Rigidity of inversive distance circle packings revisited

$X u X u{ }^{\text {a,b }}$
${ }^{\text {a }}$ School of Mathematics and Statistics, Wuhan University, Wuhan 430072, PR China
${ }^{\text {b }}$ Hubei Key Laboratory of Computational Science (Wuhan University), Wuhan 430072, PR China

A R T I C L E I N F O

Article history:

Received 10 May 2017
Received in revised form 18 October 2017
Accepted 3 May 2018
Available online 26 May 2018
Communicated by the Managing Editors

Keywords:

Inversive distance
Circle packing
Rigidity
Combinatorial curvature

Abstract

Inversive distance circle packing metric was introduced by P Bowers and K Stephenson [7] as a generalization of Thurston's circle packing metric [34]. They conjectured that the inversive distance circle packings are rigid. For nonnegative inversive distance, Guo [22] proved the infinitesimal rigidity and then Luo [27] proved the global rigidity. In this paper, based on an observation of Zhou [37], we prove this conjecture for inversive distance in $(-1,+\infty)$ by variational principles. We also study the global rigidity of a combinatorial curvature introduced in $[14,16,19]$ with respect to the inversive distance circle packing metrics where the inversive distance is in $(-1,+\infty)$.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

In his work on constructing hyperbolic structure on 3-manifolds, Thurston ([34], Chapter 13) introduced the notion of circle packing metric on triangulated surfaces with

[^0]non-obtuse intersection angles. The requirement of prescribed intersection angles corresponds to the fact that the intersection angle of two circles is invariant under the Möbius transformations. For triangulated surfaces with Thurston's circle packing metrics, there are singularities at the vertices. The classical combinatorial curvature K_{i} is introduced to describe the singularity at the vertex v_{i}, which is defined as the angle deficit at v_{i}. Thurston's work generalized Andreev's work on circle packing metrics on a sphere $[1,2]$ and gave a complete characterization of the space of the classical combinatorial curvature. As a corollary, he obtained the combinatorial-topological obstacle for the existence of a constant curvature circle packing with non-obtuse intersection angles, which could be written as combinatorial-topological inequalities. Zhou [37] recently generalized Andreev-Thurston Theorem to the case that the intersection angles are in $[0, \pi)$. Chow and Luo [9] introduced a combinatorial Ricci flow, a combinatorial analogue of the smooth surface Ricci flow, for triangulated surfaces with Thurston's circle packing metrics and established the equivalence between the existence of a constant curvature circle packing metric and the convergence of the combinatorial Ricci flow.

Inversive distance circle packing on triangulated surfaces was introduced by Bowers and Stephenson [7] as a generalization of Thurston's circle packing. Different from Thurston's circle packing, adjacent circles in inversive distance circle packing are allowed to be disjoint and the relative distance of the adjacent circles is measured by the inversive distance, which is a generalization of intersection angle. See Bowers-Hurdal [6], Stephenson [33] and Guo [22] for more information. The inversive distance circle packings have practical applications in medical imaging and computer graphics, see [24,35,36] for example. Bowers and Stephenson [7] conjectured that the inversive distance circle packings are rigid. Guo [22] proved the infinitesimal rigidity and then Luo [27] solved affirmably the conjecture for nonnegative inversive distance with Euclidean and hyperbolic background geometry. For the spherical background geometry, Ma and Schlenker [29] had a counterexample showing that there is in general no rigidity and John C. Bowers and Philip L. Bowers [4] obtained a new construction of their counterexample using the inversive geometry of the 2-sphere. John Bowers, Philip Bowers and Kevin Pratt [5] recently proved the global rigidity of convex inversive distance circle packings in the Riemann sphere. Ge and Jiang [12,13] recently studied the deformation of combinatorial curvature and found a way to search for inversive distance circle packing metrics with constant cone angles. They also obtained some results on the image of curvature map for inversive distance circle packings. Ge and Jiang [14] and Ge and the author [19] further extended a combinatorial curvature introduced by Ge and the author in [16-18] to inversive distance circle packings and studied the rigidity and deformation of the curvature.

In this paper, based on an obversion of Zhou [37], we prove Bowers and Stephenson's rigidity conjecture for inversive distance in $(-1,+\infty)$. The main tools are the variational principle established by Guo [22] for inversive distance circle packings and the extension of locally convex function introduced by Bobenko, Pinkall and Springborn [3] and systematically developed by Luo [27]. We refer to Glickenstein [20] for a nice geomet-
ric interpretation of the variational principle in [22]. There are many other works on variational principles on circle packings. See Brägger [8], Rivin [31], Leibon [25], ChowLuo [9], Bobenko-Springborn [7], Marden-Rodin [30], Spingborn [32], Stephenson [33], Luo [28], Guo-Luo [23], Dai-Gu-Luo [10], Guo [21] and others.

1.2. Inversive distance circle packings

In this subsection, we briefly recall the inversive distance circle packing introduced by Bowers and Stephenson [7] in Euclidean and hyperbolic background geometry. For more information on inversive distance circle packing metrics, the readers can refer to Stephenson [33], Bowers and Hurdal [6] and Guo [22].

Suppose M is a closed surface with a triangulation $\mathcal{T}=\{V, E, F\}$, where V, E, F represent the sets of vertices, edges and faces respectively. Let $I: E \rightarrow(-1,+\infty)$ be a function assigning each edge $\{i j\}$ an inversive distance $I_{i j} \in(-1,+\infty)$, which is denoted as $I>-1$ in the paper. The triple (M, \mathcal{T}, I) will be referred to as a weighted triangulation of M below. All the vertices are ordered one by one, marked by v_{1}, \cdots, v_{N}, where $N=|V|$ is the number of vertices, and we often use i to denote the vertex v_{i} for simplicity below. We use $i \sim j$ to denote that the vertices i and j are adjacent, i.e., there is an edge $\{i j\} \in E$ with i, j as end points. All functions $f: V \rightarrow \mathbb{R}$ will be regarded as column vectors in \mathbb{R}^{N} and $f_{i}=f\left(v_{i}\right)$ is the value of f at v_{i}. And we use $C(V)$ to denote the set of functions defined on $V . \mathbb{R}_{>0}$ denotes the set of positive numbers in the paper.

Each map $r: V \rightarrow(0,+\infty)$ is a circle packing, which could be taken as the radius r_{i} of a circle attached to the vertex i. Given (M, \mathcal{T}, I), we assign each edge $\{i j\}$ the length

$$
\begin{equation*}
l_{i j}=\sqrt{r_{i}^{2}+r_{j}^{2}+2 r_{i} r_{j} I_{i j}} \tag{1.1}
\end{equation*}
$$

for Euclidean background geometry and

$$
\begin{equation*}
l_{i j}=\cosh ^{-1}\left(\cosh \left(r_{i}\right) \cosh \left(r_{j}\right)+I_{i j} \sinh \left(r_{i}\right) \sinh \left(r_{j}\right)\right) \tag{1.2}
\end{equation*}
$$

for hyperbolic background geometry, where $I_{i j}$ is the Euclidean and hyperbolic inversive distance of the two circles centered at v_{i} and v_{j} with radii r_{i} and r_{j} respectively. Note that the length $l_{i j}$ in (1.1) and (1.2) is well-defined for all $r_{i}>0, r_{j}>0$ under the condition $I_{i j}>-1$. If $I_{i j} \in(-1,0)$, the two circles attached to the vertices i and j intersect with an obtuse angle. If $I_{i j} \in[0,1]$, the two circles intersect with a non-obtuse angle. We can take $I_{i j}=\cos \Phi_{i j}$ with $\Phi_{i j} \in\left[0, \frac{\pi}{2}\right]$ and then the inversive distance circle packing is reduced to Thurston's circle packing. If $I_{i j} \in(1,+\infty)$, the two circles attached to the vertices i and j are disjoint. See Fig. 1 for possible arrangements of the circles. Guo [22] and Luo [27] systematically studied the rigidity of inversive distance circle packing metrics for nonnegative inversive distance $I \geq 0$, i.e. $I_{i j} \geq 0$ for every edge $\{i j\} \in E$. In this paper, we focus on the case that $I>-1$.

Fig. 1. Inversive distance circle packings.

The following is our main result, which solves Bowers and Stephenson's rigidity conjecture for inversive distance in $(-1,+\infty)$.

Theorem 1.1. Given a closed triangulated surface (M, \mathcal{T}, I) with inversive distance I : $E \rightarrow(-1,+\infty)$ satisfying

$$
\begin{equation*}
I_{i j}+I_{i k} I_{j k} \geq 0, I_{i k}+I_{i j} I_{j k} \geq 0, I_{j k}+I_{i j} I_{i k} \geq 0 \tag{1.3}
\end{equation*}
$$

for any topological triangle $\triangle i j k \in F$.
(1) A Euclidean inversive distance circle packing on (M, \mathcal{T}) is determined by its combinatorial curvature $K: V \rightarrow \mathbb{R}$ up to scaling.
(2) A hyperbolic inversive distance circle packing on (M, \mathcal{T}) is determined by its combinatorial curvature $K: V \rightarrow \mathbb{R}$.

Remark 1. For $I \in[0,1]$, the above result was Andreev and Thurston's rigidity for circle packing with intersection angles in $\left[0, \frac{\pi}{2}\right]$. For $I \in(-1,1]$, the above result was the rigidity for circle packing with intersection angles in $[0, \pi)$ recently obtained by Zhou [37]. For $I \geq 0$, the above result was the rigidity for inversive distance circle packing obtained by Guo [22] and Luo [27]. Our result unifies these results and allows the inversive distances to take values in a larger domain.

Remark 2. It is interesting to note that in Theorem 1.1, for a topological triangle $\triangle i j k \in$ F, if one of $I_{i j}, I_{i k}, I_{j k}$ is negative, the other two must be nonnegative. So at most one of $I_{i j}, I_{i k}, I_{j k}$ is negative.

We further extend the rigidity to combinatorial α-curvature introduced in [14-19], which is defined as

$$
R_{\alpha, i}=\frac{K_{i}}{s_{i}^{\alpha}}
$$

for $\alpha \in \mathbb{R}$, where $s_{i}=r_{i}$ for the Euclidean background geometry and $s_{i}=\tanh \frac{r_{i}}{2}$ for the hyperbolic background geometry.

Theorem 1.2. Given a closed triangulated surface (M, \mathcal{T}, I) with inversive distance I : $E \rightarrow(-1,+\infty)$ satisfying

$$
I_{i j}+I_{i k} I_{j k} \geq 0, I_{i k}+I_{i j} I_{j k} \geq 0, I_{j k}+I_{i j} I_{i k} \geq 0
$$

for any topological triangle $\triangle i j k \in F . \bar{R}$ is a given function defined on the vertices of (M, \mathcal{T}).
(1) If $\alpha \bar{R} \equiv 0$, there exists at most one Euclidean inversive distance circle packing metric with combinatorial α-curvature \bar{R} up to scaling. If $\alpha \bar{R} \leq 0$ and $\alpha \bar{R} \not \equiv 0$, there exists at most one Euclidean inversive distance circle packing metric with combinatorial α-curvature \bar{R}.
(2) If $\alpha \bar{R} \leq 0$, there exists at most one hyperbolic inversive distance packing metric with combinatorial α-curvature \bar{R}.

1.3. Plan of paper

The paper is organized as follows. In Section 2, we study the Euclidean inversive distance circle packing metrics and prove Theorem 1.1 and 1.2 for the Euclidean background geometry. In Section 3, we study the hyperbolic inversive distance circle packing metrics and prove Theorem 1.1, 1.2 for the hyperbolic background geometry.

2. Euclidean inversive distance circle packings

2.1. Admissible space of Euclidean inversive distance circle packing metrics for a single triangle

Given a weighted triangulated surface (M, \mathcal{T}, I) with weight $I>-1$. Suppose $\triangle i j k$ is a topological triangle in F. Here and in the following, to simplify notations, when we are discussing a triangle $\triangle i j k$, we use l_{i} to denote the length of the edge $\{j k\}$ and use I_{i} to denote the inversive distance of the two circles at the vertices j and k. In the Euclidean background geometry, the length l_{i} of the edge $\{j k\}$ is then defined by

$$
\begin{equation*}
l_{i}=\sqrt{r_{j}^{2}+r_{k}^{2}+2 r_{j} r_{k} I_{i}} \tag{2.1}
\end{equation*}
$$

For $I>-1$, in order that the lengths l_{i}, l_{j}, l_{k} for $\Delta i j k \in F$ satisfy the triangle inequalities, there are some restrictions on the radii. Denote the admissible space of the radius vectors for a face $\Delta i j k \in F$ as

$$
\begin{equation*}
\Omega_{i j k}^{E}:=\left\{\left(r_{i}, r_{j}, r_{k}\right) \in \mathbb{R}_{>0}^{3} \mid l_{i}<l_{j}+l_{k}, l_{j}<l_{i}+l_{k}, l_{k}<l_{i}+l_{j}\right\} . \tag{2.2}
\end{equation*}
$$

In the case of $I \in[0,1]$, as noted by Thurston [34], $\Omega_{i j k}^{E}=\mathbb{R}_{>0}^{3}$. However, in general, $\Omega_{i j k}^{E} \neq \mathbb{R}_{>0}^{3}$ for $I \in(-1,+\infty)$. It is proved [22] that the admissible space $\Omega_{i j k}^{E}$ for $I \geq 0$ is a simply connected open subset of $\mathbb{R}_{>0}^{3}$ and $\Omega_{i j k}^{E}$ may not be convex. Set

$$
\begin{equation*}
\Omega^{E}=\cap_{\Delta i j k \in F} \Omega_{i j k}^{E} \tag{2.3}
\end{equation*}
$$

to be the space of admissible radius function on the surface. Ω^{E} is obviously an open subset of $\mathbb{R}_{>0}^{N}$. Every $r \in \Omega$ is called an inversive distance circle packing metric.

As noted in [22], in order that the edge lengths l_{i}, l_{j}, l_{k} satisfy the triangle inequalities, we just need

$$
\begin{align*}
0 & <\left(l_{i}+l_{j}+l_{k}\right)\left(l_{i}+l_{j}-l_{k}\right)\left(l_{i}+l_{k}-l_{j}\right)\left(l_{j}+l_{k}-l_{i}\right) \\
& =4 l_{i}^{2} l_{k}^{2}-\left(l_{i}^{2}+l_{k}^{2}-l_{j}^{2}\right)^{2} \tag{2.4}\\
& =2 l_{i}^{2} l_{j}^{2}+2 l_{i}^{2} l_{k}^{2}+2 l_{j}^{2} l_{k}^{2}-l_{i}^{4}-l_{j}^{4}-l_{k}^{4} .
\end{align*}
$$

Substituting the definition of edge length (2.1) in the Euclidean background geometry into (2.4), by direct calculations, we have

$$
\begin{aligned}
& \frac{1}{4}\left(l_{i}+l_{j}+l_{k}\right)\left(l_{i}+l_{j}-l_{k}\right)\left(l_{i}+l_{k}-l_{j}\right)\left(l_{j}+l_{k}-l_{i}\right) \\
& \quad=r_{i}^{2} r_{j}^{2}\left(1-I_{k}^{2}\right)+r_{i}^{2} r_{k}^{2}\left(1-I_{j}^{2}\right)+r_{j}^{2} r_{k}^{2}\left(1-I_{i}^{2}\right) \\
& \quad+2 r_{i}^{2} r_{j} r_{k}\left(I_{i}+I_{j} I_{k}\right)+2 r_{i} r_{j}^{2} r_{k}\left(I_{j}+I_{i} I_{k}\right)+2 r_{i} r_{j} r_{k}^{2}\left(I_{k}+I_{i} I_{j}\right)>0
\end{aligned}
$$

Denote

$$
\begin{equation*}
\gamma_{i j k}:=I_{i}+I_{j} I_{k}, \gamma_{j i k}:=I_{j}+I_{i} I_{k}, \gamma_{k i j}:=I_{k}+I_{i} I_{j} \tag{2.5}
\end{equation*}
$$

then we have the following result on Euclidean triangle inequalities.

Lemma 2.1 ([22]). Suppose (M, \mathcal{T}, I) is a weighted triangulated surface with weight $I>$ -1 and $\triangle i j k$ is a topological triangle in F. The edge lengths l_{i}, l_{j}, l_{k} defined by (2.1) satisfy the triangle inequalities if and only if

$$
\begin{align*}
& r_{i}^{2} r_{j}^{2}\left(1-I_{k}^{2}\right)+r_{i}^{2} r_{k}^{2}\left(1-I_{j}^{2}\right)+r_{j}^{2} r_{k}^{2}\left(1-I_{i}^{2}\right)+2 r_{i}^{2} r_{j} r_{k} \gamma_{i j k}+2 r_{i} r_{j}^{2} r_{k} \gamma_{j i k} \tag{2.6}\\
& \quad+2 r_{i} r_{j} r_{k}^{2} \gamma_{k i j}>0
\end{align*}
$$

We have the following direct corollary obtained in [37] by Lemma 2.1.
Corollary 2.2. If $I_{i}, I_{j}, I_{k} \in(-1,1]$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$, then the triangle inequalities are satisfied for any $\left(r_{i}, r_{j}, r_{k}\right) \in \mathbb{R}_{>0}^{3}$.

Remark 3. Specially, if $I_{i}=\cos \Phi_{i}, I_{j}=\cos \Phi_{j}, I_{k}=\cos \Phi_{k}$ with $\Phi_{i}, \Phi_{j}, \Phi_{k} \in\left[0, \frac{\pi}{2}\right]$, then we have $I_{i}, I_{j}, I_{k} \in(-1,1]$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$. So the triangle inequalities are satisfied for all radius vectors in $\mathbb{R}_{>0}^{3}$, which was obtained by Thurston in [34]. However, if we only require $\Phi_{i}, \Phi_{j}, \Phi_{k} \in[0, \pi)$, then (2.6) is equivalent to

$$
\begin{aligned}
& r_{i}^{2} r_{j}^{2} \sin ^{2} \Phi_{k}+r_{i}^{2} r_{k}^{2} \sin ^{2} \Phi_{j}+r_{j}^{2} r_{k}^{2} \sin ^{2} \Phi_{i}+2 r_{i}^{2} r_{j} r_{k}\left(\cos \Phi_{i}+\cos \Phi_{j} \cos \Phi_{k}\right) \\
& \quad+2 r_{i} r_{j}^{2} r_{k}\left(\cos \Phi_{j}+\cos \Phi_{i} \cos \Phi_{k}\right)+2 r_{i} r_{j} r_{k}^{2}\left(\cos \Phi_{k}+\cos \Phi_{i} \cos \Phi_{j}\right)>0
\end{aligned}
$$

Specially, if $\Phi_{i}+\Phi_{j} \leq \pi, \Phi_{i}+\Phi_{k} \leq \pi, \Phi_{j}+\Phi_{k} \leq \pi$ [37], or $\Phi_{i}=\Phi_{j} \in\left[0, \frac{\pi}{2}\right]$ [37], or $\Phi_{i}=\Phi_{j}=\Phi_{k} \in[0, \pi)$, the triangle inequalities are satisfied.

By Lemma 2.1, the admissible space $\Omega_{i j k}^{E}$ for the topological triangle $\triangle i j k \in F$ may not be the whole space $\mathbb{R}_{>0}^{3}$. Furthermore, it is not always convex for all $I_{i}, I_{j}, I_{k} \in$ $(-1,+\infty)$. However, we have the following useful lemma on the structure of the admissible space $\Omega_{i j k}^{E}$.

Lemma 2.3. Given a weighted triangulated surface (M, \mathcal{T}, I) with $I>-1$. For a topological triangle $\triangle i j k \in F$, if

$$
\begin{equation*}
\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0 \tag{2.7}
\end{equation*}
$$

then the admissible space $\Omega_{i j k}^{E}$ is a simply connected open subset of $\mathbb{R}_{>0}^{3}$. Furthermore, for each connected component V of $\mathbb{R}_{>0}^{3} \backslash \Omega_{i j k}^{E}$, the intersection $V \cap \bar{\Omega}_{i j k}^{E}$ is a connected component of $\bar{\Omega}_{i j k}^{E} \backslash \Omega_{i j k}^{E}$, on which θ_{i} is a constant function.

Proof. Define

$$
\begin{aligned}
F: \mathbb{R}_{>0}^{3} & \rightarrow \mathbb{R}_{>0}^{3} \\
\left(r_{i}, r_{j}, r_{k}\right) & \mapsto\left(r_{j}^{2}+r_{k}^{2}+2 r_{j} r_{k} I_{i}, r_{i}^{2}+r_{k}^{2}+2 r_{i} r_{k} I_{j}, r_{i}^{2}+r_{j}^{2}+2 r_{i} r_{j} I_{k}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
G: \mathbb{R}_{>0}^{3} & \rightarrow \mathbb{R}_{>0}^{3} \\
\left(l_{i}, l_{j}, l_{k}\right) & \mapsto\left(l_{i}^{2}, l_{j}^{2}, l_{k}^{2}\right)
\end{aligned}
$$

then G is a diffeomorphism of $\mathbb{R}_{>0}^{3}$ and $H=G^{-1} \circ F$ is the map sending $\left(r_{i}, r_{j}, r_{k}\right)$ to $\left(l_{i}, l_{j}, l_{k}\right)$.

We first prove that H is injective. To prove this, we just need to prove that F is injective. Note that

$$
\frac{\partial\left(F_{i}, F_{j}, F_{k}\right)}{\partial\left(r_{i}, r_{j}, r_{k}\right)}=2\left(\begin{array}{ccc}
0 & r_{j}+r_{k} I_{i} & r_{k}+r_{j} I_{i} \\
r_{i}+r_{k} I_{j} & 0 & r_{k}+r_{i} I_{j} \\
r_{i}+r_{j} I_{k} & r_{j}+r_{i} I_{k} & 0
\end{array}\right)
$$

which implies that

$$
\begin{aligned}
& \left|\frac{\partial\left(F_{i}, F_{j}, F_{k}\right)}{\partial\left(r_{i}, r_{j}, r_{k}\right)}\right| \\
& \quad=8\left(r_{j}+r_{k} I_{i}\right)\left(r_{k}+r_{i} I_{j}\right)\left(r_{k}+r_{i} I_{j}\right)+8\left(r_{k}+r_{j} I_{i}\right)\left(r_{i}+r_{k} I_{j}\right)\left(r_{j}+r_{i} I_{k}\right) \\
& \quad=16 r_{i} r_{j} r_{k}\left(1+I_{i} I_{j} I_{k}\right)+8 r_{i} \gamma_{i j k}\left(r_{j}^{2}+r_{k}^{2}\right)+8 r_{j} \gamma_{j i k}\left(r_{i}^{2}+r_{k}^{2}\right)+8 r_{k} \gamma_{k i j}\left(r_{i}^{2}+r_{j}^{2}\right)
\end{aligned}
$$

By the condition (2.7) and the Cauchy inequality, we have

$$
\begin{aligned}
\left|\frac{\partial\left(F_{i}, F_{j}, F_{k}\right)}{\partial\left(r_{i}, r_{j}, r_{k}\right)}\right| & \geq 16 r_{i} r_{j} r_{k}\left(1+I_{i} I_{j} I_{k}+\gamma_{i j k}+\gamma_{j i k}+\gamma_{k i j}\right) \\
& =16 r_{i} r_{j} r_{k}\left(1+I_{i}\right)\left(1+I_{j}\right)\left(1+I_{k}\right)
\end{aligned}
$$

By the condition that $I_{i}, I_{j}, I_{k} \in(-1,+\infty)$, we have $\left|\frac{\partial\left(F_{i}, F_{j}, F_{k}\right)}{\partial\left(r_{i}, r_{j}, r_{k}\right)}\right|>0$ for any $r \in \mathbb{R}_{>0}^{3}$. If there are $r=\left(r_{i}, r_{j}, r_{k}\right) \in \mathbb{R}_{>0}^{3}$ and $r^{\prime}=\left(r_{i}^{\prime}, r_{j}^{\prime}, r_{k}^{\prime}\right) \in \mathbb{R}_{>0}^{3}$ satisfying $F(r)=F\left(r^{\prime}\right)$, then we have

$$
0=F(r)-F\left(r^{\prime}\right)=\left.\frac{\partial\left(F_{i}, F_{j}, F_{k}\right)}{\partial\left(r_{i}, r_{j}, r_{k}\right)}\right|_{r+\theta\left(r-r^{\prime}\right)} \cdot\left(r-r^{\prime}\right)^{T}, \quad \theta \in(0,1)
$$

which implies $r=r^{\prime}$ by the nondegeneracy of $\frac{\partial\left(F_{i}, F_{j}, F_{k}\right)}{\partial\left(r_{i}, r_{j}, r_{k}\right)}$ on $\mathbb{R}_{>0}^{3}$. So the map F is injective on $\mathbb{R}_{>0}^{3}$, which implies that H is injective on $\mathbb{R}_{>0}^{3}$.

Note that

$$
\begin{aligned}
& F_{i}=r_{j}^{2}+r_{k}^{2}+2 r_{j} r_{k} I_{i} \geq 2 r_{j} r_{k}\left(1+I_{i}\right), \\
& F_{j}=r_{i}^{2}+r_{k}^{2}+2 r_{i} r_{j} I_{k} \geq 2 r_{i} r_{k}\left(1+I_{j}\right), \\
& F_{k}=r_{i}^{2}+r_{j}^{2}+2 r_{i} r_{j} I_{k} \geq 2 r_{i} r_{j}\left(1+I_{k}\right) .
\end{aligned}
$$

By the condition that $I_{i}, I_{j}, I_{k} \in(-1,+\infty)$, if F is bounded, we have $r_{i} r_{j}, r_{i} r_{k}, r_{j} r_{k}$ are bounded, which implies that $r_{i}^{2}+r_{j}^{2}, r_{i}^{2}+r_{k}^{2}, r_{j}^{2}+r_{k}^{2}$ are bounded. Similarly, we have $F_{i} \leq\left(1+\left|I_{i}\right|\right)\left(r_{j}^{2}+r_{j}^{2}\right)$. This implies that F is a proper map from $\mathbb{R}_{>0}^{3}$ to $\mathbb{R}_{>0}^{3}$. By the invariance of domain theorem, we have F is a diffeomorphism between $\mathbb{R}_{>0}^{3}$ and $F\left(\mathbb{R}_{>0}^{3}\right)$. And then H is a diffeomorphism between $\mathbb{R}_{>0}^{3}$ and $H\left(\mathbb{R}_{>0}^{3}\right)$.

Set

$$
\mathcal{L}=\left\{\left(l_{i}, l_{j}, l_{k}\right) \mid l_{i}+l_{j}>l_{k}, l_{i}+l_{k}>l_{j}, l_{j}+l_{k}>l_{i}\right\}
$$

then $\Omega_{i j k}^{E}=H^{-1}\left(H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}\right)$. To prove that $\Omega_{i j k}^{E}$ is simply connected, we just need to prove that $H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}$ is a cone. Note that \mathcal{L} is a cone in $\mathbb{R}_{>0}^{3}$ bounded by three planes

$$
\begin{aligned}
L_{i} & =\left\{\left(l_{i}, l_{j}, l_{k}\right) \in \mathbb{R}_{>0}^{3} \mid l_{i}=l_{j}+l_{k}\right\} \\
L_{j} & =\left\{\left(l_{i}, l_{j}, l_{k}\right) \in \mathbb{R}_{>0}^{3} \mid l_{j}=l_{i}+l_{k}\right\} \\
L_{k} & =\left\{\left(l_{i}, l_{j}, l_{k}\right) \in \mathbb{R}_{>0}^{3} \mid l_{k}=l_{i}+l_{j}\right\}
\end{aligned}
$$

Note that H is a diffeomorphism between $\mathbb{R}_{>0}^{3}$ and $H\left(\mathbb{R}_{>0}^{3}\right), H\left(\mathbb{R}_{>0}^{3}\right)$ is a cone bounded by three quadratic surfaces

$$
\begin{aligned}
\Sigma_{i} & =\left\{\left(l_{i}, l_{j}, l_{k}\right) \in \mathbb{R}_{>0}^{3} \mid l_{i}^{2}=l_{j}^{2}+l_{k}^{2}+2 l_{j} l_{k} I_{i}\right\}, \\
\Sigma_{i} & =\left\{\left(l_{i}, l_{j}, l_{k}\right) \in \mathbb{R}_{>0}^{3} \mid l_{j}^{2}=l_{i}^{2}+l_{k}^{2}+2 l_{i} l_{k} I_{j}\right\} \\
\Sigma_{i} & =\left\{\left(l_{i}, l_{j}, l_{k}\right) \in \mathbb{R}_{>0}^{3} \mid l_{k}^{2}=l_{i}^{2}+l_{j}^{2}+2 l_{i} l_{j} I_{k}\right\}
\end{aligned}
$$

In fact, if $r_{i}=0$, then $l_{j}=r_{k}, l_{k}=r_{j}$ and $l_{i}^{2}=r_{j}^{2}+r_{k}^{2}+2 r_{j} r_{k} I_{i}=l_{j}^{2}+l_{k}^{2}+2 l_{j} l_{k} I_{i}$. Σ_{i} is in fact the image of $r_{i}=0$ under H. By the diffeomorphism of $H, \Sigma_{i}, \Sigma_{j}, \Sigma_{k}$ are mutually disjoint. Furthermore, if $I_{i} \in(-1,1]$, we have $\left(l_{j}-l_{k}\right)^{2}<l_{i}^{2} \leq\left(l_{j}+l_{k}\right)^{2}$ on Σ_{i}. And if $I_{i} \in(1,+\infty)$, we have $l_{i}^{2}>\left(l_{j}+l_{k}\right)^{2}$ on Σ_{i}. This implies that $\Sigma_{i} \subset \overline{\mathcal{L}}$ if $I_{i} \in(-1,1]$ and $\Sigma_{i} \cap \mathcal{L}=\emptyset$ if $I_{i} \in(1,+\infty)$. Similar results hold for Σ_{j} and Σ_{k}.

To prove that $H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}$ is a cone, we just need to consider the following cases by the symmetry between i, j, k.

If $I_{i}, I_{j}, I_{k} \in(-1,1], H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}$ is a cone bounded by $\Sigma_{i}, \Sigma_{j}, \Sigma_{k}$ and $H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}=$ $H\left(\mathbb{R}_{>0}^{3}\right)$.

If $I_{i}, I_{j} \in(-1,1]$ and $I_{k} \in(1,+\infty), H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}$ is a cone bounded by Σ_{i}, Σ_{j} and L_{k}.
If $I_{i} \in(-1,1]$ and $I_{j}, I_{k} \in(1,+\infty), H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}$ is a cone bounded by Σ_{i}, L_{j} and L_{k}.
If $I_{i}, I_{j}, I_{k} \in(1,+\infty), H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}$ is a cone bounded by L_{i}, L_{j} and L_{k}. In this case, $H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}=\mathcal{L}$.

For any case, $H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}$ is a cone in $\mathbb{R}_{>0}^{3}$. By the fact that H is a diffeomorphism between $\mathbb{R}_{>0}^{3}$ and $H\left(\mathbb{R}_{>0}^{3}\right)$, we have the admissible space $\Omega_{i j k}^{E}=H^{-1}\left(H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}\right)$ is simply connected.

By the analysis above, if $H\left(\mathbb{R}_{>0}^{3}\right) \subset \mathcal{L}$, then $\Omega_{i j k}^{E}=H^{-1}\left(H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}\right)=\mathbb{R}_{>0}^{3}$. If $H\left(\mathbb{R}_{>0}^{3}\right) \backslash \mathcal{L} \neq \emptyset$, then $\Omega_{i j k}^{E}$ is a proper subset of $\mathbb{R}_{>0}^{3}$. If $I_{i}>1$, the boundary component $\Sigma_{i}=\left\{l_{i}^{2}=l_{j}^{2}+l_{k}^{2}+2 l_{j} l_{k} I_{i}\right\}$ is out of the set \mathcal{L}. By the fact that $\Omega_{i j k}^{E}=H^{-1}\left(H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}\right)$ and $H: \mathbb{R}_{>0}^{3} \rightarrow H\left(\mathbb{R}_{>0}^{3}\right)$ is a diffeomorphism, we have $H^{-1}\left(L_{i}\right)$ is a connected boundary component of $\Omega_{i j k}^{E}$, on which $\theta_{i}=\pi, \theta_{j}=\theta_{k}=0$. This completes the proof of the lemma.

Corollary 2.4. For a topological triangle $\triangle i j k \in F$ with inversive distance $I>-1$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$, the functions $\theta_{i}, \theta_{j}, \theta_{k}$ defined on $\Omega_{i j k}^{E}$ could be continuously extended by constant to $\widetilde{\theta}_{i}, \widetilde{\theta}_{j}, \widetilde{\theta}_{k}$ defined on $\mathbb{R}_{>0}^{3}$.

Remark 4.

(1) If $I_{i}, I_{j}, I_{k} \in[0,+\infty)$, obviously we have $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$. So Lemma 2.3 generalizes Lemma 3 in [22] obtained by Guo.
(2) If $I_{i}, I_{j}, I_{k} \in(-1,1]$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$, by the proof of Lemma 2.3, $\Omega_{i j k}^{E}=\mathbb{R}_{>0}^{3}$, which is obtained by Zhou [37].
(3) The condition $I_{i}, I_{j}, I_{k} \in(-1,+\infty)$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$ contains more cases, for example, $I_{i}=-\frac{1}{2}, I_{j}=1$ and $I_{k}=2$, in which case the admissible space $\Omega_{i j k}^{E}$ is still simply connected.

2.2. Infinitesimal rigidity of Euclidean inversive distance circle packings

Set $u_{i}=\ln r_{i}$, then we have $\mathcal{U}_{i j k}^{E}:=\ln \left(\Omega_{i j k}^{E}\right)$ is a simply connected subset of \mathbb{R}^{3} by Lemma 2.3. If $\left(r_{i}, r_{j}, r_{k}\right) \in \Omega_{i j k}^{E}, l_{i}, l_{j}, l_{k}$ satisfy the triangle inequalities and forms a Euclidean triangle. Denote the inner angle at the vertex i as θ_{i}. We have the following useful lemma.

Lemma 2.5. For any topological triangle $\triangle i j k \in F$, we have

$$
\begin{equation*}
\frac{\partial \theta_{i}}{\partial u_{j}}=\frac{\partial \theta_{j}}{\partial u_{i}}=\frac{1}{A l_{k}^{2}}\left[r_{i}^{2} r_{j}^{2}\left(1-I_{k}^{2}\right)+r_{i}^{2} r_{j} r_{k} \gamma_{i j k}+r_{i} r_{j}^{2} r_{k} \gamma_{j i k}\right] \tag{2.8}
\end{equation*}
$$

on $\mathcal{U}_{i j k}^{E}$, where $A=l_{j} l_{k} \sin \theta_{i}$.
Proof. By the cosine law, we have $l_{i}^{2}=l_{j}^{2}+l_{k}^{2}-2 l_{j} l_{k} \cos \theta_{i}$. Taking the derivative with respect to l_{i}, we have $\frac{\partial \theta_{i}}{\partial l_{i}}=\frac{l_{i}}{A}$, where $A=l_{j} l_{k} \sin \theta_{i}$ is two times of the area of $\triangle i j k$. Similarly, we have $\frac{\partial \theta_{i}}{\partial l_{j}}=\frac{-l_{i} \cos \theta_{k}}{A}, \frac{\partial \theta_{i}}{\partial l_{k}}=\frac{-l_{i} \cos \theta_{j}}{A}$. By the definition of l_{i}, l_{j}, l_{k}, we have

$$
\frac{\partial l_{i}}{\partial r_{j}}=\frac{r_{j}+r_{k} I_{i}}{l_{i}}, \frac{\partial l_{j}}{\partial r_{j}}=0, \frac{\partial l_{k}}{\partial r_{j}}=\frac{r_{j}+r_{i} I_{k}}{l_{k}}
$$

Then

$$
\begin{aligned}
\frac{\partial \theta_{i}}{\partial u_{j}} & =r_{j} \frac{\partial \theta_{i}}{\partial r_{j}} \\
& =r_{j}\left(\frac{\partial \theta_{i}}{\partial l_{i}} \frac{\partial l_{i}}{\partial r_{j}}+\frac{\partial \theta_{i}}{\partial l_{k}} \frac{\partial l_{k}}{\partial r_{j}}\right) \\
& =r_{j}\left[\frac{r_{j}+r_{k} I_{i}}{A}-\frac{l_{i} \cos \theta_{j}\left(r_{j}+r_{i} I_{k}\right)}{A l_{k}}\right] \\
& =\frac{1}{A l_{k}}\left[l_{k}\left(r_{j}^{2}-r_{j} r_{k} I_{i}\right)-\frac{l_{i}^{2}+l_{k}^{2}-l_{j}^{2}}{2 l_{k}}\left(r_{j}^{2}+r_{i} r_{j} I_{k}\right)\right] \\
& =\frac{1}{A l_{k}^{2}}\left[r_{i}^{2} r_{j}^{2}\left(1-I_{k}^{2}\right)+r_{i}^{2} r_{j} r_{k} \gamma_{i j k}+r_{i} r_{j}^{2} r_{k} \gamma_{j i k}\right],
\end{aligned}
$$

where the cosine law is used in the third line and the definition of the length (2.1) is used in the fourth line. This also implies $\frac{\partial \theta_{i}}{\partial u_{j}}=\frac{\partial \theta_{j}}{\partial u_{i}}$.

Remark 5. The equation $\frac{\partial \theta_{i}}{\partial u_{j}}=\frac{\partial \theta_{j}}{\partial u_{i}}$ has been obtained under different conditions in [9, 11,22] and the formulas for $\frac{\partial \theta_{i}}{\partial l_{j}}$ and $\frac{\partial \theta_{i}}{\partial l_{i}}$ was obtained by Chow and Luo [9]. In general, for $I_{i}, I_{j}, I_{k} \in(-1,+\infty), \frac{\partial \theta_{i}}{\partial u_{j}}$ have no sign. However, if $I_{i}, I_{j}, I_{k} \in(-1,1]$ and $\gamma_{i j k} \geq 0$, $\gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$, by (2.8), we have $\frac{\partial \theta_{i}}{\partial u_{j}} \geq 0$. Furthermore, $\frac{\partial \theta_{i}}{\partial u_{j}}=0$ if and only if $I_{k}=1$ and $I_{i}+I_{j}=0$. Especially, if $I_{i}=\cos \Phi_{i}, I_{j}=\cos \Phi_{j}, I_{k}=\cos \Phi_{k}$ with $\Phi_{i}, \Phi_{j}, \Phi_{k} \in\left[0, \frac{\pi}{2}\right]$, we have $\frac{\partial \theta_{i}}{\partial u_{j}} \geq 0$, and $\frac{\partial \theta_{i}}{\partial u_{j}}=0$ if and only if $\Phi_{k}=0$ and $\Phi_{i}=\Phi_{j}=\frac{\pi}{2}$.

Remark 6. Geometrically, the three circles at the vertices have a power center O. It is known [35,36] that $\frac{\partial \theta_{i}}{\partial u_{j}}=\frac{h_{k}}{l_{k}}$, where h_{k} is the signed distance of the power center O to the edge $\{i j\}$, which is positive if O is in the interior of the triangle $\triangle i j k$ and negative if the power center O is out of the triangle $\triangle i j k$. So under the condition $I_{i}, I_{j}, I_{k} \in(-1,1]$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$, the power center O is in the triangle $\triangle i j k$.

Lemma 2.5 shows that the matrix

$$
\Lambda_{i j k}^{E}:=\frac{\partial\left(\theta_{i}, \theta_{j}, \theta_{k}\right)}{\partial\left(u_{i}, u_{j}, u_{k}\right)}=\left(\begin{array}{ccc}
\frac{\partial \theta_{i}}{\partial u_{i}} & \frac{\partial \theta_{i}}{\partial u_{j}} & \frac{\partial \theta_{i}}{\partial u_{k}} \\
\frac{\partial \theta_{j}}{\partial u_{i}} & \frac{\partial \theta_{j}}{\partial u_{j}} & \frac{\partial \theta_{j}}{\partial u_{k}} \\
\frac{\partial \theta_{k}}{\partial u_{i}} & \frac{\partial \theta_{k}}{\partial u_{j}} & \frac{\partial \theta_{k}}{\partial u_{k}}
\end{array}\right)
$$

is symmetric on $\mathcal{U}_{i j k}^{E}$. For the matrix $\Lambda_{i j k}^{E}$, we have the following useful property.
Lemma 2.6. For any topological triangle $\triangle i j k \in F$ with inversive distance $I_{i}, I_{j}, I_{k} \in$ $(-1,+\infty)$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$, the matrix $\Lambda_{i j k}^{E}$ is negative semi-definite with rank 2 and kernel $\left\{t(1,1,1)^{T} \mid t \in \mathbb{R}\right\}$ on $\mathcal{U}_{i j k}^{E}$.

Proof. The proof is parallel to that of Lemma 6 in [22] with some modifications. By the calculations in Lemma 2.5, for a triangle $\triangle i j k \in F$, we have

$$
\begin{aligned}
\left(\begin{array}{c}
d \theta_{i} \\
d \theta_{j} \\
d \theta_{k}
\end{array}\right)= & -\frac{1}{A}\left(\begin{array}{ccc}
l_{i} & 0 & 0 \\
0 & l_{j} & 0 \\
0 & 0 & l_{k}
\end{array}\right)\left(\begin{array}{ccc}
-1 & \cos \theta_{k} & \cos \theta_{j} \\
\cos \theta_{k} & -1 & \cos \theta_{i} \\
\cos \theta_{j} & \cos \theta_{i} & -1
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
0 & \frac{l_{i}^{2}+r_{j}^{2}-r_{k}^{2}}{2 l_{i} r_{j}} & \frac{l_{i}^{2}+r_{k}^{2}-r_{j}^{2}}{2 l_{i} r_{k}} \\
\frac{l_{j}^{2}+r_{i}^{2}-r_{k}^{2}}{2 l_{j} r_{i}} & 0 & \frac{l_{j}^{2}+r_{k}^{2}-r_{i}^{2}}{2 l_{j} r_{k}} \\
\frac{l_{k}^{2}+r_{i}^{2}-r_{j}^{2}}{2 l_{k} r_{i}} & \frac{l_{k}^{2}+r_{j}^{2}-r_{i}^{2}}{2 l_{k} r_{i}} & 0
\end{array}\right)\left(\begin{array}{ccc}
r_{i} & 0 & 0 \\
0 & r_{j} & 0 \\
0 & 0 & r_{k}
\end{array}\right)\left(\begin{array}{l}
d u_{i} \\
d u_{j} \\
d u_{k}
\end{array}\right) .
\end{aligned}
$$

Write the above formula as

$$
\left(\begin{array}{c}
d \theta_{i} \\
d \theta_{j} \\
d \theta_{k}
\end{array}\right)=-\frac{1}{A} N\left(\begin{array}{c}
d u_{i} \\
d u_{j} \\
d u_{k}
\end{array}\right) .
$$

By the cosine law, we have

$$
\begin{aligned}
4 N= & \left(\begin{array}{ccc}
-2 l_{i}^{2} & l_{i}^{2}+l_{j}^{2}-l_{k}^{2} & l_{k}^{2}+l_{i}^{2}-l_{j}^{2} \\
l_{i}^{2}+l_{j}^{2}-l_{k}^{2} & -2 l_{j}^{2} & l_{j}^{2}+l_{k}^{2}-l_{i}^{2} \\
l_{k}^{2}+l_{i}^{2}-l_{j}^{2} & l_{j}^{2}+l_{k}^{2}-l_{i}^{2} & -2 l_{k}^{2}
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{l_{i}^{2}} & 0 & 0 \\
0 & \frac{1}{l_{j}^{2}} & 0 \\
0 & 0 & \frac{1}{l_{k}^{2}}
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
0 & l_{i}^{2}+r_{j}^{2}-r_{k}^{2} & l_{i}^{2}+r_{k}^{2}-r_{j}^{2} \\
l_{j}^{2}+r_{i}^{2}-r_{k}^{2} & 0 & l_{j}^{2}+r_{k}^{2}-r_{i}^{2} \\
l_{k}^{2}+r_{i}^{2}-r_{j}^{2} & l_{k}^{2}+r_{j}^{2}-r_{i}^{2} & 0
\end{array}\right)
\end{aligned}
$$

By Lemma 2.5, we have $4 N$ is symmetric. Furthermore, note that $\theta_{i}+\theta_{j}+\theta_{k}=\pi$, we have $0=\frac{\partial \theta_{i}}{\partial u_{i}}+\frac{\partial \theta_{j}}{\partial u_{i}}+\frac{\partial \theta_{k}}{\partial u_{i}}=\frac{\partial \theta_{i}}{\partial u_{i}}+\frac{\partial \theta_{i}}{\partial u_{j}}+\frac{\partial \theta_{i}}{\partial u_{k}}$. Then we can write $4 N$ as

$$
4 N=\left(\begin{array}{ccc}
-A-B & A & B \\
A & -A-C & C \\
B & C & -B-C
\end{array}\right)
$$

To prove $\Lambda_{i j k}^{E}$ is negative semi-definite, we just need to prove that $4 N$ is positive semidefinite. By direct calculations, we have

$$
\begin{aligned}
|\lambda I-4 N| & =\left|\begin{array}{ccc}
\lambda+A+B & -A & -B \\
-A & \lambda+A+C & -C \\
-B & -C & \lambda+B+C
\end{array}\right| \\
& =\lambda\left[\lambda^{2}+2(A+B+C) \lambda+3(A B+A C+B C)\right]
\end{aligned}
$$

We want to prove that the equation

$$
\lambda^{2}+2(A+B+C) \lambda+3(A B+A C+B C)=0
$$

has two positive roots. Note that for this quadratic equation, we have

$$
\Delta=4(A+B+C)^{2}-12(A B+A C+B C)=4\left(A^{2}+B^{2}+C^{2}-A B-A C-B C\right) \geq 0
$$

so we just need to prove that $A+B+C<0$ and $A B+A C+B C>0$.
By direct calculations, we have

$$
-2(A+B+C)=l_{i}^{2}+l_{j}^{2}+l_{k}^{2}+\left(l_{j}^{2}-l_{k}^{2}\right) \frac{r_{j}^{2}-r_{k}^{2}}{l_{i}^{2}}+\left(l_{k}^{2}-l_{i}^{2}\right) \frac{r_{j}^{2}-r_{i}^{2}}{l_{j}^{2}}+\left(l_{i}^{2}-l_{j}^{2}\right) \frac{r_{i}^{2}-r_{j}^{2}}{l_{k}^{2}}
$$

So $A+B+C<0$ is equivalent to

$$
l_{i}^{2}+l_{j}^{2}+l_{k}^{2}+\left(l_{j}^{2}-l_{k}^{2}\right) \frac{r_{j}^{2}-r_{k}^{2}}{l_{i}^{2}}+\left(l_{k}^{2}-l_{i}^{2}\right) \frac{r_{j}^{2}-r_{i}^{2}}{l_{j}^{2}}+\left(l_{i}^{2}-l_{j}^{2}\right) \frac{r_{i}^{2}-r_{j}^{2}}{l_{k}^{2}}>0
$$

which is equivalent to

$$
\begin{aligned}
& l_{i}^{2} l_{j}^{2} l_{k}^{2}\left(l_{i}^{2}+l_{j}^{2}+l_{k}^{2}\right)+l_{i}^{2} r_{i}^{2}\left(l_{i}^{2} l_{j}^{2}+l_{i}^{2} l_{k}^{2}-l_{j}^{4}-l_{k}^{4}\right)+l_{j}^{2} r_{j}^{2}\left(l_{i}^{2} l_{j}^{2}+l_{j}^{2} l_{k}^{2}-l_{i}^{4}-l_{k}^{4}\right) \\
& \quad+l_{k}^{2} r_{k}^{2}\left(l_{i}^{2} l_{k}^{2}+l_{j}^{2} l_{k}^{2}-l_{i}^{4}-l_{j}^{4}\right)>0
\end{aligned}
$$

Note that

$$
\begin{aligned}
& 2\left[l_{i}^{2} l_{j}^{2} l_{k}^{2}\left(l_{i}^{2}+l_{j}^{2}+l_{k}^{2}\right)+l_{i}^{2} r_{i}^{2}\left(l_{i}^{2} l_{j}^{2}+l_{i}^{2} l_{k}^{2}-l_{j}^{4}-l_{k}^{4}\right)\right. \\
&\left.\quad+l_{j}^{2} r_{j}^{2}\left(l_{i}^{2} l_{j}^{2}+l_{j}^{2} l_{k}^{2}-l_{i}^{4}-l_{k}^{4}\right)+l_{k}^{2} r_{k}^{2}\left(l_{i}^{2} l_{k}^{2}+l_{j}^{2} l_{k}^{2}-l_{i}^{4}-l_{j}^{4}\right)\right] \\
&= 2 l_{i}^{2} l_{j}^{2} l_{k}^{2}\left(l_{i}^{2}+l_{j}^{2}+l_{k}^{2}\right)+l_{i}^{2} r_{i}^{2}\left(l_{i}^{4}-l_{j}^{4}-l_{k}^{4}-2 l_{j}^{2} l_{k}^{2}\right)+l_{j}^{2} r_{j}^{2}\left(l_{j}^{4}-l_{i}^{4}-l_{k}^{4}-2 l_{i}^{2} l_{k}^{2}\right) \\
&+l_{k}^{2} r_{k}^{2}\left(l_{k}^{4}-l_{i}^{4}-l_{j}^{4}-2 l_{i}^{2} l_{j}^{2}\right)+\left(l_{i}^{2} r_{i}^{2}+l_{j}^{2} r_{j}^{2}+l_{k}^{2} r_{k}^{2}\right)\left(2 l_{i}^{2} l_{j}^{2}\right. \\
&\left.+2 l_{i}^{2} l_{k}^{2}+2 l_{j}^{2} l_{k}^{2}-l_{i}^{4}-l_{j}^{4}-l_{k}^{4}\right)
\end{aligned}
$$

By the triangle inequalities, we have

$$
2 l_{i}^{2} l_{j}^{2}+2 l_{i}^{2} l_{k}^{2}+2 l_{j}^{2} l_{k}^{2}-l_{i}^{4}-l_{j}^{4}-l_{k}^{4}>0
$$

on $\Omega_{i j k}^{E}$. So to prove $A+B+C<0$, we just need to prove

$$
\begin{aligned}
& 2 l_{i}^{2} l_{j}^{2} l_{k}^{2}\left(l_{i}^{2}+l_{j}^{2}+l_{k}^{2}\right)+l_{i}^{2} r_{i}^{2}\left(l_{i}^{4}-l_{j}^{4}-l_{k}^{4}-2 l_{j}^{2} l_{k}^{2}\right)+l_{j}^{2} r_{j}^{2}\left(l_{j}^{4}-l_{i}^{4}-l_{k}^{4}-2 l_{i}^{2} l_{k}^{2}\right) \\
& \quad+l_{k}^{2} r_{k}^{2}\left(l_{k}^{4}-l_{i}^{4}-l_{j}^{4}-2 l_{i}^{2} l_{j}^{2}\right)>0
\end{aligned}
$$

By direct calculations, we have

$$
\begin{aligned}
& 2 l_{i}^{2} l_{j}^{2} l_{k}^{2}\left(l_{i}^{2}+l_{j}^{2}+l_{k}^{2}\right)+l_{i}^{2} r_{i}^{2}\left(l_{i}^{4}-l_{j}^{4}-l_{k}^{4}-2 l_{j}^{2} l_{k}^{2}\right) \\
& \quad+l_{j}^{2} r_{j}^{2}\left(l_{j}^{4}-l_{i}^{4}-l_{k}^{4}-2 l_{i}^{2} l_{k}^{2}\right)+l_{k}^{2} r_{k}^{2}\left(l_{k}^{4}-l_{i}^{4}-l_{j}^{4}-2 l_{i}^{2} l_{j}^{2}\right) \\
&= 4\left[r_{i}^{2} r_{j}^{2} r_{k}^{2}\left(1+I_{i}^{2}+I_{j}^{2}+I_{k}^{2}+4 I_{i} I_{j} I_{k}\right)+r_{i}^{2} r_{j} r_{k}\left(I_{i}+I_{j} I_{k}\right)\left(r_{j}^{2}+r_{k}^{2}\right)\right. \\
&\left.+r_{i} r_{j}^{2} r_{k}\left(I_{j}+I_{i} I_{k}\right)\left(r_{i}^{2}+r_{k}^{2}\right)+r_{i} r_{j} r_{k}^{2}\left(I_{k}+I_{i} I_{j}\right)\left(r_{i}^{2}+r_{j}^{2}\right)\right] \\
& \geq 4 r_{i}^{2} r_{j}^{2} r_{k}^{2}\left(1+I_{i}^{2}+I_{j}^{2}+I_{k}^{2}+4 I_{i} I_{j} I_{k}+2 I_{i}+2 I_{j} I_{k}+2 I_{j}+2 I_{i} I_{k}+2 I_{k}+2 I_{i} I_{j}\right) \\
&= 4 r_{i}^{2} r_{j}^{2} r_{k}^{2}\left[\left(1+I_{i}\right)\left(1+I_{j}\right)\left(1+I_{k}\right)+\left(1+I_{i}\right) \gamma_{i j k}+\left(1+I_{j}\right) \gamma_{j i k}+\left(1+I_{k}\right) \gamma_{k i j}\right] \\
&> 0,
\end{aligned}
$$

where the condition $I_{i}, I_{j}, I_{k} \in(-1,+\infty)$ and $\gamma_{i j k}=I_{i}+I_{j} I_{k} \geq 0, \gamma_{j i k}=I_{j}+I_{i} I_{k} \geq$ $0, \gamma_{k i j}=I_{k}+I_{i} I_{j} \geq 0$ is used. So we have $A+B+C<0$.

For the term $A B+A C+B C$, by direct calculations, we have

$$
\begin{aligned}
A B & +A C+B C \\
= & \frac{1}{l_{i}^{2} l_{j}^{2} l_{k}^{2}}\left(2 l_{i}^{2} l_{j}^{2}+2 l_{i}^{2} l_{k}^{2}+2 l_{j}^{2} l_{k}^{2}-l_{i}^{4}-l_{j}^{4}-l_{k}^{4}\right) \\
& \times\left[\left(r_{i}^{2}-r_{j}^{2}\right)\left(r_{k}^{2}-r_{i}^{2}\right) l_{i}^{2}+\left(r_{i}^{2}-r_{j}^{2}\right)\left(r_{j}^{2}-r_{k}^{2}\right) l_{j}^{2}+\left(r_{k}^{2}-r_{i}^{2}\right)\left(r_{j}^{2}-r_{k}^{2}\right) l_{k}^{2}+l_{i}^{2} l_{j}^{2} l_{k}^{2}\right]
\end{aligned}
$$

So by the triangle inequalities, $A B+A C+B C>0$ is equivalent to

$$
\left(r_{i}^{2}-r_{j}^{2}\right)\left(r_{k}^{2}-r_{i}^{2}\right) l_{i}^{2}+\left(r_{i}^{2}-r_{j}^{2}\right)\left(r_{j}^{2}-r_{k}^{2}\right) l_{j}^{2}+\left(r_{k}^{2}-r_{i}^{2}\right)\left(r_{j}^{2}-r_{k}^{2}\right) l_{k}^{2}+l_{i}^{2} l_{j}^{2} l_{k}^{2}>0
$$

By direct calculations, combining with the condition $I_{i}, I_{j}, I_{k} \in(-1,+\infty)$ and $\gamma_{i j k} \geq$ $0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$, we have

$$
\begin{aligned}
\left(r_{i}^{2}-\right. & \left.r_{j}^{2}\right)\left(r_{k}^{2}-r_{i}^{2}\right) l_{i}^{2}+\left(r_{i}^{2}-r_{j}^{2}\right)\left(r_{j}^{2}-r_{k}^{2}\right) l_{j}^{2}+\left(r_{k}^{2}-r_{i}^{2}\right)\left(r_{j}^{2}-r_{k}^{2}\right) l_{k}^{2}+l_{i}^{2} l_{j}^{2} l_{k}^{2} \\
= & 8 r_{i}^{2} r_{j}^{2} r_{k}^{2}\left(1+I_{i} I_{j} I_{k}\right)+4 r_{i}^{2} r_{j} r_{k}\left(I_{i}+I_{j} I_{k}\right)\left(r_{j}^{2}+r_{k}^{2}\right) \\
\quad & +4 r_{i} r_{j}^{2} r_{k}\left(I_{j}+I_{i} I_{k}\right)\left(r_{i}^{2}+r_{k}^{2}\right)+4 r_{i} r_{j} r_{k}^{2}\left(I_{k}+I_{i} I_{j}\right)\left(r_{i}^{2}+r_{j}^{2}\right) \\
\geq & 8 r_{i}^{2} r_{j}^{2} r_{k}^{2}\left(1+I_{i} I_{j} I_{k}+I_{i}+I_{j} I_{k}+I_{j}+I_{i} I_{k}+I_{k}+I_{i} I_{j}\right) \\
= & 8 r_{i}^{2} r_{j}^{2} r_{k}^{2}\left(1+I_{i}\right)\left(1+I_{j}\right)\left(1+I_{k}\right) \\
\quad> & 0 .
\end{aligned}
$$

So we have $A B+A C+B C>0$. Then the matrix $\Lambda_{i j k}^{E}$ has a zero eigenvalue with eigenvector $(1,1,1)^{T}$ and two negative eigenvalues on $\mathcal{U}_{i j k}^{E}$.

Now suppose that for each topological face $\Delta i j k \in F$, the triangle inequalities are satisfied, i.e. $r \in \Omega^{E}$, then the weighted triangulated surface (M, \mathcal{T}, I) could be taken as gluing many triangles along the edges coherently, which produces a cone metric on the triangulated surface with singularities at V. To describe the singularity at the vertex i, the classical discrete curvature is introduced, which is defined as

$$
\begin{equation*}
K_{i}=2 \pi-\sum_{\triangle i j k \in F} \theta_{i}^{j k} \tag{2.9}
\end{equation*}
$$

where the sum is taken over all the triangles with i as one of its vertices and $\theta_{i}^{j k}$ is the inner angle of the triangle $\triangle i j k$ at the vertex i. Lemma 2.6 has the following corollary.

Corollary 2.7. Given a triangulated surface (M, \mathcal{T}) with inversive distance $I>-1$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$ for any topological triangle $\triangle i j k \in F$. Then the matrix $\Lambda^{E}=\frac{\partial\left(K_{1}, \cdots, K_{N}\right)}{\partial\left(u_{1}, \cdots, u_{N}\right)}$ is symmetric and positive semi-definite with rank $N-1$ and kernel $\{t \mathbf{1} \mid t \in \mathbb{R}\}$ on \mathcal{U}^{E} for the Euclidean background geometry.

Proof. This follows from the fact that $\Lambda^{E}=-\sum_{\triangle i j k \in F} \Lambda_{i j k}^{E}$, Lemma 2.5 and Lemma 2.6, where $\Lambda_{i j k}^{E}$ is extended by zeros to a $N \times N$ matrix so that $\Lambda_{i j k}^{E}$ acts on a vector $\left(v_{1}, \cdots, v_{N}\right)$ only on the coordinates corresponding to vertices v_{i}, v_{j} and v_{k} in the triangle $\triangle i j k$.

Remark 7. Guo [22] obtained a result paralleling to Corollary 2.7 for nonnegative inversive distance.

By Lemma 2.3 and Lemma 2.5, we can define an energy function

$$
\mathcal{E}_{i j k}(u)=\int_{u_{0}}^{u} \theta_{i} d u_{i}+\theta_{j} d u_{j}+\theta_{k} d u_{k}
$$

on $\mathcal{U}_{i j k}^{E}$. Lemma 2.6 ensures that $\mathcal{E}_{i j k}$ is locally concave on $\mathcal{U}_{i j k}^{E}$. Define the Ricci energy function as

$$
\begin{equation*}
\mathcal{E}(u)=-\sum_{\triangle i j k \in F} \mathcal{E}_{i j k}(u)+\int_{u_{0}}^{u} \sum_{i=1}^{N}\left(2 \pi-\bar{K}_{i}\right) d u_{i} \tag{2.10}
\end{equation*}
$$

then $\nabla_{u} \mathcal{E}=K-\bar{K}$ and $\mathcal{E}(u)$ is locally convex on $\mathcal{U}^{E}=\cap_{\triangle i j k \in F} \mathcal{U}_{i j k}^{E}$. The local convexity of \mathcal{E} implies the infinitesimal rigidity of K with respect to u, which is the infinitesimal rigidity of inversive distance circle packings.

2.3. Global rigidity of Euclidean inversive distance circle packings

In this subsection, we shall prove the global rigidity of inversive distance circle packings under the condition $I>-1$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$ for any triangle $\triangle i j k \in F$. We need to extend the energy function defined on \mathcal{U}^{E} to be a convex function defined on \mathbb{R}^{3}. Before going on, we recall the following definition and theorem of Luo in [27].

Definition 2.8. A differential 1-form $w=\sum_{i=1}^{n} a_{i}(x) d x^{i}$ in an open set $U \subset \mathbb{R}^{n}$ is said to be continuous if each $a_{i}(x)$ is continuous on U. A differential 1-form w is called closed if $\int_{\partial \tau} w=0$ for each triangle $\tau \subset U$.

Theorem 2.9 ([27] Corollary 2.6). Suppose $X \subset \mathbb{R}^{n}$ is an open convex set and $A \subset X$ is an open subset of X bounded by a C^{1} smooth codimension-1 submanifold in X. If $w=\sum_{i=1}^{n} a_{i}(x) d x_{i}$ is a continuous closed 1-form on A so that $F(x)=\int_{a}^{x} w$ is locally convex on A and each a_{i} can be extended continuous to X by constant functions to a function \widetilde{a}_{i} on X, then $\widetilde{F}(x)=\int_{a}^{x} \sum_{i=1}^{n} \widetilde{a}_{i}(x) d x_{i}$ is a C^{1}-smooth convex function on X extending F.

Combining Lemma 2.3, Corollary 2.4 and Theorem 2.9, we have the following useful lemma.

Lemma 2.10. For any triangle $\triangle i j k \in F$ with inversive distance $I>-1$ and

$$
\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0
$$

the energy function $\mathcal{E}_{i j k}(u)$ defined on $\mathcal{U}_{i j k}^{E}$ by (2.10) could be extended to the following function

$$
\begin{equation*}
\widetilde{\mathcal{E}}_{i j k}(u)=\int_{u_{0}}^{u} \widetilde{\theta}_{i} d u_{i}+\widetilde{\theta}_{j} d u_{j}+\widetilde{\theta}_{k} d u_{k} \tag{2.11}
\end{equation*}
$$

which is a C^{1}-smooth concave function defined on \mathbb{R}^{3} with

$$
\nabla_{u} \widetilde{\mathcal{E}}_{i j k}=\left(\widetilde{\theta}_{i}, \widetilde{\theta}_{j}, \widetilde{\theta}_{k}\right)^{T}
$$

Using Lemma 2.10, we can prove the following global rigidity of Euclidean inversive distance circle packings, which is the Euclidean part of Theorem 1.1.

Theorem 2.11. Given a triangulated surface (M, \mathcal{T}) with inversive distance $I>-1$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$ for any topological triangle $\triangle i j k \in F$. Then for any $\bar{K} \in$ $C(V)$ with $\sum_{i=1}^{N} \bar{K}_{i}=2 \pi \chi(M)$, there exists at most one Euclidean inversive distance circle packing metric r up to scaling with $K(r)=\bar{K}$.

Proof. By Lemma 2.10, the Ricci potential function $\mathcal{E}(u)$ in (2.10) could be extended from \mathcal{U}^{E} to the whole space \mathbb{R}^{N} as follows

$$
\widetilde{\mathcal{E}}(u)=-\sum_{\triangle i j k \in F} \widetilde{\mathcal{E}}_{i j k}(u)+\int_{u_{0}}^{u} \sum_{i=1}^{N}\left(2 \pi-\bar{K}_{i}\right) d u_{i} .
$$

As $\widetilde{\mathcal{E}}_{i j k}(u)$ is C^{1}-smooth concave by Lemma 2.10 and $\int_{u_{0}}^{u} \sum_{i=1}^{N}\left(2 \pi-\bar{K}_{i}\right) d u_{i}$ is a welldefined convex function on \mathbb{R}^{N}, we have $\widetilde{\mathcal{E}}(u)$ is a C^{1}-smooth convex function on \mathbb{R}^{N}. By Corollary 2.7, we have $\widetilde{\mathcal{E}}(u)$ is locally strictly convex on $\mathcal{U}^{E} \cap\left\{\sum_{i=1}^{N} u_{i}=0\right\}$. Furthermore,

$$
\nabla_{u_{i}} \widetilde{\mathcal{E}}=-\sum_{\triangle i j k \in F} \widetilde{\theta}_{i}+2 \pi-\bar{K}_{i}=\widetilde{K}_{i}-\bar{K}_{i},
$$

where $\widetilde{K}_{i}=2 \pi-\sum_{\triangle i j k \in F} \widetilde{\theta}_{i}$, which implies that $r \in \Omega^{E}$ is a metric with curvature \bar{K} if and only if the corresponding $u \in \mathcal{U}^{E}$ is a critical point of $\widetilde{\mathcal{E}}$.

If there are two different inversive distance circle packing metrics $\bar{r}_{A}, \bar{r}_{B} \in \Omega^{E}$ with the same combinatorial Curvature \bar{K}, then $\bar{u}_{A}=\ln \bar{r}_{A} \in \mathcal{U}^{E}, \bar{u}_{B}=\ln \bar{r}_{B} \in \mathcal{U}^{E}$ are both critical points of the extended Ricci potential $\widetilde{\mathcal{E}}(u)$. It follows that

$$
\nabla \widetilde{\mathcal{E}}\left(\bar{u}_{A}\right)=\nabla \widetilde{\mathcal{E}}\left(\bar{u}_{B}\right)=0
$$

Set

$$
\begin{aligned}
f(t) & =\widetilde{\mathcal{E}}\left((1-t) \bar{u}_{A}+t \bar{u}_{B}\right) \\
& =\sum_{\triangle i j k \in F} f_{i j k}(t)+\int_{u_{0}}^{(1-t) \bar{u}_{A}+t \bar{u}_{B}} \sum_{i=1}^{N}\left(2 \pi-\bar{K}_{i}\right) d u_{i}
\end{aligned}
$$

where

$$
f_{i j k}(t)=-\widetilde{\mathcal{E}}_{i j k}\left((1-t) \bar{u}_{A}+t \bar{u}_{B}\right) .
$$

Then $f(t)$ is a C^{1} convex function on $[0,1]$ and $f^{\prime}(0)=f^{\prime}(1)=0$, which implies that $f^{\prime}(t) \equiv 0$ on $[0,1]$. Note that \bar{u}_{A} belongs to the open set \mathcal{U}^{E}, so there exists $\epsilon>0$ such that $(1-t) \bar{u}_{A}+t \bar{u}_{B} \in \mathcal{U}^{E}$ for $t \in[0, \epsilon]$ and $f(t)$ is smooth on $[0, \epsilon]$.

Note that $f(t)$ is C^{1} convex on $[0,1]$ and smooth on $[0, \epsilon] . f^{\prime}(t) \equiv 0$ on $[0,1]$ implies that $f^{\prime \prime}(t) \equiv 0$ on $[0, \epsilon]$. Note that, for $t \in[0, \epsilon]$,

$$
f^{\prime \prime}(t)=\left(\bar{u}_{A}-\bar{u}_{B}\right) \Lambda^{E}\left(\bar{u}_{A}-\bar{u}_{B}\right)^{T}
$$

where $\Lambda^{E}=-\sum_{\triangle i j k \in F} \Lambda_{i j k}^{E}$. By Corollary 2.7, we have $\bar{u}_{A}-\bar{u}_{B}=c(1, \cdots, 1)$ for some constant $c \in \mathbb{R}$, which implies that $\bar{r}_{A}=e^{c / 2} \bar{r}_{B}$. So there exists at most one Euclidean inversive distance circle packing metric with combinatorial curvature \bar{K} up to scaling.

Remark 8. The proof of Theorem 2.11 is based on a variational principle, which was introduce by Colin de Verdiere [11]. Guo [22] used the variational principle to study the infinitesimal rigidity of inversive distance circle packing metrics for nonnegative inversive distances. Bobenko, Pinkall and Springborn [3] introduced a method to extend a local convex function on a nonconvex domain to a convex function and solved affirmably a conjecture of Luo [26] on the global rigidity of piecewise linear metrics. Based on the extension method, Luo [27] proved the global rigidity of inversive distance circle packing metrics for nonnegative inversive distance using the variational principle.

2.4. Rigidity of combinatorial α-curvature in Euclidean background geometry

As noted in [16], the classical definition of combinatorial curvature K_{i} with Euclidean background geometry in (2.9) has two disadvantages. The first is that the classical combinatorial curvature is scaling invariant, i.e. $K_{i}(\lambda r)=K_{i}(r)$ for any $\lambda>0$; The second is
that, as the triangulated surfaces approximate a smooth surface, the classical combinatorial curvature K_{i} could not approximate the smooth Gauss curvature, as we obviously have K_{i} tends zero. Motivated by the observations, Ge and the author introduced a new combinatorial curvature for triangulated surfaces with Thurston's circle packing metrics in [16-18]. Ge and Jiang [14] and Ge and the author [19] further generalized the curvature to inversive distance circle packing metrics. Set

$$
s_{i}(r)=\left\{\begin{array}{ll}
r_{i}, & \text { Euclidean background geometry } \tag{2.12}\\
\tanh \frac{r_{i}}{2}, & \text { hyperbolic background geometry }
\end{array} .\right.
$$

We have the following definition of combinatorial α-curvature on triangulated surfaces with inversive distance circle packing metrics.

Definition 2.12. Given a triangulated surface (M, \mathcal{T}) with inversive distance $I>-1$ and an inversive distance circle packing metric $r \in \Omega$, the combinatorial α-curvature at the vertex i is defined to be

$$
\begin{equation*}
R_{\alpha, i}=\frac{K_{i}}{s_{i}^{\alpha}} \tag{2.13}
\end{equation*}
$$

where $\alpha \in \mathbb{R}$ is a constant, K_{i} is the classical combinatorial curvature at i given by (2.9) and s_{i} is given by (2.12).

Specially, if $\alpha=0$, then $R_{\alpha, i}=K_{i}$. As the inversive distance generalizes Thurston's intersection angle, the Definition 2.12 of combinatorial α-curvature naturally generalizes the definition of combinatorial curvature in [16-18].

For the α-curvature $R_{\alpha, i}$, we have the following global rigidity of Euclidean inversive distance circle packing metrics for inversive distance in $(-1,+\infty)$, which is the Euclidean part of Theorem 1.2.

Theorem 2.13. Given a closed triangulated surface (M, \mathcal{T}) with inversive distance $I>-1$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$ for any topological triangle $\triangle i j k \in F . \bar{R}$ is a given function defined on the vertices of (M, \mathcal{T}). If $\alpha \bar{R} \equiv 0$, there exists at most one Euclidean inversive distance circle packing metric $\bar{r} \in \Omega^{E}$ with α-curvature \bar{R} up to scaling. If $\alpha \bar{R} \leq 0$ and $\alpha \bar{R} \not \equiv 0$, there exists at most one Euclidean inversive distance circle packing metric $\bar{r} \in \Omega^{E}$ with α-curvature \bar{R}.

As the proof of Theorem 2.13 is almost parallel to that of Theorem 2.11 using the energy function

$$
\widetilde{\mathcal{E}}_{\alpha}(u)=-\sum_{\triangle i j k \in F} \widetilde{\mathcal{E}}_{i j k}(u)+\int_{u_{0}}^{u} \sum_{i=1}^{N}\left(2 \pi-\bar{R}_{i} r_{i}^{\alpha}\right) d u_{i}
$$

we omit the details of the proof.

3. Hyperbolic inversive distance circle packing metrics

3.1. Admissible space of hyperbolic inversive distance circle packing metrics for a single triangle

In this subsection, we investigate the admissible space of hyperbolic inversive distance circle packings for a single topological triangle $\triangle i j k \in F$ with inversive distance $I_{i}, I_{j}, I_{k} \in(-1,+\infty)$ and

$$
\begin{equation*}
\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0 \tag{3.1}
\end{equation*}
$$

Suppose $\triangle i j k$ is a topological triangle in F. In the hyperbolic background geometry, the length l_{i} of the edge $\{j k\}$ is defined by

$$
\begin{equation*}
l_{i}=\cosh ^{-1}\left(\cosh r_{j} \cosh r_{k}+I_{i} \sinh r_{j} \sinh r_{k}\right) \tag{3.2}
\end{equation*}
$$

where I_{i} is the hyperbolic inversive distance between the two circles attached to the vertices j and k. In order that the edge lengths l_{i}, l_{j}, l_{k} satisfy the triangle inequalities, there are some restrictions on the radius vectors. So we first study the triangle inequalities for the hyperbolic background geometry. To simplify the notations, we use the following simplification

$$
C_{i}=\cosh r_{i}, S_{i}=\sinh r_{i}
$$

when there is no confusion. We have the following lemma on the hyperbolic triangle inequalities.

Lemma 3.1. Suppose (M, \mathcal{T}, I) is a weighted triangulated surface with hyperbolic inversive distance $I>-1$ and $\triangle i j k$ is a topological triangle in F. Suppose l_{i}, l_{j}, l_{k} are the edge lengths defined by the hyperbolic inversive distance I_{i}, I_{j}, I_{k} using the radius r_{i}, r_{j}, r_{k} by (3.2), then the triangle inequalities are satisfied if and only if

$$
\begin{align*}
& 2 S_{i}^{2} S_{j}^{2} S_{k}^{2}\left(1+I_{i} I_{j} I_{k}\right)+S_{i}^{2} S_{j}^{2}\left(1-I_{k}^{2}\right)+S_{i}^{2} S_{k}^{2}\left(1-I_{j}^{2}\right)+S_{j}^{2} S_{k}^{2}\left(1-I_{i}^{2}\right) \tag{3.3}\\
& \quad+2 C_{j} C_{k} S_{i}^{2} S_{j} S_{k} \gamma_{i j k}+2 C_{i} C_{k} S_{i} S_{j}^{2} S_{k} \gamma_{j i k}+2 C_{i} C_{j} S_{i} S_{j} S_{k}^{2} \gamma_{k i j}>0
\end{align*}
$$

Proof. In order that $l_{i}+l_{j}>l_{k}, l_{i}+l_{k}>l_{j}, l_{j}+l_{k}>l_{i}$, we just need

$$
\sinh \frac{l_{i}+l_{j}-l_{k}}{2}>0, \sinh \frac{l_{i}+l_{k}-l_{j}}{2}>0, \sinh \frac{l_{j}+l_{k}-l_{i}}{2}>0
$$

Note that $l_{i}>0, l_{j}>0, l_{k}>0$, this is equivalent to

$$
\sinh \frac{l_{i}+l_{j}+l_{k}}{2} \sinh \frac{l_{i}+l_{j}-l_{k}}{2} \sinh \frac{l_{i}+l_{k}-l_{j}}{2} \sinh \frac{l_{j}+l_{k}-l_{i}}{2}>0 .
$$

By direct calculations, we have

$$
\begin{aligned}
& 4 \sinh \frac{l_{i}+l_{j}+l_{k}}{2} \sinh \frac{l_{i}+l_{j}-l_{k}}{2} \sinh \frac{l_{i}+l_{k}-l_{j}}{2} \sinh \frac{l_{j}+l_{k}-l_{i}}{2} \\
&=\left(\cosh \left(l_{i}+l_{j}\right)-\cosh l_{k}\right)\left(\cosh l_{k}-\cosh \left(l_{i}-l_{j}\right)\right) \\
&=\left(\cosh ^{2} l_{i}-1\right)\left(\cosh l_{j}^{2}-1\right)-\left(\cosh l_{i} \cosh l_{j}-\cosh l_{k}\right)^{2} \\
&=\left(2 C_{i}^{2} C_{j}^{2} C_{k}^{2}-C_{i}^{2} C_{j}^{2}-C_{i}^{2} C_{k}^{2}-C_{j}^{2} C_{k}^{2}+1\right)-\left(S_{i}^{2} S_{j}^{2} I_{k}^{2}+S_{i}^{2} S_{k}^{2} I_{j}^{2}+S_{j}^{2} S_{k}^{2} I_{i}^{2}\right) \\
&+2 C_{j} C_{k} S_{i}^{2} S_{j} S_{k} I_{i}+2 C_{i} C_{k} S_{i} S_{j}^{2} S_{k} I_{j}+2 C_{i} C_{j} S_{i} S_{j} S_{k}^{2} I_{k} \\
&+2 C_{i} C_{j} S_{i} S_{j} S_{k}^{2} I_{i} I_{j}+2 C_{i} C_{k} S_{i} S_{j}^{2} S_{k} I_{i} I_{k}+2 C_{j} C_{k} S_{i}^{2} S_{j} S_{k} I_{j} I_{k}+2 S_{i}^{2} S_{j}^{2} S_{k}^{2} I_{i} I_{j} I_{k},
\end{aligned}
$$

where the definition of edge length (3.2) is used in the last line. Note that

$$
C_{i}^{2}=\cosh ^{2} r_{i}=\sinh ^{2} r_{i}+1=S_{i}^{2}+1
$$

we have

$$
\begin{aligned}
& 4 \sinh \frac{l_{i}+l_{j}+l_{k}}{2} \sinh \frac{l_{i}+l_{j}-l_{k}}{2} \sinh \frac{l_{i}+l_{k}-l_{j}}{2} \sinh \frac{l_{j}+l_{k}-l_{i}}{2} \\
& = \\
& \quad 2 S_{i}^{2} S_{j}^{2} S_{k}^{2}\left(1+I_{i} I_{j} I_{k}\right)+S_{i}^{2} S_{j}^{2}\left(1-I_{k}^{2}\right)+S_{i}^{2} S_{k}^{2}\left(1-I_{j}^{2}\right)+S_{j}^{2} S_{k}^{2}\left(1-I_{i}^{2}\right) \\
& \\
& \quad+2 C_{j} C_{k} S_{i}^{2} S_{j} S_{k}\left(I_{i}+I_{j} I_{k}\right)+2 C_{i} C_{k} S_{i} S_{j}^{2} S_{k}\left(I_{j}+I_{i} I_{k}\right)+2 C_{i} C_{j} S_{i} S_{j} S_{k}^{2}\left(I_{k}+I_{i} I_{j}\right)
\end{aligned}
$$

This completes the proof of the lemma.
Denote the admissible space of hyperbolic inversive distance circle packing metrics for a triangle $\triangle i j k \in F$ as $\Omega_{i j k}^{H}$, i.e.

$$
\Omega_{i j k}^{H}:=\left\{\left(r_{i}, r_{j}, r_{k}\right) \in \mathbb{R}_{>0}^{3} \mid l_{i}+l_{j}>l_{k}, l_{i}+l_{k}>l_{j}, l_{j}+l_{k}>l_{i}\right\} .
$$

By Lemma 3.1, we have the following direct corollary, which was obtained by Zhou [37].
Corollary 3.2. Suppose $\triangle i j k$ is a topological triangle in F with hyperbolic inversive distance $I_{i}, I_{j}, I_{k} \in(-1,1]$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$, then $\Omega_{i j k}^{H}=\mathbb{R}_{>0}^{3}$, i.e. the triangle inequalities are satisfied for all radius vectors in $\mathbb{R}_{>0}^{3}$.

Specially, if $I_{i}=\cos \Phi_{i}, I_{j}=\cos \Phi_{j}, I_{k}=\cos \Phi_{k}$ with $\Phi_{i}, \Phi_{j}, \Phi_{k} \in\left[0, \frac{\pi}{2}\right]$, the triangle inequalities are satisfied for all radius vectors, which was obtained by Thurston in [34].

By Lemma 3.1, we can also get the following useful result.
Corollary 3.3. Suppose $\triangle i j k$ is a topological triangle in F with hyperbolic inversive distance $I>-1$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$. Suppose the edge lengths l_{i}, l_{j}, l_{k} are generated by the radius vector (s, s, s) with $s \in \mathbb{R}_{>0}$. If $s \in \mathbb{R}_{>0}$ satisfies

$$
\begin{equation*}
\sinh ^{2} s>\frac{I_{i}^{2}+I_{j}^{2}+I_{k}^{2}-3}{2\left(1+I_{i}\right)\left(1+I_{j}\right)\left(1+I_{j}\right)}, \tag{3.4}
\end{equation*}
$$

we have $(s, s, s) \in \Omega_{i j k}^{H}$.
Proof. By Lemma 3.1, for $s>0,(s, s, s) \in \Omega_{i j k}^{H}$ if and only if

$$
2 \cosh ^{2} s\left(\gamma_{i j k}+\gamma_{j i k}+\gamma_{k i j}\right)+2 \sinh ^{2} s\left(1+I_{i} I_{j} I_{k}\right)+3-I_{i}^{2}-I_{j}^{2}-I_{k}^{2}>0 .
$$

By $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$, we have $\gamma_{i j k}+\gamma_{j i k}+\gamma_{k i j} \geq 0$. Then

$$
\begin{aligned}
& 2 \cosh ^{2} s\left(\gamma_{i j k}+\gamma_{j i k}+\gamma_{k i j}\right)+2 \sinh ^{2} s\left(1+I_{i} I_{j} I_{k}\right)+3-I_{i}^{2}-I_{j}^{2}-I_{k}^{2} \\
& \quad \geq 2 \sinh ^{2} s\left(1+I_{i} I_{j} I_{k}+\gamma_{i j k}+\gamma_{j i k}+\gamma_{k i j}\right)+3-I_{i}^{2}-I_{j}^{2}-I_{k}^{2} \\
& \quad=2 \sinh ^{2} s\left(1+I_{i}\right)\left(1+I_{j}\right)\left(1+I_{j}\right)+3-I_{i}^{2}-I_{j}^{2}-I_{k}^{2} .
\end{aligned}
$$

Note that $I_{i}, I_{j}, I_{k} \in(-1,+\infty)$, to ensure the triangle inequalities, we just need

$$
\sinh ^{2} s>\frac{I_{i}^{2}+I_{j}^{2}+I_{k}^{2}-3}{2\left(1+I_{i}\right)\left(1+I_{j}\right)\left(1+I_{j}\right)} .
$$

Guo [22] obtained a result similar to Corollary 3.3 for $I \geq 0$.
By Lemma 3.1, $\Omega_{i j k}^{H} \neq \mathbb{R}_{>0}^{3}$ for general $I_{i}, I_{j}, I_{k} \in(-1,+\infty)$. Furthermore, $\Omega_{i j k}^{H}$ is not convex. Similar to the case of Euclidean background geometry, we have the following lemma on the structure of $\Omega_{i j k}^{H}$.

Lemma 3.4. Suppose $\triangle i j k$ is a topological triangle in F with hyperbolic inversive distance $I>-1$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$, then the admissible space $\Omega_{i j k}^{H}$ is simply connected. Furthermore, for each connected component V of $\mathbb{R}_{>0}^{3} \backslash \Omega_{i j k}^{H}$, the intersection $V \cap \bar{\Omega}_{i j k}^{H}$ is a connected component of $\bar{\Omega}_{i j k}^{H} \backslash \Omega_{i j k}^{H}$, on which θ_{i} is a constant function.

Proof. Define the map

$$
\begin{aligned}
F: \mathbb{R}_{>0}^{3} & \rightarrow \mathbb{R}_{>0}^{3} \\
\left(r_{i}, r_{j}, r_{k}\right) & \mapsto\left(F_{i}, F_{j}, F_{k}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& F_{i}=\cosh r_{j} \cosh r_{k}+I_{i} \sinh r_{j} \sinh r_{k}, \\
& F_{j}=\cosh r_{i} \cosh r_{k}+I_{j} \sinh r_{i} \sinh r_{k}, \\
& F_{k}=\cosh r_{i} \cosh r_{j}+I_{k} \sinh r_{i} \sinh r_{j}
\end{aligned}
$$

By direct calculations, we have

$$
\frac{\partial\left(F_{i}, F_{j}, F_{k}\right)}{\partial\left(r_{i}, r_{j}, r_{k}\right)}=\left(\begin{array}{ccc}
0 & S_{j} C_{k}+I_{i} C_{j} S_{k} & C_{j} S_{k}+I_{i} S_{j} C_{k} \\
S_{i} C_{k}+I_{j} C_{i} S_{k} & 0 & C_{i} S_{k}+I_{j} S_{i} C_{k} \\
S_{i} C_{j}+I_{k} C_{i} S_{j} & C_{i} S_{j}+I_{k} S_{i} C_{j} & 0
\end{array}\right)
$$

and

$$
\begin{aligned}
\left|\frac{\partial\left(F_{i}, F_{j}, F_{k}\right)}{\partial\left(r_{i}, r_{j}, r_{k}\right)}\right|= & 2 C_{i} C_{j} C_{k} S_{i} S_{j} S_{k}\left(1+I_{i} I_{j} I_{k}\right)+\gamma_{k i j} C_{k} S_{k}\left(C_{i}^{2} S_{j}^{2}+C_{j}^{2} S_{i}^{2}\right) \\
& +\gamma_{j i k} C_{j} S_{j}\left(C_{k}^{2} S_{i}^{2}+C_{i}^{2} S_{k}^{2}\right)+\gamma_{i j k} C_{i} S_{i}\left(C_{k}^{2} S_{j}^{2}+C_{j}^{2} S_{k}^{2}\right)
\end{aligned}
$$

By $I>-1$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$, we have

$$
\begin{aligned}
\left|\frac{\partial\left(F_{i}, F_{j}, F_{k}\right)}{\partial\left(r_{i}, r_{j}, r_{k}\right)}\right| & \geq 2 C_{i} C_{j} C_{k} S_{i} S_{j} S_{k}\left(1+I_{i} I_{j} I_{k}+\gamma_{i j k}+\gamma_{j i k}+\gamma_{k i j}\right) \\
& =2 C_{i} C_{j} C_{k} S_{i} S_{j} S_{k}\left(1+I_{i}\right)\left(1+I_{j}\right)\left(1+I_{k}\right)>0
\end{aligned}
$$

which implies that F is globally injective. In fact, if there are two different $r=\left(r_{i}, r_{j}, r_{k}\right)$ and $r^{\prime}=\left(r_{i}^{\prime}, r_{j}^{\prime}, r_{k}^{\prime}\right)$ satisfying $F(r)=F\left(r^{\prime}\right)$, then we have

$$
0=F(r)-F\left(r^{\prime}\right)=\left.\frac{\partial\left(F_{i}, F_{j}, F_{k}\right)}{\partial\left(r_{i}, r_{j}, r_{k}\right)}\right|_{r+\theta\left(r-r^{\prime}\right)} \cdot\left(r-r^{\prime}\right)^{T}, 0<\theta<1
$$

which implies $r=r^{\prime}$ by the nondegeneracy of $\frac{\partial\left(F_{i}, F_{j}, F_{k}\right)}{\partial\left(r_{i}, r_{j}, r_{k}\right)}$ on $\mathbb{R}_{>0}^{3}$. So the map F is injective on $\mathbb{R}_{>0}^{3}$.

Note that F has the following property

$$
0<\left(1+I_{i}\right) \sinh r_{j} \sinh r_{k} \leq F_{i} \leq\left(1+\left|I_{i}\right|\right) \cosh \left(r_{i}+r_{j}\right)
$$

which implies that F is a proper map. By the invariance of domain theorem, we have $F: \mathbb{R}_{>0}^{3} \rightarrow F\left(\mathbb{R}_{>0}^{3}\right)$ is a diffeomorphism.

Define

$$
\begin{aligned}
G: \mathbb{R}_{>0}^{3} & \rightarrow \mathbb{R}_{>0}^{3} \\
\left(l_{i}, l_{j}, l_{k}\right) & \mapsto\left(\cosh l_{i}, \cosh l_{j}, \cosh l_{k}\right)
\end{aligned}
$$

then $G: \mathbb{R}_{>0}^{3} \rightarrow G\left(\mathbb{R}_{>0}^{3}\right)$ is a diffeomorphis and $H=G^{-1} \circ F$ is the map defining the edge length by the inversive distance which maps $\left(r_{i}, r_{j}, r_{k}\right)$ to $\left(l_{i}, l_{j}, l_{k}\right)$.

Set

$$
\mathcal{L}=\left\{\left(l_{i}, l_{j}, l_{k}\right) \mid l_{i}+l_{j}>l_{k}, l_{i}+l_{k}>l_{j}, l_{j}+l_{k}>l_{i}\right\}
$$

then $\Omega_{i j k}^{H}=H^{-1}\left(H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}\right)$. To prove that $\Omega_{i j k}^{H}$ is simply connected, we just need to prove that $H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}$ is simply connected.

Note that \mathcal{L} is a cone in $\mathbb{R}_{>0}^{3}$ bounded by three planes

$$
\begin{aligned}
L_{i} & =\left\{\left(l_{i}, l_{j}, l_{k}\right) \in \mathbb{R}_{>0}^{3} \mid l_{i}=l_{j}+l_{k}\right\}, \\
L_{j} & =\left\{\left(l_{i}, l_{j}, l_{k}\right) \in \mathbb{R}_{>0}^{3} \mid l_{j}=l_{i}+l_{k}\right\}, \\
L_{k} & =\left\{\left(l_{i}, l_{j}, l_{k}\right) \in \mathbb{R}_{>0}^{3} \mid l_{k}=l_{i}+l_{j}\right\} .
\end{aligned}
$$

By the fact that H is a diffeomorphism between $\mathbb{R}_{>0}^{3}$ and $H\left(\mathbb{R}_{>0}^{3}\right), H\left(\mathbb{R}_{>0}^{3}\right)$ is the set bounded by three surfaces

$$
\begin{aligned}
\Sigma_{i} & =\left\{\left(l_{i}, l_{j}, l_{k}\right) \in \mathbb{R}_{>0}^{3} \mid \cosh l_{i}=\cosh l_{j} \cosh l_{k}+I_{i} \sinh l_{j} \sinh l_{k}\right\}, \\
\Sigma_{j} & =\left\{\left(l_{i}, l_{j}, l_{k}\right) \in \mathbb{R}_{>0}^{3} \mid \cosh l_{j}=\cosh l_{i} \cosh l_{k}+I_{j} \sinh l_{i} \sinh l_{k}\right\}, \\
\Sigma_{k} & =\left\{\left(l_{i}, l_{j}, l_{k}\right) \in \mathbb{R}_{>0}^{3} \mid \cosh l_{k}=\cosh l_{i} \cosh l_{j}+I_{k} \sinh l_{i} \sinh l_{j}\right\} .
\end{aligned}
$$

In fact, if $r_{i}=0$, then $l_{j}=r_{k}, l_{k}=r_{j}$ and $\cosh l_{i}=\cosh r_{j} \cosh r_{k}+I_{i} \sinh r_{j} \sinh r_{k}=$ $\cosh l_{j} \cosh l_{k}+I_{i} \sinh l_{j} \sinh l_{k}$. Σ_{i} is in fact the image of $r_{i}=0$ under H. By the diffeomorphism of $H, \Sigma_{i}, \Sigma_{j}, \Sigma_{k}$ are mutually disjoint. Furthermore, if $I_{i} \in(-1,1]$, we have $\cosh \left(l_{j}-l_{k}\right)<\cosh l_{i} \leq \cosh \left(l_{j}+l_{k}\right)$ on Σ_{i}. And if $I_{i} \in(1,+\infty)$, we have $\cosh l_{i}>\cosh \left(l_{j}+l_{k}\right)$ on Σ_{i}. This implies that $\Sigma_{i} \subset \overline{\mathcal{L}}$ if $I_{i} \in(-1,1]$ and $\Sigma_{i} \cap \mathcal{L}=\emptyset$ if $I_{i} \in(1,+\infty)$. Similar results hold for Σ_{j} and Σ_{k}. To prove that $H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}$ is simply connected, we just need to consider the following cases by the symmetry between i, j, k.

If $I_{i}, I_{j}, I_{k} \in(-1,1], H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}$ is bounded by $\Sigma_{i}, \Sigma_{j}, \Sigma_{k}$ and $H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}=H\left(\mathbb{R}_{>0}^{3}\right)$.
If $I_{i}, I_{j} \in(-1,1]$ and $I_{k} \in(1,+\infty), H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}$ is bounded by Σ_{i}, Σ_{j} and L_{k}.
If $I_{i} \in(-1,1]$ and $I_{j}, I_{k} \in(1,+\infty), H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}$ is bounded by Σ_{i}, L_{j} and L_{k}.
If $I_{i}, I_{j}, I_{k} \in(1,+\infty), H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}$ is bounded by L_{i}, L_{j} and L_{k}. In this case, $H\left(\mathbb{R}_{>0}^{3}\right) \cap$ $\mathcal{L}=\mathcal{L}$.

For any case, $H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}$ is a simply connected subset of $\mathbb{R}_{>0}^{3}$. By the fact that H is a diffeomorphism between $\mathbb{R}_{>0}^{3}$ and $H\left(\mathbb{R}_{>0}^{3}\right)$, we have the admissible space $\Omega_{i j k}^{H}=$ $H^{-1}\left(H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}\right)$ is simply connected.

By the analysis above, if $H\left(\mathbb{R}_{>0}^{3}\right) \subset \mathcal{L}$, then $\Omega_{i j k}^{H}=H^{-1}\left(H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}\right)=\mathbb{R}_{>0}^{3}$. If $H\left(\mathbb{R}_{>0}^{3}\right) \backslash \mathcal{L} \neq \emptyset$, then $\Omega_{i j k}^{H}$ is a proper subset of $\mathbb{R}_{>0}^{3}$. If $I_{i}>1$, the boundary component $\Sigma_{i}=\left\{\left(l_{i}, l_{j}, l_{k}\right) \in \mathbb{R}_{>0}^{3} \mid \cosh l_{i}=\cosh l_{j} \cosh l_{k}+I_{i} \sinh l_{j} \sinh l_{k}\right\}$ is out of the set \mathcal{L}. By the fact that $\Omega_{i j k}^{H}=H^{-1}\left(H\left(\mathbb{R}_{>0}^{3}\right) \cap \mathcal{L}\right)$ and $H: \mathbb{R}_{>0}^{3} \rightarrow H\left(\mathbb{R}_{>0}^{3}\right)$ is a diffeomorphism, we have $H^{-1}\left(L_{i}\right)$ is a connected boundary component of $\Omega_{i j k}^{H}$, on which $\theta_{i}=\pi, \theta_{j}=\theta_{k}=0$. This completes the proof of the lemma.

Corollary 3.5. For a topological triangle $\triangle i j k \in F$ with inversive distance $I>-1$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$, the functions $\theta_{i}, \theta_{j}, \theta_{k}$ defined on $\Omega_{i j k}^{H}$ could be continuously extended by constant to $\widetilde{\theta}_{i}, \widetilde{\theta}_{j}, \widetilde{\theta}_{k}$ defined on $\mathbb{R}_{>0}^{3}$.

3.2. Infinitesimal rigidity of hyperbolic inversive distance circle packings

Set $u_{i}=\ln \tanh \frac{r_{i}}{2}$, then we have $\mathcal{U}_{i j k}^{H}:=u\left(\Omega_{i j k}^{H}\right)$ is a simply connected subset of $\mathbb{R}_{>0}^{3}$. If $\left(r_{i}, r_{j}, r_{k}\right) \in \Omega_{i j k}^{H}, l_{i}, l_{j}, l_{k}$ form a hyperbolic triangle. Denote the inner angle at the vertex i as θ_{i}. We have the following lemma.

Lemma 3.6. For any triangle $\triangle i j k \in F$, we have

$$
\begin{equation*}
\frac{\partial \theta_{i}}{\partial u_{j}}=\frac{\partial \theta_{j}}{\partial u_{i}}=\frac{1}{A \sinh ^{2} l_{k}}\left[C_{k} S_{i}^{2} S_{j}^{2}\left(1-I_{k}^{2}\right)+C_{i} S_{i} S_{j}^{2} S_{k} \gamma_{j i k}+C_{j} S_{i}^{2} S_{j} S_{k} \gamma_{i j k}\right] \tag{3.5}
\end{equation*}
$$

on $\mathcal{U}_{i j k}^{H}$, where $A=\sinh l_{j} \sinh l_{k} \sin \theta_{i}$.
Proof. By cosine law, we have $\cosh l_{i}=\cosh l_{j} \cosh l_{k}-\sinh l_{j} \sinh l_{k} \cos \theta_{i}$. Taking the derivative with respect to l_{i} gives

$$
\frac{\partial \theta_{i}}{\partial l_{i}}=\frac{\sinh l_{i}}{A}
$$

where $A=\sinh l_{j} \sinh l_{k} \sin \theta_{i}$. Similarly, taking the derivative with respect to l_{j} and l_{k} and using the cosine law again, we have

$$
\frac{\partial \theta_{i}}{\partial l_{j}}=\frac{-\sinh l_{i} \cos \theta_{k}}{A}, \frac{\partial \theta_{i}}{\partial l_{k}}=\frac{-\sinh l_{i} \cos \theta_{j}}{A} .
$$

By the definition of edge length l_{i}, l_{j} and l_{k}, we have

$$
\begin{aligned}
\frac{\partial l_{i}}{\partial r_{j}} & =\frac{\sinh r_{j} \cosh r_{k}+I_{i} \cosh r_{j} \sinh r_{k}}{\sinh l_{i}}, \frac{\partial l_{j}}{\partial r_{j}}=0 \\
\frac{\partial l_{k}}{\partial r_{j}} & =\frac{\sinh r_{j} \cosh r_{i}+I_{k} \cosh r_{j} \sinh r_{i}}{\sinh l_{k}}
\end{aligned}
$$

Then

$$
\begin{aligned}
A \frac{\partial \theta_{i}}{\partial u_{j}}= & A \sinh r_{j} \frac{\partial \theta_{i}}{\partial r_{j}} \\
= & A \sinh r_{j}\left(\frac{\partial \theta_{i}}{\partial l_{i}} \frac{\partial l_{i}}{\partial r_{j}}+\frac{\partial \theta_{i}}{\partial l_{k}} \frac{\partial l_{k}}{\partial r_{j}}\right) \\
= & \sinh r_{j}\left(\sinh r_{j} \cosh r_{k}+I_{i} \cosh r_{j} \sinh r_{k}\right) \\
& -\frac{1}{\sinh l_{k}} \sinh r_{j} \sinh l_{i} \cos \theta_{j}\left(\sinh r_{j} \cosh r_{i}+I_{k} \cosh r_{j} \sinh r_{i}\right),
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\sinh ^{2} l_{k} A \frac{\partial \theta_{i}}{\partial u_{j}}= & \left(\cosh ^{2} l_{k}-1\right) \sinh r_{j}\left(\sinh r_{j} \cosh r_{k}+I_{i} \cosh r_{j} \sinh r_{k}\right) \\
& +\left(\cosh l_{j}-\cosh l_{i} \cosh l_{k}\right) \sinh r_{j}\left(\sinh r_{j} \cosh r_{i}+I_{k} \cosh r_{j} \sinh r_{i}\right)
\end{aligned}
$$

Note that

$$
\begin{aligned}
& \sinh r_{j}\left(\sinh r_{j} \cosh r_{k}+I_{i} \cosh r_{j} \sinh r_{k}\right)=\cosh r_{j} \cosh l_{i}-\cosh r_{k}, \\
& \sinh r_{j}\left(\sinh r_{j} \cosh r_{i}+I_{k} \cosh r_{j} \sinh r_{i}\right)=\cosh r_{j} \cosh l_{k}-\cosh r_{i} .
\end{aligned}
$$

Using the definition of edge lengths l_{i}, l_{j} and l_{k}, by direct calculations, we have

$$
\frac{\partial \theta_{i}}{\partial u_{j}}=\frac{1}{A \sinh ^{2} l_{k}}\left[C_{k} S_{i}^{2} S_{j}^{2}\left(1-I_{k}^{2}\right)+C_{i} S_{i} S_{j}^{2} S_{k} \gamma_{j i k}+C_{j} S_{i}^{2} S_{j} S_{k} \gamma_{i j k}\right]
$$

which implies also $\frac{\partial \theta_{i}}{\partial u_{j}}=\frac{\partial \theta_{j}}{\partial u_{i}}$.

Remark 9. For $I_{i}, I_{j}, I_{k} \in(-1,1]$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$, by Lemma 3.6, we have $\frac{\partial \theta_{i}}{\partial u_{j}} \geq 0$, and $\frac{\partial \theta_{i}}{\partial u_{j}}=0$ if and only if $I_{k}=1$ and $I_{i}+I_{j}=0$. Especially, if $I_{i}=\cos \Phi_{i}, I_{j}=\cos \Phi_{j}, I_{k}=\cos \Phi_{k}$ with $\Phi_{i}, \Phi_{j}, \Phi_{k} \in\left[0, \frac{\pi}{2}\right]$, we have $\frac{\partial \theta_{i}}{\partial u_{j}} \geq 0$, and $\frac{\partial \theta_{i}}{\partial u_{j}}=0$ if and only if $\Phi_{k}=0$ and $\Phi_{i}=\Phi_{j}=\frac{\pi}{2}$.

Lemma 3.6 shows that the matrix

$$
\Lambda_{i j k}^{H}=\frac{\partial\left(\theta_{i}, \theta_{j}, \theta_{k}\right)}{\partial\left(u_{i}, u_{j}, u_{k}\right)}=\left(\begin{array}{ccc}
\frac{\partial \theta_{i}}{\partial u_{i}} & \frac{\partial \theta_{i}}{\partial u_{j}} & \frac{\partial \theta_{i}}{\partial u_{k}} \\
\frac{\partial \theta_{j}}{\partial u_{i}} & \frac{\partial \theta_{j}}{\partial u_{j}} & \frac{\partial \theta_{j}}{\partial u_{k}} \\
\frac{\partial \theta_{k}}{\partial u_{i}} & \frac{\partial \theta_{k}}{\partial u_{j}} & \frac{\partial \theta_{k}}{\partial u_{k}}
\end{array}\right)
$$

is symmetric on $\mathcal{U}_{i j k}^{H}$. Similar to the case of Euclidean background geometry, we have the following lemma for the matrix $\Lambda_{i j k}^{H}$.

Lemma 3.7. In the hyperbolic background geometry, for any triangle $\triangle i j k \in F$ with $I_{i}, I_{j}, I_{k}>-1$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$, the matrix $\Lambda_{i j k}^{H}$ is negative definite on $\mathcal{U}_{i j k}^{H}$ 。

Proof. The proof is parallel to that of Lemma 12 in [22] with some modifications. By the proof of Lemma 3.6, we have

$$
\begin{align*}
\left(\begin{array}{c}
d \theta_{i} \\
d \theta_{j} \\
d \theta_{k}
\end{array}\right)= & -\frac{1}{A}\left(\begin{array}{ccc}
\sinh l_{i} & 0 & 0 \\
0 & \sinh l_{j} & 0 \\
0 & 0 & \sinh l_{k}
\end{array}\right)\left(\begin{array}{ccc}
-1 & \cos \theta_{k} & \cos \theta_{j} \\
\cos \theta_{k} & -1 & \cos \theta_{i} \\
\cos \theta_{j} & \cos \theta_{i} & -1
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
\frac{1}{\sinh l_{i}} & 0 & 0 \\
0 & \frac{1}{\sinh l_{j}} & 0 \\
0 & 0 & \frac{1}{\sinh l_{k}}
\end{array}\right)\left(\begin{array}{ccc}
0 & R_{i j k} & R_{i k j} \\
R_{j i k} & 0 & R_{j k i} \\
R_{k i j} & R_{k j i} & 0
\end{array}\right) \tag{3.6}\\
& \times\left(\begin{array}{ccc}
\sinh r_{i} & 0 & 0 \\
0 & \sinh r_{j} & 0 \\
0 & 0 & \sinh r_{k}
\end{array}\right)\left(\begin{array}{c}
d u_{i} \\
d u_{j} \\
d u_{k}
\end{array}\right)
\end{align*}
$$

where
$A=\sinh l_{i} \sinh l_{j} \sin \theta_{k}, R_{i j k}=\sinh r_{j} \cosh r_{k}+I_{i} \cosh r_{j} \sinh r_{k}$.
Write the equation (3.6) as

$$
\left(\begin{array}{c}
d \theta_{i} \tag{3.7}\\
d \theta_{j} \\
d \theta_{k}
\end{array}\right)=-\frac{1}{A} \mathcal{J}\left(\begin{array}{l}
d u_{i} \\
d u_{j} \\
d u_{k}
\end{array}\right)
$$

and denote the second and fourth matrix in the product of the right hand side of (3.6) as Θ and \mathcal{R} respectively. Then $\Lambda_{i j k}^{H}$ is negative definite is equivalent to \mathcal{J} is positive definite.

We first prove that $\operatorname{det} \mathcal{J}$ is positive. To prove this, we just need to prove that $\operatorname{det}(\Theta)$ and $\operatorname{det} \mathcal{R}$ are positive. By direct calculations, we have

$$
\begin{aligned}
\operatorname{det} \Theta & =-1+\cos \theta_{i}^{2}+\cos \theta_{j}^{2}+\cos \theta_{k}^{2}+2 \cos \theta_{i} \cos \theta_{j} \cos \theta_{k} \\
& =4 \cos \frac{\theta_{i}+\theta_{j}-\theta_{k}}{2} \cos \frac{\theta_{i}-\theta_{j}+\theta_{k}}{2} \cos \frac{\theta_{i}+\theta_{j}+\theta_{k}}{2} \cos \frac{\theta_{i}-\theta_{j}-\theta_{k}}{2} .
\end{aligned}
$$

By the Gauss-Bonnet formula for hyperbolic triangles, we have

$$
\theta_{i}+\theta_{j}+\theta_{k}=\pi-\operatorname{Area}(\triangle i j k)
$$

which implies $\frac{\theta_{i}+\theta_{j}+\theta_{k}}{2}, \frac{\theta_{i}+\theta_{j}-\theta_{k}}{2}, \frac{\theta_{i}-\theta_{j}+\theta_{k}}{2}, \frac{\theta_{i}-\theta_{j}-\theta_{k}}{2} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then we have $\operatorname{det} \Theta>0$.
By direct calculations, we have

$$
\begin{aligned}
\operatorname{det} \mathcal{R}= & R_{i j k} R_{j k i} R_{k i j}+R_{i k j} R_{j i k} R_{k j i} \\
= & 2 C_{i} C_{j} C_{k} S_{i} S_{j} S_{k}\left(1+I_{i} I_{j} I_{k}\right)+C_{k} S_{k}\left(I_{k}+I_{i} I_{j}\right)\left(C_{i}^{2} S_{j}^{2}+C_{j}^{2} S_{i}^{2}\right) \\
& +C_{j} S_{j}\left(I_{j}+I_{i} I_{k}\right)\left(C_{k}^{2} S_{i}^{2}+C_{i}^{2} S_{k}^{2}\right)+C_{i} S_{i}\left(I_{i}+I_{j} I_{k}\right)\left(C_{k}^{2} S_{j}^{2}+C_{j}^{2} S_{k}^{2}\right) \\
\geq & 2 C_{i} C_{j} C_{k} S_{i} S_{j} S_{k}\left(1+I_{i} I_{j} I_{k}+I_{k}+I_{i} I_{j}+I_{j}+I_{i} I_{k}+I_{i}+I_{j} I_{k}\right) \\
= & 2 C_{i} C_{j} C_{k} S_{i} S_{j} S_{k}\left(1+I_{i}\right)\left(1+I_{j}\right)\left(1+I_{k}\right)>0,
\end{aligned}
$$

where the conditions $I_{i}, I_{j}, I_{k} \in(-1,+\infty)$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$ are used. Then we have $\operatorname{det} \mathcal{J}>0$ on $\mathcal{U}_{i j k}^{H}$.

By the connectivity of $\Omega_{i j k}^{H}$ and the continuity of the eigenvalues of $\Lambda_{i j k}^{H}$, we just need to prove \mathcal{J} is positive definite for some radius vector in $\Omega_{i j k}^{H}$. By Corollary 3.3, for sufficient large s, the radius vector $(s, s, s) \in \Omega_{i j k}^{H}$. We shall prove \mathcal{J} is positive definite for some s large enough. At (s, s, s), we have

$$
\begin{aligned}
\mathcal{J}= & \sinh ^{2} s \cosh s\left(\begin{array}{ccc}
\sinh l_{i} & 0 & 0 \\
0 & \sinh l_{j} & 0 \\
0 & 0 & \sinh l_{k}
\end{array}\right)\left(\begin{array}{ccc}
-1 & \cos \theta_{k} & \cos \theta_{j} \\
\cos \theta_{k} & -1 & \cos \theta_{i} \\
\cos \theta_{j} & \cos \theta_{i} & -1
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
\frac{1}{\sinh l_{i}} & 0 & 0 \\
0 & \frac{1}{\sinh l_{j}} & 0 \\
0 & 0 & \frac{1}{\sinh l_{k}}
\end{array}\right)\left(\begin{array}{ccc}
0 & 1+I_{i} & 1+I_{i} \\
1+I_{j} & 0 & 1+I_{j} \\
1+I_{k} & 1+I_{k} & 0
\end{array}\right) .
\end{aligned}
$$

Write the above equation as $\mathcal{J}=\sinh ^{2} s \cosh s N$. Then we just need to prove that the leading 1×1 and 2×2 minor of N is positive for some s large enough.

For the leading 1×1 minor, we have

$$
\begin{align*}
N_{11}= & \frac{\sinh l_{i} \cos \theta_{k}}{\sinh l_{j}}\left(1+I_{j}\right)+\frac{\sinh l_{i} \cos \theta_{j}}{\sinh l_{k}}\left(1+I_{k}\right) \\
= & \frac{1}{\sinh ^{2} l_{j} \sinh ^{2} l_{k}}\left[\left(1+I_{j}\right)\left(\cosh l_{i} \cosh l_{j}-\cosh l_{k}\right)\left(\cosh ^{2} l_{k}-1\right)\right. \\
& \left.+\left(1+I_{k}\right)\left(\cosh l_{i} \cosh l_{k}-\cosh l_{j}\right)\left(\cosh ^{2} l_{j}-1\right)\right] \\
= & \frac{\left(1+I_{j}\right)\left(1+I_{k}\right) \sinh ^{4} s}{\sinh ^{2} l_{j} \sinh ^{2} l_{k}}\left[2\left(1+I_{i}\right)\left(1+I_{j}\right)\left(1+I_{k}\right) \sinh ^{4} s\right. \\
& \left.+\left(6+6 I_{i}+3 I_{j}+3 I_{k}+3 I_{i} I_{j}+3 I_{i} I_{k}+2 I_{j} I_{k}-I_{j}^{2}-I_{k}^{2}\right) \sinh ^{2} s+4\left(1+I_{i}\right)\right] \tag{3.8}
\end{align*}
$$

Note that, by Corollary 3.3, under the condition

$$
2 \sinh ^{2} s\left(1+I_{i}\right)\left(1+I_{j}\right)\left(1+I_{j}\right)>I_{i}^{2}+I_{j}^{2}+I_{k}^{2}-3
$$

the triangle inequalities are satisfied, which implies

$$
\begin{aligned}
& \frac{\sinh l_{i} \cos \theta_{k}}{\sinh l_{j}}\left(1+I_{j}\right)+\frac{\sinh l_{i} \cos \theta_{j}}{\sinh l_{k}}\left(1+I_{k}\right) \\
& \quad \geq \frac{\left(1+I_{j}\right)\left(1+I_{k}\right) \sinh ^{4} s}{\sinh ^{2} l_{j} \sinh ^{2} l_{k}} \\
& \quad \times\left[\left(3+6 I_{i}+3 I_{j}+3 I_{k}+3 I_{i} I_{j}+3 I_{i} I_{k}+2 I_{j} I_{k}+I_{i}^{2}\right) \sinh ^{2} s+4\left(1+I_{i}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{\left(1+I_{j}\right)\left(1+I_{k}\right) \sinh ^{4} s}{\sinh ^{2} l_{j} \sinh ^{2} l_{k}} \\
& \times\left[\left(\left(1+I_{i}\right)\left(3+I_{i}\right)+2 \gamma_{i j k}+3 \gamma_{j i k}+3 \gamma_{k i j}\right) \sinh ^{2} s+4\left(1+I_{i}\right)\right]
\end{aligned}
$$

Therefor the leading 1×1 minor of N is positive by the condition $I_{i}, I_{j}, I_{k} \in(-1,+\infty)$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$.

Similar to (3.8), we have

$$
\begin{align*}
N_{22}= & \frac{\sinh l_{j} \cos \theta_{k}}{\sinh l_{i}}\left(1+I_{i}\right)+\frac{\sinh l_{j} \cos \theta_{i}}{\sinh l_{k}}\left(1+I_{k}\right) \\
= & \frac{\left(1+I_{i}\right)\left(1+I_{k}\right) \sinh ^{4} s}{\sinh ^{2} l_{i} \sinh ^{2} l_{k}}\left[2\left(1+I_{i}\right)\left(1+I_{j}\right)\left(1+I_{k}\right) \sinh ^{4} s\right. \\
& \left.+\left(6+3 I_{i}+6 I_{j}+3 I_{k}+3 I_{i} I_{j}+2 I_{i} I_{k}+3 I_{j} I_{k}-I_{i}^{2}-I_{k}^{2}\right) \sinh ^{2} s+4\left(1+I_{j}\right)\right] \tag{3.9}
\end{align*}
$$

Note that

$$
\begin{align*}
N_{12} N_{21}= & {\left[-\left(1+I_{i}\right)+\frac{\sinh l_{i} \cos \theta_{j}}{\sinh l_{k}}\left(1+I_{k}\right)\right]\left[-\left(1+I_{j}\right)+\frac{\sinh l_{j} \cos \theta_{i}}{\sinh l_{k}}\left(1+I_{k}\right)\right] } \\
= & \frac{1}{\sinh ^{4} l_{k}}\left[\left(1+I_{k}\right) \sinh l_{k} \sinh l_{i} \cos \theta_{j}-\left(1+I_{i}\right) \sinh ^{2} l_{k}\right] \\
& \times\left[\left(1+I_{k}\right) \sinh l_{k} \sinh l_{j} \cos \theta_{i}-\left(1+I_{j}\right) \sinh ^{2} l_{k}\right] \\
= & \frac{1}{\sinh ^{4} l_{k}}\left[\left(1+I_{k}\right)\left(\cosh l_{i} \cosh l_{k}-\cosh l_{j}\right)-\left(1+I_{i}\right) \sinh ^{2} l_{k}\right] \tag{3.10}\\
& \times\left[\left(1+I_{k}\right)\left(\cosh l_{j} \cosh l_{k}-\cosh l_{i}\right)-\left(1+I_{j}\right) \sinh ^{2} l_{k}\right] \\
= & \frac{\left(1+I_{k}\right)^{4} \sinh ^{4} s}{\sinh ^{4} l_{k}}\left(1+I_{i}+I_{j}-I_{k}\right)^{2},
\end{align*}
$$

where $\cosh l_{i}=\cosh ^{2} s+I_{i} \sinh ^{2} s=1+\left(1+I_{i}\right) \sinh ^{2} s$ is used in the last line.
Combining (3.8), (3.9), (3.10), we have the leading 2×2 minor of N is

$$
\begin{aligned}
& \left.\frac{(1+}{} \quad I_{i}\right)\left(1+I_{j}\right)\left(1+I_{k}\right)^{2} \sinh ^{8} s \\
& \sinh ^{2} l_{i} \sinh ^{2} l_{j} \sinh ^{4} l_{k} \\
& \quad \times\left[2\left(1+I_{i}\right)\left(1+I_{j}\right)\left(1+I_{k}\right) \sinh ^{4} s\right. \\
& \left.\quad+\left(6+6 I_{i}+3 I_{j}+3 I_{k}+3 I_{i} I_{j}+3 I_{i} I_{k}+2 I_{j} I_{k}-I_{j}^{2}-I_{k}^{2}\right) \sinh ^{2} s+4\left(1+I_{i}\right)\right] \\
& \quad \times\left[2\left(1+I_{i}\right)\left(1+I_{j}\right)\left(1+I_{k}\right) \sinh ^{4} s\right. \\
& \left.\quad+\left(6+3 I_{i}+6 I_{j}+3 I_{k}+3 I_{i} I_{j}+2 I_{i} I_{k}+3 I_{j} I_{k}-I_{i}^{2}-I_{k}^{2}\right) \sinh ^{2} s+4\left(1+I_{j}\right)\right] \\
& \quad-\frac{\left(1+I_{k}\right)^{4} \sinh ^{4} s}{\sinh ^{4} l_{k}}\left(1+I_{i}+I_{j}-I_{k}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{\left(1+I_{k}\right)^{2} \sinh ^{4} s}{\sinh ^{2} l_{i} \sinh ^{2} l_{j} \sinh ^{4} l_{k}} \\
& \times\left\{(1 + I _ { i }) (1 + I _ { j }) \operatorname { s i n h } ^ { 4 } s \left[4\left(1+I_{i}\right)^{2}\left(1+I_{j}\right)^{2}\left(1+I_{k}\right)^{2} \sinh ^{8} s\right.\right. \\
& \left.+A \sinh ^{6} s+B \sinh ^{4} s+C \sinh ^{2} s+D\right] \\
& \left.-\left(1+I_{k}\right)^{2}\left(1+I_{i}+I_{j}-I_{k}\right)^{2} \sinh ^{2} l_{i} \sinh ^{2} l_{j}\right\},
\end{aligned}
$$

where A, B, C, D are polynomials of I_{i}, I_{j}, I_{k}. Note that $\sinh ^{2} l_{i}=\cosh ^{2} l_{i}-1=(1+$ $\left.I_{i}\right) \sinh ^{2} s\left[2+\left(1+I_{i}\right) \sinh ^{2} s\right]$, we have the leading 2×2 minor of N is

$$
\begin{aligned}
& \frac{\left(1+I_{i}\right)\left(1+I_{j}\right)\left(1+I_{k}\right)^{2} \sinh ^{8} s}{\sinh ^{2} l_{i} \sinh ^{2} l_{j} \sinh ^{4} l_{k}} \\
& \quad \times\left\{4\left(1+I_{i}\right)^{2}\left(1+I_{j}\right)^{2}\left(1+I_{k}\right)^{2} \sinh ^{8} s+A \sinh ^{6} s+B \sinh ^{4} s+C \sinh ^{2} s+D\right. \\
& \left.\quad-\left(1+I_{k}\right)^{2}\left(1+I_{i}+I_{j}-I_{k}\right)^{2}\left[2+\left(1+I_{i}\right) \sinh ^{2} s\right]\left[2+\left(1+I_{j}\right) \sinh ^{2} s\right]\right\} .
\end{aligned}
$$

The term in the last two lines is a polynomial in $\sinh s$ with positive leading coefficient $4\left(1+I_{i}\right)^{2}\left(1+I_{j}\right)^{2}\left(1+I_{k}\right)^{2}$, so for s large enough, the leading 2×2 minor of N is positive.

Combining with the fact that the determinant of \mathcal{J} is positive, we have the matrix $\Lambda_{i j k}^{H}$ is negative definite. This completes the proof.

Remark 10. The matrix \mathcal{J} in (3.7) is the same matrix M in the proof of Lemma 12 of Guo [22], where M was proved to be positive definite for nonnegative inversive distance. Here we produces another proof of the fact.

Remark 11. If $I_{i}, I_{j}, I_{k} \in(-1,1]$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$, the negative definiteness of $\Lambda_{i j k}^{H}$ was proved by Zhou [37] using the same method as that of Lemma 3.7. In this case, the negative definiteness of $\Lambda_{i j k}^{H}$ could be proved alternatively. In fact, by direct but tedious calculations, we have

$$
\begin{align*}
\frac{\partial \theta_{i}}{\partial u_{i}} & +\frac{\partial \theta_{j}}{\partial u_{i}}+\frac{\partial \theta_{k}}{\partial u_{i}} \\
= & \frac{1}{A\left(\cosh l_{j}+1\right)\left(\cosh l_{k}+1\right)} . \\
& \left\{C_{i} S_{i}^{2} S_{j}^{2}\left(I_{k}^{2}-1\right)+S_{i}^{2} S_{j}^{2} C_{k}\left(I_{k}^{2}-1\right)-S_{k}\left(C_{j} S_{i}^{2} S_{j} \gamma_{i j k}+C_{i} S_{i} S_{j}^{2} \gamma_{j i k}\right)\right. \tag{3.11}\\
& +C_{k} S_{k}\left[-S_{i}^{2} S_{j}\left(2 C_{i} C_{j}+1\right) \gamma_{i j k}-\left(C_{i}^{2}+S_{i}^{2}\right) S_{i} S_{j}^{2} \gamma_{j i k}\right] \\
& +S_{k}^{2}\left[-2 C_{i} S_{i}^{2} S_{j}^{2}\left(I_{i} I_{j} I_{k}+1\right)-S_{i} S_{j} \gamma_{k i j}\left(C_{j} S_{i}^{2}+C_{i}\right)+C_{i} S_{i}^{2}\left(I_{j}^{2}-1\right)\right. \\
& \left.\left.+C_{j} S_{i}^{2}\left(I_{j}^{2}-1\right)\right]\right\} .
\end{align*}
$$

In general, $\frac{\partial \theta_{i}}{\partial u_{i}}+\frac{\partial \theta_{j}}{\partial u_{i}}+\frac{\partial \theta_{k}}{\partial u_{i}}$ have no sign. However, if $I_{i}, I_{j}, I_{k} \in(-1,1]$ and $\gamma_{i j k} \geq 0$, $\gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$, we have $\frac{\partial \theta_{i}}{\partial u_{i}}+\frac{\partial \theta_{j}}{\partial u_{i}}+\frac{\partial \theta_{k}}{\partial u_{i}}<0$ by (3.11). Combining with Remark 9 , this implies $-\Lambda_{i j k}^{H}$ is diagonal dominant and then $\Lambda_{i j k}^{H}$ is negative definite.

Set

$$
\Lambda^{H}=\frac{\partial\left(K_{1}, \cdots, K_{N}\right)}{\partial\left(u_{1}, \cdots, u_{N}\right)}=-\sum_{\triangle i j k \in F} \Lambda_{i j k}^{H},
$$

where $\Lambda_{i j k}^{H}$ is extended by zeros to a $N \times N$ matrix so that $\Lambda_{i j k}^{H}$ acts on a vector $\left(v_{1}, \cdots, v_{N}\right)$ only on the coordinates corresponding to vertices v_{i}, v_{j} and v_{k} in the triangle $\triangle i j k$. Lemma 3.6 and Lemma 3.7 have the following direct corollary.

Corollary 3.8. Given a triangulated surface (M, \mathcal{T}, I) with inversive distance $I>-1$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$ for any topological triangle $\triangle i j k \in F$. Then the matrix $\Lambda^{H}=\frac{\partial\left(K_{1}, \cdots, K_{N}\right)}{\partial\left(u_{1}, \cdots, u_{N}\right)}$ is symmetric and positive definite on $\mathcal{U}^{H}:=\cap_{\triangle i j k \in T} \mathcal{U}_{i j k}^{H}$ for the hyperbolic background geometry.

Guo [22] once obtained a result paralleling to Corollary 3.8 for $I \geq 0$.
By Lemma 3.4 and Lemma 3.6, we can define an energy function

$$
\mathcal{E}_{i j k}(u)=\int_{u_{0}}^{u} \theta_{i} d u_{i}+\theta_{j} d u_{j}+\theta_{k} d u_{k}
$$

on $\mathcal{U}_{i j k}^{H}=\ln \left(\Omega_{i j k}^{H}\right)$. Lemma 3.7 ensures that $\mathcal{E}_{i j k}$ is locally concave on $\mathcal{U}_{i j k}^{H}$. Define the Ricci potential as

$$
\begin{equation*}
\mathcal{E}(u)=-\sum_{\triangle i j k \in T} \mathcal{E}_{i j k}(u)+\int_{u_{0}}^{u} \sum_{i=1}^{N}\left(2 \pi-\bar{K}_{i}\right) d u_{i} \tag{3.12}
\end{equation*}
$$

then $\nabla_{u} \mathcal{E}=K-\bar{K}$ and $\mathcal{E}(u)$ is locally convex on $\mathcal{U}^{H}=\cap_{\triangle i j k \in T} \mathcal{U}_{i j k}^{H}$. The local convexity of \mathcal{E} implies the infinitesimal rigidity of K with respect to u, which is the infinitesimal rigidity of hyperbolic inversive distance circle packings.

3.3. Global rigidity of hyperbolic inversive distance circle packings

In this subsection, we shall prove the global rigidity of hyperbolic inversive distance circle packings under the condition $I \in(-1,+\infty)$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$ for any triangle $\triangle i j k \in F$.

By Corollary 3.5, the functions $\theta_{i}, \theta_{j}, \theta_{k}$ defined on $\mathcal{U}_{i j k}^{H}$ could be continuously extended by constants to $\widetilde{\theta}_{i}, \widetilde{\theta}_{j}, \widetilde{\theta}_{k}$ defined on \mathbb{R}^{3}. Using Theorem 2.9, we have the following extension.

Lemma 3.9. In the hyperbolic background geometry, for any triangle $\triangle i j k \in F$ with $I_{i}, I_{j}, I_{k}>-1$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$, the function $\mathcal{E}_{i j k}(u)$ defined on $\mathcal{U}_{i j k}^{H}$ could be extended to the following function

$$
\begin{equation*}
\widetilde{\mathcal{E}}_{i j k}(u)=\int_{u_{0}}^{u} \widetilde{\theta}_{i} d u_{i}+\widetilde{\theta}_{j} d u_{j}+\widetilde{\theta}_{k} d u_{k}, \tag{3.13}
\end{equation*}
$$

which is a C^{1}-smooth concave function defined on \mathbb{R}^{3} with

$$
\nabla_{u} \widetilde{\mathcal{E}}_{i j k}=\left(\widetilde{\theta}_{i}, \widetilde{\theta}_{j}, \widetilde{\theta}_{k}\right)^{T}
$$

Using Lemma 3.9, we can prove the following global rigidity of hyperbolic inversive distance circle packing metrics, which is the hyperbolic part of Theorem 1.1.

Theorem 3.10. Given a triangulated surface (M, \mathcal{T}) with inversive distance $I \in(-1,+\infty)$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$ for any topological triangle $\triangle i j k \in F$. Then for any $\bar{K} \in C(V)$, there is at most one hyperbolic inversive distance circle packing metric r with $K(r)=\bar{K}$.

Proof. The Ricci energy function $\mathcal{E}(u)$ in (3.12) could be extended from \mathcal{U}^{H} to the whole space \mathbb{R}^{N}, where \mathcal{U}^{H} is the image of Ω^{H} under the map $u_{i}=\ln \tanh \frac{r_{i}}{2}$. In fact, the function $\mathcal{E}_{i j k}(u)$ defined on $\mathcal{U}_{i j k}^{H}$ could be extended to $\widetilde{\mathcal{E}}_{i j k}(u)$ defined by (3.13) on \mathbb{R}^{N} by Lemma 3.9 and the second term $\int_{u_{0}}^{u} \sum_{i=1}^{N}\left(2 \pi-\bar{K}_{i}\right) d u_{i}$ in (3.12) can be naturally defined on \mathbb{R}^{N}, then we have the following extension $\widetilde{\mathcal{E}}(u)$ defined on \mathbb{R}^{N} of the Ricci potential function $\mathcal{E}(u)$

$$
\widetilde{\mathcal{E}}(u)=-\sum_{\triangle i j k \in F} \widetilde{\mathcal{E}}_{i j k}(u)+\int_{u_{0}}^{u} \sum_{i=1}^{N}\left(2 \pi-\bar{K}_{i}\right) d u_{i} .
$$

As $\widetilde{\mathcal{E}}_{i j k}(u)$ is C^{1}-smooth concave by Lemma 3.9 and $\int_{u_{0}}^{u} \sum_{i=1}^{N}\left(2 \pi-\bar{K}_{i}\right) d u_{i}$ is a welldefined convex function on \mathbb{R}^{N}, we have $\widetilde{\mathcal{E}}(u)$ is a C^{1}-smooth convex function on \mathbb{R}^{N}. Furthermore,

$$
\nabla_{u_{i}} \widetilde{F}=-\sum_{\triangle i j k \in F} \widetilde{\theta}_{i}+2 \pi-\bar{K}_{i}=\widetilde{K}_{i}-\bar{K}_{i},
$$

where $\widetilde{K}_{i}=2 \pi-\sum_{\triangle i j k \in F} \widetilde{\theta}_{i}$.
If there are two different inversive distance circle packing metrics $\bar{r}_{A}, \bar{r}_{B} \in \Omega^{H}$ with the same combinatorial Curvature \bar{K}, then $\bar{u}_{A}=\ln \tanh \frac{\bar{r}_{A}}{2} \in \mathcal{U}^{H}, \bar{u}_{B}=\ln \tanh \frac{\bar{r}_{B}}{2} \in \mathcal{U}^{H}$ are both critical points of the extended Ricci potential $\widetilde{\mathcal{E}}(u)$. It follows that

$$
\nabla \widetilde{\mathcal{E}}\left(\bar{u}_{A}\right)=\nabla \widetilde{\mathcal{E}}\left(\bar{u}_{B}\right)=0
$$

$$
\begin{aligned}
f(t) & =\widetilde{\mathcal{E}}\left((1-t) \bar{u}_{A}+t \bar{u}_{B}\right) \\
& =\sum_{\triangle i j k \in F} f_{i j k}(t)+\int_{u_{0}}^{(1-t) \bar{u}_{A}+t \bar{u}_{B}} \sum_{i=1}^{N}\left(2 \pi-\bar{K}_{i}\right) d u_{i},
\end{aligned}
$$

where

$$
f_{i j k}(t)=-\widetilde{\mathcal{E}}_{i j k}\left((1-t) \bar{u}_{A}+t \bar{u}_{B}\right) .
$$

Then $f(t)$ is a C^{1} convex function on $[0,1]$ and $f^{\prime}(0)=f^{\prime}(1)=0$, which implies $f^{\prime}(t) \equiv$ 0 on $[0,1]$. Note that \bar{u}_{A} belongs to the open set \mathcal{U}^{H}, there exists $\epsilon>0$ such that $(1-t) \bar{u}_{A}+t \bar{u}_{B} \in \mathcal{U}^{H}$ for $t \in[0, \epsilon]$. So $f(t)$ is smooth on $[0, \epsilon]$.

Note that $f(t)$ is C^{1} convex on $[0,1]$ and smooth on $[0, \epsilon] . f^{\prime}(t) \equiv 0$ on $[0,1]$ implies that $f^{\prime \prime}(t) \equiv 0$ on $[0, \epsilon]$. Note that, for $t \in[0, \epsilon]$,

$$
f^{\prime \prime}(t)=\left(\bar{u}_{A}-\bar{u}_{B}\right) \Lambda^{H}\left(\bar{u}_{A}-\bar{u}_{B}\right)^{T}
$$

where $\Lambda^{H}=-\sum_{\triangle i j k \in F} \Lambda_{i j k}^{H}$. By Corollary 3.8, we have Λ^{H} is positive definite and then $\bar{u}_{A}-\bar{u}_{B}=0$, which implies that $\bar{r}_{A}=\bar{r}_{B}$. So there exists at most one hyperbolic inversive distance circle packing metric with combinatorial curvature \bar{K}.

3.4. Rigidity of combinatorial α-curvature in hyperbolic background geometry

We have the following global rigidity for α-curvature with respect to hyperbolic inversive distance circle packing metrics for inversive distance in $(-1,+\infty)$, which is the hyperbolic part of Theorem 1.2.

Theorem 3.11. Given a closed triangulated surface (M, \mathcal{T}) with inversive distance $I>-1$ and $\gamma_{i j k} \geq 0, \gamma_{j i k} \geq 0, \gamma_{k i j} \geq 0$ for any topological triangle $\triangle i j k \in F, \bar{R}$ is a given function defined on the vertices of (M, \mathcal{T}). If $\alpha \bar{R} \leq 0$, there exists at most one hyperbolic inversive distance circle packing metric $\bar{r} \in \Omega^{H}$ with combinatorial α-curvature \bar{R}.

As the proof of Theorem 3.11 is almost parallel to that of Theorem 3.10 using the energy function

$$
\widetilde{\mathcal{E}}_{\alpha}(u)=-\sum_{\triangle i j k \in F} \widetilde{\mathcal{E}}_{i j k}(u)+\int_{u_{0}}^{u} \sum_{i=1}^{N}\left(2 \pi-\bar{R}_{i} \tanh ^{\alpha} \frac{r_{i}}{2}\right) d u_{i},
$$

we omit the details of the proof here. Theorem 3.11 is an generalization of Theorem 3.10. Specially, if $\alpha=0$, Theorem 3.11 is reduced to Theorem 3.10.

Acknowledgments

The research of the author is supported by Hubei Provincial Natural Science Foundation of China under grant No. 2017CFB681, Fundamental Research Funds for the Central Universities under grant No. $2042018 \mathrm{kf0} 246$ and National Natural Science Foundation of China under grant No. 61772379 and No. 11301402. Part of this work was done during the visit of Department of Mathematical Sciences, Tsinghua University. The author thanks Professor Daguang Chen for his invitation and thanks Professor Feng Luo, Professor Xianfeng Gu, Professor Huabin Ge, Professor Ze Zhou, Dr. Wai Yeung Lam and Xiang Zhu for communications on related topics. The author thanks the referees for their careful reading of the manuscript and for their nice suggestions which greatly improves the exposition of the paper.

References

[1] E.M. Andreev, Convex polyhedra in Lobachevsky spaces, Mat. Sb. (N.S.) 81 (123) (1970) 445-478 (Russian).
[2] E.M. Andreev, Convex polyhedra of finite volume in Lobachevsky space, Mat. Sb. (N.S.) 83 (125) (1970) 256-260 (Russian).
[3] A. Bobenko, U. Pinkall, B. Springborn, Discrete conformal maps and ideal hyperbolic polyhedra, Geom. Topol. 19 (4) (2015) 2155-2215.
[4] J.C. Bowers, P.L. Bowers, Ma-Schlenker c-Octahedra in the 2-Sphere, arXiv:1607.00453 [math.DG].
[5] J.C. Bowers, P.L. Bowers, K. Pratt, Rigidity of circle polyhedra in the 2-sphere and of hyperideal polyhedra in hyperbolic 3-space, arXiv:1703.09338v2 [math.MG].
[6] P.L. Bowers, M.K. Hurdal, Planar conformal mappings of piecewise flat surfaces, in: Visualization and Mathematics III, in: Math. Vis., Springer, Berlin, 2003, pp. 3-34.
[7] P.L. Bowers, K. Stephenson, Uniformizing dessins and Belyĭ maps via circle packing, Mem. Amer. Math. Soc. 170 (805) (2004).
[8] W. Brägger, Kreispackungen und Triangulierungen, Enseign. Math. 38 (1992) 201-217.
[9] B. Chow, F. Luo, Combinatorial Ricci flows on surfaces, J. Differential Geom. 63 (2003) 97-129.
[10] J. Dai, X.D. Gu, F. Luo, Variational Principles for Discrete Surfaces, Advanced Lectures in Mathematics (ALM), vol. 4, International Press/Higher Education Press, Somerville, MA/Beijing, 2008.
[11] Y.C. de Verdière, Un principe variationnel pour les empilements de cercles, Invent. Math. 104 (3) (1991) 655-669.
[12] H. Ge, W. Jiang, On the deformation of inversive distance circle packings, arXiv:1604.08317 [math. GT].
[13] H. Ge, W. Jiang, On the deformation of inversive distance circle packings, II, J. Funct. Anal. 272 (9) (2017) 3573-3595.
[14] H. Ge, W. Jiang, On the deformation of inversive distance circle packings, III, J. Funct. Anal. 272 (9) (2017) 3596-3609.
[15] H. Ge, X. Xu, Discrete quasi-Einstein metrics and combinatorial curvature flows in 3-dimension, Adv. Math. 267 (2014) 470-497.
[16] H. Ge, X. Xu, A combinatorial Yamabe problem on two and three dimensional manifolds, arXiv: 1504.05814 v 2 [math.DG].
[17] H. Ge, X. Xu, α-curvatures and α-flows on low dimensional triangulated manifolds, Calc. Var. Partial Differential Equations 55 (1) (2016) 12.
[18] H. Ge, X. Xu, A discrete Ricci flow on surfaces with hyperbolic background geometry, Int. Math. Res. Not. (11) (2017) 3510-3527.
[19] H. Ge, X. Xu, On a combinatorial curvature for surfaces with inversive distance circle packing metrics, J. Funct. Anal. (2018), https://doi.org/10.1016/j.jfa.2018.04.008.
[20] D. Glickenstein, Discrete conformal variations and scalar curvature on piecewise flat two and three dimensional manifolds, J. Differential Geom. 87 (2011) 201-238.
[21] R. Guo, A note on circle patterns on surfaces, Geom. Dedicata 125 (2007) 175-190.
[22] R. Guo, Local rigidity of inversive distance circle packing, Trans. Amer. Math. Soc. 363 (2011) 4757-4776.
[23] R. Guo, F. Luo, Rigidity of polyhedral surfaces. II, Geom. Topol. 13 (3) (2009) 1265-1312.
[24] M.K. Hurdal, K. Stephenson, Discrete conformal methods for cortical brain flattening, NeuroImage 45 (2009) S86-S98.
[25] G. Leibon, Characterizing the Delaunay decompositions of compact hyperbolic surface, Geom. Topol. 6 (2002) 361-391.
[26] F. Luo, Combinatorial Yamabe flow on surfaces, Commun. Contemp. Math. 6 (5) (2004) 765-780.
[27] F. Luo, Rigidity of polyhedral surfaces, III, Geom. Topol. 15 (2011) 2299-2319.
[28] F. Luo, Rigidity of polyhedral surfaces, I, J. Differential Geom. 96 (2) (2014) 241-302.
[29] J. Ma, J. Schlenker, Non-rigidity of spherical inversive distance circle packings, Discrete Comput. Geom. 47 (3) (2012) 610-617.
[30] A. Marden, B. Rodin, On Thurston's formulation and proof of Andreev's theorem, in: Computational Methods and Function Theory, Valparaíso, 1989, in: Lecture Notes in Math., vol. 1435, Springer, Berlin, 1990, pp. 103-116.
[31] I. Rivin, Euclidean structures of simplicial surfaces and hyperbolic volume, Ann. of Math. 139 (1994) 553-580.
[32] B. Springborn, A variational principle for weighted Delaunay triangulations and hyperideal polyhedra, J. Differential Geom. 78 (2) (2008) 333-367.
[33] K. Stephenson, Introduction to Circle Packing: The Theory of Discrete Analytic Functions, Cambridge Univ. Press, 2005.
[34] W. Thurston, Geometry and Topology of 3-Manifolds, Princeton Lecture Notes, 1976, http://www. msri.org/publications/books/gt3m.
[35] W. Zeng, X. Gu, Ricci Flow for Shape Analysis and Surface Registration, Springer Briefs in Mathematics, Springer, New York, 2013.
[36] M. Zhang, R. Guo, W. Zeng, F. Luo, S.T. Yau, X. Gu, The unified discrete surface Ricci flow, Graph. Models 76 (2014) 321-339.
[37] Z. Zhou, Circle patterns, topological degrees and deformation theory, arXiv:1703.01768 [math.GT].

[^0]: E-mail address: xuxu2@whu.edu.cn.

