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For a Denjoy homeomorphism f of the circle S, we call a pair of distinct points of the ω-limit set ω( f )
whose forward and backward orbits converge together a gap, and call an orbit of gaps a hole. In this paper,
we generalize the Sturmian system of Morse and Hedlund and show that the dynamics of any Denjoy
minimal set of finite number of holes is conjugate to a generalized Sturmian system. Moreover, for any
Denjoy homeomorphism f having a finite number of holes and for any transitive orientation-preserving
homeomorphism f1 of the circle with the same rotation number ρ( f1) as ρ( f ), we construct a family
fε of Denjoy homeomorphisms of rotation number ρ( f ) containing f such that (ω( fε), fε) is conjugate to
(ω( f ), f ) for 0 < ε < ε̃ < 1, but the number of holes changes at ε = ε̃, that (ω( fε), fε) is conjugate to
(ω( fε̃), fε̃) for ε̃ � ε < 1 but limε↗1 fε(t) = f1(t) for any t ∈ S, and that fε has a singular limit when
ε ↘ 0. We show this singular limit is an anti-integrable limit (AI-limit) in the sense of Aubry. That is,
the Denjoy minimal system reduces to a symbolic dynamical system. The AI-limit can be degenerate or
nondegenerate. All transitions can be precisely described in terms of the generalized Sturmian systems.

Keywords: Denjoy counterexample; Denjoy minimal set; generalized Sturmian system; anti-integrable
limit..

1. Introduction

Let f be a continuous map of a topological space X. We say that a subset Y of X is invariant under f if
f (Y) = Y . A closed invariant set Y is called minimal if it contains no proper closed invariant subsets.
Let S = {z ∈ C||z| = 1} be the unit circle. We identify S with R/Z and have the identification [0, 1) � t
with {z ∈ C||z| = 1} � e2π it. We shall freely use the representation of S that is most convenient. Let
β ∈ (0, 1) and Rβ : S → S, t �→ t + β(mod1), be the rotation with angle β.

For a monotone twist map of the cylinder S × R, the celebrated Aubry–Mather theory tells that we
can always find invariant minimal closed subsets of the cylinder on which the twist map has irrational
rotation numbers. These closed subsets are either Lipschitz circles or Cantor sets on Lipschitz circles. In
the latter case, they are also called cantori or Denjoy minimal sets. The projection of an invariant circle
or a cantorus to the unit circle S is the circle S or a Cantor set C in the circle, respectively. And, the
restriction of the twist map to an invariant circle or a cantorus projects to a homeomorphism of S or C ,
respectively. In the latter case, we can extend the homeomorphism linearly into the complement S \ C
to obtain a circle homeomorphism. The rotation number of an invariant circle or a cantorus is defined to
be the rotation number of this induced circle homeomorphism. (See (2.1) in Section 2 for the definition
of rotation number of a circle homeomorphism.)
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2 Y.-C. CHEN

The Aubry–Mather theory also indicates that an invariant circle breaks by the conjugacy from an
irrational rotation becoming discontinuous. (If f1 and f2 are respectively maps of spaces X1 and X2, and
Y1 ⊆ X1, Y2 ⊆ X2 are invariant sets of f1 and f2, respectively. The restriction of f1 to Y1 is said to
be (topologically) semi-conjugate to the restriction of f2 to Y2 if there exists a continuous surjection
h : Y1 → Y2, called a semi-conjugacy, such that f2 ◦ h = h ◦ f1 on Y1. If h is a homeomorphism, then
it is called a conjugacy.) For a large class of maps of the cylinder and rotation numbers, the breakup
boundary in parameter space is believed to be smooth. But for the two-harmonic family of maps of the
following form

xi+1 = xi + yi+1 (mod 1), (1.1)

yi+1 = yi − a

2π
sin 2πxi − b

4π
sin 4πxi, (1.2)

of S×R with parameters a and b (and for multiharmonic maps in general), the breakup boundary exhibits
a fractal structure. Baesens & MacKay (1993) believe that this is because cantori of this family of fixed
rotation number form an interval in the vague topology, and thus the breakup boundary is composed of
many pieces, each one corresponding to a point in the interval. (Each cantorus carries a unique invariant
measure, induced by semi-conjugacy to rotation, and is the support of that measure. Suppose μ1 and
μ2 are the invariant measures on two cantori. The vague topology on cantori is defined by saying that
the two cantori are close if the integrals of any continuous function of compact support with respect to
μ1 and μ2 are close. See Mather (1985) for more details about the vague topology.)

Baesens & MacKay (1993) (see also MacKay, 1992) showed that for maps of the form (1.1) and
(1.2) near enough an anti-integrable limit (AI-limit) (to be explained shortly) cantori of a given rotation
number may form an interval (in the vague topology). This is because the cantori may have multiple
number of holes. Following their terminology, we call a pair of distinct points of a Denjoy minimal set
whose forward and backward orbits converge together a gap. The gaps come in orbits. We call an orbit
of gaps a hole. Aubry calls it a discontinuity class (see Aubry et al., 1991). For the two-harmonic family
(1.1) and (1.2), the cantori depend on parameters a and b. Baesens and MacKay proved that there are
parameter regimes such that on passing different regimes there exists a bifurcation in which a one-hole
cantorus gains a second hole or there exists an invariant circle to one-hole cantorus transition. See also
Baesens & MacKay (1994) for numerical demonstration.

Note that for an area-preserving monotone twist map, Mather (1985) showed that if there is no
invariant circle of a given irrational rotation number β, then there exist uncountably many Denjoy
minimal sets of that rotation number. Moreover, as pointed out by Boyland (1987), these are n-fold
Denjoy minimal sets, i.e., they wrap n-times around the cylinder, with average speed β for all n loops
with n � 2. The n-fold Denjoy minimal sets showed by Mather have dimension n − 1 in the vague
topology.

A dynamical systems is, in Aubry’s sense (see Aubry & Abramovici, 1990), at the AI-limit if it
becomes nondeterministic and reduces to a subshift of finite type. For more details on the concept of
AI-limit and its applications, see e.g., Aubry (1995), Aubry & Abramovici (1990), Baesens et al. (2013),
Chen (2010) and MacKay & Meiss (1992). For the family of maps of the form (1.1) and (1.2), the
AI-limit corresponds to the limit a, b → ∞. The orbits of this family of maps are equivalent to those of
the following family of recurrence relations:

xi+1 − 2xi + xi−1 + a

2π
sin 2πxi + b

4π
sin 4πxi = 0 (xi ∈ R∀i ∈ Z).
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ANTI-INTEGRABLE LIMITS FOR DENJOY COUNTEREXAMPLES 3

If we set a, b → ∞ with a/b = κ = 1/4, as did in Baesens & MacKay (1994), then for each i the
recurrence relations above reduce to an algebraic equation

cos 2πxi = −1

4
,

which can be solved easily. Let xi = x+ or x− (mod1) be the only two solutions of cos 2πxi + 1
4 = 0.

Then, the sequences (. . . , x−1, x0, x1, . . .) (mod 1) consisting of all possible solutions of the equation are
sequences of x+ and x−. This results in a symbolic dynamics on two symbols. The theory of AI-limit
says that, under some technical conditions, the symbolic dynamics at the AI-limit persists to sufficiently
large a = κb. Thus, we obtain chaotic orbits of the maps (1.1) and (1.2).

Denjoy proved by constructing examples that there exist circle diffeomorphisms that have irrational
rotation number β but are not conjugate to Rβ . The ω-limit sets of Denjoy’s examples are Cantor sets.
We refer to any orientation-preserving homeomorphism (OPH) of S with irrational rotation number that
is not conjugate to a rotation as a Denjoy homeomorphism or Denjoy counterexample. (Given a circle

homeomorphism f and a point x ∈ S, define a set ω(x, f ) := ⋂∞
n=0

⋃∞
k=n f k(x). This set is independent

of x for a Denjoy homeomorphism. The ω-limit set ω( f ) of a Denjoy homeomorphism f is defined by
ω( f ) = ω(x, f ).)

There are circle diffeomorphisms whose Denjoy minimal sets have multiple holes. These
diffeomorphisms can be constructed by ‘blowing up’ points in a multiple number of orbits of Rβ ,
instead of only in one orbit. It is natural and interesting to investigate whether similar bifurcation and
transition phenomena studied in Baesens & MacKay (1993, 1994) also happen in the minimal sets for
Denjoy homeomorphisms of the circle. If they do, can one describe the bifurcations or transitions for
multi-hole Denjoy minimal sets in terms of symbolic dynamics? More importantly, what is the
AI-limit for Denjoy homeomorphisms? These questions motivated this paper and are the central issues to
be addressed.

In this paper, we generalize the Sturmian system of Morse & Hedlund (1940) by coding irrational
rotations with respect to an arbitrary finite partition on the circle and show that the dynamics of
any Denjoy minimal set of finite number of holes is conjugate to a generalized Sturmian system.
Notice that it is known (see e.g., Katok & Hasselblatt, 1995) that the restriction of a one-hole Denjoy
homeomorphism to its ω-limit set is conjugate to the restriction of the full two-shift homeomorphism to a
closed invariant subset. We call a generalized Sturmian system a multi-hole Sturmian system. Moreover,
for any Denjoy homeomorphism f having a finite number of holes and for any transitive OPH f1 of the
circle with the same rotation number ρ( f1) as ρ( f ), we construct a one-parameter family fε of Denjoy
homeomorphisms of rotation number ρ( f ) having the following properties. The first property is that
fε0

= f and (ω( fε), fε) is conjugate to (ω( f ), f ) when 0 < ε < ε̃ with some 0 < ε0 < ε̃ < 1. The
second is that the number of holes changes at ε = ε̃, corresponding to a transition of cantorus in which
a cantorus gains or loses a certain number of holes, and that (ω( fε), fε) is conjugate to (ω( fε̃), fε̃) when
ε̃ � ε < 1. The third is that limε↗1 fε(t) = f1(t) pointwisely for any t ∈ S, corresponding to the circle
to cantorus transition, and that fε has a singular limit when ε ↘ 0. We show that this singular limit is
an AI-limit in the sense of Aubry (1995) (see also Aubry & Abramovici, 1990). That is, the Denjoy
minimal set collapses to a set of finite point and the Denjoy minimal system reduces to a symbolic
dynamical system. The AI-limit can be degenerate or nondegenerate. All transitions can be precisely
described in terms of multi-hole Sturmian sequences.

Roughly speaking, near an AI-limit, (ω( fε), fε) is conjugate to a multi-hole Sturmian system but
reduces to a (topological) factor of that multi-hole Sturmian system at the AI-limit. For instance, suppose
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4 Y.-C. CHEN

that fε is constructed by blowing up orbit points Rn
β(0) of the origin into wandering intervals I(1)

n and

the length |I(1)
n | of I(1)

n depends on ε for every n ∈ Z. Then, an AI-limit will correspond to the limit
|I(1)

n | → 0 for all n except |I(1)
1 | → 1 as ε → 0.

Analogously, suppose that fε is obtained by blowing up points of the two orbits {Rn
β(0)|n ∈ Z}

and {Rn
β(1/2)|n ∈ Z} into wandering intervals I(1)

n and I(2)
n , respectively. Again, suppose that the

lengths of these intervals depend on ε. Then, a two to one-hole transition of cantorus will occur
at ε = ε̃ provided that the length of I(2)

n shrinks to zero (the gap corresponding to the boundary
of I(2)

n is annihilated) for every n when ε = ε̃ but the union
⋃

n∈Z I(1)
n remains constituting the

wandering intervals.
The rest of this paper is organized as follows. In the next section, we briefly review fundamental

properties of Denjoy homeomorphisms. Before describing a way to code symbolically a Denjoy
minimal set in Section 4, we establish in Section 3 the multi-hole Sturmian systems that code irrational
rotations with respect to arbitrary partitions on the circle. Section 5 is devoted to the transitions
and AI-limits of Denjoy minimal systems. The transitions and AI-limits will be described in terms
of quotients of multi-hole Sturmian systems. We postpone all proofs of our theorems until the
final section.

2. Denjoy counterexample

The purpose of this section is twofold. On the one hand, it provides a brief review of well-known facts
about Denjoy counterexamples. (For a detailed account, the reader may refer to Cornfeld et al., 1982;
Katok & Hasselblatt, 1995; Nitecki, 1971, for instance.) On the other hand, it introduces our assumption
on the Denjoy minimal sets to be studied.

Recall that a lift of an OPH f : S → S is a homeomorphism F : R → R that satisfies
f (x) = F(x) mod 1 for x ∈ [0, 1) and F(x + 1) = F(x) + 1 for every x ∈ R. Such a lift is unique
up to an additive constant: if F̃ is another lift, then F̃(x) = F(x)+ m for some integer m. Given a lift, the
following limit

ρ0(F) = lim|n|→∞
Fn(x) − x

n

exists and is independent of x. Define the rotation number ρ( f ) of f by

ρ( f ) = ρ0(F) (mod 1). (2.1)

If f is a homeomorphism of S having ω( f ) a Cantor set, then f is semi-conjugate to Rβ for some
irrational number β. In other words, f has Rβ as a factor. More precisely, there is a unique (up to a
rotation) continuous nondecreasing surjection h of degree one such that the diagram below commutes

S
f−→ S

h
⏐⏐� ⏐⏐�h

S
Rβ−→ S.

(*)
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ANTI-INTEGRABLE LIMITS FOR DENJOY COUNTEREXAMPLES 5

The image of ω( f ) under h is S. The complement S \ ω( f ) = ⋃
n∈Z In consists of countable pairwise

disjoint open sets In, which are invariant under f and for which h(In) is a single point for every n. Thus,
h(S \ ω( f )) is a countable invariant set of Rβ . The semi-conjugacy h is one-to-one on S \ ⋃

n∈Z cl In,
where cl In denotes the closure of In.

The topological classification of Denjoy homeomorphisms with a given irrational rotation number
β is due to Markley given by a finite or countable collection of orbits of the rotation Rβ up to a
simultaneous translation of all these orbits. For a Denjoy homeomorphism, define

D( f ) := h
( ⋃

n∈Z
cl In

)
.

We call the number of disjoint orbits of D( f ) under Rβ the number of holes of ω( f ). The number of
holes of a Denjoy minimal set is at least one, and may be infinite. Markley (1970) proved the following.

Theorem 2.1 (Markley 1970). A Denjoy homeomorphism f is semi-conjugate to another f̃ via an
orientation-preserving surjection if and only if they have the same rotation number and

D( f̃ ) ⊆ Rα (D( f )) (2.2)

for some 0 � α < 1. The surjection is a homeomorphism if and only if equality holds in (2.2)

On the other way round, for any given Cantor set C ⊂ S and any countable Rβ -invariant subset
D ⊂ S, one can choose pairwise disjoint open intervals Id, d ∈ D, which have the same cyclic ordering
as points in D and whose union

⋃
d∈D Id is S \ C . Then there exists a continuous surjection h of S such

that h−1(d) = cl Id for all d ∈ D and which is one-to-one on h−1(S \ D). Moreover, one can construct a
homeomorphism f of S with rotation number β so that h satisfies (*), that D( f ) = D and that C is the
unique minimal invariant set (equal to ω( f )) under f .

Let X be a topological space and f an invertible map of X. Denote the orbit of a point x ∈ X under
the iteration of f by O(x; f ) := {f n(x)|n ∈ Z}. If Y is a subset of X, let O(Y; f ) := ⋃

x∈Y O(x; f ).
If two OPHs f̃ and f of the circle are conjugate by an orientation preserving (resp. reversing)

homeomorphism, then ρ( f̃ ) = ρ( f ) (resp. ρ( f̃ ) = −ρ( f ) mod 1). Note that Rβ and R−β are conjugate

via reflection t �→ −t mod 1. (The orbit O(t; Rβ) of a point t under Rβ is identical to the one O(t; R−1
1−β)

under inverse iteration of R1−β .) In fact, two Denjoy homeomorphisms f̃ and f are conjugate via an

orientation-reversing conjugacy if and only if ρ( f̃ ) = 1 − ρ( f ) and D( f̃ ) = 1 − Rα (D( f )) for
some 0 � α < 1 (Markley, 1970). For these reasons, in this paper we concentrate on those Denjoy
homeomorphisms of rotation number less than 1/2.

Without loss of generality, we make the following assumption throughout this paper.

Assumption A Let f be a Denjoy homeomorphism. Assume that the number of holes of ω( f ) is finite
and equal to some integer K � 1. Assume that

• 0 < ρ( f ) = β < 1/2,

• there is a set Θ = {θ(1), θ(2), . . . , θ(K)} of K points, with 0 = θ(1) < θ(2) < . . . < θ(K) < 1,
and O(θ(i); Rβ) ∩ O(θ(j); Rβ) = ∅ for all 1 � i < j � K,
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6 Y.-C. CHEN

• there are open sets I(k)
n , n ∈ Z, 1 � k � K, such that

h−1(θ(k)) = cl I(k)
0

=
[
a(k)

0 , b(k)
0

]
,

f n(I(k)
0 ) = I(k)

n

=
(

a(k)
n , b(k)

n

)
,

⋃
1�k�K

⋃
n∈Z

I(k)
n = S,

where h is the semi-conjugacy satisfying (*), a(k)
n , b(k)

n are points in ω( f ) and (a(k)
n , b(k)

n )

and [a(k)
n , b(k)

n ] denote the open and closed (anti-clockwise) intervals from a(k)
n to b(k)

n in S.
We assume 0 ∈ I(1)

0 .

Remark 2.2

(i) We call the minimal system (ω( f ), f ) in Assumption A a K-hole Denjoy minimal system.

(ii) If a Denjoy homeomorphism f satisfies Assumption A, then D(f ) = O(Θ; Rβ).

Clearly, f n(a(k)
0 ) = a(k)

n , f n(b(k)
0 ) = b(k)

n and lim|n|→∞ | f n(a(k)
0 ) − f n(b(k)

0 )| = 0. Therefore, the pair

of points a(k)
n and b(k)

n is a gap. Define the following equivalence relation on ω( f ): for points x, y ∈ ω( f )
and a subset Θ̂ ⊆ Θ , we say

x ∼
Θ̂

y (2.3)

if lim|n|→∞ | f n(x) − f n(y)| = 0, x, y ∈ {O(a(k)
0 ; f ), O(b(k)

0 ; f )}, and if θ(k) ∈ Θ̂ . Note that x ∼Θ y if

lim|n|→∞ | f n(x) − f n(y)| = 0 or equivalent if h(x) = h(y). It is necessary that x ∼{θ} y for some θ ∈ Θ̂

if x ∼
Θ̂

y. Hence, two distinct points x and y in ω( f ) form a gap if and only if x ∼Θ y or if and only if
h(x) = h(y).

For the sake of convenience of notation, in the sequel, we use (Y , f ) to denote the restriction f |Y
of a continuous map f of a topological space X to an invariant subset Y ⊆ X. Also, we use (Y , f )/∼
instead of (Y/∼, f∼) to denote dynamical system of the induced map f∼ of f of the quotient of Y by an
equivalence relation ∼ on Y .

The following is well-known.

Theorem 2.3 Let f be a Denjoy homeomorphism satisfying Assumption A. The quotient space
ω( f )/∼Θ of ω( f ) by the equivalence relation ∼Θ is homeomorphic to S. The quotient dynamics
(ω( f ), f ) /∼Θ is conjugate to (S, Rβ).

3. Coding of irrational rotation

First, we describe a way to characterize symbolic codes of an irrational rotation of the unit circle
S. It is a generalization of Morse and Hedlund’s construction of Sturmian sequences in Morse &
Hedlund (1940). Given irrational β ∈ (0, 1/2) and t ∈ S, we investigate the coding of the orbit O(t; Rβ)

in this section.
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ANTI-INTEGRABLE LIMITS FOR DENJOY COUNTEREXAMPLES 7

Let Q ⊂ S be a finite set of real numbers having cardinality N ≥ 2. Suppose Q = {q1, q2, . . . , qN}
with the ordering

0 = q1 < q2 < . . . < qN < 1

is a set of N consecutive points on S. We call such a finite set Q a partition set or a set of partition points
on the circle S. Partition S into N number of intervals:

J+
1 = [0, q2) J−

1 = (0, q2]

J+
2 = [q2, q3) J−

2 = (q2, q3]

... or
...

J+
N−1 = [qN−1, qN) J−

N−1 = (qN−1, qN]

J+
N = [qN , 1), J−

N = (qN , 1].

Denote by �(Q) the cardinality of Q. Given a partition set Q, we define Φ = {φ1, φ2, . . . , φN} to be a
finite real number set of the same cardinality as Q, �(Φ) = �(Q) = N, with the ordering

0 � φ1 < φ2 < . . . < φN � 1.

Associated with the rotation Rβ , define two maps ν+(·; β, Q, Φ) and ν−(·; β, Q, Φ) from the circle S to

the product space ΦZ,

ν+(t; β, Q, Φ) = (· · · , ν+(t; β, Q, Φ)−1, ν+(t; β, Q, Φ)0, ν+(t; β, Q, Φ)1, · · · ),
ν−(t; β, Q, Φ) = (· · · , ν−(t; β, Q, Φ)−1, ν−(t; β, Q, Φ)0, ν−(t; β, Q, Φ)1, · · · ),

by

ν±(t; β, Q, Φ)n = φi if Rn
β(t) ∈ J±

i for 1 � i � N, n ∈ Z.

In other words, ν±(t; β, Q, Φ) give the itinerary sequences of the orbit of t under Rβ with respect to the
partition Q. We call such a finite set Φ a symbol set or a set of symbols, and call (Q, Φ) a partition-
symbol pair or a pair of partition and symbol sets.

Endow the finite set Φ with the discrete topology, and the set of sequences u = (. . . , u−1, u0, u1, . . .)
∈ ΦZ with the product topology. Define a set Xβ,Q,Φ by

Xβ,Q,Φ :=
⋃
t∈S

(ν−(t; β, Q, Φ) ∪ ν+(t; β, Q, Φ)). (3.1)

Let σ = σN : ΦZ → ΦZ, (ui)i∈Z �→ (vi)i∈Z with vi = ui+1, be the usual shift automorphism. We call

the subshift (Xβ,Q,Φ , σ) of (ΦZ, σ) an N-symbol Sturmian system of partition points Q with symbols

Φ and rotation number β (where N = �(Q) = �(Φ)). For the sake of simplicity, (ΦZ, σ) instead of
(ΦZ, σN) is used in the rest of this paper provided no ambiguity is caused.
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8 Y.-C. CHEN

A sequence u ∈ ΦZ is called a rotation sequence of partition Q with irrational rotation number
β ∈ (0, 1/2) if there exists t ∈ S such that either ν+(t; β, Q, Φ) = u or ν−(t; β, Q, Φ) = u.
A sequence u ∈ ΦZ is called a rotation sequence if it is a rotation sequence of some partition with
some rotation number.

By the definition above, a rotation sequence of partition {0, β} or {0, 1 − β} with irrational rotation
number β gives rise to a Sturmian sequence. See subsection 3.1 for a brief account of the Sturmian
sequence. We remark that for 0 < c < 1 − β the partition {0, c, c + β/2, 1 − β/2} that divides the circle
into four arcs was studied by Hockett & Holmes (1986), but they used two symbols rather than four to
characterize a rotation. See also Boyland (1993) for coding rotations with two symbols by more general
partitions.

Remark 3.1 Suppose (un)n∈Z = ν+(t; β, Q, Φ) (or ν−(t; β, Q, Φ)), then

un = φin ⇐⇒ R−n
1−β(t) ∈ J+

in

(
resp. J−

in

)

for all 1 � in � N = �(Q) and n ∈ Z. Hence, with respect to the partition Q, the sequence (un)n∈Z is
also the itinerary sequence of the orbit of t under the reverse rotation with angle 1 − β.

Theorem 3.2 Given an irrational number β ∈ (0, 1/2), the set Xβ,Q,Φ is a Cantor set in ΦZ, the shift
σ is a homeomorphism of Xβ,Q,Φ and the system (Xβ,Q,Φ , σ) is invariant and minimal.

The minimality of the set Xβ,Q,Φ means that the set can be defined alternatively to be the orbit
closure

Xβ,Q,Φ := {σ n(u)|n ∈ Z} (3.2)

of any rotation sequence u of partition points Q with symbols Φ and rotation number β. (Actually,
we prove the minimality in Theorem 3.2 by showing that (3.2) holds.) For the Sturmian system cases
Xβ,{0,β},{0,1} and Xβ,{0,1−β},{0,1}, results of Theorem 3.2 were proved in Hedlund (1944).

Theorem 3.3 Given any irrational numbers β, β̃ ∈ (0, 1/2), partition-symbol pairs (Q, Φ) and (Q̃, Φ̃),
the system (Xβ̃,Q̃,Φ̃ , σ) is a factor of (Xβ,Q,Φ , σ) if and only if β̃ = β and

O(Q̃; Rβ̃ ) ⊆ O(Q; Rβ). (3.3)

The two systems are conjugate if and only if equality holds in (3.3).

In virtue of the above theorem, it is necessary that β = β̃ for the two systems to be conjugate. Hence,
we shall concentrate on a fixed irrational β and, when no ambiguity is caused, write ν±(t; Q, Φ) =
ν±(t; β, Q, Φ) and XQ,Φ = Xβ,Q,Φ to simplify notation.

Given a partition set Q and a symbol set Φ, let Q̃ be a subset of Q. Assume that u, v belong to
XQ,Φ . Define the following equivalence relation: u ∼Q̃ v if u, v ∈ {ν−(t; Q, Φ), ν+(t; Q, Φ)} for some

t ∈ O(Q̃; Rβ). It is easy to check that the equivalence relation defined is indeed an equivalence relation.

For any two subsets Θ̃ and Θ ′ of Θ the union ∼Θ̃ ∪ ∼Θ ′ is again an equivalence relation, and is equal
to ∼Θ̃∪Θ ′ .

Theorem 3.4 Given a partition-symbol pair (Q, Φ), the system (XQ,Φ , σ) is semi-conjugate to (S, Rβ)

in such a way that (XQ,Φ , σ) is a 2-to-1 extension of (S, Rβ) and the semi-conjugacy is 1-to-1 except
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ANTI-INTEGRABLE LIMITS FOR DENJOY COUNTEREXAMPLES 9

on the countable subset
⋃

q∈Q{σ n ◦ ν±(q; Q, Φ)|n ∈ Z}. The quotient space XQ,Φ/∼Q of XQ,Φ by the
equivalence relation ∼Q is topologically a circle, and (XQ,Φ , σ)/∼Q is conjugate to (S, Rβ).

The above theorem has been known (e.g., Arnoux, 2002) for the Sturmian case Q = {0, β} or
{0, 1 − β}.

3.1 The Sturmian system

The material in this subsection can be found, for example, in Arnoux (2002), Coven & Hedlund (1973)
and Morse & Hedlund (1940).

Given a sequence u over a finite alphabet A , the complexity function p = pu : N → N,
n �→ p(n), is defined as the number of distinct words of length n occurring in u. If U is a finite word
over A , denote by |U|a the number of occurrences of the letter a ∈ A in U. A sequence u over a
two-letter alphabet {0, 1} is called balanced if for any pair of words U, V of the same length in u, we
have

∣∣|U|1 − |V|1
∣∣ � 1 or equivalently

∣∣|U|0 − |V|0
∣∣ � 1. A theorem of Morse and Hedlund states

that a binary sequence u is periodic if and only if p(n) � n for some n. A binary sequence u is
called Sturmian if it is balanced and not eventually periodic. It can be shown that a binary sequence
u is Sturmian if and only if it has complexity p(n) = n + 1 and is not eventually periodic. Thus,
among all noneventually periodic binary sequences, Sturmian sequences are those having the smallest
possible complexity.

The frequency of letter 0 (or 1) in a Sturmian sequence u = (un)n∈Z ∈ {0, 1}Z, defined as the limit

lim
n→∞

|u−n . . . u0 . . . un|0
2n + 1

(
lim

n→∞
|u−n . . . u0 . . . un|1

2n + 1
, resp.

)
,

is an irrational number. If the frequency of letter 0 in a Sturmian sequence is β, the frequency of letter 1
in that sequence is 1 − β. The following has been known (Morse & Hedlund, 1940).

Theorem 3.5 (Morse & Hedlund 1940). Let β ∈ (0, 1/2) and u ∈ {0, 1}Z.

• u is a Sturmian sequence and the frequency of 0 in u is β if and only if u coincides with either
ν+(t; {0, β}, {0, 1}) or ν−(t; {0, β}, {0, 1}) for some t ∈ S.

• u is a Sturmian sequence and the frequency of 1 in u is β if and only if u coincides with
ν+(t; {0, 1 − β}, {0, 1}) or ν−(t; {0, 1 − β}, {0, 1}) for some t ∈ S.

If a Sturmian sequence u differs from another v in exactly two positions, then precisely u differs
from v in exactly two consecutive positions. Therefore, if u = ν+(t; {0, β}, {0, 1}) for some t ∈ S, then
v must be ν−(t; {0, β}, {0, 1}), and vice versa. Also, u ∼{0} v if u = v or if u differs from v in exactly
two positions.

We remark that Sturmian sequences over a two-letter alphabet are also codings of trajectories of
irrational initial slope in a unit square billiard obtained by labeling horizontal sides by one letter and
vertical sides by the other, namely the so-called billiard sequences. Equivalently, they are also the so-
called cutting sequences: write the letter 0 each time when the line y = β

1−β
x + t

1−β
on the x-y plane

cuts a vertical line x = integer, and the letter 1 each time it cuts a horizontal line y = integer. Then the
cutting sequence is a rotation sequence ν+(t; {0, 1 − β}, {0, 1}) or ν−(t; {0, 1 − β}, {0, 1}).
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10 Y.-C. CHEN

3.2 Multi-hole Sturmian system

Given a partition set Q, we can find a subset Θ̃ ⊆ Q,

Θ̃ = {
θ(1), θ(2), . . . , θ(L)

}
consisting of L points in S satisfying

0 = θ(1) < . . . < θ(L−1) < θ(L) < 1

as well as

O
(
θ(i); Rβ

)
∩ O

(
θ(j); Rβ

)
= ∅ ∀1 � i < j � L,

(i.e., orbits of elements of Θ̃ under Rβ are mutually disjoint) and can find integers

M1 � 1, M2 � 1, . . . , ML � 1,

T(1)
1 < T(1)

2 < . . . < T(1)
M1

,

T(2)
1 < T(2)

2 < . . . < T(2)
M2

,

...

T(L)
1 < T(L)

2 < . . . < T(L)
ML

such that

Q =
L⋃

k=1

Mk⋃
i=1

R
T(k)

i
β (θ(k)).

Note that for each k one element of the set {T(k)
1 , T(k)

2 , . . . , T(k)
Mk

} must be zero, i.e.,

0 ∈ {T(k)
1 , T(k)

2 , . . . , T(k)
Mk

} ∀1 � k � L. Note also that ML ≥ 2 if L = 1. The choice of the subset

Θ̃ for a given Q is finite but not unique, whereas the choice of the integers M1, . . . , ML is unique. In
particular, �(Q) = ∑L

k=1 Mk. Moreover, the cardinality of Θ̃ is fixed for any possible choice. We call
the subset Θ̃ just described a least equivalent sub-partition of Q, and call the cardinality �(Θ̃) of a least
equivalent sub-partition Θ̃ the number of holes of the subshift (XQ,Φ , σ) of (ΦZ, σ).

The subset Θ̃ is called a ‘sub-partition’ because it is a subset of the partition set Q and itself can be
used as a partition set provided that L � 2; it is called ‘equivalent’ because the resulting subshift XΘ̃ ,Θ̃

is conjugate to XQ,Q (by Theorem 3.3); it is called ‘least’ because if any point is removed from Θ̃ , then

the resulting subshift cannot be conjugate to the original one, i.e., X
Θ̂ ,Θ̂ is not conjugate to XQ,Q if Θ̂

that contains zero is a proper subset of Θ̃ .
In fact we have the following result, which is an immediate consequence of Theorem 3.2.

Corollary 3.6

(i) Any two systems (XQ,Φ , σ) and (XQ̃,Φ̃ , σ) are not conjugate if their numbers of holes are
different.

(ii) The system (XQ,Φ , σ) is conjugate to (X{0,β},{0,1}, σ) if it has only one hole.
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ANTI-INTEGRABLE LIMITS FOR DENJOY COUNTEREXAMPLES 11

(iii) The system (XQ,Φ , σ) is conjugate to (XΘ̃ ,Θ̃ , σ) if it has more than one hole and Θ̃ is a least
equivalent sub-partition of Q.

An example of Corollary 3.6 is given below.

Example 3.7 (X{0,β},{0,1}, σ) is not conjugate to (X{0,α},{0,1}, σ) if α �∈ O(0, Rβ) because the former has
one hole, whereas the latter has two holes. Conversely, (X{0,α},{0,1}, σ) is conjugate to (X{0,β},{0,1}, σ) if
α ∈ O(0, Rβ).

We remark that, by our construction, an L-hole Sturmian system must have a least max{2, L}
symbols.

We learned that Masui (2009) constructed a partition of the unit circle similar to our Θ̃ here, but it
requires β ∈ Θ̃ . And, a version of Theorem 4.3(i) to come in the next section in this paper was also
proved in Masui (2009). The version proved there is a special case of ours when the semi-conjugacy is
a conjugacy. Note that partitions similar to our Q here also appeared in Akiyama & Shirasaka (2007);
Alessandri & Berthé (1998), but they did not associate their partitions with the Denjoy minimal system.
The complexity of an irrational rotation sequence of partition Q = {0, q2, q3, . . . , qN} has the form
p(n) = an + b with a � N for n large enough. If β, q2, q3, . . . , qN are rationally independent, then
a = N, b = 0 (see Alessandri & Berthé, 1998). In particular, if Q = {0, 1/2}, then p(n) = 2n for all
integer n (see Rote, 1994).

The following result is an analogy of Theorem 3.4.

Theorem 3.8 Given a partition-symbol pair (Q, Φ) and a least equivalent sub-partition Θ̃ of Q, suppose
�(Θ̃) � 2.

(i) (XQ,Φ , σ) is semi-conjugate to (X{0,β},{0,1}, σ). The semi-conjugacy is 1-to-1 except on the
countable set

⋃
θ∈Θ̃\{0}{σ n ◦ ν±(θ ; Q, Φ)|n ∈ Z}, where it is 2-to-1. The quotient dynamical

system (XQ,Φ , σ)/∼Θ̃\{0} is conjugate to (X{0,β},{0,1}, σ).

(ii) Suppose Θ̂ is a proper subset of Θ̃ not containing zero. If �(Θ̃ \ Θ̂) � 2, then (XQ,Φ , σ) is
semi-conjugate to (X

Θ̃\Θ̂ ,Θ̃\Θ̂ , σ). The semi-conjugacy is 1-to-1 except on the countable set⋃
θ∈Θ̂

{σ n ◦ ν±(θ ; Q, Φ)|n ∈ Z}, where it is 2-to-1. The quotient system (XQ,Φ , σ)/∼
Θ̂

is
conjugate to (X

Θ̃\Θ̂ ,Θ̃\Θ̂ , σ).

It is worth noticing a corollary of the statement (i) of the theorem above: the quotient dynamical
system (X{0,α},{0,1}, σ)/∼{α} is conjugate to (X{0,β},{0,1}, σ) for any α �∈ O(0; Rβ). Providing that

�(Θ̃) � 2, the statement (ii) says that if any nonzero partition point θ is eliminated from Θ̃ , then
the resulting subshift (XΘ̃\{θ},Θ̃\{θ}, σ) is a factor of the original one (XΘ̃ ,Θ̃ , σ).

4. Coding of Denjoy minimal set

Assume that the ω-limit set ω( f ) of a Denjoy homeomorphism f satisfying Assumption A is a K-hole
Cantor set. Let (Q, Φ) be a partition-symbol pair with a least equivalent sub-partition Θ̃ of Q. Assume

Θ̃ ⊆ Θ , (4.1)

�(Q) = N and Q = {q1, q2, . . . , qN}, with 0 = q1 < q2 < . . . < qN < 1. For each 0 � i � N, let

zi ∈ h−1(qi) (4.2)
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12 Y.-C. CHEN

be any point in the interior of h−1(qi). Define a set A,

A = {A1, A2, . . . , AN}, (4.3)

of open intervals Ai delimited by these zi’s on S by

A1 = (z1, z2),

A2 = (z2, z3),

...

AN−1 = (zN−1, zN),

AN = (zN , z1).

With the given symbol set Φ = {φ1, φ2, . . . , φN} and the intervals just constructed, define the coding
sequence E(x; Q, Φ) = (E(x; Q, Φ)n)n∈Z of a point x ∈ ω( f ) by

E(x; Q, Φ)n = φi if f n(x) ∈ Ai (4.4)

for all n ∈ Z and some 1 � i � N. Remark that since the set {z1, z2, . . . , zN} does not intersect the
ω-limit set ω( f ), the above definition is well defined.

Proposition 4.1 Suppose x ∈ ω( f ).

(i) E( f (x); Q, Φ) = σ(E(x; Q, Φ)).

(ii) E(x; Q, Φ) = ν−(h(x); Q, Φ) if and only if x = inf(h−1(h(x)));
E(x; Q, Φ) = ν+(h(x); Q, Φ) if and only if x = sup(h−1(h(x))).
In particular, E(x; Q, Φ) = ν−(h(x); Q, Φ) = ν+(h(x); Q, Φ) if and only if h(x) �∈ O(Q; Rβ).

Proof.

(i) The assertion clearly holds.

(ii) Let 1 � i � N = �(Q), qN+1 = 1, and suppose y ∈ Ai. Then, by our construction, we have
h(y) ∈ J+

i (or J−
i ) if and only if y �∈ inf

(
h−1(qi+1)

)
(or sup

(
h−1(qi)

)
, respectively.)

If h(x) �∈ O(Q; Rβ), then Rn
β(h(x)) is not on the boundary of J±

i for every n ∈ Z and 1 � i � N. Thus,
E(x; Q, Φ) = ν−(h(x); Q, Φ) = ν+(h(x); Q, Φ). On the other hand, if h(x) = Rn

β(qi) for some integer n
and 1 � i � N, then

f −n(x) = inf
(

h−1 ◦ R−n
β ◦ h(x)

)
or sup

(
h−1 ◦ R−n

β ◦ h(x)
)

= inf
(

h−1(qi)
)

or sup
(

h−1(qi)
)

, respectively

∈ Ai−1 ( with A0 = AN) or ∈ Ai, respectively.
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ANTI-INTEGRABLE LIMITS FOR DENJOY COUNTEREXAMPLES 13

Thus, by the paragraph above, it is necessary and sufficient that h( f −n(x)) ∈ J−
i−1 so that E(x; Q, Φ)−n =

φi−1, or it is necessary and sufficient that h( f −n(x)) ∈ J+
i so that E(x; Q, Φ)−n = φi. �

Proposition 4.2

(i) The mapping x �→ E(x; Q, Φ) is continuous in ω( f ) and is 1-to-1 except on the countable set
ω( f ) ∩ ⋃

t∈O(Θ\Θ̃;Rβ) h−1(t) where it is 2-to-1.

(ii) {σ n ◦ E(x; Q, Φ)|n ∈ Z} = E(ω( f ); Q, Φ) = XQ,Φ for any x ∈ ω( f ).

Proof.

(i) Because S is compact, f is uniformly continuous. Given any positive integer M, there exists
δ > 0 such that if |y − x| < δ then | f n(y) − f n(x)| < minN

i=1 |h−1(qi)|/2 for all |n| � M and
qi ∈ Q, where |h−1(qi)| is the length of h−1(qi) and N = �(Q). It follows that if x ∈ ω( f )
and f n(x) ∈ Ai for some 1 � i � N then f n(y) ∈ Ai provided |n| � M for any point y whose
distance from x is within δ, for otherwise f n(y) ∈ S \ ω( f ). This proves the continuity.
In view of Proposition 4.1(ii), E(x; Q, Φ) is 1-to-1 in x if h(x) ∈ O(Q; Rβ). Otherwise, it is
2-to-1 since E(x; Q, Φ) = E(y; Q, Φ) for distinct x and y if h(x) = h(y). But, h(x) = h(y) �∈
O(Q; Rβ) if and only if h(x) = h(y) ∈ O(Θ \ Θ̃; Rβ).

(ii) Because of (i), E(ω( f ); Q, Φ) is a continuous image of the compact set ω( f ) thus is compact.
And, the set O(x; f ) is dense in ω( f ), so is E(O(x; f ); Q, Φ) in E(ω( f ); Q, Φ). The first equality
follows. Because h is surjective, the second equality follows from Proposition 4.1(ii) and the
definition (3.1). (Alternatively, the second equality can also be obtained by using (3.2).) �

It is known (see e.g., Katok & Hasselblatt, 1995) that the restriction of a one-hole Denjoy
homeomorphism to its ω-limit set is conjugate to the restriction of the full two-shift home-
omorphism to a closed invariant subset. In view of Propositions 4.1 and 4.2 we arrive at the
following conclusion.

Theorem 4.3 Assume that ω( f ) of a Denjoy homeomorphism f satisfies Assumption A. Let (Q, Φ)

be a partition-symbol pair with a least equivalent sub-partition Θ̃ . Assume Θ̃ ⊆ Θ . Then,

(i) (ω( f ), f ) is semi-conjugate to (XQ,Φ , σ) via the coding E(·; Q, Φ). In particular, the coding is

injective if and only if Θ̃ = Θ .

(ii) (ω( f ), f )/∼Θ\Θ̃ is conjugate to (XQ,Φ , σ).

Because for any set Θ containing zero on S, there exists a Denjoy homeomorphism f of irrational
rotation number β such that D(f ) coincides with O(Θ; Rβ), we have an immediate corollary.

Corollary 4.4 For any partition-symbol pair (Q, Φ) with a least equivalent sub-partition Θ ,
there exists a Denjoy homeomorphism f satisfying Assumption A such that (ω( f ), f ) is conjugate
to (XQ,Φ).

Remark 4.5 Theorem 4.3(i) says that (XQ,Φ , σ) is always a factor of (ω( f ), f ) if the condition (4.1)
holds. Of course, one could construct a partition set Q′ with a least equivalent sub-partition Θ ′ such
that Θ is a proper subset of Θ ′. Then, (ω( f ), f ) would be a factor of (XQ′,Q′ , σ) via a multi-valued
coding E(·; Q′, Q′). The coding is multi-valued because there must be some interval in the set A whose
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14 Y.-C. CHEN

boundary points contain a point of (ω( f ), f ). Using a set like this A as a partition to code a Cantor set is
not natural.

We elaborate a bit more on Remark 4.5 by using an example. Suppose ω( f ) is a one-hole Denjoy
minimal set and Θ = {0} with h−1(0) = [0, 1/4], h−1(β) = [1/2, 2/3] and h−1(1/2) = 3/4. (h−1(1/2)

is a single point because 1/2 �∈ O(0; Rβ).) Suppose Q′ = {0, β, 1/2} (then Θ ′ = {0, 1/2}) in the remark.
Let z1 = 1/8 ∈ [0, 1/4], z2 = 7/12 ∈ [1/2, 2/3] and z3 = 3/4. Then, the partition set Q′ leads to a set
A′ = {(1/8, 7/12), (7/12, 3/4], (3/4, 1/8)} of intervals on S. The coding sequence of a point x ∈ ω( f )
could be defined by

E(x; Q′, Q′)n =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if f n(x) ∈
(

1

8
,

7

12

)

β if f n(x) ∈
(

7

12
,

3

4

]
(4.5)

1
2 if f n(x) ∈

(
3

4
,

1

8

)
. (4.6)

It is easy to see that 1/8 �∈ ω( f ), 7/12 �∈ ω( f ), but 3/4 ∈ ω( f ). Thus, the point 3/4 must
be included in A′ (cf. (4.3) where only open intervals are used). The mapping x �→ E(x; Q′, Q′) is
1-to-1. However, it is not continuous at x = 3/4. To see this, we could take a sequence of points
in ω( f ) that converges to 3/4 from the right (clockwise). The zeroth elements of the corresponding
coding sequences of these points all have the same symbol 1/2 (provided that these points are close
enough to 3/4), but the zeroth element of the coding sequence of the point 3/4 is β. (Similarly, if
we use (7/12, 3/4) in (4.5) and [3/4, 1/8) in (4.6) for the coding, the mapping x �→ E(x; Q′, Q′) is
still not continuous.) Furthermore, if we replace the interval in (4.6) by [3/4, 1/8), then the resulting
coding sequence of x would be two-valued at x = 3/4 and at pre-images and images of 3/4 under f .
If E(x; Q′, Q′) is two-valued, then by identifying the two values, the mapping x �→ E(x; Q′, Q′) would
be 1-to-1 and continuous at every x in ω( f ) (with the quotient topology). This example demonstrates
that the partition set Q′ is too ‘fine’ to code a one-hole Denjoy minimal set. Q′ is suitable for coding a
two-hole Denjoy minimal set.

5. Transitions and AI-limits

Theorem 5.1 (Cantorus to circle transition). Assume that ω( f ) of a Denjoy homeomorphism f satisfies
Assumption A. Let (Q, Φ) be a partition-symbol pair with Θ a least equivalent sub-partition of Q.
Let 0 < ε0 < 1 be a real number, and f1 be any transitive OPH of S with ρ( f1) = ρ( f ) = β.
We can construct a family of OPHs fε parametrized by ε with fε0

= f and limε↗1 fε(t) = f1(t) for
all t ∈ S so that (ω( fε), fε) is conjugate to (XQ,Φ , σ) for ε0 � ε < 1, but (ω( f1), f1) is conjugate
to (S, Rβ).

In Theorem 5.1, a Denjoy minimal system (ω( fε), fε) is conjugate to the �(Θ)-hole Sturmian system
(XQ,Φ , σ) when ε is slightly less than 1, but to the irrational rotation (S, Rβ) when ε is equal to 1. In this
situation, up to a conjugacy, the system (ω( fε), fε) bifurcates or degenerates to the irrational rotation
(S, Rβ) at ε = 1.

Theorem 5.2 (�(Θ) to �(Θ̃)-hole cantorus transition). Assume that ω( f ) of a Denjoy homeomorphism
f satisfies Assumption A. Suppose �(Θ) ≥ 2. Let Θ̃ containing zero be a proper subset of Θ , 0 < ε0 < ε̃

be real numbers and fε̃ be any Denjoy homeomorphism satisfying ρ( fε̃) = β and D( fε̃) = O(Θ̃ , Rβ).
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ANTI-INTEGRABLE LIMITS FOR DENJOY COUNTEREXAMPLES 15

We can construct a family of Denjoy homeomorphisms fε with fε0
= f and limε↗ε̃ fε(t) = fε̃(t) for

all t ∈ S so that (ω( fε), fε) is conjugate to (XΘ ,Θ , σ) for ε0 � ε < ε̃, but (ω( fε̃), fε̃) is conjugate to

(XΘ̃ ,Θ̃ , σ) if �(Θ̃) ≥ 2 or to (X{0,β},{0,1}, σ) if �(Θ̃) = 1.

In Theorem 5.2, �(Θ̃) < �(Θ), and (ω( fε), fε) is conjugate to the �(Θ)-hole Sturmian system
(XΘ ,Θ , σ) when ε is slightly less than ε̃, but to the �(Θ̃)-hole Sturmian system (XΘ̃ ,Θ̃ , σ) when ε is

equal to ε̃. In this situation, the Denjoy minimal system (ω( fε), fε) undergoes a �(Θ) to �(Θ̃)-hole
transition at ε = ε̃.

Theorem 5.3 (AI-limit). Assume that ω( f ) of a Denjoy homeomorphism f satisfies Assumption A.
Let 0 < ε0 < 1 be a real number, and Θ̃ containing zero a subset of Θ . For any partition-symbol pair
(Q, Φ) with Θ̃ a least equivalent sub-partition of Q, we can construct a continuous family of Denjoy
homeomorphisms fε so that fε0

= f and that (ω( fε), fε) is semi-conjugate to (XQ,Φ , σ) via a family of

codings Eε(·; Q, Φ) : ω( fε) → XQ,Φ , which is injective if and only if Θ̃ = Θ , for 0 < ε � ε0 with the
property: for all u ∈ XQ,Φ we have

lim
ε↘0

O
(

E−1
ε (u; Q, Φ), fε

)
= u (5.1)

in the uniform topology.

In Theorem 5.3, (ω( fε), fε) is semi-conjugate to the �(Θ̃)-hole Sturmian system (XQ,Φ , σ) when ε

is slightly larger than zero. As ε tends to zero from above, in the light of (5.1), (ω( fε), fε) reduces to the
�(Φ)-symbol �(Θ̃)-hole Sturmian system (XQ,Φ , σ) of partition Q. We say that the limit ε ↘ 0 is the
AI-limit for the family of Denjoy homeomorphisms fε.

If Θ̃ = Θ , we call the AI-limit in Theorem 5.3 a nondegenerate AI-limit. Because in this situation
the semi-conjugacy is in fact a conjugacy and when ε ↘ 0 the Denjoy minimal system (ω( fε), fε)
reduces to a symbolic dynamical system that is conjugate to (ω( fε), fε) of small ε. If, when ε ↘ 0,
a Denjoy minimal system (ω( fε), fε) reduces to a symbolic dynamical system that is not conjugate to
but a factor of (ω( fε), fε) of small ε, we call such a limit a degenerate AI-limit. The limit ε ↘ 0 in
Theorem 5.3 is a degenerate AI-limit if and only if Θ̃ �= Θ .

5.1 Examples

We close this section by providing examples.
Let f be a Denjoy homeomorphism satisfying Assumption A. Let the length |I(k)

n | of I(k)
n be l(k)n > 0.

For instance, l(k)n can be chosen such that
∑K

k=1 l(k) = 1 with l(k) = ∑
n∈Z l(k)n , and the pairwise disjoint

open intervals I(k)
n can be chosen as

a(k)
n := η +

∑
1� j�K

∑
i:Ri

β(θ( j))∈
[
0,Rn

β(θ(k))
) l( j)

i (mod 1),

b(k)
n := a(k)

n + l(k)n ,

where η satisfying 0 < η+l(1)
0 < 1 is a real number to control the position of a(1)

0 . Actually, (a(1)
0 , b(1)

0 ) =
(η, η + l(1)

0 ). It is easy to see that I(k)
n defined by the above a(k)

n and b(k)
n has the same cyclic ordering as

Rn
β(θ(k)). Because

∑K
k=1 l(k) = 1 the union

⋃
1�k�K, n∈Z I(k)

n is open and dense in S.
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16 Y.-C. CHEN

Suppose η and l(k)n depend continuously on a parameter ε, then f , which has S \ ⋃
1�k�K, n∈Z I(k)

n as
its ω-limit set, depends on ε as well. Write it as fε.

Partitions on S and schematic illustrations of the construction of families of Denjoy homeomor-
phisms by changing the size of wandering intervals are shown in Fig. 1. In Fig. 1(a), Θ = {0, 1/2},
Q = {0, 1/2}, Φ = {0, 1}. There is a circle to one-hole cantorus transition occurring at ε = 1, a
one to two-hole cantorus transition at ε = ε̃. The limit ε ↘ 0 is a nondegenerate AI-limit, at which
the dynamics is (X{0,1/2},{0,1}, σ). In Fig. 1(b), Θ = {0, 1/2}, Q = {0, 1/2, Rn

β(0)} for some n ∈ Z,
Φ = {φ1, φ2, 1} for some 0 < φ1 < φ2 < 1. There is a circle to two-hole cantorus transition occurring at
ε = 1. The limit ε ↘ 0 is a nondegenerate AI-limit, at which the dynamics is (X{0,1/2,R n

β(0)},{φ1,φ2,1}, σ).

In Fig. 1(c), Θ = {0, 1/2}, Q = {0, Rn
β(0)}, Φ = {0, 1}. There is a circle to two-hole cantorus

transition occurring at ε = 1. The limit ε ↘ 0 is a degenerate AI-limit, at which the dynamics is
(X{0,R n

β(0)},{0,1}, σ).

Example 5.4 Set Θ = {0, 1/2}, Q = {0, 1/2} and Φ = {0, 1}. Then, (ω( fε), fε) is conjugate to
(X{0,1/2},{0,1}, σ) via the coding Eε(·; {0, 1/2}, {0, 1}) when 0 < ε < ε̃. See Fig. 1(a).

Example 5.5 Set Θ = {0, 1/2}, Q = {0, 1/2, 1 − β} and Φ = {φ1, φ2, 1} for 0 < φ1 < φ2 < 1. Then,
(ω( fε), fε) is conjugate to (X{0,1/2,1−β},{φ1,φ2,1}, σ) via the coding Eε(·; {0, 1/2, 1 − β}, {φ1, φ2, 1}) when
0 < ε < 1. See Fig. 1(b).

Certainly, (X{0,1/2},{0,1}, σ) is conjugate to (X{0,1/2,1−β},{φ1,φ2,1}, σ) by Theorem 3.2.

Example 5.6 Set Θ = {0, 1/2}, Q = {0, 1/2} and Φ = {0, 1}. Can choose the positive numbers
η, l(k)n ’s in such a way that η → 0 and l(k)n → 0 as ε ↗ 1 for all n ∈ Z and 1 � k � 2. Then,
fε(x) → Rβ(x) =: f1(x) for all x ∈ S as ε ↗ 1, and (ω( f1), f1) is conjugate to (X{0,1/2},{0,1}, σ)/∼{0,1/2}.
See Fig. 1(a).

Example 5.7 Set Θ = {0, 1/2}, Q = {0, 1/2, 1 − β} and Φ = {φ1, φ2, 1}. Can choose the positive

numbers η, l(k)n ’s in such a way that η → 0 and l(k)n → 0 as ε ↗ 1 for all n ∈ Z and 1 � k � 2.
Then, we have that fε(x) → Rβ(x) =: f1(x) for all x ∈ S as ε ↗ 1, and that (ω( f1), f1) is conjugate to
(X{0,1/2,1−β},{φ1,φ2,1}, σ)/∼{0,1/2}. See Fig. 1(b).

Certainly, (X{0,1/2},{0,1}, σ)/∼{0,1/2} is conjugate to (X{0,1/2,1−β},{φ1,φ2,1}, σ)/∼{0,1/2} by Theorem 3.2.

Example 5.8 Set Θ = {0, 1/2}, Q = {0, 1/2} and Φ = {0, 1}. Can choose l(k)n ’s in such a way
that l (2)

n → 0 but I(1)
n remains a component of wandering intervals for every integer n as ε ↗ ε̃.

Then, (ω( fε̃), fε̃) is conjugate to (X{0,1/2},{0,1}, σ)/∼{1/2}. The latter itself is conjugate to (X{0,β},{0,1}, σ).
See Fig. 1(a).

Example 5.9 Set Θ = {0, 1/2}, Q = {0, 1/2} and Φ = {0, 1}. Can choose η and l(k)n in such a way that
η → 0 and l(k)n → 0 but l(2)

0 → 1 as ε ↘ 0 for every n ∈ Z and 1 � k � 2. Consequently, as ε ↘ 0, the
two-hole Denjoy minimal system (ω( fε), fε) reduces to the two-hole Sturmian system (X{0,1/2},{0,1}, σ)

in the sense that

lim
ε↘0

O
(

E−1
ε (u; {0, 1/2}, {0, 1}), fε

)
= u

for any u ∈ X{0,1/2},{0,1}. The limit ε ↘ 0 is a nondegenerate AI-limit. See Fig. 1(a).
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ANTI-INTEGRABLE LIMITS FOR DENJOY COUNTEREXAMPLES 17

Fig. 1. Partitions on S with which orbits of irrational rotations and Denjoy homeomorphisms are coded, and schematic illustrations
of the idea of the construction of families of Denjoy homeomorphisms by changing the size of wandering intervals. (a) Θ =
{0, 1/2}, Q = {0, 1/2}, Φ = {0, 1}. (b) Θ = {0, 1/2}, Q = {0, 1/2, Rn

β(0)}, Φ = {φ1, φ2, 1}. (c) Θ = {0, 1/2}, Q = {0, Rn
β(0)},

Φ = {0, 1}.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

atrm
/article-abstract/3/1/tnz002/5543986 by H

SLIB user on 15 D
ecem

ber 2019



18 Y.-C. CHEN

Example 5.10 Set Θ = {0, 1/2}, Q = {0, 1/2, 1 − β} and Φ = {φ1, φ2, 1}. Can design η, l(k)n in such

a way that η → 0 and l(k)n → 0 for every n ∈ Z, 1 � k � 2 but l(1)
0 → φ1, l(2)

0 → φ2 − φ1 and

l(1)
−1 → 1 −φ2 as ε ↘ 0. Then, as ε ↘ 0, the two-hole Denjoy minimal system (ω(fε), fε) reduces to the

two-hole Sturmian system (X{0,1/2,1−β},{φ1,φ2,1}, σ) in the sense that

lim
ε↘0

O
(

E−1
ε (u; {0, 1/2, 1 − β}, {φ1, φ2, 1}), fε

)
= u

for any u belonging to the subshift X{0,1/2,1−β},{φ1,φ2,1}. The limit ε ↘ 0 is a nondegenerate AI-limit.
See Fig. 1(b).

Example 5.11 Set Θ = {0, 1/2}, Q = {0, 1 − β} and Φ = {0, 1}. Can design η, l(k)n in such a way that
η → 0 and l(k)n → 0 except l(1)

−1 → 1 as ε ↘ 0 for every n ∈ Z and 1 � k � 2. Then, as ε ↘ 0, the
two-hole Denjoy minimal system (ω( fε), fε) reduces to the one-hole Sturmian system (X{0,1−β},{0,1}, σ)

in the sense that

lim
ε↘0

O
(

E−1
ε (u; {0, 1 − β}, {0, 1}), fε

)
= u

for any u ∈ X{0,1−β},{0,1}. The limit ε ↘ 0 is a degenerate AI-limit. See Fig. 1(c).

6. Proofs of theorems

For the Sturmian cases, the partition set is {0, β} or {0, 1 −β}. From Hedlund (1944) we know that each
of the four mappings t �→ ν±(t; {0, β}, {0, 1}) or t �→ ν±(t; {0, 1 − β}, {0, 1}) is 1-to-1 everywhere in S,
and is continuous in S except at a countable set consisting of the orbit O(0; Rβ) of 0 under Rβ . Each of
the inverses ν±(t; {0, β}, {0, 1}) �→ t or ν±(t; {0, 1 − β}, {0, 1}) �→ t, however, is continuous. All these
properties can be extended to the multi-hole Sturmian cases for a general, arbitrary partition set Q.

Proposition 6.1 For any partition-symbol pair (Q, Φ), both maps ν−(·; Q, Φ) and ν+(·; Q, Φ) are
1-to-1 everywhere in S:

(i) If ν+(s; Q, Φ) = ν+(t; Q, Φ) or ν−(s; Q, Φ) = ν−(t; Q, Φ), then s = t.

(ii) ν+(s; Q, Φ) = ν−(t; Q, Φ) if and only if Rn
β(s) = Rn

β(t) �∈ Q for all integer n.

Proof.

(i) If the statement is not true, then s �= t. Subsequently, there exists an integer l such that Rl
β(t)

lies in the interior of J±
1 while Rl

β(s) lies in the interior of J±
j for some 2 � j � N = �(Q).

Consequently, ν±(t; Q, Φ)l = 1 �= j = ν±(s; Q, Φ)l, contradicting to the hypothesis of the
proposition.

(ii) If s = t and O(s; Rβ) ∩ Q = ∅, then for every integer n the orbit point Rn
β(s) does not locate

on the boundary of J±
i for all 1 � i � N. Hence, ν+(s; Q, Φ) = ν−(s; Q, Φ) = ν−(t; Q, Φ) =

ν+(t; Q, Φ). On the other hand, if ν+(s; Q, Φ) = ν−(t; Q, Φ), then s = t. (For if s �= t, then it
follows by the same argument used to prove (i) that there exists l ∈ Z such that ν+(s; Q, Φ)l =
1 but ν−(t; Q, Φ)l = j for some j �= 1.) Suppose Rm

β (t) = qk for some m ∈ Z and 1 � k � N.
Then, ν+(t; Q, Φ)m = k while ν−(t; Q, Φ)m = k − 1 (or = N if k = 1), contradicting to the
hypothesis. �
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ANTI-INTEGRABLE LIMITS FOR DENJOY COUNTEREXAMPLES 19

Proposition 6.2 For any partition-symbol pair (Q, Φ), both maps ν−(·; Q, Φ) and ν+(·; Q, Φ) are
continuous except at the countable set O(Q; Rβ). More precisely, if t �∈ O(Q; Rβ), then

lim
s→t

ν−(s; Q, Φ) = ν−(t; Q, Φ) = ν+(t; Q, Φ) = lim
s→t

ν+(s; Q, Φ);

if t ∈ O(Q; Rβ) then

lim
s→t−

ν−(s; Q, Φ) = lim
s→t−

ν+(s; Q, Φ) = ν−(t; Q, Φ) (6.1)

and

lim
s→t+

ν−(s; Q, Φ) = lim
s→t+

ν+(s; Q, Φ) = ν+(t; Q, Φ). (6.2)

Proof. If t �∈ O(Q; Rβ) then for every integer n the orbit point Rn
β(t) does not locate at any boundary

point of J±
i for all 1 � i � N = �(Q). Thus, ν−(t; Q, Φ) = ν+(t; Q, Φ). Given any integer M > 0 there

exists δ > 0 such that for every |n| � M both orbit points Rn
β(s) and Rn

β(t) lie in the same interior of

intervals J+
i and J−

i for some i provided |s − t| < δ. This means that ν−(s; Q, Φ)n = ν−(t; Q, Φ)n =
ν+(s; Q, Φ)n = ν+(t; Q, Φ)n for all |n| � M, and implies the continuity at t.

If t = Rm
β (qj) for some m ∈ Z and 1 � j � N then there are Nj number of integers m1, m2, . . . , mNj

(all depending on m and j) with 1 � Nj � N and m1 = −m for which Rm1
β (t), Rm2

β (t), . . . , R
mNj
β (t) ∈ Q,

and Rn
β(t) �∈ Q for any other integer n. Therefore, none of the points in {Rn

β(t)|n ∈ Z \ {m1, . . . , mNj
}} is

a boundary point of J±
i for all 1 � i � N. Thus, for any integer M > 0 there exists δ > 0 such that for

every |n| � M and n �∈ {m1, . . . , mNj
} both orbit points Rn

β(s) and Rn
β(t) lie in the same interior of both

intervals J+
i and J−

i and that for every n ∈ {m1, . . . , mNj
} points Rn

β(s) and Rn
β(t) lie in the same interval

J+
i for some 1 � i � N provided 0 < s − t < δ. This implies the property (6.2). Similarly, the property

(6.1) can be proved. �
Proposition 6.3 Both the inverses ν−(t; Q, Φ) �→ t and ν+(t; Q, Φ) �→ t for any partition-symbol
pair (Q, Φ) are continuous in S: suppose u∞, u1, u2, . . . all belong to XQ,Φ with limn→∞ un = u∞,
and suppose t∞, t1, t2, . . . are corresponding points in S given by the injectivity of each of the mappings
t �→ ν±(t; Q, Φ). Then

lim
n→∞ tn = t∞ if u∞ = ν+(t∞; Q, Φ) = ν−(t∞; Q, Φ);

lim
n→∞ tn = t+∞ if u∞ = ν+(t∞; Q, Φ) �= ν−(t∞; Q, Φ);

lim
n→∞ xn = t−∞ if u∞ = ν−(t∞; Q, Φ) �= ν+(t∞; Q, Φ).

Proof. Rn
β(t∞) �∈ Q for all integer n if u∞ = ν+(t∞; Q, Φ) = ν−(t∞; Q, Φ). In this case t∞ is

contained in the interior of an interval J+
j or J−

j for some 1 � j � N = �(Q). Suppose (tn)n�1 does
not converge to t∞. Then, it contains a subsequence that converges to another point, say, t̄. It follows
from Proposition 6.2 that the sequence (u)n≥1 must converge either to ν+(t̄; Q, Φ) or to ν−(t̄; Q, Φ). In
other word, u∞ = ν+(t̄; Q, Φ) or ν−(t̄; Q, Φ). But, it follows from Proposition 6.1(i) that ν+(t̄; Q, Φ) �=
ν+(t∞; Q, Φ) = ν−(t∞; Q, Φ) �= ν−(t̄; Q, Φ), a contradiction.
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20 Y.-C. CHEN

If u∞ = ν+(t∞; Q, Φ) �= ν−(t∞; Q, Φ), then t∞ ∈ O(Q; Rβ). If (tn)n�1 converges to t∞, then by
Proposition 6.2, limn→∞ tn = t+∞. If (tn)n�1 does not converge to t∞, there is a subsequence converging
to another point t̄ �= t∞. And, there is a corresponding subsequence of (un)n�1 that converges to
ν+(t̄; Q, Φ) or ν−(t̄; Q, Φ). Therefore, ν+(t∞; Q, Φ) = ν+(t̄; Q, Φ) or ν+(t∞; Q, Φ) = ν−(t̄; Q, Φ), but
according to Proposition 6.1(ii), the latter is impossible, and the former implies t∞ = t̄ by Proposition
6.1(i).

The final case u∞ = ν−(t∞; Q, Φ) �= ν+(t∞; Q, Φ) can be treated similarly. �

Proof of Theorem 3.2.

It is well-known that the shift σ is a homeomorphism of ΦZ. Thus, σ is also a homeomorphism of XQ,Φ

if XQ,Φ is a compact invariant subset of ΦZ. Since the latter is compact, it is enough to show that XQ,Φ
is invariant and closed. Because

σ±1(ν+(t; Q, Φ) = ν+(R±1
β (t); Q, Φ) (6.3)

and

σ±1(ν−(t; Q, Φ) = ν−(R±1
β (t); Q, Φ) (6.4)

for any t ∈ S, the shift σ is a bijection of XQ,Φ and XQ,Φ is invariant under σ .
Now, we show that XQ,Φ is a closed subset. Any infinite sequence of points in XQ,Φ must contain

an infinite subsequence of points of the form
(
ν+(tn; Q, Φ)

)
n�1 or of the form

(
ν−(tn; Q, Φ)

)
n�1.

Without loss of generality, we can assume that the first case happens. Taking a subsequence if
necessary, we assume that the sequence (tn)n�1 converges to a point t∞ by the compactness of S.
Then, (tn)n�1 contains either a subsequence that converges to t∞ from the left (anti-clockwise) or a
subsequence that converges to t∞ from the right (clockwise). If the first case holds for (tn)n�1, that
is, limn→∞ tn = t−∞ (by taking a subsequence again if necessary), then by Proposition 6.2, we infer
that limn→∞ ν+(tn; Q, Φ) = ν−(t∞; Q, Φ). If the second case holds, that is, limn→∞ tn = t+n , then
limn→∞ ν+(tn; Q, Φ) = ν+(t∞; Q, Φ). This proves that XQ,Φ is closed.

Now, XQ,Φ is a subset of the totally disconnected set ΦZ, so is itself totally disconnected.
Proposition 6.2 implies that every point in XQ,Φ is a limit point of points in XQ,Φ . Since XQ,Φ is compact,
it is a Cantor set.

Because O(s; Rβ) is dense in S for any s ∈ S, it follows from (6.3) and (6.4) and Proposition 6.2
again that O(u; σ) is dense in XQ,Φ for any u ∈ XQ,Φ . This completes the proof of the minimality. �

Proof of Theorem 3.3.

From Corollary 4.4, there are Denjoy homeomorphisms f and f̃ satisfying Assumption 1 such that
ρ(f ) = β, ρ( f̃ ) = β̃, (ω( f ), f ) is conjugate to (Xβ,Q,Φ), and that (ω( f̃ ), f̃ ) is conjugate to (Xβ̃,Q̃,Φ̃ ).

By Remark 2.1(ii), we have D(f ) = O(Q; Rβ) and D(f̃ ) = O(Q̃; Rβ̃ ). Therefore, by Theorem 2.1,

(Xβ,Q,Φ , σ) is semi-conjugate to (Xβ̃,Q̃,Φ̃ , σ) if and only if β̃ = β and

O(Q̃; Rβ) ⊆ Rα(O(Q; Rβ̃ ))
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ANTI-INTEGRABLE LIMITS FOR DENJOY COUNTEREXAMPLES 21

for some 0 � α < 1. But, because both O(Q; Rβ) and O(Q̃; Rβ) contain O(0; Rβ), the values of α

satisfying the above equality are those Rα(O(Q; Rβ) = O(Q; Rβ). �
Let X and Y be topological spaces. Recall that a surjective map p : X → Y is called a quotient map

if a subset U of Y is open (or closed) in Y if and only if p−1(U) is open (resp. closed) in X. We shall use
the following result, the statement of which is slightly modified from Theorem 22.2 and Corollary 22.3
of Munkres (2000).

Theorem 6.4 Let X, Z be topological spaces, g : X → Z a continuous surjection and X∗ = {g−1(z)|z ∈
Z} a collection of subsets of X. Let p : X → X∗ be the quotient map and give X∗ the quotient topology
induced by p.

(i) The map g induces a continuous bijection ξ : X∗ → Z satisfying ξ ◦ p = g, which is a
homeomorphism if and only if g is a quotient map.

X

p
��

g

��
��

��
��

��

X∗
ξ

�� Z

(ii) If Z is Hausdorff so is the quotient space X∗.

Proof of Theorem 3.4.

It follows from Proposition 6.3 that a map ν−1 : XQ,Φ → S defined by

ν−1(u) = t if u = ν+(t; Q, Φ) or ν−(t; Q, Φ)

is a continuous surjection. And, because

ν−1 ◦ σ
(
ν±(t; Q, Φ)

)
= ν−1

(
ν±(Rβ(t); Q, Φ)

)
= Rβ(t)

= Rβ ◦ ν−1 (
ν±(t; Q, Φ)

)
,

the map ν−1 is a semi-conjugacy. From Proposition 6.1, the map ν−1 is 1-to-1 except when
ν+(t; Q, Φ) �= ν−(t; Q, Φ) and this occurs only if t ∈ O(Q, Rβ). This proves the first part of the
theorem.

XQ,�

��

ν−1

��
��

��
��

��

X∗
Q,�

�� S
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22 Y.-C. CHEN

For the second part, notice that ν−1 is a quotient map: it sends closed sets, which are compact
in XQ,Φ , to closed sets in S, since compact sets in a Hausdorff space are closed. Now, let X∗

Q,Φ ={(
ν−1

)−1
(t)|t ∈ S

}
. It is clear that X∗

Q,Φ = XQ,Φ/∼Q. Then, by virtue of Theorem 6.4 and the first part

of the theorem, ν−1 induces a homeomorphism for which (XQ,Φ , σ)/∼Q is conjugate to (S, Rβ). �

Proof of Theorem 3.8.

In view of Theorem 3.2, it is enough to prove the theorem for the case Q = Θ̃ . Moreover, we are going
to prove the case (ii) only. Case (i) can be proved almost exactly the same as case (ii).

We would like to show that a surjection g : XΘ̃ ,Θ̃ → X
Θ̃\Θ̂ ,Θ̃\Θ̂ defined by

g : u �→
{

ν+(t; Θ̃ \ Θ̂ , Θ̃ \ Θ̂) if u = ν+(t; Θ̃ , Θ̃)

ν−(t; Θ̃ \ Θ̂ , Θ̃ \ Θ̂) if u = ν−(t; Θ̃ , Θ̃)

for all t ∈ S acts as a semi-conjugacy. First, it is easy to verify that

g ◦ σ ◦ ν±(t; Θ̃ , Θ̃) = g ◦ ν±(Rβ(t); Θ̃ , Θ̃)

= ν±(Rβ(t); Θ̃ \ Θ̂ , Θ̃ \ Θ̂)

= σ ◦ ν±(t; Θ̃ \ Θ̂ , Θ̃ \ Θ̂)

= σ ◦ g ◦ ν±(t; Θ̃ , Θ̃).

By Proposition 6.1, the map g is 1-to-1 at ν±(t; Θ̃ , Θ̃) if t is such a point in S that Rβ(t) �∈ Θ̃ for all

integer n or if Rn
β(t) ∈ Θ̃ \ Θ̂ for some n, otherwise it is 2-to-1. To show it is continuous, suppose

u∞, u1, u2, . . . all belong to XΘ̃ ,Θ̃ with limn→∞ un = u∞, and suppose t∞, t1, t2, . . . are corresponding
points in S and v∞, v1, v2, . . . are corresponding points in X

Θ̃\Θ̂ ,Θ̃\Θ̂ given by the injectivity of each of

the mappings ν+(t; Θ̃ , Θ̃) �→ t �→ ν+(t; Θ̃ \ Θ̂ , Θ̃ \ Θ̂) or ν−(t; Θ̃ , Θ̃) �→ t �→ ν−(t; Θ̃ \ Θ̂ , Θ̃ \ Θ̂).
From Proposition 6.3, it follows that limn→∞ tn = t∞. If t∞ �∈ O(Θ̃ \ Θ̂; Rβ), then limn→∞ vn = v∞
by Proposition 6.2. If t∞ ∈ O(Θ̃ \ Θ̂; Rβ), then t∞ ∈ O(Θ̃; Rβ), and limn→∞ tn → t+∞ provided

u∞ = ν+(t∞; Θ̃ , Θ̃) by Proposition 6.3. In this situation, v∞ = ν+(t∞; Θ̃ \ Θ̂ , Θ̃ \ Θ̂). Consequently,
limn→∞ vn = v∞ by using Proposition 6.2 again. The other situation that t∞ ∈ O(Θ̃ \ Θ̂; Rβ) and
limn→∞ tn → t−∞ can be treated similarly. This proves the continuity of g.

X�̃,�̃

��

g

���
��

��
��

��

X∗
�̃,�̃

�� X
�̃\�̂,�̃\�̂
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Now, let X∗
Θ̃ ,Θ̃

=
{

g−1(v)|v ∈ X
Θ̃\Θ̂ ,Θ̃\Θ̂

}
. It is clear that X∗

Θ̃ ,Θ̃
= XΘ̃ ,Θ̃/∼

Θ̂
, and that g is

a quotient map. Then, by Theorem 6.4, g induces a homeomorphism via which (XΘ̃ ,Θ̃ , σ)/∼
Θ̂

is
conjugate to (X

Θ̃\Θ̂ ,Θ̃\Θ̂ , σ). �

Proof of Theorem 5.1

f1 is transitive, thus is conjugate to Rβ . That is, there exists an OPH g of S such that

Rβ ◦ g = g ◦ f1.

Subsequently, f is semi-conjugate to f1:

g−1 ◦ h ◦ f = f1 ◦ g−1 ◦ h.

Let h1 = g−1 ◦ h, the orientation-preserving semi-conjugacy. Without loss of generality, we can assume
g(0) = 0, thence h1(0) = g−1 ◦ h(0) = g−1(0) = 0.

Let H1 : R → R be the unique lift of h1 satisfying H1(0) = 0. For ε0 � ε � 1, define a continuous
map of R:

Hε : x̄ �→ H1(x̄) + 1 − ε

1 − ε0

(
x̄ − H1(x̄)

)
.

We claim that Hε is an OPH when ε0 � ε < 1. To see this, it is sufficient to show that it is strictly
increasing. Suppose x̄ < ȳ, then H1(x̄) � H1(ȳ) and

Hε(x̄) − Hε(ȳ) = ε − ε0

1 − ε0

(
H1(x̄) − H1(ȳ)

) + 1 − ε

1 − ε0
(x̄ − ȳ)

< 0.

Now, because Hε(x̄ + 1) = H1(x̄ + 1) + (
x̄ + 1 − H1(x̄ + 1)

)
(1 − ε)/(1 − ε0) = Hε(x̄) + 1, the map

Hε is a lift of an OPH hε : S → S. Clearly, maps hε form a continuous family of homeomorphisms
when ε0 � ε < 1, and hε → h1 uniformly on S as ε ↗ 1. Notice that the map H(ε, ·) := Hε acts as a
straight-line homotopy for which H(ε0, ·) = id

R
, and H(1, ·) = H1, and that the map h(ε, ·) := hε is a

straight-line homotopy for which h(ε0, ·) = idS, and h(1, ·) = h1.
Let F : R → R be the unique lift of f satisfying F(0) = f (0). Define a family of OPHs Fε of R by

Fε := Hε ◦ F ◦ H−1
ε for ε0 � ε < 1,

and define a family of OPHs fε of S by

fε := hε ◦ f ◦ h−1
ε for ε0 � ε < 1.

Clearly, Fε is a lift of fε, satisfying Fε(0) = fε(0).
Now, from the Proposition 6.5 below and Theorem 4.3, it follows that (ω( fε), fε) is conjugate to

(XQ,Φ , σ) when ε0 � ε < 1. And, the proof of Theorem 5.1 will be complete if we prove the
Proposition 6.6 below. �
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24 Y.-C. CHEN

Let I(k)
n,ε = hε(I

(k)
n ).

Proposition 6.5 fε is a Denjoy homeomorphism having rotation number β for every ε0 � ε < 1. The

set S \ ⋃
n∈Z

⋃
1�k�K I(k)

n,ε is equal to ω( fε), and D( fε) = D( f ).

Proof. fε is conjugate to f via h−1
ε , and I(k)

n,ε ’s are the wandering intervals. In particular,⋃
n∈Z

⋃
1�k�K I(k)

n,ε is a continuous image of
⋃

n∈Z
⋃

1�k�K I(k)
n under hε, thus is dense in S. �

Proposition 6.6 limε↗1 fε(t) → f1(t) for all t in S.

Proof. It is convenient to prove the proposition by showing that limε↗1 Fε(t̄) → F1(t̄) for all t̄ ∈ R,
where F1 is the unique lift of f1 satisfying F1(0) = f1(0).

Let π : R → S, t̄ �→ t̄ mod 1, be the projection, ā(k)
n , b̄(k)

n be real numbers and Ī(k)
n,ε , Ī(k)

n be open
intervals on R such that Ī(k)

n,ε0 = Ī(k)
n = (ā(k)

n , b̄(k)
n ), π(Ī(k)

n,ε) = I(k)
n,ε , Fn

ε (Ī
(k)
0,ε) = Ī(k)

n,ε , Hε(Ī
(k)
n ) = Ī(k)

n,ε for all
ε0 � ε < 1, n ∈ Z, and 1 � k � K.

Given t̄ there are two cases: H−1
1 (t̄) = Ī(k)

n + p for some n, p ∈ Z, 1 � k � K, or H−1
1 (t̄) = x̄ for

some x̄ ∈ R.
There are two sub-cases for the first case: t̄ ∈ cl Ī(k)

n +p or not. If t̄ ∈ cl Ī(k)
n +p then t̄ ∈ cl Ī(k)

n,ε +p for
all ε0 � ε < 1. Consequently, Hε ◦F ◦H−1

ε (t̄) ∈ Ī(k)
n+1,ε +p for all ε0 � ε < 1. And, limε↗1 Ī(k)

n+1,ε +p =
F1(t̄). If t̄ �∈ cl Ī(k)

n + p, then t̄ �∈ cl Ī(k)
n,ε + p for all ε0 � ε < 1. In this situation, suppose b̄(k)

n + p < t̄.

(The other situation a(k)
n + p > t̄ can be treated similarly.) Let ȳε = H−1

ε (t̄). Then ȳε > b̄(k)
n + p and

ȳε → b̄(k)+
n + p as ε ↗ 1. Now,

Fε(t̄) = H1(F(ȳε)) + 1 − ε

1 − ε0

(
F(ȳε) − H1(F(ȳε))

)
, (6.5)

F1(t̄) = H1(F(b̄(k)
n + p). (6.6)

Because the distance between ȳ and H1(ȳ) is bounded above by 1 for any ȳ ∈ R and because F and H1
are continuous, Fε(t̄) → F1(t̄) as ε ↗ 1.

For the second case H−1
1 (t̄) = x̄, the proof is essentially the same as the first case. There are two

sub-cases: t̄ = x̄ or not. If t̄ = x̄, then t̄ = H−1
ε (t̄) = x̄ for all ε0 � ε < 1, hence limε↗1 Hε◦F◦H−1

ε (t̄) =
H1 ◦ F(t̄) = F1 ◦ H1(t̄) = F1(t̄). If t̄ �= x̄, then t̄ �= H−1

ε (t̄) �= x̄ for all ε0 � ε < 1. In this situation
suppose x̄ < t̄. (The alternative situation x̄ > t̄ can be treated similarly.) Let x̄ε = H−1

ε (t̄). Then x̄ε → x̄+

as ε ↗ 1. Then repeating calculations (6.5) and (6.6) but replacing ȳε by x̄ε, b̄(k)
n + p by x̄, and using

continuity of F and H1 again, we conclude Fε(t̄) → F1(t̄) as ε ↗ 1. �

Proof of Theorem 5.2

The proof of this theorem is similar to that of Theorem 5.1. fε̃ is semi-conjugate to Rβ , thus there exists
an orientation-preserving surjection hε̃ of S such that

Rβ ◦ hε̃ = hε̃ ◦ fε̃.
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The wandering intervals of fε̃ consist of the union
⋃

θ∈O(Θ̃;Rβ) h−1
ε̃

(θ). There exists an orientation-
preserving semi-conjugacy g such that

g ◦ f = fε̃ ◦ g

and that

h = hε̃ ◦ g

by choosing an appropriate hε̃. Except on the set
⋃

θ∈O(Θ\Θ̃;Rβ) h−1(θ) the semi-conjugacy g is 1-to-1.

If θ ∈ O(Θ \ Θ̃; Rβ), h−1(θ) consists of two points, but the image of h−1(θ) under g is a single point.
Let G : R → R be the lift of g satisfying G(0) = 0. For ε0 � ε � ε̃ define a continuous map of R:

Gε : x̄ �→ G(x̄) + ε̃ − ε

ε̃ − ε0
(x̄ − G(x̄)) .

We claim that Gε is an OPH when ε0 � ε < ε̃. To see this, it is sufficient to show that it is strictly
increasing. Suppose x̄ < ȳ, then G(x̄) � G(ȳ) and

Gε(x̄) − Gε(ȳ) = ε − ε0

ε̃ − ε0
(G(x̄) − G(ȳ)) + ε̃ − ε

ε̃ − ε0
(x̄ − ȳ)

< 0.

Now, because Gε(x̄ + 1) = G(x̄ + 1) + (x̄ + 1 − G(x̄ + 1)) (ε̃ − ε)/(ε̃ − ε0) = Gε(x̄) + 1, the map
Gε is a lift of an OPH gε : S → S. Clearly, maps gε form a continuous family of homeomorphisms
when ε0 � ε < ε̃, and gε → g uniformly on S as ε ↗ ε̃. Notice that the map G(ε, ·) := Gε acts as a
straight-line homotopy for which G(ε0, ·) = id

R
, and G(ε̃, ·) = G, and that the map g(ε, ·) := gε is a

straight-line homotopy for which g(ε0, ·) = idS, and g(ε̃, ·) = g.
Let F : R → R be the unique lift of f satisfying F(0) = f (0). Define a family of OPHs Fε of R by

Fε := Gε ◦ F ◦ G−1
ε for ε0 � ε < ε̃,

and define a family of OPHs fε of S by

fε := gε ◦ f ◦ g−1
ε for ε0 � ε < ε̃.

Clearly, Fε is a lift of fε, satisfying Fε(0) = fε(0).
Now, from the Proposition 6.7 below and Theorem 4.3, it follows that (ω(fε), fε) is conjugate to

(XΘ ,Θ , σ) when ε0 � ε < ε̃. And, the proof of Theorem 5.2 will be complete if we prove the
Proposition 6.8 below. �

Let I(k)
n,ε = gε(I

(k)
n ).

Proposition 6.7 fε is a Denjoy homeomorphism having rotation number β when ε0 � ε < ε̃. The set

S \ ⋃
n∈Z

⋃
1�k�K I(k)

n,ε is equal to ω( fε), and D( fε) = D( f ).

Proof. fε is conjugate to f via g−1
ε , and I(k)

n,ε ’s are the wandering intervals. In particular,⋃
n∈Z

⋃
1�k�K I(k)

n,ε is a continuous image of
⋃

n∈Z
⋃

1�k�K I(k)
n under gε, thus is dense in S. �
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26 Y.-C. CHEN

Proposition 6.8 limε↗ε̃ fε(t) → fε̃(t) for all t in S.

Proof. It is convenient to prove the proposition by showing that limε↗ε̃ Fε(t̄) → Fε̃(t̄) for all t̄ ∈ R,
where Fε̃ is the unique lift of fε̃ satisfying Fε̃(0) = fε̃(0).

Let π : R → S, t̄ �→ t̄ mod 1, be the projection, ā(k)
n , b̄(k)

n be real numbers and Ī(k)
n,ε , Ī(k)

n be open
intervals on R such that Ī(k)

n,ε0 = Ī(k)
n = (ā(k)

n , b̄(k)
n ), π(Ī(k)

n,ε) = I(k)
n,ε , Fn

ε (Ī
(k)
0,ε) = Ī(k)

n,ε , Gε(Ī
(k)
n ) = Ī(k)

n,ε for all
ε0 � ε < ε̃, n ∈ Z, and 1 � k � K.

Given t̄, there are two cases: G−1(t̄) = Ī(k)
n + p for some n, p ∈ Z, 1 � k � K, or G−1(t̄) = x̄ for

some x ∈ R.
There are two sub-cases for the first case: t̄ ∈ cl Ī(k)

n +p or not. If t̄ ∈ cl Ī(k)
n +p, then t̄ ∈ cl Ī(k)

n,ε +p for
all ε0 � ε < ε̃. Consequently, Gε ◦ F ◦ G−1

ε (t̄) ∈ Ī(k)
n+1,ε + p for all ε0 � ε < ε̃, and limε↗ε̃ Ī(k)

n+1,ε + p =
Fε̃(t̄). If t̄ �∈ cl Ī(k)

n + p, then t̄ �∈ cl Ī(k)
n,ε + p for all ε0 � ε < ε̃. In this situation, suppose b̄(k)

n + p < t̄.

(The other situation a(k)
n + p > t̄ can be treated similarly.) Let ȳε = G−1

ε (t̄). Then ȳε > b̄(k)
n + p and

ȳε → b̄(k)+
n + p as ε ↗ ε̃. Now,

Fε(t̄) = G(F(ȳε)) + ε̃ − ε

ε̃ − ε0
(F(ȳε) − G(F(ȳε))), (6.7)

Fε̃(t̄) = G(F(b̄(k)
n + p). (6.8)

Because the distance between ȳ and G(ȳ) is bounded above by 1 for any ȳ ∈ R and because F and G are
continuous, Fε(t̄) → Fε̃(t̄) as ε ↗ ε̃.

For the second case G−1(t̄) = x̄, the proof is essentially the same as the first case. There are two
sub-cases: t̄ = x̄ or not. If t̄ = x̄, then t̄ = G−1

ε (t̄) = x̄ for all ε0 � ε < ε̃, hence limε↗ε̃ Gε ◦F◦G−1
ε (t̄) =

G◦F(t̄) = Fε̃ ◦G(t̄) = Fε̃(t̄). If t̄ �= x̄, then t̄ �= G−1
ε (t̄) �= x̄ for all ε0 � ε < ε̃. In this situation, suppose

x̄ < t̄. (The alternative situation x̄ > t̄ can be treated similarly.) Let x̄ε = G−1
ε (t̄). Then x̄ε → x̄+ as

ε ↗ ε̃. Subsequently, repeating calculations (6.7) and (6.8) but replacing ȳε by x̄ε, b̄(k)
n + p by x̄, and

using continuity of F and G again, we conclude Fε(t̄) → Fε̃(t̄) as ε ↗ ε̃. �

Proof of Theorem 5.3

By Theorem 4.3, we know (ω( f ), f ) is semi-conjugate to (XQ,Φ , σ) via the semi-conjugacy E(·; Q, Φ).
Let H : R → R be the unique lift of h satisfying H(0) = h(0). For 0 � ε � ε0, define a continuous
map Gε of R:

Gε : x̄ �→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 − ε

ε0

) (
φi−1 + x̄−inf H−1(qi)

sup H−1(qi)−inf H−1(qi)

(
φi − φi−1

)) + ε
ε0

x̄

if inf H−1(qi) � x̄ � sup H−1 and 1 � i � N(
1 − ε

ε0

)
φi + ε

ε0
x̄

if sup H−1(qi) � x̄ � inf H−1(qi+1) and 1 � i � N,

where N = �(Q), qi ∈ Q, qN+1 = q1 + 1, φi ∈ Φ and φ0 = φN − 1. By using the property H(x̄ + 1) =
H(x̄) + 1, the map Gε can be defined on the entire real numbers, and has the property Gε(x̄ + 1) =
Gε(x̄) + 1. It is clear that Gε is strictly increasing on both intervals

[
inf H−1(qi), sup H−1(qi)

]
and[

sup H−1(qi), inf H−1(qi+1)
]

for nonzero ε. Consequently, Gε is an OPH when 0 < ε � ε0.
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Note that the image of the interval
[
inf H−1(qi), sup H−1(qi)

]
under G0 is the interval

[
φi−1, φi

]
,

while the image of
[
sup H−1(qi), inf H−1(qi+1)

]
is the single point φi.

Let F : R → R be the unique lift of f satisfying F(0) = f (0). Define a continuous family of OPHs
Fε of R by

Fε := Gε ◦ F ◦ G−1
ε for 0 < ε � ε0.

The map Gε is a lift of an OPH gε of S. Notice that Gε0
= id

R
and gε0

= idS. Define also a continuous
family of OPHs fε of S by

fε := gε ◦ f ◦ g−1
ε for 0 < ε � ε0.

Clearly, Fε is a lift of fε, satisfying Fε(0) = fε(0).

Let I(k)
n,ε = gε(I

(k)
n ). Because fε is conjugate to f via g−1

ε , the map fε is a Denjoy homeomorphism

having rotation number β when 0 < ε � ε0. The set S \ ⋃
n∈Z

⋃
1�k�K I(k)

n,ε is equal to ω( fε). In

particular,
⋃

n∈Z
⋃

1�k�K I(k)
n,ε is a continuous image of

⋃
n∈Z

⋃
1�k�K I(k)

n , thus is dense in S. Hence,
(ω( fε), fε) is semi-conjugate to (XQ,Φ , σ) when 0 < ε � ε0. The proof of the theorem will be complete
if we prove the Proposition 6.9 below. �
Proposition 6.9 limε↘0 O

(
E−1

ε (u; Q, Φ), fε
) = u in the uniform topology for all u ∈ XQ,Φ .

Proof. Let zi,ε, 1 � i � N = �(Q), be any point in the interior of gε(h
−1(qi)) and Ai,ε be open

intervals delimited by zi,ε’s on S: A1,ε = (z1,ε, z2,ε), A2,ε = (z2,ε, z3,ε), . . . , AN,ε = (zN,ε, z1,ε). Then,
with the partition-symbol pair (Q, Φ), a family of coding sequences Eε(·; Q, Φ) can be constructed as in
(4.2)–(4.4) (replacing the sets Ai’s in (4.3) by Ai,ε’s here), via which fε is semi-conjugate to (XQ,Φ , σ).
Given u = (un)n∈Z ∈ XQ,Φ , let xε ∈ E−1

ε (u; Q, Φ), and f n
ε (xε) = xn,ε for all integer n. Then xn,ε

belongs to the closed interval
[
gε

(
sup h−1(qin)

)
, gε

(
inf h−1(qin+1)

)]
, where every in satisfies φin = un.

Subsequently, by our construction of gε, both points gε

(
sup h−1(qin)

)
and gε

(
inf h−1(qin+1)

)
converge

to point φin as ε ↘ 0 uniformly in n. �
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