ajj, is negative definite is equivalent to J is positive
definite.

We first prove that det J is positive. To prove this, we just need to prove that det(©)
and det R are positive. By direct calculations, we have

det © = —1 4 cos 07 + cos 9]2- + cos 07 + 2 cos 6; cos 0 cos O,
0i+9j*0k 0i79j+9k 9i+9j+0k 01-70]-—0;6
= 4 cos 5 cos 5 cos 5 cos 5 .

By the Gauss—Bonnet formula for hyperbolic triangles, we have

0; +0; + 6, = m — Area(Aijk),

67+07+0k 6,+6J791€ 07791+9k 0170770)6
2 ) 2 ) 2 J 2
By direct calculations, we have

which implies € (=%, %). Then we have det © > 0.
det R = Ry Rji Rrij + Rikj RjinRijs
= 2C,C;CLS;S;Sk(1+ LI 1) + Cp Sk (I + IJj)(CfS? + CfSZ-Q)
+ C;S;(I; + L) (CRSE + C2SR) + CiSi(L; + 1;1) (CRS3 + C257)
> 20,C;C8i8;Sk(1+ LT + Iy + LI + I; + Ll + I + I 1)
=2C;C;CS;S;Sk(1+ I;)(1 + I;)(1 + I,) > 0,
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where the conditions I;, I, I € (—=1,400) and Yijk = 0, Vi = 0, y5 > 0 are used.
Then we have det 7 > 0 on Z/lgk

By the connectivity of /1, and the continuity of the eigenvalues of A7

ijk>
need to prove J is positive definite for some radius vector in Qg - By Corollary 3.3, for

we just

sufficient large s, the radius vector (s, s,s) € ng We shall prove J is positive definite
for some s large enough. At (s, s, s), we have

sinh /; 0 0 —1  cosf cosb;
J = sinh? s cosh s 0 sinh /; 0 cos 0y, -1 cos 0;
0 0 sinh [, cosf; cosb; -1
w0 0 0 141 141
x| 0 gap O 1+5; 0 1+
0 0 &b I+ 1+ O

Write the above equation as J = sinh? s cosh sN. Then we just need to prove that the
leading 1 x 1 and 2 x 2 minor of N is positive for some s large enough.
For the leading 1 x 1 minor, we have

Ny = 7smsiﬁ;2§ b1+
B 1
 sinh? l; sinh? I

+ (1 4 Ix)(cosh l; cosh I, — cosh l;)(cosh® I; — 1)]
.14
_a +Sf;})1(21[;iﬁ;ih ®[2(1+ I,)(1 + I,)(1 + I,) sinh s
+ (6 + 61; + 31, + 31, + 311, + 3L;1y + 21,1}, — I — I}}) sinh? s + 4(1 + I,)].
(3.8)

sinh l; cos 6,
— (141
sinh I}, (L+ 1)

[(1+ I;)(cosh; cosh l; — cosh ) (cosh? I, — 1)

Note that, by Corollary 3.3, under the condition
2sinh® s(1+ L) (L+ L)(1+ 1) > I + I + I} = 3,
the triangle inequalities are satisfied, which implies

sinh [; cos 6, sinh [; cos 0;

1+171; 141
(1+ J)+ sinh [, (L+ 1)

sinh /;
(14 I;)(1 + Ij) sinh* s

>
o sinh? l; sinh? 1},

X [(3+61; +3I; + 31 + 3L;1; + 3L; I}, + 21 I}, + I?) sinh? s + 414 I,)]



X. Xu / Advances in Mathematics 332 (2018) 476-509 503

(14 I;)(1 + Iy) sinh* s

sinh? l; sinh? I

Therefor the leading 1 x 1 minor of N is positive by the condition I;, I;, I € (—1,+00)
and ik > 0, vjix > 0, Yri; > 0.
Similar to (3.8), we have

sinh [; cos 0, sinh [; cos 0;

Nog = 1+ I, 1+ 1
2 sinh [; (L+ L)+ sinh [, (L+ 1)
(1+ I,)(1 + I,) sinh* 5 !
= 2(1 4+ I;)(1 + I;)(1 + I;) sinh™ s
sinh? [; sinh? [, 2 I i) )
+ (64 31; +61; + 31 + 31;1; + 21,1}, + 3; I}, — If - I,%) sinh? s + 41 + I)].
(3.9)
Note that
B sinh /; cos 0, sinh /; cos 0;
1
= ———[(1 + I);) sinh l; sinh ; cos 0; — (1 + I;) sinh® [
sinh” {j,
x [(1+ Iy) sinh l}, sinh [j cos ; — (1 4 I;) sinh? 1]
1 (3.10)
= ———[(1 + I)(cosh; cosh I, — coshl;) — (1 + I;) sinh® I;]
sinh” [y,

x [(1+ Iy)(coshl; coshly — coshl;) — (1 + I;) sinh? []

1+ Ip,)*sinh?
_ 1+ .k)4SIIl S(1+Ii+fj—fk)2,
sinh” [},

where cosh l; = cosh? s + I; sinh®?s =1+ (1+1;) sinh? s is used in the last line.
Combining (3.8), (3.9), (3.10), we have the leading 2 x 2 minor of N is

(14 1)1 + I;)(1 + I;)?sinh® s

sinh? l; sinh? l; sinh? Ik

X [2(1+ L)1+ I)(1 + I) sinh? s

+ (64 61; + 31 + 31 + 3L;1; + 31, + 211, — IT — I}) sinh® s + 4(1 + I;)]

x [2(1 4 L;)(1 + I;)(1 + I},) sinh* s

+ (64 31; + 61; + 3I) + 3L,I; + 2L, I}, + 3I;I; — I? — I?)sinh® s + 4(1 + 1))
(14 I;)*sinh* s

sinh® I},

I+ L+ 1 — Ip)?
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(1 + I;)?sinh? s
sinh? l; sinh? l; sinh? Iy
x {(1+ L)(1 + I;) sinh® s[4(1 + I,)?(1 4+ I;)*(1 + I})? sinh® s
+ Asinh® s + Bsinh* s + C'sinh? s + D]
— (L4 I)*(1 + I; + I; — I;)? sinh? [; sinh? 1},

where A, B,C, D are polynomials of I;, I;, I;;. Note that sinh?l; = cosh?l; — 1 = (1+
I;)sinh? s[2 4 (1 + I;) sinh® 5], we have the leading 2 x 2 minor of N is

(14 L)1 + I;)(1 + I},)? sinh® s
sinh? l; sinh? l; sinh? Iy
x {4(1 4 1)%(1 4 1;)*(1 4 I)* sinh® s + Asinh® s + Bsinh* s + C'sinh® s + D
— L+ L)?(1+ I + I — I)?[2 + (1 4 I;) sinh® s][2 + (1 + I;) sinh® ] }.

The term in the last two lines is a polynomial in sinh s with positive leading coefficient
4(141;)2(1+1;)*(1+ I;)?, so for s large enough, the leading 2 x 2 minor of N is positive.

Combining with the fact that the determinant of J is positive, we have the matrix
Aﬁ i is negative definite. This completes the proof. O

Remark 10. The matrix J in (3.7) is the same matrix M in the proof of Lemma 12 of
Guo [22], where M was proved to be positive definite for nonnegative inversive distance.
Here we produces another proof of the fact.

Remark 11. If I;, I;, I}, € (—1,1] and ~;j5 > 0, vjir > 0, yi; > 0, the negative defi-
niteness of A” . was proved by Zhou [37] using the same method as that of Lemma 3.7,
In this case, the negative definiteness of Ag . could be proved alternatively. In fact, by
direct but tedious calculations, we have

00, 00; 00y

- A(coshl; + 11)(cosh I +1)
{CiS2S3(IE — 1) + S2S2Cw(I} — 1) — Sk(C;S2Svijk + CiSiS2yju)  (3:11)
+ CiSk[=575;(2CiCy + )i — (CF + S7) i3 in]
+ SR—2C;SESH (LI, + 1) — SiSimii (C3S7 + Cy) + CiS2(I7 — 1)
+CySH(I2 - 1))}

, gfj + 6u’ + 6‘9’“ have no sign. However, if I;,I;, I, € (—1,1] and ;5% > 0,

Yiik = 0, Yri; > 0, we have 905 4 auj + 89’“ < 0 by (3.11). Combining with Remark 9,
this implies —Ag i 1S diagonal dommant and then Aijk is negative definite.

In general
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Set

Ky,
AP = —’ ’ AH
O(uy,--- ,un) Z ik

NijkeF

where Agk is extended by zeros to a N x N matrix so that Agk acts on a vector
v1,- -+ ,vn) only on the coordinates corresponding to vertices v;, v; and vy in the triangle
( ) only g i g
Aijk. Lemma 3.6 and Lemma 3.7 have the following direct corollary.

Corollary 3.8. Given a triangulated surface (M,T,I) with inversive distance I > —1

and vijk > 0,75k > 0,7ki; > 0 for any topological triangle Aijk € F. Then the matriz
AH — 0K, ,Kn)
— O(u1,un)

hyperbolic background geometry.

is symmetric and positive definite on U = NpijrerU. ”k for the

Guo [22] once obtained a result paralleling to Corollary 3.8 for I > 0.
By Lemma 3.4 and Lemma 3.6, we can define an energy function

gijk(u) = /eidui + 0;du; + Orduy,

Uo

on Z/ljk = ln(Q”k) Lemma 3.7 ensures that &;; is locally concave on L{gk. Define the
Ricci potential as

Z Eiji(u /Z (27 — K;)du;, (3.12)

NijkeT

then V,£ = K—K and E(u) is locally convex on U = ﬂAijkeTM]k The local convexity
of £ implies the infinitesimal rigidity of K with respect to u, which is the infinitesimal
rigidity of hyperbolic inversive distance circle packings.

3.3. Global rigidity of hyperbolic inversive distance circle packings

In this subsection, we shall prove the global rigidity of hyperbolic inversive distance
circle packings under the condition I € (—1,4o00) and vijx > 0,7,k > 0,7ki; > 0 for
any triangle Aijk € F.

By Corollary 3.5, the functions 0;,60;,0; defined on ng could be continuously ex-
tended by constants to 51', §j7 gk defined on R?. Using Theorem 2.9, we have the following
extension.

Lemma 3.9. In the hyperbolic background geometry, for any triangle Nijk € F with
I, I;, I, > —1 and vijr > 0, vjie > 0, Yki; > 0, the function E;ji(u) defined on Z/{gk
could be extended to the following function
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&Jk(u) = /@duz + gjduj + gkduk, (3.13)

Uo

which is a C*-smooth concave function defined on R? with

Viijik = (65,05, )7

Using Lemma 3.9, we can prove the following global rigidity of hyperbolic inversive
distance circle packing metrics, which is the hyperbolic part of Theorem 1.1.

Theorem 3.10. Given a triangulated surface (M, T) with inversive distance I € (—1,+00)
and Yijk > 0,75k > 0,75 > 0 for any topological triangle Aijk € F. Then for any
K € C(V), there is at most one hyperbolic inversive distance circle packing metric r
with K(r) = K.

Proof. The Ricci energy function £(u) in (3.12) could be extended from UH to the
whole space RY, where U is the image of Q7 under the map u; = Intanh % . In fact,
the function &;;i(u) defined on L{gk could be extended to &;;i(u) defined by (3.13) on
RY by Lemma 3.9 and the second term f;o 21‘111(2” —?i)dui in (3.12) can be naturally
defined on RY then we have the following extension &(u) defined on RY of the Ricci

potential function & (u)

N
E(u) =— Z Eiji(u) + Z(27T — K;)du;.
DijkeF oo =1
As gwk(u) is Cl-smooth concave by Lemma 3.9 and f;ﬂ Zij\il@w — K;)du; is a well-
defined convex function on RN, we have € (u) is a C'-smooth convex function on R¥.
Furthermore,

AijkeF

where INQ =27 — ZAijkeF 5,
If there are two different inversive distance circle packing metrics 74,75 € Q with the

same combinatorial Curvature K, then 4 = Intanh %‘ € UH, i = Intanh %‘3 c Ut
are both critical points of the extended Ricci potential £ (u). It follows that

VE(ua) = VE(up) = 0.

Set
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Ft)=E((1 = t)ua + tup)
(I-t)ua+tus

NijkeF i=1

where

Jir(t) = _gijk((l —t)ua +tup).

Then f(t) is a C! convex function on [0,1] and f’(0) = f’(1) = 0, which implies f’(t) =
0 on [0,1]. Note that 4 belongs to the open set U, there exists ¢ > 0 such that
(1 —t)ua +tug € UH for t € [0,€]. So f(t) is smooth on [0, €].

Note that f(t) is C! convex on [0,1] and smooth on [0,€]. f/(¢t) = 0 on [0, 1] implies
that f”(t) = 0 on [0, ¢]. Note that, for ¢ € [0, €],

f(t) = (@a —up)A" (@a —up)",

where A = — ZAijkeF Agk. By Corollary 3.8, we have A is positive definite and
then wa — up = 0, which implies that 74 = T7p. So there exists at most one hyperbolic
inversive distance circle packing metric with combinatorial curvature K. 0O

3.4. Rigidity of combinatorial a-curvature in hyperbolic background geometry

We have the following global rigidity for a-curvature with respect to hyperbolic in-
versive distance circle packing metrics for inversive distance in (—1, +00), which is the
hyperbolic part of Theorem 1.2.

Theorem 3.11. Given a closed triangulated surface (M, T) with inversive distance I > —1
and Yijk > 0,7%jik > 0,vki; > 0 for any topological triangle Aijk € F, R is a given
function defined on the vertices of (M, T). If aR < 0, there exists at most one hyperbolic
inversive distance circle packing metric ¥ € Q with combinatorial o-curvature R.

As the proof of Theorem 3.11 is almost parallel to that of Theorem 3.10 using the
energy function

g’a(u) = — ”k /Z (21 — R; tanh® )duz,
Az]kEF

we omit the details of the proof here. Theorem 3.11 is an generalization of Theorem 3.10.
Specially, if @« = 0, Theorem 3.11 is reduced to Theorem 3.10.
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