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ABSTRACT. We study how conserved quantities such as angular mo-
mentum and center of mass evolve with respect to the retarded time
at null infinity, which is described in terms of a Bondi-Sachs coordinate
system. These evolution formulae complement the classical Bondi mass
loss formula for gravitational radiation. They are further expressed in
terms of the potentials of the shear and news tensors. The consequences
that follow from these formulae are (1) Supertranslation invariance of
the fluxes of the CWY conserved quantities. (2) A conservation law of
angular momentum & la Christodoulou. (3) A duality paradigm for null
infinity. In particular, the supertranslation invariance distinguishes the
CWY angular momentum and center of mass from the classical defini-
tions.

1. INTRODUCTION

In this article, we study the evolution of angular momentum and center
of mass at null infinity of asymptotically flat vacuum spacetimes. These
evolution formulae complement the classical Bondi mass loss formula for
gravitational radiations. We are particularly interested in the total flux of
angular momentum and center of mass.

For a good notion of conserved quantities, one expects that the total flux
is independent of the choice of coordinate systems. However, as indicated
by Penrose [19], the notion of “angular momentum carried away by gravita-
tional radiation” can be shifted by supertranslations, an infinite dimensional
symmetry at null infinity. Such ambiguity has been a crucial obstacle to a
clear understanding of conserved quantities at null infinity. In this article,
we consider both the classical and the Chen-Wang-Yau (CWY) [4] defini-
tions for angular momentum and center of mass at null infinity. A key result
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is the supertranslation invariance of the flux of the CWY angular momen-
tum and center of mass. This invariance distinguishes the CWY definitions
from the classical definitions.

Consider the future null infinity .# T of an asymptotically flat spacetime,
which is described in terms of a Bondi-Sachs coordinate system. £ is
identified with I x S?, where I C (—o00, +00) is an interval parametrized by
the retarded time « and S? is the standard unit 2-sphere equipped with the
standard round metric c4p. Let m denote the mass aspect, N4 the angular
momentum aspect, Csp the shear tensor, and N4p the news tensor of 7.
One can view m as a smooth function, N4 a smooth one-form, and Cyp
and Np smooth symmetric traceless 2-tensors (with respect to o45) on S?
that depend on w. In particular, 0,Cap = Nap. See a brief description of
#7T in the Bondi-Sachs coordinates and the definitions of these quantities
in Section 2.

All integrals in this paper on the sphere are taken over the standard
two-sphere S? with the standard round metric o45. We take the standard
formulae for energy and linear momentum:

FE = 2m

52 (1.1)
Pk = / omXFk k=1,23

SQ

where X* k = 1,2,3 are the standard coordinate functions on R? restricted
to the unit sphere S2.
Furthermore, we consider the classical angular momentum

- ~ 1
= / ABY pXHNs — 1 CAPVECpp), (1.2)
52
and the classical center of mass

. - 1 1
o = / VASHNG — uVam — C4PVECpp — 1 Va(CopCPP), (1.3)
SQ
where V4 denotes the covariant derivative with respect to ocap, and e€ap
denotes the volume form of oc4p and £k = 1,2,3. The indexes are raised,

lowered, and contracted with respect to gap. Our definition is that of
Dray-Streubel [12]. See Section III.B of Flanagan-Nichols [13] for details.

Remark 1.1. In the above definitions of conserved quantities, we omit the
constant %.

Furthermore, we consider the CWY angular momentum J* and center
of mass C* as the limits of the CWY quasi-local angular momentum and
center of mass [4, 5] on # evaluated in [15].

~ 1
gk = / ) By g XF (NA - ZCABVDCDB — chm>
S
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Ck — vAXk

1 1
Ny —uVgm — ZCABVDCDB ~ VA (CPECpE)
SQ

6

—cVam + 26AB(VBg)m

~ 1 -~
+ / 3X*em — ZX’“VAEABVDEDB
S2

where ¢ and ¢ are the potentials of Cyp, as given in (2.9) and F,p =
%(GADVBVDQ +eppVaVPe). For definiteness, the potentials are assumed
to be supported in the £ > 2 modes.

In Theorem 11 and Theorem 16 of [15], it is shown that J* and %k are the
limit of the Chen-Wang-Yau quasi-local angular momentum and center of
mass (omitting constant 1/87) under the zero linear momentum assumption

m(u,z) X" = 0. (1.4)
S2
The CWY angular momentum and center of mass modify the classical defi-
nitions as follows:

Jk =gk — / APV EXF eV am
SQ

ck =C* + vAXFE (—CVAm + 26AB(VB§)m) (1.5)
52

~ 1 -~
+ / 3X*em — ZX’“VAEABVDEDB
SQ

The correction terms come from solving the optimal isometric embedding
equation in the theory of Wang-Yau quasilocal mass [25, 26] and are non-
local. They provide the reference terms that are critical in the Hamiltonian
approach of defining conserved quantities. See [16] for a definition of angular
momentum in the context of perturbations of Kerr, in which the referencing
is achieved by the uniformization theorem.

The ten conserved quantities (£, P¥, Jk, C’k), or (E, P* Jk C*%), are func-
tions on I that depend on the retarded time u. We compute the derivatives
of these conserved quantities with respect to w. In particular, for the classical
angular momentum and center of mass, we obtain

Theorem 1.2. The classical angular momentum J* and center of mass C*,
k =1,2,3 evolve according to the following:

~ 1 ~ ~
8qu _ Z /2 [EAEVEXk(CABVDNBD o NABVDCBD) + XkEAB(CADNDB)] ,
S

(1.6)

~ 1 S (U
9,CF = 1 /2 [VAX’C (§VA|N\2 + CapVpNPP — NABVDCBD)} - (1.7)
S
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The evolution formulae (1.6) and (1.7) can be further expressed in terms
of the potentials of C'4p and Nap:

Theorem 1.3. Suppose ¢ and c are the potentials of Cap and n and n are
the potentials of Nap, as given in (2.9) and (2.10), then

Dt = 1 [ X A+ 2]y + [ A + 2]
0,CF = é / Xk (u[((A +2)n)2 + ((A 4 2)n)? — 4BV 4nV (A + 2)n]
SQ

(A +2)e, (A +2)n]s + [(A +2)c, (A + 2)@]2),
(1.8)

where [-,-]1 is the Poisson bracket on S? defined in (4.1) and [-, ] is another
bracket on S? defined in (4.2).

The Bondi-Metzner-Sachs (BMS) group acts on .# . It includes super-
translations which we will review in further details in Section 5. The ambigu-
ity of supertranslations has presented an essential difficulty to understanding
the structure of T since the 1960s. Among (m, Na,Cap, Nag), only Nap
is a supertranslation invariant quantity. It is natural to ask whether total
flux of angular momentum is invariant under a supertranslation. For the
classical angular momentum, we prove that

Corollary 1.4 (Theorem 5.1). Suppose .Z+ extends from u = —oo to u =
400 and the news tensor decays as

Nag(u,z) = O(Ju| 1 7°) as u — o0,
then the total fluz of the classical angular momentum J* is supertranslation
invariant if and only if

ugrfoo m(u,x) — ugrfloo m(u, ) (1.9)

18 supported in the [ < 1 modes.

In particular, if limy, 4 oo m(u, ) —limy—— oo m(u, x) contains { > 2 modes,
the total flux of the classical angular momentum will depend on the super-
translation. This demonstrates how the total flux of the classical angular
momentum can be shifted by a supertranslation. On the other hand, we

show that the CWY angular momentum is free of such supertranslation
ambiguity.

Theorem 1.5 (Theorem 5.4). Suppose the news tensor decays as
Nag(u,z) = O(Ju| 7 7°) as u — +oc.
Then the total fluz of J* is supertranslation invariant.

Remark 1.6. In the above statement, supertranslation invariant means
that it is equivariant under ordinary (I = 1) translation and is invariant
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under higher mode (I > 2) of the supertranslation. See the statement of
Theorem 5.4 for further details.

We also show that the invariance under supertranslation distinguishes
the CWY center of mass from the classical center of mass. Indeed, the total
flux of the classical center of mass is invariant under supertranslation if and
only if limy 400 m(u, z) — lim,_,_ o m(u, ) is a constant function on S2.
On the other hand, the total flux of the CWY center of mass is always
supertranslation invariant. See the statement of Theorem 5.5.

Next, we show that if a spacetime admits a Bondi-Sachs coordinate system
with vanishing news tensor, then (E, P*, J* C*) are constant (independent
of the retarded time u) and supertranslation invariant. See the statement
of Theorem 6.2 for further details.

While our focus is on the study of angular momentum and center of mass
in a Bondi-Sachs coordinate system, we show that the evolution formulae
for the classical angular momentum can be carried over to the framework
of the stability of Minkowski spacetime [9] if we take Rizzi’s definition of
angular momentum [20, 21]. This provides a conservation law of angular
momentum that complements the conservation law for linear momentum of
Christodoulou [7, Equation (13)].

Another natural consequence of (1.8) is a duality paradigm among sets
of null infinity data (m,Na,Cap, Nap), through replacing the potentials
(¢,c,n,n) by (—¢,c,—n,n).

Corollary 1.7. Given a set of null infinity data (m, Na,Cap, Nap) defined
on [uy, uz)xS?, there exists a dual set of null infinity data (m*, N%, C% g, Nig)
that has the same (classical) energy, linear momentum, angular momentum,
and center-of-mass.

These are dual sets of null infinity data that are indistinguishable in terms
of the classical conserved quantities.

The paper is organized as follows. In Section 2, we introduce the defini-
tions and integration by parts formulae used throughout the paper. The flux
of classical conserved quantities is computed in Section 3 and is rewritten
in terms of the potentials in Section 4. The aforementioned consequences
of flux formulae are presented in Section 5 to Section 7. In the last section,
we consider the case of quadrupole moment radiation. With the future the-
oretical and numerical investigation in mind, we express the flux formulae
in terms of the spherical harmonics expansion of potentials explicitly.

2. BACKGROUND INFORMATION

In this section, we describe the Bondi-Sachs coordinate system and recall
several useful formulae for functions and tensors on S2.
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2.1. Bondi-Sachs coordinates. In terms of a Bondi-Sachs coordinate sys-

tem (u, r, 2%, 23), near £ of a vacuum spacetime, the metric takes the form

Jopdr®dz? = —UVdu? — 2Ududr + r’hap(dz® + WAdu)(dzB + WEdu).
(2.1)

The index conventions here are o, 5 = 0,1,2,3, A,B = 2,3, and u =
20, r = 1. See [2, 17] for more details of the construction of the coordinate
System.

The metric coefficients U, V, hag, W4 of (2.1) depend on u,r,6,$, but
det hap is independent of v and r. These gauge conditions thus reduce
the number of metric coefficients of a Bondi-Sachs coordinate system to six
(there are only two independent components in h4p). On the other hand,
the boundary conditions U — 1, V — 1, WA 50, hag — oap are imposed
as r — oo (such boundary conditions may not be satisfied in a radiative
spacetime). Here 04p denotes a standard round metric on S2. The special
gauge choice implies a hierarchy among the vacuum Einstein equations, see
[17, 14].

Assuming the outgoing radiation condition [2, 22, 17], the boundary con-
dition and the vacuum Einstein equation imply that as r — oo, all metric
coefficients can be expanded in inverse integral powers of r.! In particular
(see Chrusciel-Jezierski-Kijowski [10, (5.98)-(5.100)] for example),

1

—1_ 2 -3
U 16T2’C‘ +O(T )7
2m 1 [1_4 124 sp 1, 9 _3
=1-—+ 5|V N - —
|4 . +7“2 (3V A+4V CapVpC~~ + 16|C| +O0(r—2),

WA

1 aB , L (204 1 oa 2 1 aBob 4
. —(ZNA - = _ -
2T2VBC +7“3 <3 16V |C 20 VZCgp | +O(r™7),
_ Cas 1 2 -3
hAB—UAB‘f‘T‘f'@’C‘ oag +0O(r™)

where m = m(u,z?) is the mass aspect, Ng = Nx(u,z?) is the angular
aspect and Cyp = Cap(u,z?) is the shear tensor of this Bondi-Sachs co-
ordinate system. Note that our convention of angular momentum aspect
differs from that of Chrusciel-Jezierski-Kijowski [10], Na = —3N4 k)
Here we take norm, raise and lower indices of tensors with respect to the

metric o 4. We also define the news tensor Nap = 3,Cap.

2.2. Integral formulae on 2-sphere. Let o4p be the standard round
metric on S? with respect to which the indexes of tensors are raised or

IThe outgoing radiation condition assumes the traceless part of the =2 term in the
expansion of hap is zero. The presence of this traceless term will lead to a logarithmic
term in the expansions of W# and V. Spacetimes with metrics which admit an expansion
in terms of 777 log® r are called “polyhomogeneous” and are studied in [11]. They do not
obey the outgoing radiation condition or the peeling theorem [23], but they do appear as
perturbations of the Minkowski spacetime by the work of Christodoulou-Klainerman [9].
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lowered. Let V 4 be covariant derivative with respect to o4p. Let eap be
the volume form. The following identity

€ABECD = OACTBD — OADOBC (2.2)
and its contraction
eABeAC =oBc (2.3)

will be used frequently.
The curvature formula on S? gives

VaVpVou —-VVaVeou=0cacVpu —opcVau
for a smooth function u on S?. In particular, we have
VpVPV qu = VA(A +1)u
APV 4 VEVeou = eCBVBu.

Let X* k = 1,2,3 be the restriction to S? of the standard coordinate
functions in R3. It is well-known that they are eigenfunctions for o 4p:

(2.4)

AXF = —2xk.
X* also satisfies the Hessian equation
VaVpXFk = —X*o,p. (2.5)
In general, an eigenfunction f with
Af=—Ll+1)f (2.6)

is said to be of mode /. We need the following integration by parts lemma:

Lemma 2.1. Suppose u and v are smooth functions on S* of mode m and
n respectively. Then

/ XkeABVAuVBv =0
SQ
unless m = n.

Proof. Integrating by parts, we obtain

/ X*eABY quV v = / (YAV pv)u,

52 52

where Y4 = ¢ABV X is a rotation Killing field. Since A commutes with
YAVA, YAV 4v is of the same mode as v. O

The following integrating by parts formulae will be useful in the later
sections.

Lemma 2.2. For any smooth functions u,v on S%, we have

XFPAPY 4 (Au)Vpo = [ XFABY uVg(Av) (2.7)
S2 S2

/ XFeABY AV puVgVPu = — / XFeABY quV (A + 2)v. (2.8)
S2 S2
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Proof. We prove the second formula and the first formula follows similarly.
Integrating by parts the left hand side, we obtain

— VDXkEABVAuVBVDU—/ XkeABVAuVDVBVDU
52 52
Integrating the first term by parts again, we obtain

VeVpXFeABY 4,uvPo — [ XFABY 4uV pV VP
32 52

By (2.4), this is equal to

XEABY juV go — XkeABVAuVB(A + 1)v.
S2 S2

Lemma 2.3. For any smooth function u on S?, we have
/ 2V AV EuVAVEY — (Au)?] = / uA(A + 2)u
S2 S2

X2V AV uVAVPYu — (Au)?] = X(A +2)u]?
52 S2

Proof. We use the following formulae in the derivation

AlVul? = 2|V2ul? + 2Vu - V(A + 1u
A(u?) = 2|Vul? + 2uAu
A(ulu) = (Au)? + 2Vu - V(Au) + uA?u.

We prove the second formula and the first one follows similarly. Integrat-
ing by parts twice gives

X'V, VeuvAvEy = / uVAVE (XY 4V gu)

52 52

We compute
VAVE(XV 4Vgu)
=(VAVEX)VVpu + 2VEXIVAV  Vgu + XIVAVEVY 4, Vpu
= — X'Au+2VBX'Vp(A+1Du+ X'A(A+1)u
=X'A%+ 2VBX'Vp(A + 1)u

where we use VAV 4 Vpu = V(A + 1)u.
On the other hand, we have the identity:

)

2VPuV v = A(uv) — uAv — vAu
and thus
IVEXVE(A +1)u=A(XY A+ 1)u) — XAA + 1)u+ 2X (A + 1)u.
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Putting all together gives:

X'V AVpuVAvVEy
52
= [ XA%u+ /u[A(Xi(A + Du) — XTA(A + Du+ 2X (A + 1)u).
SQ
= | X'[(Au)? 4 2uAu + 2u?]
52
Therefore,
X2V AVuVAVEu—(Au)Y = | X'[(Au)*+4uAut+du?] = [ X[(A+2)u)?.
52 52 52

O

2.3. Closed and Co-closed Decomposition. In this subsection, we con-
sider symmetric traceless 2-tensors Cap and Nap on S? with the decompo-
sition (see [15, Appendix B] for a derivation)

1 1
Cup =VaVpge— §UABAC + §(€AEVEVBQ + 6BEVEVAQ) (2.9)

1 1
Nap =VaVpn— §O'ABAH + i(EAEVEVBQ + GBEVEVAQ) (2.10)
for smooth functions ¢, ¢, n,n on S? that are referred as potentials of Cyp
and N4p. The potentials are unique up to their 0 and 1 mode. In the case
we consider when C4p and Nap depend on u, all ¢,¢,n,n depend on u as
well.

Proposition 2.4. Closed and co-closed parts of a symmetric traceless 2-
tensors on S? are dual to each other in the following sense.

(1) Denote the space of symmetric traceless 2-tensors on S? by gy?n
Then the map €9 : Sym — Sym,e2(Cap) = EADCDB satisfies

1 1
e9(VaVpe — §JABAC) = i(eAEVEVBc + 5PV EV 40), (2.11)
1 1
€2 <2(€AEVEVBC + 6BEVEVAC)) = —VaVpc+ §O'ABAQ. (2.12)
(2) The following identity holds for symmetric traceless 2-tensors
e PVPCpa =¢,PVECap. (2.13)

In other words, we have a commutative diagram of isomorphisms
Sym —=2— Sym
ldiv ldiv
Al L Al

where A' denotes the space of 1-forms and (xw)q = EABwB s the
Hodge star on 1-forms.
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Proof. We use (2.2) and (2.3) in the derivation. Since e4APey(Cap) = 0 and
04Bey(CaB) = 0, e2(Cap) is symmetric and traceless. In particular,

1
EADCDBzé(EADCDB—I-EBDCDA) (2.14)

and (2.11) and (2.12) follow by direct computation.
To verify (2.13), note that both sides are equal to VPCp after contracted
with €. 0

In the following two lemmas, we express several integrals involving the
shear tensor and the news tensor in terms of their potentials. These formulae
will help us to derive Theorem 1.3 from Theorem 1.2.

Lemma 2.5. Suppose Y4 is either VAX* or eABV pX*, and Cap and Nap
are given by (2.9) and (2.10), then

YACABVDNBD
g2
:_i YA+ 20V A(d +2)e+ (A+2)nVa(A +2)d
+i/52 YA PIVD((A +2)e)(A +2)n — Vp((A + 2)c) (A + 2)n]

(2.15)
Proof. First of all, note that
VBYACup =0,PPVpYAC 45 = 0.
From
VpNBP = %VB(A +2)n + %EBDVD(A + 2)n,

we integrate by parts to get
1
YAC gV pNBP = -3 / YAVECup(A+2)n+PPV pCa(A+2)n).
52 52
By (2.13)
GDBVDCBA = GADVBCBD
and VECpp = LVP(A + 2)c + 3ePPVp(A + 2)c, we obtain the desired

2
formula.

g
The above generalizes the integral identities derived in [15, (65), (66)]:

] YAFRPVP Fpp =0,
S

/SQ YAFREVPFE =0

for YA = eABVBXk.
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Skew-symmetrizing (2.15), we obtain:

/2 YACupVpNBP — NopVpCBP)
S

:i . YA(A 4 2)cVA(A +2)n — (A +2)nV 4(A + 2)c]

. (2.16)
1/ YA (A +2)cVa(A+2)n— (A +2)nVa(A +2)d
- i / VA ,PVD[(A +2)c(A +2)n — (A + 2)c(A + 2)n).
S2

Next we prove

Lemma 2.6.
1
NapNAB = - / nA(A + 2)n + nA(A+2)n
g2 2 Jg2

. 1
XFN pNAB = 3

5 5 Xk [((A +2)0)2 + (A + 2)n)? — 4e*BV 4snV (A + 2)n.

BD _ 5ABO,CD _ 5ADO.C’B BE

Proof. Using the formula e Ace and eBe p = oBE,

we compute that
1 1
NapNAB = v, VpnvAvVEn — 5(An)2 + VAVEnVAvEn — 5(A@)Q

+ 264V 4V gnV e Vin
(2.17)

Integrating by parts yields
/ AV VeV eVEin = — / ACVBY 4 VEnVen
S2 S2

_ / OV A(A + 1)nVen = 0
SQ

The first formula now follows from the first formula in Lemma 2.3. The
second formula follows from the second and third formula in Lemma 2.3. O

The second formula of Lemma 2.6 can be polarized and we obtain

1

XrCapNAP =2 | X [(A +2)e(A+ 2)n+ (A +2)e(A + 2)n
S2

SQ
—2eB(V 4cVB(A + 2)n+ VanV(A + 2)¢)
(2.18)

3. EVOLUTION OF CONSERVED QUANTITIES

In this section, we compute the evolution of the classical angular momen-
tum and center of mass. These formulae will be used to calculate the total
flux of the conserved quantities.
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Let’s first review the evolution of the metric under the Einstein equation.
It is well-known (see [10, (5.102)] for example) that the evolution of the mass
aspect function is given by

1 1
dum = —gNABNAB + ZVAVBNAB. (3.1)

The modified mass aspect function m is defined to be [24]

~ 1 1
m=m — ZVAVBC'AB =m — gA(A—l—Q)c (3.2)
and satisfies
1
Dy = —gNABNAB. (3.3)
Therefore,
1
OF=—= [ NupNAB
4 Jgo
1 -
O PF=—> | XFNogNAB k=1,2,3.
4 Jgo

We also recall the evolution of N4 (see [10, (5.103)] for example):
1
OulNA =V am — ZVD(VDVECEA — VaVECED)

1 1 1
+5V A(CppNBE) — Zvj_u;(ofF‘f’zvr,;,,Ll) + iCABVDNDB.
The formula can be rewritten in the following form:

Proposition 3.1. The angular momentum aspect N4 evolves according to

1 1
OuNA =V am + ZeABvB(EPQVPVECEQ) + gvA(c*BEz\rBE)
(3.4)

1 1
+ gEABVB(EPQCPENEQ) + §CABVDNDB-
Proof. We rewrite the terms —%VD(VDVECEA—VAVECED) and —%VB(CBDNDA).
First we check the following identity directly:
eapVB(FVpVECEg) = —VP(VpVECRas — VaAVFCrp).

As for the term C BD Npa, we use the following general formulae for sym-
metric traceless 2-tensors on the 2-sphere:

Ci’Npa+ NgPCpa = (CppNPE)oap
Cy’Npa— NECpa = —(e"°CHF Ng)ean
Therefore,

QCBDNDA = (ODENDE)UAB — (GPQCPENEQ)EAB.
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Equation (3.4) is indeed equivalent to equation (4) on page 48 of [8]. We
apply (3.4) to derive the evolution of the classical angular momentum and
center of mass.

Theorem 3.2 (Theorem 1.2). The classical angular momentum and center

of mass evolve according to the following:

1 3 3
Dt == /2 [ﬁAEVEXk(CABvDNBD — NapVpCBP) + kaAB(OADNDB)} ,
s

4
(3.5)
1 .
9,C* = / [VAX'“ (EVA|]\7|2 + CapVpNPP — NABVDCBD)} , (3.6)
4 Jg2 2
where k =1,2, 3.
Proof. By (1.2),

N ~ 1
Dy J* = / APV X [0,Na — Zau(CADvBCDB)]'
SQ

First, we deal with the term %EABVB(GPQVPVECEQ) on the right hand
side of (3.4) and claim that

/ YAeapVE(POVpVECRg) = 0 (3.7)
S2
for YA = VAXF or APV 5 X*. Integrating by parts, the integral becomes
/ eapVAYB(POV pVECpo).
S?

Since GPQVPVEC'EQ = —%A(A + 2)c and €A VAY B is zero or 2X*. the
integral vanishes.
Hence, we obtain

Oy J*

_/ GABVBXk |:;€AEVE(€PQCPENEQ) + éCABVDNDB — %(%(CADVBCDB)
52

since the integral of Vam + %VA(CBENBE) against APV XF* vanishes.
Integrating by parts the first term and use e*Peyp = (53 , we obtain the

desired formula. }
We now turn to the formula for C*. By (1.3) and (3.7),

9,C*

- U 1 1
:/52 vAXE [auNA —Vam + gvA\NP — Zau(cADvBcDB) — EvAau(cDECDE)

~ U 1 1
= [ vAxF [gvA\NP + S ValCpeNPF) + 3CapVHND?
S

1 1
- Zau(CADvBoDB) — TGvAau(CDEcDE)
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since the integral of feapVZ(ePCCF Npq) against VAXF vanishes. We
arrive at the desired formula since 0, (CppCPF) = 2(CppNBF). O

4. EVOLUTION FORMULAE IN TERMS OF POTENTIALS

In this section, we rewrite the evolution formulae in terms of the potentials
of the shear and the news tensor.

4.1. Energy and linear momentum. First we recall the formulae for the
energy and linear momentum.

Proposition 4.1. Suppose Cap and Nap are given as in (2.9) and (2.10),
we have

OuE — —% /S MA(A + 2)n + nA(A +2)n)]

OuP* = ‘é XA+ 20 + (A +2)0)* — 427V anV 5(A + 2)n).

Proof. These follow from Lemma 2.6.

4.2. Proof of Theorem 1.3. We first prove the following Proposition:

Proposition 4.2. The evolution formulae of the conserved quantities can
be written as

Oy J" :é y XFeABIV 4eVBA(A + 2)n 4+ V 4cVBA(A + 2)n]

0.C* :é /S uXH((A +2n)” + (A +2)m)* — 4PV 40V (A + 2)n]
+ % g [(XF(A(A +2)c(A +2)n — A(A +2)n(A +2)c)]
- % g [XF(A(A +2)c(A +2)n — A(A + 2)n(A + 2)d].

Proof. We write
49, J* = /2 _XkEABCBDNDA+/2 VA (CapVpNPP—NAgVpCPP) = (1)+(2)
S S

and compute (1) and (2) separately.
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Note that (1) = — fSQ XkEQ(CAB)NAB and recall that e9(Cap) has po-
tentials —c and c. Applying (2.18), we get

(1) = — % [ K+ 208+ 20+ (A +20e(A +2)n

—l-/ GAB(VAQVB(A+2)E—VAnVB(A-i-Q)C)]
52

- % y XF[—(A +2)c(A +2)n+ (A +2)c(A + 2)n)

— / XFeABIY 4eV (A 4 2)n — VaAnV (A + 2)c]
52

_ % [ KA+ 2)e(A +2)n+ (A +2)e(A + 2

_ / XEABIY 4V (A + 2)n + VacV (A + 2)n]
52

where we used (2.7) in the last equality.
Applying (2.16) to Y4 = YkA, we have

(2) = % /52 XFABIV 4(A 4 2)cVE(A + 2)n 4+ V(A +2)cVp(A + 2)n]

n % } XF[(A +2)e(A+ 2)n — (A +2)c(A + 2)n]

Therefore,

W+ ©2)=— [ X*AB[VAeVE(A+2)n+ VacV(A +2)n]
52
1 -
+3 XFABVA(A +2)cVB(A + 2)n + V(A +2)cVE(A + 2)n)
SQ

1

=3 / XF[eAPV ANV (A +2)n + VAACV 5(A + 2)n],
52

and the desired formula follows by (2.7).
As for the evolution of the center of mass, we apply (2.15) and note that

. VAXFe PVDI(A 4 2)e(A + 2)n 4 (A + 2)c(A +2)n] = 0.

Therefore,
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@ék:;%;wkux+mm2+«A+2mf—4&3vyﬁ@ux+mm
; (VA (T 4(A + 2)e(A + 2)n — Va(A + 2)n(A +2)c)]
; [VAXH(V (A + 2)e(A + 2)n — Va(A + 2)n(A + 2)d]

:;/‘uxﬂ«A+apn?+«A+ayn2—4awvgnv3ux+mn
SQ
+ % XE[A(A 4 2)c(A +2)n — A(A + 2)n(A + 2)(]
+ E X"’[A(A +2)e(A + 2)n — A(A + 2)n(A + 2)(]

O

To obtain the formulae given in Theorem 1.3, we rewrite the above for-
mulae in terms of bracket operators on S2.

Definition 4.3. For two smooth functions « and v on S?, denote
[u,v]; = BV uV g (4.1)

and

[u, v]g = ((Au)v — (Av)u). (4.2)
In view of Definition 4.3, we can write

OuJ* = —

5 L, X4 A 2 + e, A +2)u)

and similarly for the center of mass. This proves Theorem 1.3.

5. SUPERTRANSLATION INVARIANCE OF THE TOTAL FLUX

5.1. Total flux of classical conserved quantities. We study the effect of
supertranslation on the total flux of conserved quantities along null infinity
or, equivalently, the difference of conserved quantities at timelike infinity
and spatial infinity. As in the previous section, suppose I = (—o0,00) and
J 7 is complete extending from spatial infinity (u = —o0) to timelike infinity
(u = +00). A supertranslation is a change of coordinates (@, Z4) — (u, z4)
such that u = @ + f(x), 24 = 2% on .#*. Let m, Cyp, and N4p denote the
mass aspect, the shear, and the news, respectively, in the (u, z“) coordinate
system. Since the spherical coordinate is unchanged, we use x to denote
either x4 or 4 throughout this section. It is well-known (see [10, (C.117)
and (C.119)] for example) that the shear C4p (@, ), and the news Nap (i, )
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in the (@, ) coordinate system are given by

) —2VaVBf+ Afoas

Cap(i,x) = Cap(u + f(x),z .
Nap(t,z) = Nag(u + f(),) (5.2)

We assume that there exists a constant € > 0 such that
Nap(u,z) = O(Ju|717°) as u — +oo. (5.3)

Note that the limits of the shear tensor exist
uEI:II:loo CAB(U, 1’) = CAB(:E)

as a result of (5.3).
Similarly, (5.3) implies that the limits of the angular momentum exist

lim J*(u) = J*(£).

u—Fo0o

Denote the corresponding quantities after supertranslation by J f( )

Let YA = APV X" By (3.5), the total angular momentum flux is

TH() = JH (=)

L

+oo
= / / ~VpYACapNBP + YA (~VpCapNPP — NapVpCBP)| (u, v)dS?du
S2

OABVDN — NABVDCBD) —i—XkEABCADNDB} (u,x)dSQdu

+ i /_J:O . X*eAB(C P Npp)(u, z) dS%du
(5.4)
in the (u,x) coordinates and
Tf(+) = JF(=)
_1 / o / ~VpYACapNPP + YA (~VpCapNPP — NapVpCBP)]| (@, 2)dS*du
1 +°<>52 . - D
+3 /_ e X*eAB(C P Npp)(u, ) dS?da
(5.5)
in the (@, x) coordinates.
Applying the chain rule on (5.1) yields
VpCap(t,z) = Nap(i+ f,2)Vpf + (VpCap)(a+ f,2) — VpFag,
VpCPP(a,x) = NPP(a + f,2)Vpf + (VpCPP)(u+ f.2) - VE(A +2)f.

To simplify notation, we introduce the w independent symmetric traceless

2-tensor
Fap =2V sVpf—Afoap

and thus VpFBP = VB(A +2)f.
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Equation (5.5) can be rewritten as
Jf(+) = Jf(=)

1 oo
= / / [_VDYA(CAB — Fap)NPP + YAwA} (@ + f,x)dS*du
4 ) )2 (5.6)

1 ok AB (v D _ D _ 9 .
+4 XFeP (0P — FY) Npp| (a+ f,z) dS*du
—00 5‘2
where
wa(u,2) = (= Nap(u,2)Vpf — VpCap + VpFap) NPP (u, z)
— Nap(u,z) (NPP(u,2)Vp f + VpCPP (u,2) = VpFPP ().

Note that the integrand is evaluated at (@ + f, z) in equation (5.6), to which
the change of variable will be applied.

By the decaying assumption of the news (5.3), we can apply change of
variable u = @ + f to (5.6) and rewrite it as

Th(+) = JF(=)
—+o00 )
- 411/ / [_VDYA(CAB - FAB>NBD + YAwA + XFkeAB (CAD — Ff) NDB} (u, ac)dSQdu
—oo JS2
(5.7)
Combining (5.4) and (5.7), we obtain
(T30 = T5) = () - ()
= 1/ —YA|N|>V 4 fdS?du
1) Je
* % / / |~ YA FapVDNEP + VANV FPP — XEeAP FRNpp | ds?du
—c0 J 82

where we used the identity 2N g NBP = |N|?65.

Observe that the second integral is of the same form as 8,,.J given in (3.5)
and one can thus simplify it as in the proof of Proposition 4.2 to get

() = T5)) = () = 7))

1 [ 1 [ -
=7 / fYAV 4N 2dS%du + 1 / XFABY snVBA(A + 2) fdS%du
—o00 J 52 —o0 J 52

Integrating by parts, we arrive at
() = Tp)) = (T5(+) = (=)
1 [*eo
:4/ / YAV A(IN]? = A(A +2)n)dS?du (5.8)
—0o JS2

_ /S 2V AT 4 (m(+) - m(-))dS?
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where

m(+) = ull)r:iloo m(u,x).

Here we used the mass loss formula (3.1) in the form d,m = £ A(A 4 2)n —
%|N|2. Note that m(4) —m(—) is of the same mode as YAV 4(m(+)—m(-))
because Y4 is a Killing field.

In summary, we obtain a necessary and sufficient condition for the total
flux of the classical angular momentum to be supertranslation invariant.

Theorem 5.1. Suppose the news tensor decays as
Nag(u,z) = O(Ju| 7' 7°) as u — +oc.

The total fluz of the classical angular momentum J* is supertranslation
invariant if and only if

m(+) —m(-)

(as a function on S?) is supported in the | < 1 modes.

Moreover, the above condition holds when the rescaled curvature compo-
nents P (see Definition A.5) at I satisfy

lim P— lim P (5.9)

U— 00 U—r—00

is supported in the | < 1 modes.

Remark 5.2. Theorem 5.1 is motivated by the investigation in [7], which is
built on the framework of stability of Minkowski spacetime. Indeed, equation
(11) and (12) of [7]

Zt—-Z"=v® div(Zxt-%7)=2z"-Z
imply limy, o0 c(u, ) = limy,—,_ oo ¢(u, ). Using moreover (10) of [7]
A® = —-2(F - F),

we get
VA(BF — A(A+2)c[tZ) =0.

Moreover, the total flux of the classical center of mass is supertranslation
invariant under the same condition

Theorem 5.3. Suppose the news tensor decays as
Nag(u,z) = O(Ju| ' 7°) as u — o0,

The total flux of the classical center of mass C* is supertranslation invariant
if and only if
m(+) —m(-)

is a constant function on S2.
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Proof. Denoting C*(£) = limy_,+00 C*(u), by (3.6) we have
CH(+) - ()
:i /_;oo /52 u| N} (u, z) X* + vAXE [CABVDNBD - NABVDCBD] (u, z) dS?du.
(5.10)
On the other hand,
CH(+) = CF(-)
:i /:o /52 a|N|*(a,2) X* + VAX? [CapVpNBP — NypVpCPP] (4, 2) dS?da.
Proceed in the same way as in the case of angular momentum, we obtain

(Chr) = CF)) = (CH ) - C()
400 _ _
:i/ —X¥|INPf — VAX®IN?V of dS%du
—00 S2
1 [t . -
+3 / VAXK(—2VAVBf + Afoap)VpNPP + VAXEN  pVE(A +2) f dS?du
oo JS2
We simplify the second integral as

/ —2X VA fVpNAD 4 oVAXFY 4 fVpVpNBD — oVAX*YEN - f
SQ
:/ P (VAXkVAfVBVDNBD + XPVAVEN - f)
SQ
and the mass loss formula 0,m = %VAVB Nap — %\N |2 implies that

(Chr) = CH=)) = (CF ) = CH ()
- /s 2XFf (m(+) —m(=)) + 2VAX* (m(+) —m(=))Vaf

- /S (6X* (m(+) — m(-)) — 294XV 4 (m(+) — m(-)) .

Hence, C*(+)—C*(—) is invariant under arbitrary supertranslation if and
only if 6X* (m(+) —m(—)) —2VAX*V 4 (m(+) —m(—)) is supported in the
[ <1 modes.

Multiplying the expression by X* and summing over k = 1,2,3, we
get m(+) — m(—) is supported in the I < 2 modes. However, a direct
computations shows that if m(+) — m(—) contains a [ = 2 mode, then
6XF (m(+) —m(-)) — 2VAXkVA(m(+) — m(—)) contains a [ = 3 mode.
Simiarly, if m(4) —m(—) contains a [ = 1 mode, then 6X* (m(4+)—m(-)) -
2VAXkVA(m(+) —m(—)) contains a [ = 2 mode. Thus, m(+) — m(—) is
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constant if and only if C’k(—i—) — é’k(—) is invariant under arbitrary super-
translation O

5.2. Total flux of the CWY conserved quantities. In this subsection,
we show that the total flux of the CWY angular momentum and center of
mass is supertranslation invariant. We decompose f into its modes:

f=a0+ o X'+ fi>2

and let J*(4) be the limits of the CWY angular momentum in the u co-
ordinate and J ]’f(i) be the limits of the CWY angular momentum in the @
coordinate. We have

Theorem 5.4. Suppose the news tensor decays as
Nap(u,z) = O(Ju| 7 7°) as u — +oc.
Then the total fluz of J* is supertranslation invariant. Namely,
(T5(+) = TF)) = (T5) = TH(=)) = aue™; (P (+) = P(-)),
Proof. Note that

JE=JF — [ YAcVam (5.11)
S?
where Y4 = 6‘4BVBX]€.
The assumption (5.3) on the decay of news tensor implies that the limit
of mass aspect function is invariant of supertranslation

lim m(u,z) = lim m(u,x) or m(£) = m(L). (5.12)

u—+oo u—+oo

Moreover, we have

lim Cap(,r) = Erirl Cap(u,z) —2VsVpf+ Afoap. (5.13)

u—r+oo

If we denote the closed potential of limg_, oo Cap and limg_ s o Cap by
¢(+) and ¢(+) respectively, we have

e(+) = c(+) — 2fe>2 (5.14)

as functions on S2. Evaluating the definition of the CWY angular momen-
tum (5.11) at +oo gives

JE() = TR (+) — . YAe(4+)V am(+),
and

JF(+) = Jf(+) - /2 YAE(+)V arm(+).
S
Taking the difference and applying (5.12) and (5.14), we derive

TP = TEE) = TF) = T 42 | feaY T am(+).
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We derive a similar equation at —oo and thus
(5(+) = T3 ) = (T8 = (=)
= () = 7H0)) = (P = ) +2 [ fa¥ T alm() = (=)
= — 2/;2 fgleAVA(m(—i-) — m(—))
by (5.8). It follows that

(7H) = TF)) = (75(0) = 7)) = ase™ (P (4) = PI ().
O

Let C*(£) be the limits of the CWY center of mass in the u coordinate
and C}“(i) be the limits of the CWY center of mass in the % coordinate.

Theorem 5.5. Suppose the news tensor decays as

Nap(u,z) = O(Ju|717°) as u — oo,
then the total flux of C* is supertranslation invariant. Namely,
(Ch+) = C5=)) = (CH+) = CH(=)) = ag (PH(+) = PH(=) )+ (B(+) = E(-)).

Proof. We write

ck=CF - / cVAXEY ym + 3/ cX*m +Z(c,m), (5.15)
52 S

2

where Z is an integral over S? that involves only ¢ and m. Since the last
three integrals have limits at © = o0, the mass loss formula now implies

Ck(+) — C*(-)
+o0 _ ~
_le/ / U\N\z(u,x)X’f + VAXk [CABVDNBD _ NABVDCBD] (u’ I’) dS2du
oo JS2

_ / ()VARRY 4m(+) + / (=) VAKEY gm(—)

c ~km — c\— ~km -
+3/52 () XEm(+) 3/52())( (=)
+ E(c(+),m(+)) = Z(e(=), m(=)).
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By (5.13), ¢(#£) is invariant under supertranslation. We apply (5.12) and
(5.14) to get

(ChH) - C3)) = (Ch+) - k()
= (G} = Cf) = (¢ - C*()
+ 2/ fr2VAXIV 4 (m(+) = m(=)) - 6/ fez2XF(m(+) —m(-))
52 52

2 [ VAR a () = m(0) +6 [ i X ml4) - m(-))
We obtain
(Ch) = Cho) = (C*0) = () =2 [ (0oF* + au)(m(+) = m(-)
= ag (PF(+) = PE(=) ) + ax (B(+) — B(-).
U

6. SPACETIME WITH ZERO NEWS

In this section, we consider a non-radiative spacetime in the sense that
the news vanishes. This includes all model spacetimes such as Minkowski
and Kerr. First, we show that the CWY angular momentum and center of
mass are constant.

Lemma 6.1. Suppose the news Nap(u,x) =0 in a Bondi-Sachs coordinate
system (u,z), then the CWY angular momentum J*(u) and CWY center of
mass C*(u) are constant, i.e. independent of the retarded time wu.

Proof. The assumption implies 9,m(u,z) = 0,0,Cap(u,z) = 0 and thus

m(u, z) = m(z), Cap(u,z) = Cap(z)

and both potentials ¢ and ¢ are independent of u as well.
We recall the definition of CWY angular momentum

1
Jk(u) = /52YA (NA — ZCABVDCDB — CvAm) (6.1)

where Y4 = 4BV 5 XF. Since ¢ and m are both independent of u, our
previous calculation shows

1
Oy [ YA (NA - CABVDC’DB>
5 4
1 i

= /52 [YA(OABVDNBD — NapVpCBP) + X*eAB(C,PNpp)|,

the conclusion follows.
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On the other hand, the CWY center of mass C* is given by

16

- 1 1 -
g vAXF (NA —~ Z(/*,LUBVDCDB ——Va (CDECDE)> — VAXF(c +u)Vam

- - 1 -
+ / <3Xkcm +2VAXF e 15(VEe)m — EX’va(A +2)eVA(A + 2)c>
5‘2

(6.2)
Since all m, ¢, and ¢ are independent of w,
9, C*
=0, | VAXx* (NA Losveerr - Ly, (CDECDE)> — [ VAX*"Vam
g2 4 16 g2
(6.3)

Our previous calculation shows that the first term on the right hand side is

- 1 1
vAXE <v am + 1CABVDN’” - 4NABVDCBD> ,
SQ
and the conclusion follows.

O

Finally, we show that in a spacetime with vanishing news tensor, the
angular momentum and center of mass themselves, not just their total flux,
are invariant under supertranslation.

We pin down the exact formula for the angular momentum aspect on a
spacetime with vanishing news. In this case, we have

1
OulNa(u,x) = Vam(u,x) — ZVBPBA(U,SU)

where
PBA(U,QJ) = (VBVECEA — VAVECEB)(U, CU)
Therefore

. -
OulNa(u,x) = Vam(xz) — ZVBPBA(:):)

is independent of u. Integrating gives
.1 :
Na(u,x) = Na(up,z) + (u — up)(Vam — ZVBPBA) (6.4)

for any u and fixed wyg.

Suppose (u,x) is another Bondi-Sachs coordinate system that is related
to (u,z) by a supertranslation u = @ + f for f € C®(S5?).

Recall the mass aspect m(i, x), the shear Cap(, ), and the news Nap (i, x)
in the (u,z) coordinate system are related to the mass aspect m(u,z), the
shear Cup(u,z), and the news Nap(u,x) in the (u,z) coordinate system
through:
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(i, 2) = m(a+ f,) + 5 (V2 Nop) (@ + £,2)97f
+ i(auNBD)(a + f,2)VB VP f + iNBD(a + f,2)VEVPf
OAB(E, :C) = CAB(H + f(a?),x) —2VAVef+ Afoap
NAB(ﬂ, x) = NAB(@ + f(x),a:)
(6.5)

In particular, Nag(@,z) = 0 and J*(@) and C*() are independent of .

In addition, we have

m(t, x) = m(z) = ()
Cap(u,z) = 2AB(JJ) = Cap(z) — Fap (6.6)
C=¢—2fr>2

where Fap =2V aVpf — Afoap.
Finally the angular momentum aspect transforms by

Na(@,2) = Na(i+ f,2) + 3m(a+ f,2)Vaf — %PBA(E + ) VB
= Na(i+ f,2) + 3mVaf — zﬁBAva.

See [10, (C.123)]. Note that the convention of angular momentum aspect

there is —3N4.
Combining with (6.4) and setting u = @ + f, we obtain

_ R R ) 3.
NA(L_L,JJ) = NA(UO,aj)—i—(ﬂ—uO—Ff)(vAm—ZVBPBA)—F?)mVAf—EPBAVBf
(6.7)

for any @ and fixed uyg.
Now fixing @ = g, we consider the angular momentums

_ _ _ 1_ = o o
J = J(ug) = / yA (NA - ZCABVDCDB — chm> (1o, )
SQ

1o o
J = J(ug) = / Y4 (NA - ZCABVDCDB — évAm> (ug, )
52
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where YA = 4BV BX k and the center of mass
L N 1_ _ 1 o
= C(ﬂo) = / VAXk <NA — ZCABVDCDB - mVA(CDECDE>> (ﬂo,.%')
SQ

(35(%7%@ —VAXkE 1 aowm)

C
o
52
+ / (WAX’%AB(vBém - %XWA(A +2)evAA + 2)é>
52
C

- 1, o 1 o o
= C(up) = /S ] vAXF <NA — Z(JABVD(JW -1V A(CDECDE)> (ug, )

+ / (35(’%% _VAXRE uo)vm)
52
- 1 -~
+ / <2VAX’“eAB(vBé)m - EXkVA(A +2)EVA(A + 2)é>
SQ

We prove the following theorem:

Theorem 6.2. On a spacetime with vanishing news, the CWY angular mo-
mentum and center of mass satisfy

J—J=— 2/ APV X f11V 41 (6.8)
S2
C—C= [ (6fec1 XM~ 2£oc VAXHV 1) (6.9)
S2

Proof. Taking the difference of J and J and applying (6.6), we obtain

J—J= y4 [NA(ﬂo,x) — NA(uo,:z:)]
SQ

1 o o
+ 1 / y4 [CABVDFBD + F4pVpCPP — FapVpFBP
5’2

—|—2/ Yafe=2Vam
52

We observe that fSQ YA(FABVDFBD) = 0 and compute

. y4 [NA(EO,:B) — NA(uo,x)]
S

i . 1 o . 3.
= y4 (@ —up+ f)(Vam — ZVBPBA) +3mVaf — 4PBAVBf:|
S2 L

[ . 1 o . 3.
= QYA vam—4vaPBA+3vaf—4PBAva]
S L

1 , 3.
= /s YA =2fV g1i0 — zvaPBA - 4PBAVB]C} ;

where we use [q» YAVBPg 4 =0 and Jg2 YAV 41 = 0. Therefore,
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J_J:Z y4 [é’ABVDFBD+FABVDéBD—fVBﬁ’BA—?)ﬁBAVBf
g2

—2/ YAfgglvAﬁL.
52

By Theorem B.1, the first integral vanishes and the result follows.
Taking the difference of C' and C' and applying (6.6), we obtain

C—C=[ VAX*[Na(to,x) — Na(uo, )]
52
]_ ~ o °
+Z VAXk[CABVDFBD+FABVDCBD—FABVDFDB
5'2

1 1
+ EVA(CBDFBD) — ZVA(FBDFBD)}
+ / (—6f422Xkﬁ1 + (Qfgzg — Ug + UO)VAXkVAﬁ’L)
52
We observe that

. 1
g vAXF {—FABVDFDB -V A(FBDFBD)} —0

and compute
/ VAXk [NA(Q()’I) - NA(UO,J?)]
S2
T 1 . 3.

:/ VAXE (a9 — up + f)(Vam — 1vBPBA) + 3mV o f — 4PBAVBf]

52 L
[ . 1l,._pe . 3 - B
(o —up + f)Vam — va Ppa+3mVaf — 1AV f

I 1 . 3. —
(ig — ug — 2f)V a1h0 — vaBPBA - 4PBAVBf] + /52(6ka¢;1),

where we use [q» VAXEYB P4 = 0.
Putting everything together, we arrive at

C-C
1 [ . 1 . . .
= vAXH [CABVDFBD + FxpVpCPP + 5vA(CBDf«”BD) — fVB Py —3PgaVEf
SQ

+ / (6 foar XFrm — 2 fgglvAX’vam)
SQ

By Theorem B.2, the first integral vanishes and the result follows. O
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7. CONSERVATION LAW OF ANGULAR MOMENTUM AND A DUALITY
PARADIGM FOR NULL INFINITY

7.1. Conservation law of angular momentum. In this subsection, we
derive a conservation law of angular momentum at .# T & la Christodoulou
[7].

Suppose I = (—oo,+0o0) and £ is complete extending from spatial in-
finity (u = —o0) to timelike infinity (u = +00). Integrating the formula in
Proposition 3.1 from —oo to +00 and projecting onto the £ = 1 modes, we
obtain

AEVEN 4 (+00) =1 — €A EVENA(—00) =1 = Go—1, (7.1)

where
+o0 q A PQ E 1 AEV v DB

Equation (7.1) should be considered as a conservation law for angular
momentum that complements the conservation law for linear momentum of
Christodoulou [7, Equation (13)], which in our notation is

m(+oo)£=0,1 - T?L(—Oo)ezm = —Fy—o,1,

where
L[ AB
F== NagN (7.2)
8

and follows from (3.3).
The above discussion can be carried over under the framework of stability
of Minkowski spacetime, provided that we take Rizzi’s definition of angular

momentum [20, 21]. Recall from [7, 8] that two symmetric traceless 2-tensors
Y. and = are defined by

lim 72y =13, lim ry==2
CF r—oo Crr—oco —

with

o%. 1

— =—=E. (7.3)

ou 2
See Definition A.5 for the curvature components and their limits at null
infinity.

Rizzi’s definition of angular momentum [20, (3)] is given by (omitting the
constant )

L(Qg) = /52 Qé) (Ia — EABVCECB) , 1=1,2,3 (7.4)

where he assumes that the curvature component B satisfies lim,_,o0 7264 =
—14. Here Qé) corresponds to eABV X%, In the appendix, we show that I4
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and Y 4p correspond to N4 and —%C ‘4B in Bondi-Sachs coordinate system.
Hence Rizzi’s definition coincides with (1.2).
Using Bianchi identities, Rizzi derived the evolution formula [20, (4)]
oL _ 1 — -
87 = / QA [:ABVCECB + = (ngB:CA — EABVC:.CB)
u S2 2
1

=3 /S2 04 (2apVeSP — SupVeEPR) + VAQPSEEc,  (7.5)

where the second line is obtained by integrating by parts the term QAZ%VB ZoA.

Remark 7.1. The definition we take has the opposite sign to [20, (3),(4)].
The discrepancy comes from the fact that Kerr spacetime has angular mo-
mentum —ma under our definition.

According to the main theorem of [9],
B =0(|u| %) (7.6)

as |u| = oo, where B = lim, o 728. (see also [7], the paragraph after
equation (8) where B is denoted by B there)
Estimate (7.6) and equation (2) of [7]

divE=DB (7.7)
imply that
= = O(ful2) (7.8)
as |u| — oo and
I (7.9)

as u — £oo.

By (7.8) and (7.9), [~ g—ﬁdu is finite and furnishes the difference of the
angular momenta at timelike infinity (v — oo0) and spatial infinity (v —
—00).

We can write this in the spirit of [7]. In general, the peeling fails and
B decays as = 0(7’7%). Christodoulou [8] observed that Bianchi equation

nevertheless implies that

R= lim r*Dp

Cf r—oo
exists. Moreover, one has

R=VP++VQ+2% - B, (7.10)

where (P, Q) = lim, oo (r®p,730) and V, *, - are taken with respect to stan-
dard metric o on S2.
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In order to exhibit a physically reasonable initial data set that has a com-
plete Cauchy development without peeling, Christodoulou made the crucial
assumption

lim uR=R" #0, (7.11)

U——0o0

which we adopt here.
From (7.11) he derived [8, (5)]

B = B togr + Brt +o(r )

uniformly in u with 1-forms B, and B on S? satisfying [8, (6)]

0B,

o =0 (7.12)
0B 1

02 (7.13)

Moreover, using Bianchi equation, he derived that

lim r*a = A, #0

Ct r—oo

exists. A, is a symmetric traceless 2-tensor that is independent of v and
satisfies

divA, = —B,. (7.14)

Definition 7.2. For a function f on 52, we denote the projection of f on the
sum of zeroth and first eigenspaces of A by fj;). Namely, fii; = fi=o + fo=1.

For a 1-form wa = VAf—i—eABVBg, we denote wa = Vafi=1 —I—eABVngzl.

Since the spherical tangent vectors d4 have length O(r), we have the
correspondence

Ba=—Ia. (7.15)
By (7.14), B,;) = 0 and we integrate(7.10) to get
1 [*2
(Ia(uz,z) — La(u1, ) = —5 VaPi—1 + eapVP Q1 + (2845B7)yjdu.
(1] 2
uy

By (7.6) and (7.9), the last term is integrable on (—oo, c0). For the first
two terms, we observe that equations (10, 11) of [§]

oP 1 . 1. 0=
Q0 1 1 0%

infer that Pr_;(u,2) = a; X' + O(|u|~2) and Qu—q(u,2) = b; X' + O(|ju|"2)

for some constants a;, b; independent of u. Thanks to the main theorem of
1

[9], P—Piog,QQ —Qi— = O(|u|7§), we have a; = 0,b; = 0. Thus Py—1, Qr=1

are also integrable on (—o0,00).
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We conclude limy o0 Lop1)(u, ©) — limy— oo Lo (u, ) exists and is given
by
1

—2/ (VAP€:1 + EABVBQezl + (QEABBB)M) du’.

By (7.3) and Rizzi’s definition (7.4), we can interpret the following formula
as a conservation law of angular momentum

lim (14— SapVeE©®), — lim (14— SapVeE©?)

00 17 oo .
1 [ = =
=3 / ~VaPi1 = eapVP Q=1 + (BapVeE? = DapVoET) ) du.

(7.18)

From Proposition A.2 and Proposition A.6, it follows that the co-closed part
of the above conservation law is equivalent to the total flux of the classical
angular momentum in a Bondi-Sachs coordinate system.

7.2. A duality paradigm for null infinity. In this subsection, we de-
scribe a duality paradigm for null infinity which creates a pair of dual space-
times with the same classical conserved quantities.

Corollary 7.3 (Corollary 1.7). Given a set of null infinity data (m, Na,Cap, Nap)
defined on [uy,us] x S?, there exists a dual set of null infinity data (m*, N}, Ch 5, Nig)
that has the same (classical) energy, linear momentum, angular momentum,

and center of mass.

Proof. Define C%p = €2(Cap) on [ug,ug] x S2. Then Nip = 0.Chp =
€2(Nap). Define m*(u, z) by the differential equation

m*(uy,z) = m(ug,x)
dum* = JVAVEN, p — Njp NP
and then define N} by the differential equation
Ni(ui,z) = Na(ug, z)
OuN; =Vam* — IVP(VpVECy, — VaVECE))
+5Va(ChpN*PF) = {VE(C*PPNp 4) + 5C5 5 VNP,
For this subsection alone, we denote the classical conserved quantities of the
infinity data (m, Na,Cap, Nag) by E, P* J¥,C* and denote the classical
conserved quantities of the data (m*, N}, C%z, Nig) by E*, prk_ gk oxk
we have
E*(w) = E(u1), P**(u1) = P*(u)
and since C PVECy, = C,PVECpp, ChpC*PF = CppCPE,
T (uy) = J*(uy), C*F (uy) = CF(wy).
It remains to show that the evolutions of the conserved quantities are
identical. Recall that the potentials of C% 5z and N} are given by (—c,c)
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and (—n,n). We observe that replacing (¢, ¢, n,n) by (—c¢, ¢, —n,n) does not
change the following expressions

OuE — —é /S A(A + 2)n + nA(A + 2)n),
0uP" = —é [ EA +2n)” + (A + 20 — 4PV 4n V(A + 2)n),
O J* = é /S ] XFeABIV 4cVBA(A + 2)n + VacVBA(A + 2)n]
D.C" = é [ XA+ 2+ (A +2)n)* ~ 4PV 40V (A + 2
+ 15 [ KH A+ 2 +2)n = AA + 2n(A +2))
+ % Q[Xk(A(A +2)e(A +2)n — A(A + 2)n(A + 2)(
This finishes the proof, 0

8. THE CASE OF QUADRUPOLE MOMENTS

In this section, we consider the case of generalized quadrupole moments.
Namely, all ¢, ¢, n,n are (—6) eigenfunctions (or ¢ = 2 spherical harmonics).
Therefore, ¢ = Y ¢ij(u) X' X7, ¢ = Y ¢ (u) X' X7 n = 3 nij(u) X' X7, n =

Zﬂm(u)fﬁ)@ with dycij = ni; and Oug;j; = ny;.

8.1. Classical conserved quantities. Next we compute the evolution of
classical angular momentum and center of mass for quadrupole moments.

Lemma 8.1. Suppose f;; and g;; are both symmetric, traceless 3 x 3 ma-
trices. Then

/ (f5 X1 R9)? Z (8.1)

167‘(’
52 XPeAPY A(fi; X' XT)V (g X" X") = meg]ke P (8:2)

Proof. Both formulae follow from Lemma 5.3 of [6]

~ 47
/52 XiXIxXkx! = B(éijékl + i1 + 6:10,1;).-
O

Combining the above lemma with Theorem 1.3 and Proposition 4.1, we
conclude that
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Proposition 8.2. Suppose ¢ = 3. ¢;j(u)X X7, ¢ = Zgij(u)Xin n =
S ng(u) X' X9, n =3 n; ()X X7, then

Ou b = —8;<Z nzzj + Zﬂ%)

327r
9, P* = Z nzjn]pe

_ l6n y
(%Jk = ? (CZ]TLJP—FCU ]p) pk

~ 2
8uCk S2um ann]pe

8.2. CWY angular momentum and center of mass. Next we com-
pute the evolution of the CWY angular momentum and center of mass for
quadrupole moments. We need the following lemma.

Lemma 8.3. Suppose the potentials of the news tensor are of mode £ = 2.
Namely,

1 1
Nap =V 4Vpn — iAnOAB + §(€A0VBVCQ+ EBcVAVCQ)

where n = 3, ni; X' X7 and n = > i Qijj(if(j satisfy >, Mii =y ; Ny =

Introduce two £ = 2 spherical harmonics

Q= Z nzknlekX anga

i,k,l
~ g~ 1
Q= Z(ﬂikﬂileXl) 32 n;.
l,k,l 7‘7.]

Then
(1) the £ =2 component of NapNAB is

48 48
)
(2) the odd mode component of NapNAB is
8t miing X™ (07 — XIX1.
Here €;j, is the Levi-Clivita symbol in three dimensions.

Proof. Note that the even-mode components (¢ = 0,2,4) and odd-mode
components (£ = 1,3) of NopN4E are given by

1 1
VAVpnVAVEn — 5(An)2 + VaVpnVAvEin — 5(A@)z
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and
(VAVER — %AnUAB)(e AcVEVn 4 epcVaVn)
= 2n;;VAX'VE X (eAc VBV n + epcVaVn)
=2, VAX'VEXIT 20y (eacVEXFVOX! 4+ epcVAXFVOXT)
= 8€® niing X™ (07 — XIX1)
respgctively. In~the lgst equality~ we use the identity eABVAXiVBX'j =
eiijk and VpXiVBXI = ¢ — XX,
For (1), we compute
VAVpnVAVER =200 — 8Q + gznfj.
ij
Since the space of ¢ = 4 spherical harmonics is spanned by

(RIS 4 XA 4 XIRI 4 RIRES 4 XIRI 4 KRR
7 )
(8.4)

the £ = 2 component of n? is %Q. Putting these together, we obtain (1).
O

In the case of quadrupole moments, the CWY angular momentum and
center of mass take the form:

~ 1
Tk = / ABY XM Ny~ ;C4PTECpp — oV am] (8.5)
52

- 1 1
Cck = VAXk[NA—uvAm—ZCADVBCDB—EVA(CDECDE)—QQ EABVBm],

S2
(8.6)
Therefore,

JE=JF - | XFABY 4eVpim
SQ
- - 1 -
Ck=CF12 | XFeAPV 4cVpm + 1 XFEeAPY 4eVBA(A 4 2)c
S2 S2
where we use (3.2) and (2.7).
The evolution formulae for J¥ and C* are thus

0, J" =0,J% — /2 XFEABY y,nV gin — i XFABY 4V pd,m
S s

0,0% =8,CF + 2 / XEABY 40V gt + 2 / XFEABY 4V 5O,
S2 S2

9

1 [ - 1 [ -
+ 4/ XFeABY 4,nVBA(A +2)c + 4/ XFeABY eV BA(A +2)n
S2 S2
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By Lemma 2.1, only the £ = 2 mode components of m and 0,m will
survive in the above integrals. o

Denote the £ = 2 mode of m by Ay—s = My X*X!. By Lemma 8.3, we
get,

~ 6 1
Outit = = > (nikna + ngng) — 30k > (n+nl)

i iy

By (8.2), we obtain the evolution equation of J* and C*:

Proposition 8.4. Suppose ¢ = Y cij(u) X' X7, ¢ = Zgl-j(u))z")?j, n =
Enij(u)Xin,@ = Z@ij(u)Xin, then

0. = - %znz £ )
it
9, P = 327T an

7.] P

167 N . ;

aujk :f Z(?)Cijn]p + 3Cl]njp N Mjp — Cijaumjp)elpk (87)
,3,p

tom

k_
0uC T

=~ 3 ) )ik
Z(Qﬂz‘jmjp + 2¢40uMjp + 61;5¢5p + 6 mjp)€
4,3,p

32u7r
E nwnjpe

where my; is given by

. 6
Oy = ?[Z(nzknzl + Ry *5kl Z ng; + ng;

i

APPENDIX A. CHRISTODOULOU-KLAINERMAN CONNECTION
COEFFICIENTS AND CURVATURE COMPONENTS IN
BONDI-SACHS FORMALISM

We write the limit of connection coefficients and curvature components
defined in [9, 7, 8] in terms of the Bondi-Sachs metric coefficients.

We choose the null vector fields L = % and L = % (au —wPop — %3,:),
which satisfy (L,L) = —

Definition A.1. The second fundamental forms and torsion are defined by
1 —~
Xap = (DaL,0p) = jtrxgas + Xan
1 ~
Xap = (DaL,0p) = Strxgas + X 5

Ca= ;(DaL, L)

l\D\'—‘
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Their limit as 7 — oo are defined by

= lim Y
r—00

== lim r 'y
r—00 -

Z = lim r¢
r—00

They are related to the metric coefficients in the corresponding Bondi-
Sachs coordinate system as follows:

Proposition A.2.

1
YAB = —§CAB
Za = Nap
1
Za= —§VBCAB

Proof. Starting with gap = r?045+7rCap+0(1), the determinant condition
2

gives try = = and we compute
1 _
XAB =710AB + §CAB +0(r ™)
to get Yap = —%CAB- Direct computation gives

Xap ="(=0ap+0,Cap)+ O(1)

and hence try = —2 + O(r~2) and X, p = 70uCap + O(1). The limit of
torsion follows from (4 = —%WIE‘_Q) +O0(r72). O
Definition A.3. The mass aspect and conjugate mass aspect function of
Christodoulou-Klainerman are defined by
1 1
w=K+ Ztrxtrx —div( pw=K+ Ztrxtr& + div(.

Here K denotes the Gauss curvature of the two-sphere r =const. Their
limits are defined by

S 3
N—Tllglor I
N = lim 7"3&.

r—00

We express them in terms of the Bondi-Sachs metric coefficients as follows:

Proposition A.4.

1 1
N =2m + §VAVBCAB, N =2m — 5vf‘vBCAB

Proof. We compute K = %2 + #VAVBCAB +0O(r~*) and itrxtri = _r% +
%3(2771 — %VAVBCAB) and the assertion follows. g
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We turn to curvature components. The convention of Riemann curvature
tensor is

R(X,Y)Z = (DxDy — DyDx — Dixy))Z
R(X, YW, Z)=(R(X,Y)Z,W).
Definition A.5. Define the curvature components
QAB - R(aAaLv 8B7L)
1
éA - §R<8A7L7L7 L)
1
p= ZR(La L7 Lv L)
1
U¢AB = iR(aAy aBa L? L)
1
BA = iR(aA, LaLa L)
Here ¢ , BdCL'A A dxB is the area form of the two-sphere with respect to gap.
Their limits are defined by
AAB = lim r~ aAB

T—00

By = lim rf,

T—00 =A

P = lim rp

700

Q= lim r’c
r—r00

Bsg = lim 7’35,4

00
Note that (A, B) were denoted by (A, B) in [7].
We express them in terms of the Bondi-Sachs metric coefficients as follows:
Proposition A.6.
Asp = —20,Nap
By =V Nag
P=—2m— ECABNAB
Q=" <_iC£NDB - ;VAVDCDB>
Ba=—-Ny

Proof. The formula for A is obtained from (6) of [7], 2‘3—% = —A, which is
the rescaled limit of the propagation equation DY

The formula for B is obtained from (2) of [7], Vi =
rescaled limit of the Codazzi equation dfv -X-¢=

= B4, which is the
(Wtrx — trxg“) + 8.

l\')h—l:>
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The formula for P and @ are obtained from (3) of [7],
1 1
eABVAZB:Q—iE/\E, VAZA:ﬁ—FP—iZ-E,

which is the rescaled limit of the Hodge system

1.0 I .
cdrlg“:a—§x/\x, d,z(vg“:ﬁ+p—§ - X-

Finally, we consider the Codazzi equation

divx +x-¢ = % (Vtrx—i—trx() — B.

Its leading order at O(r~2) leads to (1) of [7] and its subleading order at
O(r~3) leads to

1 1 1 1 1
(—48A|012 +5CPPVpCap + ;VaCECE + ZVDCDEOAE> +4CapVpCPP

= - Ba.

We simplify the second term in the parentheses by the identity V(pCp)s =
VaCsp + VECapopp — VECE(DCB)A and the left-hand side becomes

%8A|C|2+iCABVDCBD. Direct computation yields Ci—Q) = —NA+%0A|C’|2—|—
%C A5V pCBP and the formula for B follows. O

APPENDIX B. INTEGRATION BY PART FORMULA

In this section, we prove two integration formula that are used to compute
angular momentum and center of mass in spacetime with vanishing news.

Theorem B.1. Let Y4 = APV XF k= 1,2,3. Let Fag = 2V VRS —
AfUAB and PBA = VBVDCDA - VAVDCDB. Then

1 1 3 L
/2 YA (4CABVDFDB + ZFABVDCDB - ZPBAVBf - 4VBPBAf> =0.
S

Proof. We integrate by parts the last two terms to get
1 1
/ —§YA(VBVDCAD — VaVPCpp)VEF + 5vBYAvaDCAD - f.
SQ
1 1 1
= §VBYAVDCADVB f+ 5YAVDCMA f— 5Yf“vDCf;vAvB f
52

1 1
+ / ) §YAVDCAD f— 5vBYf“vDOADvB f
S

1 1 1
_ / S YAVPCE(VAV S = SAfoan) + YAVPCan(A +2)f
S
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Theorem B.2. Let Fap = 2V AVpf — Afoap and Pga = VeVPCpa —
VaVPCpp. Then

N 1
/2 vAXE (CABVDFBD + FapVpCBP + §VA(CBDFBD) — fVPPgs — 3PBAVBf> =0.
S
Proof. We integrate by parts the last two terms to get
/ VAXF(—2PgA)VEf
5'2
= / —oVAXF(VEVPCpa — VAVPCpp)VEf
SQ
= / ] —2XkVPCpAVASf 4+ 2VAXFVPCpAAS +4XPVPCppVEf — 2VAXFVP CppVaVE f
S
= / 2XIVPCpAVAF — VAXIVP CppFag + VAXFVPCpaAAS
512
= / ] —OVPXECHAVAf — 2XECpAVPVAf — VAXPY bCPB s + VAXEVP CpaAf
S
- 1 - - -
= /S ] VAXFVPCpaVAf + iAX’“CDAFDA — VAXMY PPy + VAXFVPCpAAS

- / —VAXFCp VP (A +2)f — évf‘fc’fv A(CppFPBY —vAX YV ,CPBF .
SQ
O
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