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Inversive distance circle packing metric was introduced by P 
Bowers and K Stephenson [7] as a generalization of Thurston’s 
circle packing metric [34]. They conjectured that the inversive 
distance circle packings are rigid. For nonnegative inversive 
distance, Guo [22] proved the infinitesimal rigidity and then 
Luo [27] proved the global rigidity. In this paper, based on an 
observation of Zhou [37], we prove this conjecture for inversive 
distance in (−1, +∞) by variational principles. We also study 
the global rigidity of a combinatorial curvature introduced in 
[14,16,19] with respect to the inversive distance circle packing 
metrics where the inversive distance is in (−1, +∞).

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

In his work on constructing hyperbolic structure on 3-manifolds, Thurston ([34], Chap-
ter 13) introduced the notion of circle packing metric on triangulated surfaces with 
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non-obtuse intersection angles. The requirement of prescribed intersection angles cor-
responds to the fact that the intersection angle of two circles is invariant under the 
Möbius transformations. For triangulated surfaces with Thurston’s circle packing met-
rics, there are singularities at the vertices. The classical combinatorial curvature Ki is 
introduced to describe the singularity at the vertex vi, which is defined as the angle 
deficit at vi. Thurston’s work generalized Andreev’s work on circle packing metrics on 
a sphere [1,2] and gave a complete characterization of the space of the classical com-
binatorial curvature. As a corollary, he obtained the combinatorial-topological obstacle 
for the existence of a constant curvature circle packing with non-obtuse intersection an-
gles, which could be written as combinatorial-topological inequalities. Zhou [37] recently 
generalized Andreev–Thurston Theorem to the case that the intersection angles are in 
[0, π). Chow and Luo [9] introduced a combinatorial Ricci flow, a combinatorial analogue 
of the smooth surface Ricci flow, for triangulated surfaces with Thurston’s circle packing 
metrics and established the equivalence between the existence of a constant curvature 
circle packing metric and the convergence of the combinatorial Ricci flow.

Inversive distance circle packing on triangulated surfaces was introduced by Bow-
ers and Stephenson [7] as a generalization of Thurston’s circle packing. Different from 
Thurston’s circle packing, adjacent circles in inversive distance circle packing are allowed 
to be disjoint and the relative distance of the adjacent circles is measured by the inversive 
distance, which is a generalization of intersection angle. See Bowers–Hurdal [6], Stephen-
son [33] and Guo [22] for more information. The inversive distance circle packings have 
practical applications in medical imaging and computer graphics, see [24,35,36] for ex-
ample. Bowers and Stephenson [7] conjectured that the inversive distance circle packings 
are rigid. Guo [22] proved the infinitesimal rigidity and then Luo [27] solved affirmably 
the conjecture for nonnegative inversive distance with Euclidean and hyperbolic back-
ground geometry. For the spherical background geometry, Ma and Schlenker [29] had 
a counterexample showing that there is in general no rigidity and John C. Bowers and 
Philip L. Bowers [4] obtained a new construction of their counterexample using the 
inversive geometry of the 2-sphere. John Bowers, Philip Bowers and Kevin Pratt [5]
recently proved the global rigidity of convex inversive distance circle packings in the 
Riemann sphere. Ge and Jiang [12,13] recently studied the deformation of combinatorial 
curvature and found a way to search for inversive distance circle packing metrics with 
constant cone angles. They also obtained some results on the image of curvature map 
for inversive distance circle packings. Ge and Jiang [14] and Ge and the author [19]
further extended a combinatorial curvature introduced by Ge and the author in [16–18]
to inversive distance circle packings and studied the rigidity and deformation of the 
curvature.

In this paper, based on an obversion of Zhou [37], we prove Bowers and Stephenson’s 
rigidity conjecture for inversive distance in (−1, +∞). The main tools are the variational 
principle established by Guo [22] for inversive distance circle packings and the exten-
sion of locally convex function introduced by Bobenko, Pinkall and Springborn [3] and 
systematically developed by Luo [27]. We refer to Glickenstein [20] for a nice geomet-
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ric interpretation of the variational principle in [22]. There are many other works on 
variational principles on circle packings. See Brägger [8], Rivin [31], Leibon [25], Chow–
Luo [9], Bobenko–Springborn [7], Marden–Rodin [30], Spingborn [32], Stephenson [33], 
Luo [28], Guo–Luo [23], Dai–Gu–Luo [10], Guo [21] and others.

1.2. Inversive distance circle packings

In this subsection, we briefly recall the inversive distance circle packing introduced 
by Bowers and Stephenson [7] in Euclidean and hyperbolic background geometry. For 
more information on inversive distance circle packing metrics, the readers can refer to 
Stephenson [33], Bowers and Hurdal [6] and Guo [22].

Suppose M is a closed surface with a triangulation T = {V, E, F}, where V, E, F
represent the sets of vertices, edges and faces respectively. Let I : E → (−1, +∞)
be a function assigning each edge {ij} an inversive distance Iij ∈ (−1, +∞), which is 
denoted as I > −1 in the paper. The triple (M, T , I) will be referred to as a weighted 
triangulation of M below. All the vertices are ordered one by one, marked by v1, · · · , vN , 
where N = |V | is the number of vertices, and we often use i to denote the vertex vi for 
simplicity below. We use i ∼ j to denote that the vertices i and j are adjacent, i.e., there 
is an edge {ij} ∈ E with i, j as end points. All functions f : V → R will be regarded 
as column vectors in RN and fi = f(vi) is the value of f at vi. And we use C(V ) to 
denote the set of functions defined on V . R>0 denotes the set of positive numbers in the 
paper.

Each map r : V → (0, +∞) is a circle packing, which could be taken as the radius ri
of a circle attached to the vertex i. Given (M, T , I), we assign each edge {ij} the length

lij =
√

r2
i + r2

j + 2rirjIij (1.1)

for Euclidean background geometry and

lij = cosh−1(cosh(ri) cosh(rj) + Iij sinh(ri) sinh(rj)) (1.2)

for hyperbolic background geometry, where Iij is the Euclidean and hyperbolic inversive 
distance of the two circles centered at vi and vj with radii ri and rj respectively. Note that 
the length lij in (1.1) and (1.2) is well-defined for all ri > 0, rj > 0 under the condition 
Iij > −1. If Iij ∈ (−1, 0), the two circles attached to the vertices i and j intersect with an 
obtuse angle. If Iij ∈ [0, 1], the two circles intersect with a non-obtuse angle. We can take 
Iij = cos Φij with Φij ∈ [0, π2 ] and then the inversive distance circle packing is reduced 
to Thurston’s circle packing. If Iij ∈ (1, +∞), the two circles attached to the vertices 
i and j are disjoint. See Fig. 1 for possible arrangements of the circles. Guo [22] and 
Luo [27] systematically studied the rigidity of inversive distance circle packing metrics 
for nonnegative inversive distance I ≥ 0, i.e. Iij ≥ 0 for every edge {ij} ∈ E. In this 
paper, we focus on the case that I > −1.
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Fig. 1. Inversive distance circle packings.

The following is our main result, which solves Bowers and Stephenson’s rigidity con-
jecture for inversive distance in (−1, +∞).

Theorem 1.1. Given a closed triangulated surface (M, T , I) with inversive distance I :
E → (−1, +∞) satisfying

Iij + IikIjk ≥ 0, Iik + IijIjk ≥ 0, Ijk + IijIik ≥ 0 (1.3)

for any topological triangle �ijk ∈ F .

(1) A Euclidean inversive distance circle packing on (M, T ) is determined by its combi-
natorial curvature K : V → R up to scaling.

(2) A hyperbolic inversive distance circle packing on (M, T ) is determined by its combi-
natorial curvature K : V → R.

Remark 1. For I ∈ [0, 1], the above result was Andreev and Thurston’s rigidity for circle 
packing with intersection angles in [0, π2 ]. For I ∈ (−1, 1], the above result was the rigidity 
for circle packing with intersection angles in [0, π) recently obtained by Zhou [37]. For 
I ≥ 0, the above result was the rigidity for inversive distance circle packing obtained by 
Guo [22] and Luo [27]. Our result unifies these results and allows the inversive distances 
to take values in a larger domain.

Remark 2. It is interesting to note that in Theorem 1.1, for a topological triangle �ijk ∈
F , if one of Iij , Iik, Ijk is negative, the other two must be nonnegative. So at most one 
of Iij , Iik, Ijk is negative.

We further extend the rigidity to combinatorial α-curvature introduced in [14–19], 
which is defined as

Rα,i = Ki

sαi

for α ∈ R, where si = ri for the Euclidean background geometry and si = tanh ri
2 for 

the hyperbolic background geometry.
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Theorem 1.2. Given a closed triangulated surface (M, T , I) with inversive distance I :
E → (−1, +∞) satisfying

Iij + IikIjk ≥ 0, Iik + IijIjk ≥ 0, Ijk + IijIik ≥ 0

for any topological triangle �ijk ∈ F . R is a given function defined on the vertices of 
(M, T ).

(1) If αR ≡ 0, there exists at most one Euclidean inversive distance circle packing metric 
with combinatorial α-curvature R up to scaling. If αR ≤ 0 and αR 
≡ 0, there exists 
at most one Euclidean inversive distance circle packing metric with combinatorial 
α-curvature R.

(2) If αR ≤ 0, there exists at most one hyperbolic inversive distance packing metric with 
combinatorial α-curvature R.

1.3. Plan of paper

The paper is organized as follows. In Section 2, we study the Euclidean inversive 
distance circle packing metrics and prove Theorem 1.1 and 1.2 for the Euclidean back-
ground geometry. In Section 3, we study the hyperbolic inversive distance circle packing 
metrics and prove Theorem 1.1, 1.2 for the hyperbolic background geometry.

2. Euclidean inversive distance circle packings

2.1. Admissible space of Euclidean inversive distance circle packing metrics for a single 
triangle

Given a weighted triangulated surface (M, T , I) with weight I > −1. Suppose �ijk is 
a topological triangle in F . Here and in the following, to simplify notations, when we are 
discussing a triangle �ijk, we use li to denote the length of the edge {jk} and use Ii to 
denote the inversive distance of the two circles at the vertices j and k. In the Euclidean 
background geometry, the length li of the edge {jk} is then defined by

li =
√
r2
j + r2

k + 2rjrkIi. (2.1)

For I > −1, in order that the lengths li, lj , lk for Δijk ∈ F satisfy the triangle inequali-
ties, there are some restrictions on the radii. Denote the admissible space of the radius 
vectors for a face Δijk ∈ F as

ΩE
ijk := {(ri, rj , rk) ∈ R

3
>0|li < lj + lk, lj < li + lk, lk < li + lj}. (2.2)
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In the case of I ∈ [0, 1], as noted by Thurston [34], ΩE
ijk = R

3
>0. However, in general, 

ΩE
ijk 
= R

3
>0 for I ∈ (−1, +∞). It is proved [22] that the admissible space ΩE

ijk for I ≥ 0
is a simply connected open subset of R3

>0 and ΩE
ijk may not be convex. Set

ΩE = ∩Δijk∈FΩE
ijk (2.3)

to be the space of admissible radius function on the surface. ΩE is obviously an open 
subset of RN

>0. Every r ∈ Ω is called an inversive distance circle packing metric.
As noted in [22], in order that the edge lengths li, lj , lk satisfy the triangle inequalities, 

we just need

0 < (li + lj + lk)(li + lj − lk)(li + lk − lj)(lj + lk − li)

= 4l2i l2k − (l2i + l2k − l2j )2

= 2l2i l2j + 2l2i l2k + 2l2j l2k − l4i − l4j − l4k.

(2.4)

Substituting the definition of edge length (2.1) in the Euclidean background geometry 
into (2.4), by direct calculations, we have

1
4(li + lj + lk)(li + lj − lk)(li + lk − lj)(lj + lk − li)

= r2
i r

2
j (1 − I2

k) + r2
i r

2
k(1 − I2

j ) + r2
j r

2
k(1 − I2

i )

+ 2r2
i rjrk(Ii + IjIk) + 2rir2

j rk(Ij + IiIk) + 2rirjr2
k(Ik + IiIj) > 0.

Denote

γijk := Ii + IjIk, γjik := Ij + IiIk, γkij := Ik + IiIj , (2.5)

then we have the following result on Euclidean triangle inequalities.

Lemma 2.1 ([22]). Suppose (M, T , I) is a weighted triangulated surface with weight I >

−1 and �ijk is a topological triangle in F . The edge lengths li, lj , lk defined by (2.1)
satisfy the triangle inequalities if and only if

r2
i r

2
j (1 − I2

k) + r2
i r

2
k(1 − I2

j ) + r2
j r

2
k(1 − I2

i ) + 2r2
i rjrkγijk + 2rir2

j rkγjik

+ 2rirjr2
kγkij > 0.

(2.6)

We have the following direct corollary obtained in [37] by Lemma 2.1.

Corollary 2.2. If Ii, Ij , Ik ∈ (−1, 1] and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0, then the triangle 
inequalities are satisfied for any (ri, rj , rk) ∈ R

3
>0.
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Remark 3. Specially, if Ii = cosΦi, Ij = cosΦj , Ik = cosΦk with Φi, Φj , Φk ∈ [0, π2 ], then 
we have Ii, Ij , Ik ∈ (−1, 1] and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0. So the triangle inequalities are 
satisfied for all radius vectors in R3

>0, which was obtained by Thurston in [34]. However, 
if we only require Φi, Φj , Φk ∈ [0, π), then (2.6) is equivalent to

r2
i r

2
j sin2 Φk + r2

i r
2
k sin2 Φj + r2

j r
2
k sin2 Φi + 2r2

i rjrk(cosΦi + cos Φj cosΦk)

+ 2rir2
j rk(cosΦj + cos Φi cosΦk) + 2rirjr2

k(cos Φk + cos Φi cos Φj) > 0.

Specially, if Φi + Φj ≤ π, Φi + Φk ≤ π, Φj + Φk ≤ π [37], or Φi = Φj ∈ [0, π2 ] [37], or 
Φi = Φj = Φk ∈ [0, π), the triangle inequalities are satisfied.

By Lemma 2.1, the admissible space ΩE
ijk for the topological triangle �ijk ∈ F may 

not be the whole space R3
>0. Furthermore, it is not always convex for all Ii, Ij , Ik ∈

(−1, +∞). However, we have the following useful lemma on the structure of the admis-
sible space ΩE

ijk.

Lemma 2.3. Given a weighted triangulated surface (M, T , I) with I > −1. For a topolog-
ical triangle �ijk ∈ F , if

γijk ≥ 0, γjik ≥ 0, γkij ≥ 0, (2.7)

then the admissible space ΩE
ijk is a simply connected open subset of R3

>0. Furthermore, 
for each connected component V of R3

>0 \ ΩE
ijk, the intersection V ∩ ΩE

ijk is a connected 

component of ΩE

ijk \ ΩE
ijk, on which θi is a constant function.

Proof. Define

F : R3
>0 → R

3
>0

(ri, rj , rk) �→ (r2
j + r2

k + 2rjrkIi, r2
i + r2

k + 2rirkIj , r2
i + r2

j + 2rirjIk)

and

G : R3
>0 → R

3
>0

(li, lj , lk) �→ (l2i , l2j , l2k),

then G is a diffeomorphism of R3
>0 and H = G−1 ◦ F is the map sending (ri, rj , rk) to 

(li, lj , lk).
We first prove that H is injective. To prove this, we just need to prove that F is 

injective. Note that

∂(Fi, Fj , Fk)
∂(ri, rj , rk)

= 2

⎛⎜⎝ 0 rj + rkIi rk + rjIi
ri + rkIj 0 rk + riIj
r + r I r + r I 0

⎞⎟⎠ ,
i j k j i k
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which implies that

∣∣∣∣∂(Fi, Fj , Fk)
∂(ri, rj , rk)

∣∣∣∣
= 8(rj + rkIi)(rk + riIj)(rk + riIj) + 8(rk + rjIi)(ri + rkIj)(rj + riIk)

= 16rirjrk(1 + IiIjIk) + 8riγijk(r2
j + r2

k) + 8rjγjik(r2
i + r2

k) + 8rkγkij(r2
i + r2

j ).

By the condition (2.7) and the Cauchy inequality, we have

∣∣∣∣∂(Fi, Fj , Fk)
∂(ri, rj , rk)

∣∣∣∣ ≥ 16rirjrk(1 + IiIjIk + γijk + γjik + γkij)

= 16rirjrk(1 + Ii)(1 + Ij)(1 + Ik).

By the condition that Ii, Ij , Ik ∈ (−1, +∞), we have 
∣∣∣∂(Fi,Fj ,Fk)
∂(ri,rj ,rk)

∣∣∣ > 0 for any r ∈ R
3
>0. If 

there are r = (ri, rj , rk) ∈ R
3
>0 and r′ = (r′i, r′j , r′k) ∈ R

3
>0 satisfying F (r) = F (r′), then 

we have

0 = F (r) − F (r′) = ∂(Fi, Fj , Fk)
∂(ri, rj , rk)

∣∣
r+θ(r−r′) · (r − r′)T , θ ∈ (0, 1),

which implies r = r′ by the nondegeneracy of ∂(Fi,Fj ,Fk)
∂(ri,rj ,rk) on R3

>0. So the map F is 
injective on R3

>0, which implies that H is injective on R3
>0.

Note that

Fi = r2
j + r2

k + 2rjrkIi ≥ 2rjrk(1 + Ii),

Fj = r2
i + r2

k + 2rirjIk ≥ 2rirk(1 + Ij),

Fk = r2
i + r2

j + 2rirjIk ≥ 2rirj(1 + Ik).

By the condition that Ii, Ij , Ik ∈ (−1, +∞), if F is bounded, we have rirj , rirk, rjrk
are bounded, which implies that r2

i + r2
j , r

2
i + r2

k, r
2
j + r2

k are bounded. Similarly, we have 
Fi ≤ (1 + |Ii|)(r2

j + r2
j ). This implies that F is a proper map from R3

>0 to R3
>0. By the 

invariance of domain theorem, we have F is a diffeomorphism between R3
>0 and F (R3

>0). 
And then H is a diffeomorphism between R3

>0 and H(R3
>0).

Set

L = {(li, lj , lk)|li + lj > lk, li + lk > lj , lj + lk > li},

then ΩE
ijk = H−1(H(R3

>0) ∩L). To prove that ΩE
ijk is simply connected, we just need to 

prove that H(R3
>0) ∩L is a cone. Note that L is a cone in R3

>0 bounded by three planes
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Li = {(li, lj , lk) ∈ R
3
>0|li = lj + lk},

Lj = {(li, lj , lk) ∈ R
3
>0|lj = li + lk},

Lk = {(li, lj , lk) ∈ R
3
>0|lk = li + lj}.

Note that H is a diffeomorphism between R3
>0 and H(R3

>0), H(R3
>0) is a cone bounded 

by three quadratic surfaces

Σi = {(li, lj , lk) ∈ R
3
>0|l2i = l2j + l2k + 2lj lkIi},

Σi = {(li, lj , lk) ∈ R
3
>0|l2j = l2i + l2k + 2lilkIj},

Σi = {(li, lj , lk) ∈ R
3
>0|l2k = l2i + l2j + 2liljIk}.

In fact, if ri = 0, then lj = rk, lk = rj and l2i = r2
j + r2

k + 2rjrkIi = l2j + l2k + 2lj lkIi. 
Σi is in fact the image of ri = 0 under H. By the diffeomorphism of H, Σi, Σj , Σk are 
mutually disjoint. Furthermore, if Ii ∈ (−1, 1], we have (lj − lk)2 < l2i ≤ (lj + lk)2 on 
Σi. And if Ii ∈ (1, +∞), we have l2i > (lj + lk)2 on Σi. This implies that Σi ⊂ L if 
Ii ∈ (−1, 1] and Σi ∩ L = ∅ if Ii ∈ (1, +∞). Similar results hold for Σj and Σk.

To prove that H(R3
>0) ∩ L is a cone, we just need to consider the following cases by 

the symmetry between i, j, k.
If Ii, Ij , Ik ∈ (−1, 1], H(R3

>0) ∩L is a cone bounded by Σi, Σj , Σk and H(R3
>0) ∩L =

H(R3
>0).

If Ii, Ij ∈ (−1, 1] and Ik ∈ (1, +∞), H(R3
>0) ∩L is a cone bounded by Σi, Σj and Lk.

If Ii ∈ (−1, 1] and Ij , Ik ∈ (1, +∞), H(R3
>0) ∩L is a cone bounded by Σi, Lj and Lk.

If Ii, Ij , Ik ∈ (1, +∞), H(R3
>0) ∩ L is a cone bounded by Li, Lj and Lk. In this case, 

H(R3
>0) ∩ L = L.

For any case, H(R3
>0) ∩ L is a cone in R3

>0. By the fact that H is a diffeomorphism 
between R3

>0 and H(R3
>0), we have the admissible space ΩE

ijk = H−1(H(R3
>0) ∩ L) is 

simply connected.
By the analysis above, if H(R3

>0) ⊂ L, then ΩE
ijk = H−1(H(R3

>0) ∩ L) = R
3
>0. If 

H(R3
>0) \L 
= ∅, then ΩE

ijk is a proper subset of R3
>0. If Ii > 1, the boundary component 

Σi = {l2i = l2j +l2k+2lj lkIi} is out of the set L. By the fact that ΩE
ijk = H−1(H(R3

>0) ∩L)
and H : R3

>0 → H(R3
>0) is a diffeomorphism, we have H−1(Li) is a connected boundary 

component of ΩE
ijk, on which θi = π, θj = θk = 0. This completes the proof of the 

lemma. �
Corollary 2.4. For a topological triangle �ijk ∈ F with inversive distance I > −1 and 
γijk ≥ 0, γjik ≥ 0, γkij ≥ 0, the functions θi, θj , θk defined on ΩE

ijk could be continuously 

extended by constant to θ̃i, ̃θj , ̃θk defined on R3
>0.
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Remark 4.

(1) If Ii, Ij , Ik ∈ [0, +∞), obviously we have γijk ≥ 0, γjik ≥ 0, γkij ≥ 0. So Lemma 2.3
generalizes Lemma 3 in [22] obtained by Guo.

(2) If Ii, Ij , Ik ∈ (−1, 1] and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0, by the proof of Lemma 2.3, 
ΩE

ijk = R
3
>0, which is obtained by Zhou [37].

(3) The condition Ii, Ij , Ik ∈ (−1, +∞) and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0 contains more 
cases, for example, Ii = −1

2 , Ij = 1 and Ik = 2, in which case the admissible space 
ΩE

ijk is still simply connected.

2.2. Infinitesimal rigidity of Euclidean inversive distance circle packings

Set ui = ln ri, then we have UE
ijk := ln(ΩE

ijk) is a simply connected subset of R3 by 
Lemma 2.3. If (ri, rj , rk) ∈ ΩE

ijk, li, lj , lk satisfy the triangle inequalities and forms a 
Euclidean triangle. Denote the inner angle at the vertex i as θi. We have the following 
useful lemma.

Lemma 2.5. For any topological triangle �ijk ∈ F , we have

∂θi
∂uj

= ∂θj
∂ui

= 1
Al2k

[
r2
i r

2
j (1 − I2

k) + r2
i rjrkγijk + rir

2
j rkγjik

]
(2.8)

on UE
ijk, where A = lj lk sin θi.

Proof. By the cosine law, we have l2i = l2j + l2k − 2lj lk cos θi. Taking the derivative with 
respect to li, we have ∂θi∂li

= li
A , where A = lj lk sin θi is two times of the area of �ijk. 

Similarly, we have ∂θi∂lj
= −li cos θk

A , ∂θi∂lk
= −li cos θj

A . By the definition of li, lj , lk, we have

∂li
∂rj

= rj + rkIi
li

,
∂lj
∂rj

= 0, ∂lk
∂rj

= rj + riIk
lk

.

Then

∂θi
∂uj

= rj
∂θi
∂rj

= rj(
∂θi
∂li

∂li
∂rj

+ ∂θi
∂lk

∂lk
∂rj

)

= rj

[
rj + rkIi

A
− li cos θj(rj + riIk)

Alk

]

= 1
Alk

[
lk(r2

j − rjrkIi) −
l2i + l2k − l2j

2lk
(r2

j + rirjIk)
]

= 1
Al2k

[
r2
i r

2
j (1 − I2

k) + r2
i rjrkγijk + rir

2
j rkγjik

]
,
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where the cosine law is used in the third line and the definition of the length (2.1) is 
used in the fourth line. This also implies ∂θi

∂uj
= ∂θj

∂ui
. �

Remark 5. The equation ∂θi
∂uj

= ∂θj
∂ui

has been obtained under different conditions in [9,
11,22] and the formulas for ∂θi∂lj

and ∂θi∂li
was obtained by Chow and Luo [9]. In general, 

for Ii, Ij , Ik ∈ (−1, +∞), ∂θi
∂uj

have no sign. However, if Ii, Ij , Ik ∈ (−1, 1] and γijk ≥ 0, 
γjik ≥ 0, γkij ≥ 0, by (2.8), we have ∂θi∂uj

≥ 0. Furthermore, ∂θi∂uj
= 0 if and only if Ik = 1

and Ii+Ij = 0. Especially, if Ii = cosΦi, Ij = cos Φj , Ik = cosΦk with Φi, Φj , Φk ∈ [0, π2 ], 
we have ∂θi

∂uj
≥ 0, and ∂θi

∂uj
= 0 if and only if Φk = 0 and Φi = Φj = π

2 .

Remark 6. Geometrically, the three circles at the vertices have a power center O. It is 
known [35,36] that ∂θi

∂uj
= hk

lk
, where hk is the signed distance of the power center O to 

the edge {ij}, which is positive if O is in the interior of the triangle �ijk and negative if 
the power center O is out of the triangle �ijk. So under the condition Ii, Ij , Ik ∈ (−1, 1]
and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0, the power center O is in the triangle �ijk.

Lemma 2.5 shows that the matrix

ΛE
ijk := ∂(θi, θj , θk)

∂(ui, uj , uk)
=

⎛⎜⎜⎝
∂θi
∂ui

∂θi
∂uj

∂θi
∂uk

∂θj
∂ui

∂θj
∂uj

∂θj
∂uk

∂θk
∂ui

∂θk
∂uj

∂θk
∂uk

⎞⎟⎟⎠
is symmetric on UE

ijk. For the matrix ΛE
ijk, we have the following useful property.

Lemma 2.6. For any topological triangle �ijk ∈ F with inversive distance Ii, Ij , Ik ∈
(−1, +∞) and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0, the matrix ΛE

ijk is negative semi-definite with 
rank 2 and kernel {t(1, 1, 1)T |t ∈ R} on UE

ijk.

Proof. The proof is parallel to that of Lemma 6 in [22] with some modifications. By the 
calculations in Lemma 2.5, for a triangle �ijk ∈ F , we have⎛⎜⎝ dθi

dθj
dθk

⎞⎟⎠ = − 1
A

⎛⎜⎝ li 0 0
0 lj 0
0 0 lk

⎞⎟⎠
⎛⎜⎝ −1 cos θk cos θj

cos θk −1 cos θi
cos θj cos θi −1

⎞⎟⎠

×

⎛⎜⎜⎜⎝
0 l2i+r2

j−r2
k

2lirj
l2i+r2

k−r2
j

2lirk
l2j+r2

i−r2
k

2ljri 0 l2j+r2
k−r2

i

2ljrk
l2k+r2

i−r2
j

2lkri
l2k+r2

j−r2
i

2lkri 0

⎞⎟⎟⎟⎠
⎛⎜⎝ ri 0 0

0 rj 0
0 0 rk

⎞⎟⎠
⎛⎜⎝ dui

duj

duk

⎞⎟⎠ .

Write the above formula as
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⎛⎜⎝ dθi
dθj
dθk

⎞⎟⎠ = − 1
A
N

⎛⎜⎝ dui

duj

duk

⎞⎟⎠ .

By the cosine law, we have

4N =

⎛⎜⎝ −2l2i l2i + l2j − l2k l2k + l2i − l2j
l2i + l2j − l2k −2l2j l2j + l2k − l2i
l2k + l2i − l2j l2j + l2k − l2i −2l2k

⎞⎟⎠
⎛⎜⎝

1
l2i

0 0
0 1

l2j
0

0 0 1
l2k

⎞⎟⎠

×

⎛⎜⎝ 0 l2i + r2
j − r2

k l2i + r2
k − r2

j

l2j + r2
i − r2

k 0 l2j + r2
k − r2

i

l2k + r2
i − r2

j l2k + r2
j − r2

i 0

⎞⎟⎠
By Lemma 2.5, we have 4N is symmetric. Furthermore, note that θi + θj + θk = π, we 
have 0 = ∂θi

∂ui
+ ∂θj

∂ui
+ ∂θk

∂ui
= ∂θi

∂ui
+ ∂θi

∂uj
+ ∂θi

∂uk
. Then we can write 4N as

4N =

⎛⎜⎝−A−B A B

A −A− C C

B C −B − C

⎞⎟⎠ .

To prove ΛE
ijk is negative semi-definite, we just need to prove that 4N is positive semi-

definite. By direct calculations, we have

|λI − 4N | =

∣∣∣∣∣∣∣
λ + A + B −A −B

−A λ + A + C −C

−B −C λ + B + C

∣∣∣∣∣∣∣
= λ[λ2 + 2(A + B + C)λ + 3(AB + AC + BC)].

We want to prove that the equation

λ2 + 2(A + B + C)λ + 3(AB + AC + BC) = 0

has two positive roots. Note that for this quadratic equation, we have

Δ = 4(A + B + C)2 − 12(AB + AC + BC) = 4(A2 + B2 + C2 −AB −AC −BC) ≥ 0,

so we just need to prove that A + B + C < 0 and AB + AC + BC > 0.
By direct calculations, we have

−2(A + B + C) = l2i + l2j + l2k + (l2j − l2k)
r2
j − r2

k

l2
+ (l2k − l2i )

r2
j − r2

i

l2
+ (l2i − l2j )

r2
i − r2

j

l2
.

i j k
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So A + B + C < 0 is equivalent to

l2i + l2j + l2k + (l2j − l2k)
r2
j − r2

k

l2i
+ (l2k − l2i )

r2
j − r2

i

l2j
+ (l2i − l2j )

r2
i − r2

j

l2k
> 0,

which is equivalent to

l2i l
2
j l

2
k(l2i + l2j + l2k) + l2i r

2
i (l2i l2j + l2i l

2
k − l4j − l4k) + l2j r

2
j (l2i l2j + l2j l

2
k − l4i − l4k)

+ l2kr
2
k(l2i l2k + l2j l

2
k − l4i − l4j ) > 0.

Note that

2[l2i l2j l2k(l2i + l2j + l2k) + l2i r
2
i (l2i l2j + l2i l

2
k − l4j − l4k)

+ l2j r
2
j (l2i l2j + l2j l

2
k − l4i − l4k) + l2kr

2
k(l2i l2k + l2j l

2
k − l4i − l4j )]

= 2l2i l2j l2k(l2i + l2j + l2k) + l2i r
2
i (l4i − l4j − l4k − 2l2j l2k) + l2j r

2
j (l4j − l4i − l4k − 2l2i l2k)

+ l2kr
2
k(l4k − l4i − l4j − 2l2i l2j ) + (l2i r2

i + l2j r
2
j + l2kr

2
k)(2l2i l2j

+ 2l2i l2k + 2l2j l2k − l4i − l4j − l4k).

By the triangle inequalities, we have

2l2i l2j + 2l2i l2k + 2l2j l2k − l4i − l4j − l4k > 0

on ΩE
ijk. So to prove A + B + C < 0, we just need to prove

2l2i l2j l2k(l2i + l2j + l2k) + l2i r
2
i (l4i − l4j − l4k − 2l2j l2k) + l2j r

2
j (l4j − l4i − l4k − 2l2i l2k)

+ l2kr
2
k(l4k − l4i − l4j − 2l2i l2j ) > 0.

By direct calculations, we have

2l2i l2j l2k(l2i + l2j + l2k) + l2i r
2
i (l4i − l4j − l4k − 2l2j l2k)

+ l2j r
2
j (l4j − l4i − l4k − 2l2i l2k) + l2kr

2
k(l4k − l4i − l4j − 2l2i l2j )

= 4[r2
i r

2
j r

2
k(1 + I2

i + I2
j + I2

k + 4IiIjIk) + r2
i rjrk(Ii + IjIk)(r2

j + r2
k)

+ rir
2
j rk(Ij + IiIk)(r2

i + r2
k) + rirjr

2
k(Ik + IiIj)(r2

i + r2
j )]

≥ 4r2
i r

2
j r

2
k(1 + I2

i + I2
j + I2

k + 4IiIjIk + 2Ii + 2IjIk + 2Ij + 2IiIk + 2Ik + 2IiIj)

= 4r2
i r

2
j r

2
k[(1 + Ii)(1 + Ij)(1 + Ik) + (1 + Ii)γijk + (1 + Ij)γjik + (1 + Ik)γkij ]

> 0,

where the condition Ii, Ij , Ik ∈ (−1, +∞) and γijk = Ii + IjIk ≥ 0, γjik = Ij + IiIk ≥
0, γkij = Ik + IiIj ≥ 0 is used. So we have A + B + C < 0.
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For the term AB + AC + BC, by direct calculations, we have

AB + AC + BC

= 1
l2i l

2
j l

2
k

(2l2i l2j + 2l2i l2k + 2l2j l2k − l4i − l4j − l4k)

×
[
(r2

i − r2
j )(r2

k − r2
i )l2i + (r2

i − r2
j )(r2

j − r2
k)l2j + (r2

k − r2
i )(r2

j − r2
k)l2k + l2i l

2
j l

2
k

]
.

So by the triangle inequalities, AB + AC + BC > 0 is equivalent to

(r2
i − r2

j )(r2
k − r2

i )l2i + (r2
i − r2

j )(r2
j − r2

k)l2j + (r2
k − r2

i )(r2
j − r2

k)l2k + l2i l
2
j l

2
k > 0.

By direct calculations, combining with the condition Ii, Ij , Ik ∈ (−1, +∞) and γijk ≥
0, γjik ≥ 0, γkij ≥ 0, we have

(r2
i − r2

j )(r2
k − r2

i )l2i + (r2
i − r2

j )(r2
j − r2

k)l2j + (r2
k − r2

i )(r2
j − r2

k)l2k + l2i l
2
j l

2
k

= 8r2
i r

2
j r

2
k(1 + IiIjIk) + 4r2

i rjrk(Ii + IjIk)(r2
j + r2

k)

+ 4rir2
j rk(Ij + IiIk)(r2

i + r2
k) + 4rirjr2

k(Ik + IiIj)(r2
i + r2

j )

≥ 8r2
i r

2
j r

2
k(1 + IiIjIk + Ii + IjIk + Ij + IiIk + Ik + IiIj)

= 8r2
i r

2
j r

2
k(1 + Ii)(1 + Ij)(1 + Ik)

> 0.

So we have AB + AC + BC > 0. Then the matrix ΛE
ijk has a zero eigenvalue with 

eigenvector (1, 1, 1)T and two negative eigenvalues on UE
ijk. �

Now suppose that for each topological face Δijk ∈ F , the triangle inequalities are 
satisfied, i.e. r ∈ ΩE , then the weighted triangulated surface (M, T , I) could be taken as 
gluing many triangles along the edges coherently, which produces a cone metric on the 
triangulated surface with singularities at V . To describe the singularity at the vertex i, 
the classical discrete curvature is introduced, which is defined as

Ki = 2π −
∑

�ijk∈F

θjki , (2.9)

where the sum is taken over all the triangles with i as one of its vertices and θjki is the 
inner angle of the triangle �ijk at the vertex i. Lemma 2.6 has the following corollary.

Corollary 2.7. Given a triangulated surface (M, T ) with inversive distance I > −1 and 
γijk ≥ 0, γjik ≥ 0, γkij ≥ 0 for any topological triangle �ijk ∈ F . Then the matrix 
ΛE = ∂(K1,··· ,KN )

∂(u1,··· ,uN ) is symmetric and positive semi-definite with rank N − 1 and kernel 
{t1|t ∈ R} on UE for the Euclidean background geometry.
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Proof. This follows from the fact that ΛE = − 
∑

�ijk∈F ΛE
ijk, Lemma 2.5 and 

Lemma 2.6, where ΛE
ijk is extended by zeros to a N × N matrix so that ΛE

ijk acts 
on a vector (v1, · · · , vN ) only on the coordinates corresponding to vertices vi, vj and vk
in the triangle �ijk. �
Remark 7. Guo [22] obtained a result paralleling to Corollary 2.7 for nonnegative inver-
sive distance.

By Lemma 2.3 and Lemma 2.5, we can define an energy function

Eijk(u) =
u∫

u0

θidui + θjduj + θkduk

on UE
ijk. Lemma 2.6 ensures that Eijk is locally concave on UE

ijk. Define the Ricci energy 
function as

E(u) = −
∑

�ijk∈F

Eijk(u) +
u∫

u0

N∑
i=1

(2π −Ki)dui, (2.10)

then ∇uE = K−K and E(u) is locally convex on UE = ∩�ijk∈FUE
ijk. The local convexity 

of E implies the infinitesimal rigidity of K with respect to u, which is the infinitesimal 
rigidity of inversive distance circle packings.

2.3. Global rigidity of Euclidean inversive distance circle packings

In this subsection, we shall prove the global rigidity of inversive distance circle packings 
under the condition I > −1 and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0 for any triangle �ijk ∈ F . 
We need to extend the energy function defined on UE to be a convex function defined 
on R3. Before going on, we recall the following definition and theorem of Luo in [27].

Definition 2.8. A differential 1-form w =
∑n

i=1 ai(x)dxi in an open set U ⊂ R
n is said to 

be continuous if each ai(x) is continuous on U . A differential 1-form w is called closed if ∫
∂τ

w = 0 for each triangle τ ⊂ U .

Theorem 2.9 ([27] Corollary 2.6). Suppose X ⊂ R
n is an open convex set and A ⊂ X

is an open subset of X bounded by a C1 smooth codimension-1 submanifold in X. If 
w =

∑n
i=1 ai(x)dxi is a continuous closed 1-form on A so that F (x) =

∫ x

a
w is locally 

convex on A and each ai can be extended continuous to X by constant functions to a 
function ãi on X, then F̃ (x) =

∫ x

a

∑n
i=1 ãi(x)dxi is a C1-smooth convex function on X

extending F .
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Combining Lemma 2.3, Corollary 2.4 and Theorem 2.9, we have the following useful 
lemma.

Lemma 2.10. For any triangle �ijk ∈ F with inversive distance I > −1 and

γijk ≥ 0, γjik ≥ 0, γkij ≥ 0,

the energy function Eijk(u) defined on UE
ijk by (2.10) could be extended to the following 

function

Ẽijk(u) =
u∫

u0

θ̃idui + θ̃jduj + θ̃kduk, (2.11)

which is a C1-smooth concave function defined on R3 with

∇uẼijk = (θ̃i, θ̃j , θ̃k)T .

Using Lemma 2.10, we can prove the following global rigidity of Euclidean inversive 
distance circle packings, which is the Euclidean part of Theorem 1.1.

Theorem 2.11. Given a triangulated surface (M, T ) with inversive distance I > −1 and 
γijk ≥ 0, γjik ≥ 0, γkij ≥ 0 for any topological triangle �ijk ∈ F . Then for any K ∈
C(V ) with 

∑N
i=1 Ki = 2πχ(M), there exists at most one Euclidean inversive distance 

circle packing metric r up to scaling with K(r) = K.

Proof. By Lemma 2.10, the Ricci potential function E(u) in (2.10) could be extended 
from UE to the whole space RN as follows

Ẽ(u) = −
∑

�ijk∈F

Ẽijk(u) +
u∫

u0

N∑
i=1

(2π −Ki)dui.

As Ẽijk(u) is C1-smooth concave by Lemma 2.10 and 
∫ u

u0

∑N
i=1(2π − Ki)dui is a well-

defined convex function on RN , we have Ẽ(u) is a C1-smooth convex function on RN . 
By Corollary 2.7, we have Ẽ(u) is locally strictly convex on UE ∩ {

∑N
i=1 ui = 0}. Fur-

thermore,

∇ui Ẽ = −
∑

�ijk∈F

θ̃i + 2π −Ki = K̃i −Ki,

where K̃i = 2π −
∑

�ijk∈F θ̃i, which implies that r ∈ ΩE is a metric with curvature K

if and only if the corresponding u ∈ UE is a critical point of Ẽ .
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If there are two different inversive distance circle packing metrics rA, rB ∈ ΩE with 
the same combinatorial Curvature K, then uA = ln rA ∈ UE , uB = ln rB ∈ UE are both 
critical points of the extended Ricci potential Ẽ(u). It follows that

∇Ẽ(uA) = ∇Ẽ(uB) = 0.

Set

f(t) = Ẽ((1 − t)uA + tuB)

=
∑

�ijk∈F

fijk(t) +
(1−t)uA+tuB∫

u0

N∑
i=1

(2π −Ki)dui,

where

fijk(t) = −Ẽijk((1 − t)uA + tuB).

Then f(t) is a C1 convex function on [0, 1] and f ′(0) = f ′(1) = 0, which implies that 
f ′(t) ≡ 0 on [0, 1]. Note that uA belongs to the open set UE , so there exists ε > 0 such 
that (1 − t)uA + tuB ∈ UE for t ∈ [0, ε] and f(t) is smooth on [0, ε].

Note that f(t) is C1 convex on [0, 1] and smooth on [0, ε]. f ′(t) ≡ 0 on [0, 1] implies 
that f ′′(t) ≡ 0 on [0, ε]. Note that, for t ∈ [0, ε],

f ′′(t) = (uA − uB)ΛE(uA − uB)T ,

where ΛE = − 
∑

�ijk∈F ΛE
ijk. By Corollary 2.7, we have uA − uB = c(1, · · · , 1) for some 

constant c ∈ R, which implies that rA = ec/2rB . So there exists at most one Euclidean 
inversive distance circle packing metric with combinatorial curvature K up to scaling. �
Remark 8. The proof of Theorem 2.11 is based on a variational principle, which was 
introduce by Colin de Verdiere [11]. Guo [22] used the variational principle to study the 
infinitesimal rigidity of inversive distance circle packing metrics for nonnegative inversive 
distances. Bobenko, Pinkall and Springborn [3] introduced a method to extend a local 
convex function on a nonconvex domain to a convex function and solved affirmably a 
conjecture of Luo [26] on the global rigidity of piecewise linear metrics. Based on the 
extension method, Luo [27] proved the global rigidity of inversive distance circle packing 
metrics for nonnegative inversive distance using the variational principle.

2.4. Rigidity of combinatorial α-curvature in Euclidean background geometry

As noted in [16], the classical definition of combinatorial curvature Ki with Euclidean 
background geometry in (2.9) has two disadvantages. The first is that the classical com-
binatorial curvature is scaling invariant, i.e. Ki(λr) = Ki(r) for any λ > 0; The second is 
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that, as the triangulated surfaces approximate a smooth surface, the classical combina-
torial curvature Ki could not approximate the smooth Gauss curvature, as we obviously 
have Ki tends zero. Motivated by the observations, Ge and the author introduced a new 
combinatorial curvature for triangulated surfaces with Thurston’s circle packing metrics 
in [16–18]. Ge and Jiang [14] and Ge and the author [19] further generalized the curvature 
to inversive distance circle packing metrics. Set

si(r) =
{

ri, Euclidean background geometry
tanh ri

2 , hyperbolic background geometry
. (2.12)

We have the following definition of combinatorial α-curvature on triangulated surfaces 
with inversive distance circle packing metrics.

Definition 2.12. Given a triangulated surface (M, T ) with inversive distance I > −1 and 
an inversive distance circle packing metric r ∈ Ω, the combinatorial α-curvature at the 
vertex i is defined to be

Rα,i = Ki

sαi
, (2.13)

where α ∈ R is a constant, Ki is the classical combinatorial curvature at i given by (2.9)
and si is given by (2.12).

Specially, if α = 0, then Rα,i = Ki. As the inversive distance generalizes Thurston’s 
intersection angle, the Definition 2.12 of combinatorial α-curvature naturally generalizes 
the definition of combinatorial curvature in [16–18].

For the α-curvature Rα,i, we have the following global rigidity of Euclidean inversive 
distance circle packing metrics for inversive distance in (−1, +∞), which is the Euclidean 
part of Theorem 1.2.

Theorem 2.13. Given a closed triangulated surface (M, T ) with inversive distance I > −1
and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0 for any topological triangle �ijk ∈ F . R is a given 
function defined on the vertices of (M, T ). If αR ≡ 0, there exists at most one Euclidean 
inversive distance circle packing metric r ∈ ΩE with α-curvature R up to scaling. If 
αR ≤ 0 and αR 
≡ 0, there exists at most one Euclidean inversive distance circle packing 
metric r ∈ ΩE with α-curvature R.

As the proof of Theorem 2.13 is almost parallel to that of Theorem 2.11 using the 
energy function

Ẽα(u) = −
∑

�ijk∈F

Ẽijk(u) +
u∫

u0

N∑
i=1

(2π −Rir
α
i )dui,

we omit the details of the proof.
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3. Hyperbolic inversive distance circle packing metrics

3.1. Admissible space of hyperbolic inversive distance circle packing metrics for a single 
triangle

In this subsection, we investigate the admissible space of hyperbolic inversive dis-
tance circle packings for a single topological triangle �ijk ∈ F with inversive distance 
Ii, Ij , Ik ∈ (−1, +∞) and

γijk ≥ 0, γjik ≥ 0, γkij ≥ 0. (3.1)

Suppose �ijk is a topological triangle in F . In the hyperbolic background geometry, the 
length li of the edge {jk} is defined by

li = cosh−1(cosh rj cosh rk + Ii sinh rj sinh rk), (3.2)

where Ii is the hyperbolic inversive distance between the two circles attached to the 
vertices j and k. In order that the edge lengths li, lj , lk satisfy the triangle inequalities, 
there are some restrictions on the radius vectors. So we first study the triangle inequalities 
for the hyperbolic background geometry. To simplify the notations, we use the following 
simplification

Ci = cosh ri, Si = sinh ri,

when there is no confusion. We have the following lemma on the hyperbolic triangle 
inequalities.

Lemma 3.1. Suppose (M, T , I) is a weighted triangulated surface with hyperbolic inversive 
distance I > −1 and �ijk is a topological triangle in F . Suppose li, lj , lk are the edge 
lengths defined by the hyperbolic inversive distance Ii, Ij , Ik using the radius ri, rj , rk by 
(3.2), then the triangle inequalities are satisfied if and only if

2S2
i S

2
jS

2
k(1 + IiIjIk) + S2

i S
2
j (1 − I2

k) + S2
i S

2
k(1 − I2

j ) + S2
jS

2
k(1 − I2

i )

+ 2CjCkS
2
i SjSkγijk + 2CiCkSiS

2
jSkγjik + 2CiCjSiSjS

2
kγkij > 0.

(3.3)

Proof. In order that li + lj > lk, li + lk > lj , lj + lk > li, we just need

sinh li + lj − lk
2 > 0, sinh li + lk − lj

2 > 0, sinh lj + lk − li
2 > 0.

Note that li > 0, lj > 0, lk > 0, this is equivalent to

sinh li + lj + lk sinh li + lj − lk sinh li + lk − lj sinh lj + lk − li
> 0.
2 2 2 2
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By direct calculations, we have

4 sinh li + lj + lk
2 sinh li + lj − lk

2 sinh li + lk − lj
2 sinh lj + lk − li

2
= (cosh(li + lj) − cosh lk)(cosh lk − cosh(li − lj))

= (cosh2 li − 1)(cosh l2j − 1) − (cosh li cosh lj − cosh lk)2

= (2C2
i C

2
jC

2
k − C2

i C
2
j − C2

i C
2
k − C2

jC
2
k + 1) − (S2

i S
2
j I

2
k + S2

i S
2
kI

2
j + S2

jS
2
kI

2
i )

+ 2CjCkS
2
i SjSkIi + 2CiCkSiS

2
jSkIj + 2CiCjSiSjS

2
kIk

+ 2CiCjSiSjS
2
kIiIj + 2CiCkSiS

2
jSkIiIk + 2CjCkS

2
i SjSkIjIk + 2S2

i S
2
jS

2
kIiIjIk,

where the definition of edge length (3.2) is used in the last line. Note that

C2
i = cosh2 ri = sinh2 ri + 1 = S2

i + 1,

we have

4 sinh li + lj + lk
2 sinh li + lj − lk

2 sinh li + lk − lj
2 sinh lj + lk − li

2
= 2S2

i S
2
jS

2
k(1 + IiIjIk) + S2

i S
2
j (1 − I2

k) + S2
i S

2
k(1 − I2

j ) + S2
jS

2
k(1 − I2

i )

+ 2CjCkS
2
i SjSk(Ii + IjIk) + 2CiCkSiS

2
jSk(Ij + IiIk) + 2CiCjSiSjS

2
k(Ik + IiIj).

This completes the proof of the lemma. �
Denote the admissible space of hyperbolic inversive distance circle packing metrics for 

a triangle �ijk ∈ F as ΩH
ijk, i.e.

ΩH
ijk := {(ri, rj , rk) ∈ R

3
>0|li + lj > lk, li + lk > lj , lj + lk > li}.

By Lemma 3.1, we have the following direct corollary, which was obtained by Zhou [37].

Corollary 3.2. Suppose �ijk is a topological triangle in F with hyperbolic inversive dis-
tance Ii, Ij , Ik ∈ (−1, 1] and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0, then ΩH

ijk = R
3
>0, i.e. the 

triangle inequalities are satisfied for all radius vectors in R3
>0.

Specially, if Ii = cosΦi, Ij = cos Φj , Ik = cos Φk with Φi, Φj , Φk ∈ [0, π2 ], the triangle 
inequalities are satisfied for all radius vectors, which was obtained by Thurston in [34].

By Lemma 3.1, we can also get the following useful result.

Corollary 3.3. Suppose �ijk is a topological triangle in F with hyperbolic inversive dis-
tance I > −1 and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0. Suppose the edge lengths li, lj , lk are 
generated by the radius vector (s, s, s) with s ∈ R>0. If s ∈ R>0 satisfies
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sinh2 s >
I2
i + I2

j + I2
k − 3

2(1 + Ii)(1 + Ij)(1 + Ij)
, (3.4)

we have (s, s, s) ∈ ΩH
ijk.

Proof. By Lemma 3.1, for s > 0, (s, s, s) ∈ ΩH
ijk if and only if

2 cosh2 s(γijk + γjik + γkij) + 2 sinh2 s(1 + IiIjIk) + 3 − I2
i − I2

j − I2
k > 0.

By γijk ≥ 0, γjik ≥ 0, γkij ≥ 0, we have γijk + γjik + γkij ≥ 0. Then

2 cosh2 s(γijk + γjik + γkij) + 2 sinh2 s(1 + IiIjIk) + 3 − I2
i − I2

j − I2
k

≥ 2 sinh2 s(1 + IiIjIk + γijk + γjik + γkij) + 3 − I2
i − I2

j − I2
k

= 2 sinh2 s(1 + Ii)(1 + Ij)(1 + Ij) + 3 − I2
i − I2

j − I2
k .

Note that Ii, Ij , Ik ∈ (−1, +∞), to ensure the triangle inequalities, we just need

sinh2 s >
I2
i + I2

j + I2
k − 3

2(1 + Ii)(1 + Ij)(1 + Ij)
. �

Guo [22] obtained a result similar to Corollary 3.3 for I ≥ 0.
By Lemma 3.1, ΩH

ijk 
= R
3
>0 for general Ii, Ij , Ik ∈ (−1, +∞). Furthermore, ΩH

ijk is 
not convex. Similar to the case of Euclidean background geometry, we have the following 
lemma on the structure of ΩH

ijk.

Lemma 3.4. Suppose �ijk is a topological triangle in F with hyperbolic inversive distance 
I > −1 and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0, then the admissible space ΩH

ijk is simply 
connected. Furthermore, for each connected component V of R3

>0 \ΩH
ijk, the intersection 

V ∩ ΩH

ijk is a connected component of ΩH

ijk \ ΩH
ijk, on which θi is a constant function.

Proof. Define the map

F : R3
>0 → R

3
>0

(ri, rj , rk) �→ (Fi, Fj , Fk)

where

Fi = cosh rj cosh rk + Ii sinh rj sinh rk,

Fj = cosh ri cosh rk + Ij sinh ri sinh rk,

Fk = cosh ri cosh rj + Ik sinh ri sinh rj .

By direct calculations, we have
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∂(Fi, Fj , Fk)
∂(ri, rj , rk)

=

⎛⎜⎝ 0 SjCk + IiCjSk CjSk + IiSjCk

SiCk + IjCiSk 0 CiSk + IjSiCk

SiCj + IkCiSj CiSj + IkSiCj 0

⎞⎟⎠
and ∣∣∣∣∂(Fi, Fj , Fk)

∂(ri, rj , rk)

∣∣∣∣ = 2CiCjCkSiSjSk(1 + IiIjIk) + γkijCkSk(C2
i S

2
j + C2

j S
2
i )

+ γjikCjSj(C2
kS

2
i + C2

i S
2
k) + γijkCiSi(C2

kS
2
j + C2

j S
2
k).

By I > −1 and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0, we have∣∣∣∣∂(Fi, Fj , Fk)
∂(ri, rj , rk)

∣∣∣∣ ≥ 2CiCjCkSiSjSk(1 + IiIjIk + γijk + γjik + γkij)

= 2CiCjCkSiSjSk(1 + Ii)(1 + Ij)(1 + Ik) > 0,

which implies that F is globally injective. In fact, if there are two different r = (ri, rj , rk)
and r′ = (r′i, r′j , r′k) satisfying F (r) = F (r′), then we have

0 = F (r) − F (r′) = ∂(Fi, Fj , Fk)
∂(ri, rj , rk)

|r+θ(r−r′) · (r − r′)T , 0 < θ < 1,

which implies r = r′ by the nondegeneracy of ∂(Fi,Fj ,Fk)
∂(ri,rj ,rk) on R3

>0. So the map F is 
injective on R3

>0.
Note that F has the following property

0 < (1 + Ii) sinh rj sinh rk ≤ Fi ≤ (1 + |Ii|) cosh(ri + rj),

which implies that F is a proper map. By the invariance of domain theorem, we have 
F : R3

>0 → F (R3
>0) is a diffeomorphism.

Define

G : R3
>0 → R

3
>0

(li, lj , lk) �→ (cosh li, cosh lj , cosh lk),

then G : R3
>0 → G(R3

>0) is a diffeomorphis and H = G−1 ◦ F is the map defining the 
edge length by the inversive distance which maps (ri, rj , rk) to (li, lj , lk).

Set

L = {(li, lj , lk)|li + lj > lk, li + lk > lj , lj + lk > li},

then ΩH
ijk = H−1(H(R3

>0) ∩L). To prove that ΩH
ijk is simply connected, we just need to 

prove that H(R3
>0) ∩ L is simply connected.
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Note that L is a cone in R3
>0 bounded by three planes

Li = {(li, lj , lk) ∈ R
3
>0|li = lj + lk},

Lj = {(li, lj , lk) ∈ R
3
>0|lj = li + lk},

Lk = {(li, lj , lk) ∈ R
3
>0|lk = li + lj}.

By the fact that H is a diffeomorphism between R3
>0 and H(R3

>0), H(R3
>0) is the set 

bounded by three surfaces

Σi = {(li, lj , lk) ∈ R
3
>0| cosh li = cosh lj cosh lk + Ii sinh lj sinh lk},

Σj = {(li, lj , lk) ∈ R
3
>0| cosh lj = cosh li cosh lk + Ij sinh li sinh lk},

Σk = {(li, lj , lk) ∈ R
3
>0| cosh lk = cosh li cosh lj + Ik sinh li sinh lj}.

In fact, if ri = 0, then lj = rk, lk = rj and cosh li = cosh rj cosh rk + Ii sinh rj sinh rk =
cosh lj cosh lk + Ii sinh lj sinh lk. Σi is in fact the image of ri = 0 under H. By the 
diffeomorphism of H, Σi, Σj , Σk are mutually disjoint. Furthermore, if Ii ∈ (−1, 1], 
we have cosh(lj − lk) < cosh li ≤ cosh(lj + lk) on Σi. And if Ii ∈ (1, +∞), we have 
cosh li > cosh(lj + lk) on Σi. This implies that Σi ⊂ L if Ii ∈ (−1, 1] and Σi ∩ L = ∅ if 
Ii ∈ (1, +∞). Similar results hold for Σj and Σk. To prove that H(R3

>0) ∩ L is simply 
connected, we just need to consider the following cases by the symmetry between i, j, k.

If Ii, Ij , Ik ∈ (−1, 1], H(R3
>0) ∩L is bounded by Σi, Σj , Σk and H(R3

>0) ∩L = H(R3
>0).

If Ii, Ij ∈ (−1, 1] and Ik ∈ (1, +∞), H(R3
>0) ∩ L is bounded by Σi, Σj and Lk.

If Ii ∈ (−1, 1] and Ij , Ik ∈ (1, +∞), H(R3
>0) ∩ L is bounded by Σi, Lj and Lk.

If Ii, Ij , Ik ∈ (1, +∞), H(R3
>0) ∩L is bounded by Li, Lj and Lk. In this case, H(R3

>0) ∩
L = L.

For any case, H(R3
>0) ∩ L is a simply connected subset of R3

>0. By the fact that H
is a diffeomorphism between R3

>0 and H(R3
>0), we have the admissible space ΩH

ijk =
H−1(H(R3

>0) ∩ L) is simply connected.
By the analysis above, if H(R3

>0) ⊂ L, then ΩH
ijk = H−1(H(R3

>0) ∩ L) = R
3
>0. If 

H(R3
>0) \L 
= ∅, then ΩH

ijk is a proper subset of R3
>0. If Ii > 1, the boundary component 

Σi = {(li, lj , lk) ∈ R
3
>0| cosh li = cosh lj cosh lk + Ii sinh lj sinh lk} is out of the set L. By 

the fact that ΩH
ijk = H−1(H(R3

>0) ∩L) and H : R3
>0 → H(R3

>0) is a diffeomorphism, we 
have H−1(Li) is a connected boundary component of ΩH

ijk, on which θi = π, θj = θk = 0. 
This completes the proof of the lemma. �
Corollary 3.5. For a topological triangle �ijk ∈ F with inversive distance I > −1 and 
γijk ≥ 0, γjik ≥ 0, γkij ≥ 0, the functions θi, θj , θk defined on ΩH

ijk could be continuously 

extended by constant to θ̃i, ̃θj , ̃θk defined on R3
>0.
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3.2. Infinitesimal rigidity of hyperbolic inversive distance circle packings

Set ui = ln tanh ri
2 , then we have UH

ijk := u(ΩH
ijk) is a simply connected subset of R3

>0. 
If (ri, rj , rk) ∈ ΩH

ijk, li, lj , lk form a hyperbolic triangle. Denote the inner angle at the 
vertex i as θi. We have the following lemma.

Lemma 3.6. For any triangle �ijk ∈ F , we have

∂θi
∂uj

= ∂θj
∂ui

= 1
A sinh2 lk

[CkS
2
i S

2
j (1 − I2

k) + CiSiS
2
jSkγjik + CjS

2
i SjSkγijk] (3.5)

on UH
ijk, where A = sinh lj sinh lk sin θi.

Proof. By cosine law, we have cosh li = cosh lj cosh lk − sinh lj sinh lk cos θi. Taking the 
derivative with respect to li gives

∂θi
∂li

= sinh li
A

,

where A = sinh lj sinh lk sin θi. Similarly, taking the derivative with respect to lj and lk
and using the cosine law again, we have

∂θi
∂lj

= − sinh li cos θk
A

,
∂θi
∂lk

= − sinh li cos θj
A

.

By the definition of edge length li, lj and lk, we have

∂li
∂rj

= sinh rj cosh rk + Ii cosh rj sinh rk
sinh li

,
∂lj
∂rj

= 0,

∂lk
∂rj

= sinh rj cosh ri + Ik cosh rj sinh ri
sinh lk

.

Then

A
∂θi
∂uj

= A sinh rj
∂θi
∂rj

= A sinh rj(
∂θi
∂li

∂li
∂rj

+ ∂θi
∂lk

∂lk
∂rj

)

= sinh rj(sinh rj cosh rk + Ii cosh rj sinh rk)

− 1
sinh lk

sinh rj sinh li cos θj(sinh rj cosh ri + Ik cosh rj sinh ri),

which implies that
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sinh2 lkA
∂θi
∂uj

= (cosh2 lk − 1) sinh rj(sinh rj cosh rk + Ii cosh rj sinh rk)

+ (cosh lj − cosh li cosh lk) sinh rj(sinh rj cosh ri + Ik cosh rj sinh ri)

Note that

sinh rj(sinh rj cosh rk + Ii cosh rj sinh rk) = cosh rj cosh li − cosh rk,

sinh rj(sinh rj cosh ri + Ik cosh rj sinh ri) = cosh rj cosh lk − cosh ri.

Using the definition of edge lengths li, lj and lk, by direct calculations, we have

∂θi
∂uj

= 1
A sinh2 lk

[CkS
2
i S

2
j (1 − I2

k) + CiSiS
2
jSkγjik + CjS

2
i SjSkγijk],

which implies also ∂θi
∂uj

= ∂θj
∂ui

. �
Remark 9. For Ii, Ij , Ik ∈ (−1, 1] and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0, by Lemma 3.6, 
we have ∂θi

∂uj
≥ 0, and ∂θi

∂uj
= 0 if and only if Ik = 1 and Ii + Ij = 0. Especially, if 

Ii = cosΦi, Ij = cos Φj , Ik = cosΦk with Φi, Φj , Φk ∈ [0, π2 ], we have ∂θi
∂uj

≥ 0, and 
∂θi
∂uj

= 0 if and only if Φk = 0 and Φi = Φj = π
2 .

Lemma 3.6 shows that the matrix

ΛH
ijk = ∂(θi, θj , θk)

∂(ui, uj , uk)
=

⎛⎜⎜⎝
∂θi
∂ui

∂θi
∂uj

∂θi
∂uk

∂θj
∂ui

∂θj
∂uj

∂θj
∂uk

∂θk
∂ui

∂θk
∂uj

∂θk
∂uk

⎞⎟⎟⎠
is symmetric on UH

ijk. Similar to the case of Euclidean background geometry, we have 
the following lemma for the matrix ΛH

ijk.

Lemma 3.7. In the hyperbolic background geometry, for any triangle �ijk ∈ F with 
Ii, Ij , Ik > −1 and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0, the matrix ΛH

ijk is negative definite on 
UH
ijk.

Proof. The proof is parallel to that of Lemma 12 in [22] with some modifications. By 
the proof of Lemma 3.6, we have
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⎛⎜⎝ dθi
dθj
dθk

⎞⎟⎠ = − 1
A

⎛⎜⎝ sinh li 0 0
0 sinh lj 0
0 0 sinh lk

⎞⎟⎠
⎛⎜⎝ −1 cos θk cos θj

cos θk −1 cos θi
cos θj cos θi −1

⎞⎟⎠

×

⎛⎜⎝
1

sinh li
0 0

0 1
sinh lj

0
0 0 1

sinh lk

⎞⎟⎠
⎛⎜⎝ 0 Rijk Rikj

Rjik 0 Rjki

Rkij Rkji 0

⎞⎟⎠

×

⎛⎜⎝ sinh ri 0 0
0 sinh rj 0
0 0 sinh rk

⎞⎟⎠
⎛⎜⎝ dui

duj

duk

⎞⎟⎠ ,

(3.6)

where

A = sinh li sinh lj sin θk, Rijk = sinh rj cosh rk + Ii cosh rj sinh rk.

Write the equation (3.6) as ⎛⎜⎝ dθi
dθj
dθk

⎞⎟⎠ = − 1
A
J

⎛⎜⎝ dui

duj

duk

⎞⎟⎠ (3.7)

and denote the second and fourth matrix in the product of the right hand side of (3.6)
as Θ and R respectively. Then ΛH

ijk is negative definite is equivalent to J is positive 
definite.

We first prove that detJ is positive. To prove this, we just need to prove that det(Θ)
and detR are positive. By direct calculations, we have

detΘ = −1 + cos θ2
i + cos θ2

j + cos θ2
k + 2 cos θi cos θj cos θk

= 4 cos θi + θj − θk
2 cos θi − θj + θk

2 cos θi + θj + θk
2 cos θi − θj − θk

2 .

By the Gauss–Bonnet formula for hyperbolic triangles, we have

θi + θj + θk = π −Area(�ijk),

which implies θi+θj+θk
2 , θi+θj−θk

2 , θi−θj+θk
2 , θi−θj−θk

2 ∈ (−π
2 , 

π
2 ). Then we have detΘ > 0.

By direct calculations, we have

detR = RijkRjkiRkij + RikjRjikRkji

= 2CiCjCkSiSjSk(1 + IiIjIk) + CkSk(Ik + IiIj)(C2
i S

2
j + C2

j S
2
i )

+ CjSj(Ij + IiIk)(C2
kS

2
i + C2

i S
2
k) + CiSi(Ii + IjIk)(C2

kS
2
j + C2

j S
2
k)

≥ 2CiCjCkSiSjSk(1 + IiIjIk + Ik + IiIj + Ij + IiIk + Ii + IjIk)

= 2CiCjCkSiSjSk(1 + Ii)(1 + Ij)(1 + Ik) > 0,
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where the conditions Ii, Ij , Ik ∈ (−1, +∞) and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0 are used. 
Then we have detJ > 0 on UH

ijk.
By the connectivity of ΩH

ijk and the continuity of the eigenvalues of ΛH
ijk, we just 

need to prove J is positive definite for some radius vector in ΩH
ijk. By Corollary 3.3, for 

sufficient large s, the radius vector (s, s, s) ∈ ΩH
ijk. We shall prove J is positive definite 

for some s large enough. At (s, s, s), we have

J = sinh2 s cosh s

⎛⎜⎝ sinh li 0 0
0 sinh lj 0
0 0 sinh lk

⎞⎟⎠
⎛⎜⎝ −1 cos θk cos θj

cos θk −1 cos θi
cos θj cos θi −1

⎞⎟⎠

×

⎛⎜⎝
1

sinh li
0 0

0 1
sinh lj

0
0 0 1

sinh lk

⎞⎟⎠
⎛⎜⎝ 0 1 + Ii 1 + Ii

1 + Ij 0 1 + Ij
1 + Ik 1 + Ik 0

⎞⎟⎠ .

Write the above equation as J = sinh2 s cosh sN . Then we just need to prove that the 
leading 1 × 1 and 2 × 2 minor of N is positive for some s large enough.

For the leading 1 × 1 minor, we have

N11 = sinh li cos θk
sinh lj

(1 + Ij) + sinh li cos θj
sinh lk

(1 + Ik)

= 1
sinh2 lj sinh2 lk

[(1 + Ij)(cosh li cosh lj − cosh lk)(cosh2 lk − 1)

+ (1 + Ik)(cosh li cosh lk − cosh lj)(cosh2 lj − 1)]

= (1 + Ij)(1 + Ik) sinh4 s

sinh2 lj sinh2 lk
[2(1 + Ii)(1 + Ij)(1 + Ik) sinh4 s

+ (6 + 6Ii + 3Ij + 3Ik + 3IiIj + 3IiIk + 2IjIk − I2
j − I2

k) sinh2 s + 4(1 + Ii)].
(3.8)

Note that, by Corollary 3.3, under the condition

2 sinh2 s(1 + Ii)(1 + Ij)(1 + Ij) > I2
i + I2

j + I2
k − 3,

the triangle inequalities are satisfied, which implies

sinh li cos θk
sinh lj

(1 + Ij) + sinh li cos θj
sinh lk

(1 + Ik)

≥ (1 + Ij)(1 + Ik) sinh4 s

sinh2 lj sinh2 lk

× [(3 + 6Ii + 3Ij + 3Ik + 3IiIj + 3IiIk + 2IjIk + I2
i ) sinh2 s + 4(1 + Ii)]
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= (1 + Ij)(1 + Ik) sinh4 s

sinh2 lj sinh2 lk

× [((1 + Ii)(3 + Ii) + 2γijk + 3γjik + 3γkij) sinh2 s + 4(1 + Ii)].

Therefor the leading 1 × 1 minor of N is positive by the condition Ii, Ij , Ik ∈ (−1, +∞)
and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0.

Similar to (3.8), we have

N22 = sinh lj cos θk
sinh li

(1 + Ii) + sinh lj cos θi
sinh lk

(1 + Ik)

= (1 + Ii)(1 + Ik) sinh4 s

sinh2 li sinh2 lk
[2(1 + Ii)(1 + Ij)(1 + Ik) sinh4 s

+ (6 + 3Ii + 6Ij + 3Ik + 3IiIj + 2IiIk + 3IjIk − I2
i − I2

k) sinh2 s + 4(1 + Ij)].
(3.9)

Note that

N12N21 = [−(1 + Ii) + sinh li cos θj
sinh lk

(1 + Ik)][−(1 + Ij) + sinh lj cos θi
sinh lk

(1 + Ik)]

= 1
sinh4 lk

[(1 + Ik) sinh lk sinh li cos θj − (1 + Ii) sinh2 lk]

× [(1 + Ik) sinh lk sinh lj cos θi − (1 + Ij) sinh2 lk]

= 1
sinh4 lk

[(1 + Ik)(cosh li cosh lk − cosh lj) − (1 + Ii) sinh2 lk]

× [(1 + Ik)(cosh lj cosh lk − cosh li) − (1 + Ij) sinh2 lk]

= (1 + Ik)4 sinh4 s

sinh4 lk
(1 + Ii + Ij − Ik)2,

(3.10)

where cosh li = cosh2 s + Ii sinh2 s = 1 + (1 + Ii) sinh2 s is used in the last line.
Combining (3.8), (3.9), (3.10), we have the leading 2 × 2 minor of N is

(1 + Ii)(1 + Ij)(1 + Ik)2 sinh8 s

sinh2 li sinh2 lj sinh4 lk

×
[
2(1 + Ii)(1 + Ij)(1 + Ik) sinh4 s

+ (6 + 6Ii + 3Ij + 3Ik + 3IiIj + 3IiIk + 2IjIk − I2
j − I2

k) sinh2 s + 4(1 + Ii)
]

× [2(1 + Ii)(1 + Ij)(1 + Ik) sinh4 s

+ (6 + 3Ii + 6Ij + 3Ik + 3IiIj + 2IiIk + 3IjIk − I2
i − I2

k) sinh2 s + 4(1 + Ij)]

− (1 + Ik)4 sinh4 s
4 (1 + Ii + Ij − Ik)2
sinh lk
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= (1 + Ik)2 sinh4 s

sinh2 li sinh2 lj sinh4 lk

× {(1 + Ii)(1 + Ij) sinh4 s[4(1 + Ii)2(1 + Ij)2(1 + Ik)2 sinh8 s

+ A sinh6 s + B sinh4 s + C sinh2 s + D]

− (1 + Ik)2(1 + Ii + Ij − Ik)2 sinh2 li sinh2 lj},

where A, B, C, D are polynomials of Ii, Ij , Ik. Note that sinh2 li = cosh2 li − 1 = (1 +
Ii) sinh2 s[2 + (1 + Ii) sinh2 s], we have the leading 2 × 2 minor of N is

(1 + Ii)(1 + Ij)(1 + Ik)2 sinh8 s

sinh2 li sinh2 lj sinh4 lk

× {4(1 + Ii)2(1 + Ij)2(1 + Ik)2 sinh8 s + A sinh6 s + B sinh4 s + C sinh2 s + D

− (1 + Ik)2(1 + Ii + Ij − Ik)2[2 + (1 + Ii) sinh2 s][2 + (1 + Ij) sinh2 s]}.

The term in the last two lines is a polynomial in sinh s with positive leading coefficient 
4(1 +Ii)2(1 +Ij)2(1 +Ik)2, so for s large enough, the leading 2 ×2 minor of N is positive.

Combining with the fact that the determinant of J is positive, we have the matrix 
ΛH
ijk is negative definite. This completes the proof. �

Remark 10. The matrix J in (3.7) is the same matrix M in the proof of Lemma 12 of 
Guo [22], where M was proved to be positive definite for nonnegative inversive distance. 
Here we produces another proof of the fact.

Remark 11. If Ii, Ij , Ik ∈ (−1, 1] and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0, the negative defi-
niteness of ΛH

ijk was proved by Zhou [37] using the same method as that of Lemma 3.7. 
In this case, the negative definiteness of ΛH

ijk could be proved alternatively. In fact, by 
direct but tedious calculations, we have

∂θi
∂ui

+ ∂θj
∂ui

+ ∂θk
∂ui

= 1
A(cosh lj + 1)(cosh lk + 1) ·

{CiS
2
i S

2
j (I2

k − 1) + S2
i S

2
jCk(I2

k − 1) − Sk(CjS
2
i Sjγijk + CiSiS

2
j γjik)

+ CkSk[−S2
i Sj(2CiCj + 1)γijk − (C2

i + S2
i )SiS

2
j γjik]

+ S2
k[−2CiS

2
i S

2
j (IiIjIk + 1) − SiSjγkij(CjS

2
i + Ci) + CiS

2
i (I2

j − 1)

+ CjS
2
i (I2

j − 1)]}.

(3.11)

In general, ∂θi
∂ui

+ ∂θj
∂ui

+ ∂θk
∂ui

have no sign. However, if Ii, Ij , Ik ∈ (−1, 1] and γijk ≥ 0, 
γjik ≥ 0, γkij ≥ 0, we have ∂θi

∂ui
+ ∂θj

∂ui
+ ∂θk

∂ui
< 0 by (3.11). Combining with Remark 9, 

this implies −ΛH
ijk is diagonal dominant and then ΛH

ijk is negative definite.
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Set

ΛH = ∂(K1, · · · ,KN )
∂(u1, · · · , uN ) = −

∑
�ijk∈F

ΛH
ijk,

where ΛH
ijk is extended by zeros to a N × N matrix so that ΛH

ijk acts on a vector 
(v1, · · · , vN ) only on the coordinates corresponding to vertices vi, vj and vk in the triangle 
�ijk. Lemma 3.6 and Lemma 3.7 have the following direct corollary.

Corollary 3.8. Given a triangulated surface (M, T , I) with inversive distance I > −1
and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0 for any topological triangle �ijk ∈ F . Then the matrix 
ΛH = ∂(K1,··· ,KN )

∂(u1,··· ,uN ) is symmetric and positive definite on UH := ∩�ijk∈TUH
ijk for the 

hyperbolic background geometry.

Guo [22] once obtained a result paralleling to Corollary 3.8 for I ≥ 0.
By Lemma 3.4 and Lemma 3.6, we can define an energy function

Eijk(u) =
u∫

u0

θidui + θjduj + θkduk

on UH
ijk = ln(ΩH

ijk). Lemma 3.7 ensures that Eijk is locally concave on UH
ijk. Define the 

Ricci potential as

E(u) = −
∑

�ijk∈T

Eijk(u) +
u∫

u0

N∑
i=1

(2π −Ki)dui, (3.12)

then ∇uE = K−K and E(u) is locally convex on UH = ∩�ijk∈TUH
ijk. The local convexity 

of E implies the infinitesimal rigidity of K with respect to u, which is the infinitesimal 
rigidity of hyperbolic inversive distance circle packings.

3.3. Global rigidity of hyperbolic inversive distance circle packings

In this subsection, we shall prove the global rigidity of hyperbolic inversive distance 
circle packings under the condition I ∈ (−1, +∞) and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0 for 
any triangle �ijk ∈ F .

By Corollary 3.5, the functions θi, θj , θk defined on UH
ijk could be continuously ex-

tended by constants to θ̃i, ̃θj , ̃θk defined on R3. Using Theorem 2.9, we have the following 
extension.

Lemma 3.9. In the hyperbolic background geometry, for any triangle �ijk ∈ F with 
Ii, Ij , Ik > −1 and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0, the function Eijk(u) defined on UH

ijk

could be extended to the following function
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Ẽijk(u) =
u∫

u0

θ̃idui + θ̃jduj + θ̃kduk, (3.13)

which is a C1-smooth concave function defined on R3 with

∇uẼijk = (θ̃i, θ̃j , θ̃k)T .

Using Lemma 3.9, we can prove the following global rigidity of hyperbolic inversive 
distance circle packing metrics, which is the hyperbolic part of Theorem 1.1.

Theorem 3.10. Given a triangulated surface (M, T ) with inversive distance I ∈ (−1, +∞)
and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0 for any topological triangle �ijk ∈ F . Then for any 
K ∈ C(V ), there is at most one hyperbolic inversive distance circle packing metric r
with K(r) = K.

Proof. The Ricci energy function E(u) in (3.12) could be extended from UH to the 
whole space RN , where UH is the image of ΩH under the map ui = ln tanh ri

2 . In fact, 
the function Eijk(u) defined on UH

ijk could be extended to Ẽijk(u) defined by (3.13) on 

R
N by Lemma 3.9 and the second term 

∫ u

u0

∑N
i=1(2π−Ki)dui in (3.12) can be naturally 

defined on RN , then we have the following extension Ẽ(u) defined on RN of the Ricci 
potential function E(u)

Ẽ(u) = −
∑

�ijk∈F

Ẽijk(u) +
u∫

u0

N∑
i=1

(2π −Ki)dui.

As Ẽijk(u) is C1-smooth concave by Lemma 3.9 and 
∫ u

u0

∑N
i=1(2π − Ki)dui is a well-

defined convex function on RN , we have Ẽ(u) is a C1-smooth convex function on RN . 
Furthermore,

∇ui F̃ = −
∑

�ijk∈F

θ̃i + 2π −Ki = K̃i −Ki,

where K̃i = 2π −
∑

�ijk∈F θ̃i.
If there are two different inversive distance circle packing metrics rA, rB ∈ ΩH with the 

same combinatorial Curvature K, then uA = ln tanh rA
2 ∈ UH , uB = ln tanh rB

2 ∈ UH

are both critical points of the extended Ricci potential Ẽ(u). It follows that

∇Ẽ(uA) = ∇Ẽ(uB) = 0.

Set
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f(t) = Ẽ((1 − t)uA + tuB)

=
∑

�ijk∈F

fijk(t) +
(1−t)uA+tuB∫

u0

N∑
i=1

(2π −Ki)dui,

where

fijk(t) = −Ẽijk((1 − t)uA + tuB).

Then f(t) is a C1 convex function on [0, 1] and f ′(0) = f ′(1) = 0, which implies f ′(t) ≡
0 on [0, 1]. Note that uA belongs to the open set UH , there exists ε > 0 such that 
(1 − t)uA + tuB ∈ UH for t ∈ [0, ε]. So f(t) is smooth on [0, ε].

Note that f(t) is C1 convex on [0, 1] and smooth on [0, ε]. f ′(t) ≡ 0 on [0, 1] implies 
that f ′′(t) ≡ 0 on [0, ε]. Note that, for t ∈ [0, ε],

f ′′(t) = (uA − uB)ΛH(uA − uB)T ,

where ΛH = − 
∑

�ijk∈F ΛH
ijk. By Corollary 3.8, we have ΛH is positive definite and 

then uA − uB = 0, which implies that rA = rB . So there exists at most one hyperbolic 
inversive distance circle packing metric with combinatorial curvature K. �
3.4. Rigidity of combinatorial α-curvature in hyperbolic background geometry

We have the following global rigidity for α-curvature with respect to hyperbolic in-
versive distance circle packing metrics for inversive distance in (−1, +∞), which is the 
hyperbolic part of Theorem 1.2.

Theorem 3.11. Given a closed triangulated surface (M, T ) with inversive distance I > −1
and γijk ≥ 0, γjik ≥ 0, γkij ≥ 0 for any topological triangle �ijk ∈ F , R is a given 
function defined on the vertices of (M, T ). If αR ≤ 0, there exists at most one hyperbolic 
inversive distance circle packing metric r ∈ ΩH with combinatorial α-curvature R.

As the proof of Theorem 3.11 is almost parallel to that of Theorem 3.10 using the 
energy function

Ẽα(u) = −
∑

�ijk∈F

Ẽijk(u) +
u∫

u0

N∑
i=1

(2π −Ri tanhα ri
2 )dui,

we omit the details of the proof here. Theorem 3.11 is an generalization of Theorem 3.10. 
Specially, if α = 0, Theorem 3.11 is reduced to Theorem 3.10.
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