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Abstract: We show that a foliation of equilibria (a continuous family of equilibria
whose graph covers all the configuration space) in ferromagnetic transitive models are
ground states. The result we prove is very general, and it applies to models with long
range and many-body interactions. As an application, we consider several models of
networks of interacting particles including models of Frenkel–Kontorova type on Z

d

and one-dimensional quasi-periodic media. The result above is an analogue of several
results in the calculus of variations (fields of extremals) and in PDE’s. Since the models
we consider are discrete and long range, new proofs need to be given. We also note
that the main hypothesis of our result (the existence of foliations of equilibria) is the
conclusion (usingKAM theory) of several recent papers. Hence, we obtain that theKAM
solutions recently established are minimizers when the interaction is ferromagnetic and
transitive (these concepts are defined later).

1. Introduction

Many physical problems lead to variational problems for functions described in discrete
sets.

A model to keep in mind as motivation is the Frenkel–Kontorova model [FK39],
which considers configurations u = {ui }i∈Z and tries to find those that minimize the
energy given by the formal sum

S (u) =
∑

i∈Z

[
1

2
(ui − ui+1)

2 − V (ui )

]
. (1)
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The result we present, however, is significantly more general and allows higher dimen-
sional lattices, many-body interactions as well as long range interactions.

There are several physical interpretations of the FK model [BK04,Sel92], and the
original one is the interaction of planar dislocations in a 3-D crystal, but it has appeared
as a model of other situations. We can think of ui as describing the position of the i th
atom deposited over a 1-D medium. The first part of the sum describes the interaction
between the nearest particles. The function V models the interaction of the atoms with
the medium, which is assumed to be periodic or quasi-periodic in models of crystals and
quasi-crystals (in this paper, periodicity or quasi-periodicity is not assumed). Note that,
with many of these interpretations, it is natural to consider also more general models
which involve longer range interactions, multi site interactions, or higher dimensional
crystals. For example, if the interpretation of the model is ferromagnetic materials, the
physical origin of the interaction is the exchange terms in electrical interaction that many
body and long range are natural. The reference [Suh65] includes several such models.
Hence, in this paper we will include these generalizations, which are standard in the
mathematical treatments of statistical mechanics [Rue69]. Indeed, the limit in which the
ranges of the interaction are very long range (sometimes called Kac limit) have special
interest [Pre09]. We also note that in numerical analysis, it is standard to use long range
operators as higher order approximation of derivatives. Of course, in higher dimensions,
the so called stencils used in the finite difference study of Laplacians can be considered
as many-body and non-nearest neighbor interactions.

In this paper, we will consider the problems of studying configurations which are
critical points or ground states of the model (see the precise definitions later). These
configurations are important for statistical mechanics in the low temperature limit. They
are also discrete analogues of the classical problems of multiple integrals or minimal
surfaces in the calculus of variations.

The results we present are more general than the model (1) and include higher di-
mensional lattices, many body and long range interactions.

For the model (1) when V is a periodic function, the problem of showing existence of
plane-like minimizers (i.e., minimizers that differ from a linear function by a bounded
function) of (1) with a well defined frequency was solved independently by Mather
[Mat82] andAubry [ALD83], giving rise towhat is now referred to asAubry–Mather the-
ory. Several authors (see [Bla89,Bla90,KdlLR97,CdlL98,dlLV07b,dlLV07a,dlLV10]
and references therein) generalized the setting of Aubry–Mather theory to higher di-
mensional crystals, more general media and for many-body interactions. Related mod-
els appear in PDE’s [Mos89,RS11], minimal surfaces [CdlL01,Val04,Tor04], fractional
Laplacian operators [dlLV09,Dav13].

In the case that V in (1) is a quasi-periodic function, the problem to establish all
the results of Aubry–Mather theory as for periodic systems is not completed. Even if
some results have been established—e.g. homogenization [LS03,KV08]—others remain
open. Notably, the existence of plane-like minimizers is still not settled. In [LS03]
there are examples of quasi-periodic potentials in FK models for which no plane-like
minimizer exists. When the potential V is quasi-periodic and small enough, the papers
[SdlL12b,SdlL12a,dlLSZ16,dlLSZ17] use a rather unusual KAM theory to construct
families of equilibriawhich are plane-like. The results of this paper show that the families
constructed by KAM method are minimizers when the problem is ferromagnetic. See
also [AS16,AGK16].

Hence, the above papers give that for the quasi-periodic FK model, there are param-
eters with plane-like minimizers and parameters without them. Therefore, an interesting
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problem is to study the transition from models with plane-like minimizers to models
without them. The papers [SdlL12b,SdlL12a] lead to efficient numerical algorithms,
which were implemented in [BdlL13], and lead to several conjectures about the tran-
sition between plane-like and non plane-like minimizers. Notably [BdlL13] discovered
numerically scaling relations similar to those in phase transitions in the breakdown of an-
alyticity of plane-like solutions in quasi-periodicmedia. The papers [dlLSZ16,dlLSZ17]
also present efficient algorithms for the computation of other solutions, but they have
not been implemented yet.

The goal of this paper is to show that for ferromagnetic models when there are contin-
uous families of equilibria whose graphs cover the whole phase space they are actually
ground states (also called class-A minimizers). In particular, the solutions produced by
KAM theory in [SdlL12b,SdlL12a,dlLSZ16,dlLSZ17] are ground states.

The interest of these results for calculus of variations is that minimizers often have
more global properties [Mor24] or better regularity. In statistical mechanics, the ground
states play a more important role in the zero temperature limit. From the numerical point
of view, as remarked in [NP83,Aub84] it is easy to compute numerically regions in phase
space without minimizers (it suffices to compute orbits of finite length and verify that
the second variation of action has negative directions). Once we know that rotational
KAM tori are minimizers, we can exclude that region. At the time of [NP83] this was
known as the Percival conjecture, but it was shortly after proved for twist maps.

Results establishing that families of equilibria are minimizers are very common place
in the standard calculus of variations. They are often proved by either the methods of
fields of extremals or Hilbert integral [Car99]. In our case, since we are considering
discrete space and long range models, these methods do not seem to apply directly and
we have to use a different method, sometimes called sliding method. For some simple
models, in Sect. 4.2, we present arguments that are different from the general one.

We note that, as it is customary, the non-degeneracy equations of KAM theory are
weaker than those in the variational theory. Roughly speaking, the KAM theory just
requires that certain operators are invertible. The variational theory requires that these
quantities are positive definite. On the other hand, the KAM theory is more sensitive
to quantitative features. For example, in (1) and periodic V , the KAM only applies for
V which are small in a smooth norm, whereas the variational methods apply for any
differentiable V .

In Sect. 2.1, we present the results in a very general set up, patterned after the general
set up of statistical mechanics [Rue69] allowing multi-body and long range interactions,
but we do not assume translation invariance. Indeed in Sect. 4.3, we consider models
which are not translation invariant. In Sect. 4, we present again the results for some
concrete models, which have appeared in the literature. Even if this could have been
avoided logically since the models in Sect. 4 are particular cases of those in Sect. 2.1
we hope that this will add to the readability of the paper and as motivation for those
interested in the concrete models and in numerical implementations. Also, the methods
of proof used in Sect. 4 are different from the methods used in the proof of the general
theorem and are closer to the arguments in the classical calculus of variations.

2. Formulation of the Main Result

2.1. A very general set up. We consider a very general set up motivated by the formu-
lation in [Rue69] of statistical mechanics. Later, in Sect. 4, we will present more details
for less general set ups, which may be more familiar.
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2.1.1. General assumptions on the systems and its configurations. We consider a dis-
crete countable set �. Its elements will be called sites. The set � may be imagined as a
network of particles. Many cases in statistical mechanics consider that � is an integer
lattice, corresponding physically to a crystal.

We assume that the state of each site is given by a real number. Hence, the state of the
system is given by a function u : � → R which assigns to each site i ∈ � the value ui .
For our purposes, it is crucial that the order parameter at each site is a one-dimensional
number.We do not knowhow to deal with two-dimensional phase spaces. Indeed [Bla90]
presents counterexamples to several crucial statements in our setting when the order
parameters are 2-dimensional. The papers [Mat91,Man97] contain rather satisfactory
analogues of several other results of Aubry–Mather theory for higher dimensional order
parameters but they do not consider higher dimensional independent variables.

We associate to the finite subsets B of � an energy function HB : R
B → R, which

models the (possibly many-body and long range) interaction. In physical terms, the
interaction may be even among the different sites or among the sites and a substratum.
The total energy associated to a configuration u is given by the formal sum:

S (u) =
∑

B⊆�
#B<∞

HB(u) ∀ u ∈ R
�, (2)

where HB(u) depends only on u|B .
Remark 1. In this paper, we will not assume any periodicity properties of the set �

and of the interaction, since this will not play any role in our arguments. On the other
hand, we note that the main hypothesis of this paper (the existence of a foliation of
equilibria) is the conclusion of several other papers which use periodicity assumptions.
In [CdlL98,dlLV10], there is a very general set up for periodicity assumptions. In this
paper, we do not even need that the models are translation invariant as in [Rue69]. Some
interesting models which are not translation invariant are models of structured materials,
the Hopfield model, the time dependent Lagrangians, which are discussed in Sect. 4.3.
In Sect. 4, we will present the results for some finite range models which are concrete
examples of the set up and for which our main hypotheses are verified.

2.1.2. Critical points and ground states. The following definitions are very standard in
the calculus of variations.

Definition 2. When the HB are differentiable, we say that a configuration u is an equi-
librium for an energy (2) when

∂

∂ui
S (u) ≡

∑

B�i
∂ui HB(u) = 0 ∀ i ∈ �. (3)

For simplicity, we denote ∂
∂ui

S (u) by Ei (u) and E(u) = {Ei (u)}i∈�.
We note that, even if the sum definingS is formal, the equilibrium equations (3) are

meant to be well defined equations. The (3) can be taken as defining the derivative of
the formal sum S . It is obtained by taking derivatives term by term and retaining only
those which are not obviously zero.

Notice that we use standard typographical conventions and we use ∂
∂ui

∂ui , ∂i indif-
ferently and the choice is dictated to make the typography less cramped.
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Hence, we will formulate conditions on the interactions and the configurations that
imply that the sums in (3) converge uniformly for all the configurations considered.
This can happen for example if HB ≡ 0 whenever diam(B) ≥ L . (These are called
finite range interactions and Frenkel–Kontorova models are an example.) In Sect. 2.1.7,
we will formulate a condition, more general than finite range, which is enough for our
purposes.

We are interested in the existence of the following special class of equilibria.

Definition 3 (Ground states). We say that a configuration u is a ground state (or a class-
A minimizer in the terminology of Morse [Mor24]) if for any configuration ϕ whose
support is a finite subset of � we have

S (u) − S (u + ϕ) ≤ 0. (4)

Note that (4) shouldbeunderstood cancelling all the terms that are obviously identical.
That is ∑

#B<∞
B∩supp(ϕ) �=∅

[HB(u) − HB(u + ϕ)] ≤ 0. (5)

We note that the conditions (5)make sensewhen the interactions are finite range since the
sum in (5) involves only finitely many terms. In Sect. 2.1.7, we will make assumptions
more general than finite range that ensure that the sum in (5) makes sense. It is clear that
the main idea is that we will assume the terms in the sum (5) as well as their derivatives
decay fast enough as diam(B) grows for all u in a class of functions.Wewill postpone the
precise formulation until we have specified which classes of functions we will consider.

Since expressions similar to (5) will appear often in our calculations, we introduce
the notation

�(ϕ; u, B̃) ≡
∑

#B<∞
B∩B̃ �=∅

[HB(u + ϕ) − HB(u)] . (6)

We remark that if supp(ϕ) ⊂ B̃, we have

�(ϕ; u, B̃) = �(ϕ; u, supp(ϕ)).

The reason is that, the sums defining the two� differ only in sets B which do not intersect
the support of ϕ. Hence, the corresponding term in the sum is zero.

It is easy to check that a ground state is an equilibrium.

2.1.3. Foliations by equilibria. We say that a collection of configurations {uβ}β∈R is a
foliation by equilibria when:

(A1) E(uβ) = 0, i.e. Ei (uβ) = 0 for any β ∈ R, i ∈ �;
(A2) uβ is increasing with respect to β, i.e. if β1 ≤ β2, u

β1
i ≤ uβ2

i for any i ∈ �;

(A3) uβ
i → ±∞ as β goes to ±∞ for any i ∈ �;

(A4) for any i ∈ �,
{
uβ
i

∣∣ β ∈ R

}
= R.

The most crucial assumption for us is (A4). This means that, as we move the param-
eters β, the graphs of the functions uβ sweep out all the space � × R.

We say a foliation is strict if

(A2)’ β1 < β2 �⇒ uβ1
i < uβ2

i for all i ∈ �.
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Having a family of critical points satisfying (A1)–(A4) is extremely analogous to the
assumption on the fields of extremals in the calculus of variations [Car99].1

Remark 4. Topologists would prefer to use the name foliation only for what we call strict
foliation. Note that in (A2) we allow non-strict inequalities and hence the graphs of uβ1

and uβ2 can have intersections. This generality is useful for us.

Remark 5. One of the motivation for our study was the Aubry–Mather theory. Neverthe-
less, we point out that the models in Aubry–Mather theory are assumed to satisfy more
properties (e.g. periodicity) than the models considered in this paper.

The usual Aubry–Mather theory for a fixed frequency ω produces a family satisfying
(A1)–(A3)—but in general not (A4). On the other hand, for Diophantine frequency ω

(and some models) we can use KAM theory to produce families satisfying (A1)–(A4).
The calculus of variations methods do not assume that the system is close to integrable,
but they require positive definite assumptions on the interaction (ferromagnetism). On
the other hand, KAM methods do not require that the system is ferromagnetic but they
require that the system admits an approximate solution to the invariance equation (in
particular, the approximate solutions for systems close to integrable can be taken as the
solutions of the integrable system).

The difference between the quasi-periodic solutions satisfying (A4) and those which
do not satisfy (A4) is crucial in Aubry–Mather theory. It is known that for families of
models depending on parameters, there are regions of parameter for which the solutions
satisfy (A4) and others for which they do not. The boundary between these two regions
in parameter space is the well-known “analyticity breaking” transition. There is a deep
mathematical theory relating to this difference and the consequences of the failure of
(A4). See [RS11] for an account of this theory for elliptic PDE.

Remark 6. In the applications to Aubry–Mather theory which we will discuss later in
Sect. 4, the set � will be Z

d and the functions uβ will be roughly linear.
We point out, however, that in the case of no interactions, in dimensions bigger than

or equal to 2 one could have also harmonic polynomials, which are minimizers. It is
pointed out in [Mos86,Mos89] that developing a variational theory starting from the
harmonic polynomials of higher degree would be interesting. See [MS92].

Note that the subsequent properties we will assume depend on the class of functions
uβ .

2.1.4. Ferromagnetic properties.

Definition 7 (Ferromagnetic condition). We say that the C2 interaction potential H
satisfies the ferromagnetic condition if

∂2HB

∂u p∂uq
(u) ≤ 0 ∀p, q ∈ �, p �= q, (7)

for any configuration u on � and any finite subset B of �.

1 Note that the fields of extremals in [Car99] are formulated for functions of a one dimensional variable
taking values into any dimensional space. Here we are in the opposite situation: we are considering functions
of many variables, but taking values in a one dimensional space.
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Definition 8 (Ferromagnetic transitive). We say that a ferromagnetic interaction in � is
transitive for a class of configurations {uβ}β∈R when, given any p, q ∈ � there exist an
integer k ≥ 1, a sequence p0, . . . , pk in � with p0 = p, pk = q and sets Bi containing
a pair pi , pi+1 for i = 0, . . . , k−1 such that, for any β and any ϕ with compact support,

∂pi ∂pi+1HBi (u
β + ϕ) < 0.

In the main cases of interest, such as the Frenkel–Kontorova models, we will see that
the ∂pi ∂pi+1HBi are independent of the configuration, so that this assumption will be
very easy to verify in several models of practical importance.

The assumption in Definition 8 appeared in [dlLV07a] where it was shown that it
implies that the gradient flow of the formal energyS in (2) satisfies a strong comparison
principle. In the PDE case, a comparison principle for the gradient flow would give a
very quick proof of our results, but the conclusion for the long range of the interactions
requires an extra argument. See Remark 11.

Remark 9. The name ferromagnetic comes from the physical interpretation of interaction
of spins. The convexity condition leads to smaller energy when neighboring spins are
aligned. These conditions have appeared in other physical interpretations of the problem.
The ferromagnetismassumptions,when� = Z and the interactions are nearest neighbor,
become the twist conditions in Aubry–Mather theory. We also note that they can be
thought of as analogues of ellipticity conditions for continuous variational problems.
See [CdlL98,dlLV07b] for some more explanations of these analogies.

2.1.5. Graph theoretic language to describe the ferromagnetic assumptions. We can
reformulate some of the assumptions of Sect. 2.1.4 in the language of graph theory.
The introduction of a new language is purely cosmetic, but allows us to express future
arguments concisely and it may be illuminating.

The key observation is that we can interpret Definition 8 as the existence of a graph
structure on �.

Whenever there exists B such that for all uβ and all ϕ of compact support

∂p∂q HB(uβ + ϕ) < 0 (8)

then the sites p, q are linked in the graph.
The physical meaning of (8) is that the configuration at p affects the forces experi-

enced at the site q (and vice versa, in agreement with the action-reaction principle). The
Definition 8 can be interpreted as saying that any site can influence any other site, if not
directly, through influencing intermediate sites that in turn influence some others.

It is natural to endow � with a graph structure by considering the points of � as
vertices and drawing an edge among two linked sites in the sense of (8). Graph theory is
a deep subject, but we will only use basic names that can be found in the introductions
of any book, for example [BM08].

The assumption in Definition 8 can be interpreted as saying that, starting from any
site, we can reach any other jumping only through linked sites or that the graph is
connected.

The graph structure allows us to introduce two notions that are standard in graph
theory: distance and connectedness.

In graphs, [Bol98, p. 4] we can define a path as a sequence (finite) of edges which
connect a sequence of points. (Note that some books require that they do not intersect,
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this will not make a difference for us). Given a path γ in the graph, we define the |γ | the
length of a path γ as the number of edges it contains and we say that a path connects
two points i, j ∈ � when the first edge of γ joins i and the last edge joins j .

We define the distance between two sites i, j ∈ � as

d(i, j) = inf{ |γ | ∣∣ γ joins i, j}. (9)

When the graph is connected, i.e. all pairs of points have a path joining them, then d can
be defined for all pairs satisfying the usual assumptions of distance.

We also define the distance of a point i to a set S ⊂ � as

d(i, S) = inf{ d(i, j)
∣∣ j ∈ S}. (10)

(Since the d(i, j) takes values in integers, it is clear that the infimum in (10) is a mini-
mum.)

We can also define that a set S is connected when any pair of points can be joined by
paths all whose edges have end points in the set S.

Given any finite non-empty set S and k ∈ N, we define the set

Sk = { i ∣∣ d(i, S) ≤ k} = { i ∣∣ j ∈ S, d(i, j) ≤ k}. (11)

Note that Sk+	 = (Sk)	.
In the Frenkel–Kontorova model, we have that if S is finite, Sk is finite. On the other

hand, it is possible that the system involves long range interactions in such a way that
S1 could be infinite even for finite S.

Also the transitivity assumption can be formulated as saying that, for any non-empty
set S,

� = ∪k Sk . (12)

2.1.6. Coerciveness assumption. Given a family uβ as before, we will assume that for
any compactly supported ϕ and any i ∈ supp(ϕ) we have

lim|t |→∞
∑

B∩supp(ϕ) �=∅

[
HB(uβ + ϕ + δi t) − HB(uβ + ϕ)

] = +∞, (13)

where δi denotes the Kronecker function which takes the value 1 at i and 0 at any other
point.

Note that (13) says that if we make a test function grow at just one point, then the
relative energy grows.

2.1.7. A regularity assumption. Wewill be performing some calculations with the equi-
librium equations. In order to justify them, we will need some assumptions on the
convergence of the Ei and their derivatives.

The following assumption is sufficient for the methods used in this paper. We note
that the finite range of the interaction easily implies our assumption. Many models of
interest (e.g. the Frenkel–Kontorova models) are finite range, but there are also models
of physical interest which are not. See [SdlL12b] for a discussion of the case when
hierarchical models satisfy the assumptions.
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Given a class {uβ}β∈R satisfying (A1)-(A4) we say that the interaction {HB} is uβ

summable when: for any ϕ with compact support, we have for all β ∈ R,

lim
L→∞

∑

diam(B)≥L
B∩supp(ϕ) �=∅

|∂ui HB(uβ + tϕ)| = 0

lim
L→∞

∑

diam(B)≥L
B∩supp(ϕ) �=∅

|∂ui ∂u j HB(uβ + tϕ)| = 0
(14)

and the limits in (14) are uniform in t ∈ [0, 1].
The following result is a very simple corollary of the coercivity and regularity as-

sumption.

Proposition 10. Let {uβ}β∈R be a family of configurations and {HB} B⊂�
#B<∞

be a family

of interactions that satisfy the coerciveness and the regularity assumptions with respect
to them.

Fix any function uβ in the family and a finite set B̃.
Then, there is a function ϕ∗ such that

• supp(ϕ∗) ⊂ B̃;
•

�(ϕ∗; uβ, B̃) = inf{ �(ϕ; uβ, B̃)
∣∣ supp(ϕ) ⊂ B̃ }

where we use the notation introduced in (6);
•

Ei (u
β + ϕ∗) = 0 ∀ i ∈ B̃. (15)

The proof of Proposition 10 is very easy. We note that we are considering a function
of finitely many real variables (the values of ϕ∗ at the sites of B̃). By the assumption
of regularity this function is differentiable and tends to infinity as any of its arguments
goes to infinity. Hence, this function reaches its minimum and the minimum has zero
derivative.

Of course, the support of the minimizing function could be smaller than B̃ if some
of the values of the minimizing function happen to be zero. ��
Remark 11. Note that in Proposition 10 we do not obtain that uβ + ϕ∗ is an equilibrium.
In (15), we only obtain that the equilibrium equations hold in the finite set B̃.

Even if uβ satisfies the equilibrium equations in�, when the interaction is long range,
modifying the configuration in B̃ can affect the equilibrium equations everywhere.

This is an important difference with the PDE models in the classical calculus of
variations and this is the reason why our arguments need to be different.

2.1.8. Statement of the main general result.

Theorem 12. Let H be a C2 ferromagnetic interaction potential. Assume that there
exists a collection of configurations {uβ}β∈R such that (A1)-(A4) hold.

Moreover, assume that, with respect to uβ the interaction satisfies the ferromagnetic
transitivity, coercivity and regularity assumptions stated in Sects. 2.1.4, 2.1.6 and 2.1.7.

Then, all the equilibria uβ are ground states.



468 X. Su, R. de la Llave

Remark 13. A referee kindly observed that in somemodels, it may be possible to exclude
thatminimizers go through some specific regions of phase space. In such a case, it suffices
to verify the hypotheses of the theorem only for the configurations which take values in
the complement of the excluded regions.

3. Proof of Theorem 12

Suppose by contradiction that there exist a number β0 and a configuration ϕ whose
support is nonempty and finite such that

S (uβ0 + ϕ) − S (uβ0) < 0. (16)

That is, using the notation (6)

�(ϕ; uβ0 , supp(ϕ)) < 0. (17)

We choose any finite set S̃ ⊂ � such that supp(ϕ) � S̃ ⊂ (supp(ϕ))1 with the
notation introduced in (11).

Using Proposition 10 there is a configuration ϕ∗ with support in S̃ such that

�(ϕ∗; uβ0 , S̃) = min
supp(ϕ1)⊆S̃

�(ϕ1; uβ0 , S̃). (18)

We note that, since we can take ϕ as a test function ϕ1 we have

�(ϕ∗; uβ0 , S̃) ≤ �(ϕ; uβ0 , S̃) = �(ϕ; uβ0 , supp(ϕ)) < 0. (19)

Hence, if the function uβ0 was not a ground state, we could find a non-trivial ϕ∗. We
will show that it is impossible to find a non-trivial ϕ∗. Therefore, it is impossible that ϕ
exists and, hence uβ0 is a ground state.

We denote

β+ = inf{β ∈ R | uβ > uβ0 + ϕ∗},
β− = sup{β ∈ R | uβ < uβ0 + ϕ∗}, (20)

where the partial ordering u < v is defined by ui < vi for any i ∈ �. Analogous
definitions hold for “>”, “≥” and “≤”.

Consequently, we have that assumption (A2) can be formulated just as uβ+ ≥ uβ0 ≥
uβ− . Notice that we have β− ≤ β+ such that

uβ− ≤ uβ0 + ϕ∗ ≤ uβ+ . (21)

Moreover, for some i−, i+ ∈ S̃ one can have

(uβ0 + ϕ∗)i+ = uβ+
i+

, (uβ0 + ϕ∗)i− = uβ−
i− . (22)

By the choice of ϕ∗, β− and β+, we have from Proposition 10 and (A1) that

Ei (u
β0 + ϕ∗) = 0, ∀i ∈ S̃

E(uβ+) = E(uβ−) = 0.
(23)



A Continuous Family of Equilibria 469

The following is an elementary calculation using the fundamental theoremof calculus
which holds for any configuration u∗ and any η such that the regularity assumptions hold.

Ei∗(u
∗ + η) − Ei∗(u

∗)

=
∫ 1

0
dt

⎡

⎣
∑

j∈�

∑

B�i∗
∂2HB

∂u j∂ui∗
(u∗ + tη)η j

⎤

⎦

= ηi∗
∫ 1

0
dt

∑

B�i∗
∂2HB

∂ui∗∂ui∗
(u∗ + tη)

+
∑

j∈�

j �=i∗

η j

∫ 1

0
dt

∑

B�i∗
∂2HB

∂u j∂ui∗
(u∗ + tη). (24)

Of course, in (24), since there are factors η j in all the terms, the sum in j can be
restricted to the support of η. In the first application of the argument, we use it for a
situation when the support of η is S̃. Later on, we will use it for different supports.

The identity (24) leads immediately to the following proposition.

Proposition 14. Assume that, in the conditions of (24) we have

Ei∗(u
∗) = Ei∗(u

∗ + η) and ηi∗ = 0 for some i∗ ∈ S̃

η ≥ 0 ( or η ≤ 0 ).

Then, we have that η j = 0 for all j in S̃.

We will do the proof by showing that it applies to increasingly general S̃.
Step1. The proof of Proposition 14 is just observing that since ηi∗ = 0, and all the

other terms in (24) have the same sign, we should have that all of the terms in the sum

in (24) should be zero. Hence, either η j = 0 or
∫ 1
0

∂2HB
∂ui∗∂u j

(u∗ + tη) = 0, but for the
points j at distance 1, this integral is not zero (because this is the definition of points
being linked).

Hence, we obtain the result for any S̃ which is finite and which is contained in ({i∗})1.
We also obtain that η j = 0 for all j ∈ ({i∗})1. (Of course, if j /∈ supp(ϕ∗) the result

is trivial).
Step 2. We can now apply the result starting at any point in ({i∗})1 and obtain the

result for any S̃ ⊂ ({i∗})2 and, again repeating the argument, for any j ∈ ({i∗})2.
Step 3. Since S̃ is a finite set, due to (12) there exists a k ≥ 1 such that S̃ ⊂ ({i∗})k .

After using the argument in Step 1 at most k times, one can conclude that η j = 0 for all
j in S̃. Notice that this step uses essentially that the interaction is transitive. ��

Now, we come back to the proof of Theorem 12. Notice that Theorem 12 will be
established when we conclude that ϕ∗ in (15) could not exist and, hence no ϕ satisfying
(16) could exist.

Taking

u∗ = uβ+ , η = uβ0 + ϕ∗ − uβ+ ,

and due to (21) and (22), we see that η ≤ 0, and moreover for i+ ∈ S̃ we have

Ei+(u
∗) = Ei+(u

∗ + η) and ηi+ = 0.
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Hence, applying Proposition 14, we have η = 0 in S̃. That is, ϕ∗ = uβ+ − uβ0 in S̃ and
ϕ∗ = uβ+ − uβ0 ≥ 0.

We can now proceed in the opposite direction using uβ− . Similarly, we take

u∗ = uβ− , η = uβ0 + ϕ∗ − uβ− ,

and due to (21) and (22), we see that η ≥ 0, and moreover for i− ∈ S̃ we have

Ei−(u∗) = Ei−(u∗ + η) and ηi− = 0.

Applying Proposition 14, we have η = 0 in S̃. That is, ϕ∗ = uβ− − uβ0 in S̃ and
ϕ∗ = uβ+ − uβ0 ≤ 0, which concludes that ϕ∗ = 0. That is, we have shown that it is
impossible to lower the energy by changing the state in S̃.

4. Some Concrete Examples of the Models Considered

In this section, we will show how several different models in the literature fit in the
general framework we have developed. The fact that we can obtain results for different
models at the same time is due to the generality of the methods we present here. In this
section, we will also present proofs of the results of Theorem 12 for the concrete models.
The proofs we will present are different from the general proof and take advantage of
the special features of the models.

4.1. General one-dimensional periodic models. The papers [dlL08] considers one di-
mensional models given by energies of the form:

L (u) =
∑

k∈Z

∑

L∈N
HL(uk, uk+1, . . . , uk+L) (25)

where u : Z → R and HL : R
L+1 → R.

Remark 15. Note that the models in (25) enjoy a translation invariance, (the energy of
the configuration v defined by vi = ui+m satisfies that formally, L (u) = L (v)) which
is not present in our general set up, but which is physically justified. One can remove
the periodicity by changing the HL in (25) to HL ,k . This will be done in models in
quasi-periodic media or discounted systems discussed in the next sections.

The corresponding equilibrium equation for the models (25) is:

Ei (u) =
∑

k

∑

L

∑

j

∂ j+1HL−k(ui− j , . . . , ui , . . . , uL−k+i− j ). (26)

The paper [dlL08] includes coercivity and regularity assumptions similar to ours, it
includes an extra periodicity property

HL(uk, uk+1, . . . , uk+L) = HL(uk + 1, uk+1 + 1, . . . , uk+L + 1)

as well as higher regularity assumption. On the other hand, the paper [dlL08] does not
use the full strength of the ferromagnetic property and indeed they allow some antifer-
romagnetic terms since the KAM theory allows that. If one changes parameters, there
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could be critical values when the tori studied go from minimizers to not being minimiz-
ers. Note that, since the systems in [dlL08] are translation invariant, the ferromagnetic
transitivity is implied by the ferromagnetic property of nearest neighbors (there are other
assumptions such as the strict ferromagnetism for other sets of interactions).

The paper [dlL08] considers only equilibrium configurations given by a hull function

uk = ωk + h(ωk)

where h is a periodic function called the “hull function”. The hull function is such that
t + h(t) is an increasing function.

It is easy to see that—it is shown with many details in [dlL08] that if h is the hull
function for a critical point so is uβ given by

hβ(θ) = β + h(θ + β).

Weobserve that, when h is a smooth function and |h|L∞ < 1, the configurations obtained
for all these hull functions produce a foliation in our sense.

Hence, applying Theorem 12, we obtain the following result:

Theorem 16. Assume the set up of [dlL08] and assume furthermore, that, for some hull
function, the system satisfies the ferromagnetic property

∂i∂ j HL ≤ 0

and that, for any given η > 0,

∂1∂2H1(x, y) ≤ −η < 0 ∀x, y ∈ R.

Then, the quasi-periodic solutions produced in [dlL08] are ground states.

4.2. Application to the Frenkel–Kontorova models on quasi-periodic media. This class
of models was considered in [SdlL12b] with nearest neighbor interactions. In [SdlL12a]
for more general interactions, many body interactions. The papers [SdlL12b,SdlL12a]
consider quasi-periodic solutions which are non-resonant (indeed Diophantine) with the
frequency of themedium.The papers [dlLSZ16,dlLSZ17] study quasi-periodic solutions
which are resonant with the frequency of the medium inmodels in which the interactions
are only nearest neighbor. Using the results of this paper, we can conclude that the
solutions are ground states provided that we assume transitive ferromagnetic conditions.

In this section, we will consider only the problem in [SdlL12b], which will allow
us to give a more direct proof of the results. We note that in the models based on the
Frenkel–Kontorova models with next neighbor interaction, the transitive ferromagnetic
hypothesis is automatic.

We consider the following formal energy

S ({ui }i∈Z) =
∑

n∈Z

[
1

2
(un − un+1)

2 − V (unα)

]
, (27)

where V : T
d → R and α ∈ R

d satisfying k · α �= 0 when k ∈ Z
d − {0} where d ≥ 2.

For simplicity,wedenoteH(x, y) = 1
2 (x−y)2−V (xα). Consequently, ∂xy H(x, y) =

∂yx H(x, y) = −1.
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Under the assumption of [SdlL12b,dlLSZ17], using KAM method, we prove the
existence of quasi-periodic solutions of the equilibrium equation

un+1 + un−1 − 2un + ∂αV (unα) = 0, (28)

where ∂αV ≡ (α · ∇)V .
Indeed, the solutions of (28) we found are given by a hull function

un = nω + h(nωα)

for some given ω ∈ R. Therefore, the equilibrium equation we solve in terms of h is

h(σ + ωα) + h(σ − ωα) − 2h(σ ) + ∂αV (σ + α · h(σ )) = 0. (29)

The papers [dlLSZ16,dlLSZ17] have very different non-resonance assumptions from
the assumptions in [SdlL12b,SdlL12a] and require very differentmethods. Nevertheless,
from the point of view of the arguments of this paper, to show that the quasi-periodic
solutions produced in both papers are ground states, we can use the same argument.

It is easy to see that if h(σ ) is a solution (29), for any β ∈ R, h(σ + βα) + β is a
solution. We denote hβ(σ ) = h(σ + βα) + β.

Hence, let us denote uβ
n = nω + hβ(nωα) which is a continuum of equilibria of (28)

with respect to the parameter β ∈ R. It is easy to see that, for every fixed n ∈ Z, uβ
n is

monotone with respect to β, i.e.,

∂uβ
n

∂β
= 1 + ∂αh(nωα + βα) �= 0. (30)

Without loss of generality, we assume uβ
n is monotone increasing with respect to β.

The following result is a particular case of Theorem 12, but in this section, we will
present a different proof.

Theorem 17. For every β ∈ R, the configurations uβ ≡ {uβ
i }i∈Z are ground states of

(27).

Proof. Suppose by contradiction that there exists β0 such that {uβ0
i }i∈Z is not a ground

state of (27). That is, there exists two integers m < n and a configuration {vi }i∈Z
satisfying vi = uβ0

i for any i ≤ m or i > n such that

S n
m({vi }i∈Z) ≡

n∑

i=m

[
1

2
(vi − vi+1)

2 − V (viα)

]
<

n∑

i=m

[
1

2
(uβ0

i − uβ0
i+1)

2 − V (uβ0
i α)

]
.

(31)
Since minv∈RZ S n

m(v) is a minimizing problem of finite variables and S n
m(v) is

bounded from below, there exists a minimizing segment {wi }n+1i=m ofS n
m with the bound-

ary condition wi = uβ0
i for i = m or i = n + 1. One can suppose, without loss of

generality, that there exists m < i0 ≤ n such that wi0 > uβ0
i0
. Since uβ is a foliation,

there exist β1 > β0 and m < i1 ≤ n such that

wi1 = uβ1
i1

and wi ≤ uβ1
i , ∀ m ≤ i ≤ n + 1. (32)

Indeed, one can choose m < i2 ≤ n such that wi2 = uβ1
i2

and wi2−1 < uβ1
i2−1.
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We use the adaptation of the standard technique of the Hilbert integral in calculus of
variations (see also [CdlL98]). For every m ≤ i ≤ n we calculate

0 = ∂x H(wi , wi+1) + ∂y H(wi−1, wi ) − ∂x H(uβ
i , uβ

i+1) − ∂y H(uβ
i−1, u

β
i )

=
∫ 1

0

d

dt

[
∂x H(twi + (1 − t)uβ

i , twi+1 + (1 − t)uβ
i+1)

+ ∂y H(twi−1 + (1 − t)uβ
i−1, twi + (1 − t)uβ

i )
]
dt

=
∫ 1

0

[
(∂xx H)(wi − uβ

i ) + (∂xy H)(wi+1 − uβ
i+1)

+ (∂yx H)(wi−1 − uβ
i−1) + (∂yy H)(wi − uβ

i )
]
dt.

(33)

Let i = i2, β = β1 in the above calculation, we obtain

0 = wi2+1 − uβ1
i2+1

+ wi2−1 − uβ1
i2−1.

Hence, due to the choice of i2, we have wi2+1 − uβ1
i2+1

= uβ1
i2−1 − wi2−1 > 0, which

contradicts (32). ��

4.3. Conformally symplectic systems. The so-called conformally symplectic systems
have attracted recent mathematical attention but they have been in the applied literature
for a very long time.

These models are described by actions that include exponentially decreasing factors.
These exponentially decreasing factors are very natural in finance since they account
for inflation. In recent times, the KAM theory for these systems has been developed in
[CCdlL13] and an Aubry–Mather theory in [MS16].

An example to keep inmind is a variation of (1). In the same set up as (1), we consider
the formal action for λ > 0, η ∈ R

Sλ,η(u) =
∑

i∈Z
eiλ

[
1

2
(ui − ui+1)

2 − V (ui ) + ηui

]
. (34)

The equilibrium equations for (34) are equivalent to orbits of the so-called dissipative
standard map. Note that these models involve two parameters (besides the parameters in
the periodic potential). The λ plays the role of a dissipation and the η is called the drift.
In the financial applications, each term of the action is the cost of a transaction at time
i and the exponential factor reduces it to constant money.

In [CCdlL13] one can find a rather general KAM theory, which in particular applies
to (34). One fixes the rotation number, and determines the quasi-periodic orbit with
this rotation and the parameter η. Applying Theorem 12, we obtain that the KAM tori
are minimizers, so that one could extend the algorithms for conservative systems in
[NP83,Aub84,Mac89]. Other computations of invariant tori and their breakdown appear
in [CM07,CC10,CF12].
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