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Abstract. We study how conserved quantities such as angular mo-
mentum and center of mass evolve with respect to the retarded time
at null infinity, which is described in terms of a Bondi-Sachs coordinate
system. These evolution formulae complement the classical Bondi mass
loss formula for gravitational radiation. They are further expressed in
terms of the potentials of the shear and news tensors. The consequences
that follow from these formulae are (1) Supertranslation invariance of
the fluxes of the CWY conserved quantities. (2) A conservation law of
angular momentum à la Christodoulou. (3) A duality paradigm for null
infinity. In particular, the supertranslation invariance distinguishes the
CWY angular momentum and center of mass from the classical defini-
tions.

1. Introduction

In this article, we study the evolution of angular momentum and center
of mass at null infinity of asymptotically flat vacuum spacetimes. These
evolution formulae complement the classical Bondi mass loss formula for
gravitational radiations. We are particularly interested in the total flux of
angular momentum and center of mass.

For a good notion of conserved quantities, one expects that the total flux
is independent of the choice of coordinate systems. However, as indicated
by Penrose [19], the notion of “angular momentum carried away by gravita-
tional radiation” can be shifted by supertranslations, an infinite dimensional
symmetry at null infinity. Such ambiguity has been a crucial obstacle to a
clear understanding of conserved quantities at null infinity. In this article,
we consider both the classical and the Chen-Wang-Yau (CWY) [4] defini-
tions for angular momentum and center of mass at null infinity. A key result

P.-N. Chen is supported by NSF grant DMS-1308164 and Simons Foundation collabora-
tion grant #584785, M.-T. Wang is supported by NSF grant DMS-1810856, Y.-K. Wang is
supported by MOST Taiwan grant 107-2115-M-006-001-MY2, 109-2628-M-006-001 -MY3
and S.-T. Yau is supported by NSF grants PHY-0714648 and DMS-1308244. The authors
would like to thank the National Center for Theoretical Sciences at National Taiwan Uni-
versity where part of this research was carried out. This material is based upon work
supported by the National Science Foundation under Grant No. DMS-1810856.

1



2 P.-N. CHEN, J. KELLER, M.-T. WANG, Y.-K. WANG, AND S.-T. YAU

is the supertranslation invariance of the flux of the CWY angular momen-
tum and center of mass. This invariance distinguishes the CWY definitions
from the classical definitions.

Consider the future null infinity I + of an asymptotically flat spacetime,
which is described in terms of a Bondi-Sachs coordinate system. I + is
identified with I × S2, where I ⊂ (−∞,+∞) is an interval parametrized by
the retarded time u and S2 is the standard unit 2-sphere equipped with the
standard round metric σAB. Let m denote the mass aspect, NA the angular
momentum aspect, CAB the shear tensor, and NAB the news tensor of I +.
One can view m as a smooth function, NA a smooth one-form, and CAB
and NAB smooth symmetric traceless 2-tensors (with respect to σAB) on S2

that depend on u. In particular, ∂uCAB = NAB. See a brief description of
I + in the Bondi-Sachs coordinates and the definitions of these quantities
in Section 2.

All integrals in this paper on the sphere are taken over the standard
two-sphere S2 with the standard round metric σAB. We take the standard
formulae for energy and linear momentum:

E =

∫
S2

2m

P k =

∫
S2

2mX̃k, k = 1, 2, 3

(1.1)

where X̃k, k = 1, 2, 3 are the standard coordinate functions on R3 restricted
to the unit sphere S2.

Furthermore, we consider the classical angular momentum

J̃k =

∫
S2

εAB∇BX̃k[NA −
1

4
C D
A ∇BCDB], (1.2)

and the classical center of mass

C̃k =

∫
S2

∇AX̃k[NA − u∇Am−
1

4
C D
A ∇BCDB −

1

16
∇A(CDEC

DE)], (1.3)

where ∇A denotes the covariant derivative with respect to σAB, and εAB
denotes the volume form of σAB and k = 1, 2, 3. The indexes are raised,
lowered, and contracted with respect to σAB. Our definition is that of
Dray-Streubel [12]. See Section III.B of Flanagan-Nichols [13] for details.

Remark 1.1. In the above definitions of conserved quantities, we omit the
constant 1

8π .

Furthermore, we consider the CWY angular momentum Jk and center
of mass Ck as the limits of the CWY quasi-local angular momentum and
center of mass [4, 5] on I + evaluated in [15].

Jk =

∫
S2

εAB∇BX̃k

(
NA −

1

4
CAB∇DCDB − c∇Am

)
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Ck =

∫
S2

∇AX̃k

[
NA − u∇Am−

1

4
CAB∇DCDB −

1

16
∇A

(
CDECDE

)
− c∇Am+ 2εAB(∇Bc)m

]

+

∫
S2

3X̃kcm− 1

4
X̃k∇AFAB∇DFDB

where c and c are the potentials of CAB, as given in (2.9) and FAB =
1
2(εAD∇B∇Dc + εBD∇A∇Dc). For definiteness, the potentials are assumed
to be supported in the ` ≥ 2 modes.

In Theorem 11 and Theorem 16 of [15], it is shown that Jk and Ck

E are the
limit of the Chen-Wang-Yau quasi-local angular momentum and center of
mass (omitting constant 1/8π) under the zero linear momentum assumption∫

S2

m(u, x)X̃i = 0. (1.4)

The CWY angular momentum and center of mass modify the classical defi-
nitions as follows:

Jk =J̃k −
∫
S2

εAB∇BX̃kc∇Am

Ck =C̃k +

∫
S2

∇AX̃k
(
−c∇Am+ 2εAB(∇Bc)m

)
+

∫
S2

3X̃kcm− 1

4
X̃k∇AFAB∇DFDB

(1.5)

The correction terms come from solving the optimal isometric embedding
equation in the theory of Wang-Yau quasilocal mass [25, 26] and are non-
local. They provide the reference terms that are critical in the Hamiltonian
approach of defining conserved quantities. See [16] for a definition of angular
momentum in the context of perturbations of Kerr, in which the referencing
is achieved by the uniformization theorem.

The ten conserved quantities (E,P k, J̃k, C̃k), or (E,P k, Jk, Ck), are func-
tions on I that depend on the retarded time u. We compute the derivatives
of these conserved quantities with respect to u. In particular, for the classical
angular momentum and center of mass, we obtain

Theorem 1.2. The classical angular momentum J̃k and center of mass C̃k,
k = 1, 2, 3 evolve according to the following:

∂uJ̃
k =

1

4

∫
S2

[
εAE∇EX̃k(CAB∇DNBD −NAB∇DCBD) + X̃kεAB(C D

A NDB)
]
,

(1.6)

∂uC̃
k =

1

4

∫
S2

[
∇AX̃k

(u
2
∇A|N |2 + CAB∇DNBD −NAB∇DCBD

)]
. (1.7)
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The evolution formulae (1.6) and (1.7) can be further expressed in terms
of the potentials of CAB and NAB:

Theorem 1.3. Suppose c and c are the potentials of CAB and n and n are
the potentials of NAB, as given in (2.9) and (2.10), then

∂uJ̃
k =

1

8

∫
S2

X̃k([c,∆(∆ + 2)n]1 + [c,∆(∆ + 2)n]1)

∂uC̃
k =

1

8

∫
S2

X̃k
(
u[((∆ + 2)n)2 + ((∆ + 2)n)2 − 4εAB∇An∇B(∆ + 2)n]

+ [(∆ + 2)c, (∆ + 2)n]2 + [(∆ + 2)c, (∆ + 2)n]2

)
,

(1.8)

where [·, ·]1 is the Poisson bracket on S2 defined in (4.1) and [·, ·]2 is another
bracket on S2 defined in (4.2).

The Bondi-Metzner-Sachs (BMS) group acts on I +. It includes super-
translations which we will review in further details in Section 5. The ambigu-
ity of supertranslations has presented an essential difficulty to understanding
the structure of I + since the 1960s. Among (m,NA, CAB, NAB), only NAB

is a supertranslation invariant quantity. It is natural to ask whether total
flux of angular momentum is invariant under a supertranslation. For the
classical angular momentum, we prove that

Corollary 1.4 (Theorem 5.1). Suppose I + extends from u = −∞ to u =
+∞ and the news tensor decays as

NAB(u, x) = O(|u|−1−ε) as u→ ±∞,

then the total flux of the classical angular momentum J̃k is supertranslation
invariant if and only if

lim
u→+∞

m(u, x)− lim
u→−∞

m(u, x) (1.9)

is supported in the l ≤ 1 modes.

In particular, if limu→+∞m(u, x)−limu→−∞m(u, x) contains l ≥ 2 modes,
the total flux of the classical angular momentum will depend on the super-
translation. This demonstrates how the total flux of the classical angular
momentum can be shifted by a supertranslation. On the other hand, we
show that the CWY angular momentum is free of such supertranslation
ambiguity.

Theorem 1.5 (Theorem 5.4). Suppose the news tensor decays as

NAB(u, x) = O(|u|−1−ε) as u→ ±∞.

Then the total flux of Jk is supertranslation invariant.

Remark 1.6. In the above statement, supertranslation invariant means
that it is equivariant under ordinary (l = 1) translation and is invariant
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under higher mode (l ≥ 2) of the supertranslation. See the statement of
Theorem 5.4 for further details.

We also show that the invariance under supertranslation distinguishes
the CWY center of mass from the classical center of mass. Indeed, the total
flux of the classical center of mass is invariant under supertranslation if and
only if limu→+∞m(u, x) − limu→−∞m(u, x) is a constant function on S2.
On the other hand, the total flux of the CWY center of mass is always
supertranslation invariant. See the statement of Theorem 5.5.

Next, we show that if a spacetime admits a Bondi-Sachs coordinate system
with vanishing news tensor, then (E,P k, Jk, Ck) are constant (independent
of the retarded time u) and supertranslation invariant. See the statement
of Theorem 6.2 for further details.

While our focus is on the study of angular momentum and center of mass
in a Bondi-Sachs coordinate system, we show that the evolution formulae
for the classical angular momentum can be carried over to the framework
of the stability of Minkowski spacetime [9] if we take Rizzi’s definition of
angular momentum [20, 21]. This provides a conservation law of angular
momentum that complements the conservation law for linear momentum of
Christodoulou [7, Equation (13)].

Another natural consequence of (1.8) is a duality paradigm among sets
of null infinity data (m,NA, CAB, NAB), through replacing the potentials
(c, c, n, n) by (−c, c,−n, n).

Corollary 1.7. Given a set of null infinity data (m,NA, CAB, NAB) defined
on [u1, u2]×S2, there exists a dual set of null infinity data (m∗, N∗A, C

∗
AB, N

∗
AB)

that has the same (classical) energy, linear momentum, angular momentum,
and center-of-mass.

These are dual sets of null infinity data that are indistinguishable in terms
of the classical conserved quantities.

The paper is organized as follows. In Section 2, we introduce the defini-
tions and integration by parts formulae used throughout the paper. The flux
of classical conserved quantities is computed in Section 3 and is rewritten
in terms of the potentials in Section 4. The aforementioned consequences
of flux formulae are presented in Section 5 to Section 7. In the last section,
we consider the case of quadrupole moment radiation. With the future the-
oretical and numerical investigation in mind, we express the flux formulae
in terms of the spherical harmonics expansion of potentials explicitly.

2. Background information

In this section, we describe the Bondi-Sachs coordinate system and recall
several useful formulae for functions and tensors on S2.
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2.1. Bondi-Sachs coordinates. In terms of a Bondi-Sachs coordinate sys-
tem (u, r, x2, x3), near I + of a vacuum spacetime, the metric takes the form

gαβdx
αdxβ = −UV du2 − 2Ududr + r2hAB(dxA +WAdu)(dxB +WBdu).

(2.1)
The index conventions here are α, β = 0, 1, 2, 3, A,B = 2, 3, and u =

x0, r = x1. See [2, 17] for more details of the construction of the coordinate
system.

The metric coefficients U, V, hAB,W
A of (2.1) depend on u, r, θ, φ, but

dethAB is independent of u and r. These gauge conditions thus reduce
the number of metric coefficients of a Bondi-Sachs coordinate system to six
(there are only two independent components in hAB). On the other hand,
the boundary conditions U → 1, V → 1, WA → 0, hAB → σAB are imposed
as r → ∞ (such boundary conditions may not be satisfied in a radiative
spacetime). Here σAB denotes a standard round metric on S2. The special
gauge choice implies a hierarchy among the vacuum Einstein equations, see
[17, 14].

Assuming the outgoing radiation condition [2, 22, 17], the boundary con-
dition and the vacuum Einstein equation imply that as r → ∞, all metric
coefficients can be expanded in inverse integral powers of r.1 In particular
(see Chrusciel-Jezierski-Kijowski [10, (5.98)-(5.100)] for example),

U = 1− 1

16r2
|C|2 +O(r−3),

V = 1− 2m

r
+

1

r2

(
1

3
∇ANA +

1

4
∇ACAB∇DCBD +

1

16
|C|2

)
+O(r−3),

WA =
1

2r2
∇BCAB +

1

r3

(
2

3
NA − 1

16
∇A|C|2 − 1

2
CAB∇DCBD

)
+O(r−4),

hAB = σAB +
CAB
r

+
1

4r2
|C|2σAB +O(r−3)

where m = m(u, xA) is the mass aspect, NA = NA(u, xA) is the angular
aspect and CAB = CAB(u, xA) is the shear tensor of this Bondi-Sachs co-
ordinate system. Note that our convention of angular momentum aspect
differs from that of Chrusciel-Jezierski-Kijowski [10], NA = −3NA(CJK).
Here we take norm, raise and lower indices of tensors with respect to the
metric σAB. We also define the news tensor NAB = ∂uCAB.

2.2. Integral formulae on 2-sphere. Let σAB be the standard round
metric on S2 with respect to which the indexes of tensors are raised or

1The outgoing radiation condition assumes the traceless part of the r−2 term in the
expansion of hAB is zero. The presence of this traceless term will lead to a logarithmic
term in the expansions of WA and V . Spacetimes with metrics which admit an expansion
in terms of r−j logi r are called “polyhomogeneous” and are studied in [11]. They do not
obey the outgoing radiation condition or the peeling theorem [23], but they do appear as
perturbations of the Minkowski spacetime by the work of Christodoulou-Klainerman [9].
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lowered. Let ∇A be covariant derivative with respect to σAB. Let εAB be
the volume form. The following identity

εABεCD = σACσBD − σADσBC (2.2)

and its contraction

εABε
A
C = σBC (2.3)

will be used frequently.
The curvature formula on S2 gives

∇A∇B∇Cu−∇B∇A∇Cu = σAC∇Bu− σBC∇Au
for a smooth function u on S2. In particular, we have

∇D∇D∇Au = ∇A(∆ + 1)u

εAB∇A∇B∇Cu = ε B
C ∇Bu.

(2.4)

Let X̃k, k = 1, 2, 3 be the restriction to S2 of the standard coordinate
functions in R3. It is well-known that they are eigenfunctions for σAB:

∆X̃k = −2X̃k.

X̃k also satisfies the Hessian equation

∇A∇BX̃k = −X̃kσAB. (2.5)

In general, an eigenfunction f with

∆f = −`(`+ 1)f (2.6)

is said to be of mode `. We need the following integration by parts lemma:

Lemma 2.1. Suppose u and v are smooth functions on S2 of mode m and
n respectively. Then ∫

S2

X̃kεAB∇Au∇Bv = 0

unless m = n.

Proof. Integrating by parts, we obtain∫
S2

X̃kεAB∇Au∇Bv =

∫
S2

(Y A∇Av)u,

where Y A = εAB∇BX̃k is a rotation Killing field. Since ∆ commutes with
Y A∇A, Y A∇Av is of the same mode as v. �

The following integrating by parts formulae will be useful in the later
sections.

Lemma 2.2. For any smooth functions u, v on S2, we have∫
S2

X̃kεAB∇A(∆u)∇Bv =

∫
S2

X̃kεAB∇Au∇B(∆v) (2.7)∫
S2

X̃kεAB∇A∇Du∇B∇Dv = −
∫
S2

X̃kεAB∇Au∇B(∆ + 2)v. (2.8)
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Proof. We prove the second formula and the first formula follows similarly.
Integrating by parts the left hand side, we obtain

−
∫
S2

∇DX̃kεAB∇Au∇B∇Dv −
∫
S2

X̃kεAB∇Au∇D∇B∇Dv

Integrating the first term by parts again, we obtain∫
S2

∇B∇DX̃kεAB∇Au∇Dv −
∫
S2

X̃kεAB∇Au∇D∇B∇Dv

By (2.4), this is equal to

−
∫
S2

X̃kεAB∇Au∇Bv −
∫
S2

X̃kεAB∇Au∇B(∆ + 1)v.

�

Lemma 2.3. For any smooth function u on S2, we have∫
S2

[2∇A∇Bu∇A∇Bu− (∆u)2] =

∫
S2

u∆(∆ + 2)u∫
S2

X̃i[2∇A∇Bu∇A∇Bu− (∆u)2] =

∫
S2

X̃i[(∆ + 2)u]2.

Proof. We use the following formulae in the derivation

∆|∇u|2 = 2|∇2u|2 + 2∇u · ∇(∆ + 1)u

∆(u2) = 2|∇u|2 + 2u∆u

∆(u∆u) = (∆u)2 + 2∇u · ∇(∆u) + u∆2u.

We prove the second formula and the first one follows similarly. Integrat-
ing by parts twice gives∫

S2

X̃i∇A∇Bu∇A∇Bu =

∫
S2

u∇A∇B(X̃i∇A∇Bu)

We compute

∇A∇B(X̃i∇A∇Bu)

=(∇A∇BX̃i)∇A∇Bu+ 2∇BX̃i∇A∇A∇Bu+ X̃i∇A∇B∇A∇Bu

=− X̃i∆u+ 2∇BX̃i∇B(∆ + 1)u+ X̃i∆(∆ + 1)u

=X̃i∆2u+ 2∇BX̃i∇B(∆ + 1)u

,

where we use ∇A∇A∇Bu = ∇B(∆ + 1)u.
On the other hand, we have the identity:

2∇Bu∇Bv = ∆(uv)− u∆v − v∆u

and thus

2∇BX̃i∇B(∆ + 1)u = ∆(X̃i(∆ + 1)u)− X̃i∆(∆ + 1)u+ 2X̃i(∆ + 1)u.
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Putting all together gives:∫
S2

X̃i∇A∇Bu∇A∇Bu

=

∫
S2

X̃i∆2u+

∫
u[∆(X̃i(∆ + 1)u)− X̃i∆(∆ + 1)u+ 2X̃i(∆ + 1)u]

=

∫
S2

X̃i[(∆u)2 + 2u∆u+ 2u2]

.

Therefore,∫
S2

X̃i[2∇A∇Bu∇A∇Bu−(∆u)2] =

∫
S2

X̃i[(∆u)2+4u∆u+4u2] =

∫
S2

X̃i[(∆+2)u]2.

�

2.3. Closed and Co-closed Decomposition. In this subsection, we con-
sider symmetric traceless 2-tensors CAB and NAB on S2 with the decompo-
sition (see [15, Appendix B] for a derivation)

CAB = ∇A∇Bc−
1

2
σAB∆c+

1

2
(ε E
A ∇E∇Bc+ ε E

B ∇E∇Ac) (2.9)

NAB = ∇A∇Bn−
1

2
σAB∆n+

1

2
(ε E
A ∇E∇Bn+ ε E

B ∇E∇An) (2.10)

for smooth functions c, c, n, n on S2 that are referred as potentials of CAB
and NAB. The potentials are unique up to their 0 and 1 mode. In the case
we consider when CAB and NAB depend on u, all c, c, n, n depend on u as
well.

Proposition 2.4. Closed and co-closed parts of a symmetric traceless 2-
tensors on S2 are dual to each other in the following sense.

(1) Denote the space of symmetric traceless 2-tensors on S2 by Ŝym.

Then the map ε2 : Ŝym→ Ŝym, ε2(CAB) = ε D
A CDB satisfies

ε2(∇A∇Bc−
1

2
σAB∆c) =

1

2
(ε E
A ∇E∇Bc+ ε E

B ∇E∇Ac), (2.11)

ε2

(
1

2
(ε E
A ∇E∇Bc+ ε E

B ∇E∇Ac)
)

= −∇A∇Bc+
1

2
σAB∆c. (2.12)

(2) The following identity holds for symmetric traceless 2-tensors

ε B
D ∇DCBA = ε D

A ∇BCBD. (2.13)

In other words, we have a commutative diagram of isomorphisms

Ŝym
ε2−−−−→ Ŝymydiv

ydiv

Λ1 ∗−−−−→ Λ1,

where Λ1 denotes the space of 1-forms and (∗ω)A = ε B
A ωB is the

Hodge star on 1-forms.
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Proof. We use (2.2) and (2.3) in the derivation. Since εABε2(CAB) = 0 and
σABε2(CAB) = 0, ε2(CAB) is symmetric and traceless. In particular,

ε D
A CDB =

1

2
(ε D
A CDB + ε D

B CDA) (2.14)

and (2.11) and (2.12) follow by direct computation.
To verify (2.13), note that both sides are equal to∇DCDE after contracted

with εAE . �

In the following two lemmas, we express several integrals involving the
shear tensor and the news tensor in terms of their potentials. These formulae
will help us to derive Theorem 1.3 from Theorem 1.2.

Lemma 2.5. Suppose Y A is either ∇AX̃k or εAB∇BX̃k, and CAB and NAB

are given by (2.9) and (2.10), then∫
S2

Y ACAB∇DNBD

=− 1

4

∫
S2

Y A[(∆ + 2)n∇A(∆ + 2)c+ (∆ + 2)n∇A(∆ + 2)c]

+
1

4

∫
S2

Y Aε D
A [∇D((∆ + 2)c)(∆ + 2)n−∇D((∆ + 2)c)(∆ + 2)n]

(2.15)

Proof. First of all, note that

∇BY ACAB = 0, εBD∇DY ACAB = 0.

From

∇DNBD =
1

2
∇B(∆ + 2)n+

1

2
εBD∇D(∆ + 2)n,

we integrate by parts to get∫
S2

Y ACAB∇DNBD = −1

2

∫
S2

Y A(∇BCAB(∆+2)n+εBD∇DCAB(∆+2)n).

By (2.13)

εDB∇DCBA = εAD∇BCBD

and ∇BCBD = 1
2∇

D(∆ + 2)c + 1
2ε
BD∇B(∆ + 2)c, we obtain the desired

formula.
�

The above generalizes the integral identities derived in [15, (65), (66)]:∫
S2

Y AFBA∇DFDB = 0,∫
S2

Y AFBA∇DFDB = 0

for Y A = εAB∇BX̃k.
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Skew-symmetrizing (2.15), we obtain:∫
S2

Y A(CAB∇DNBD −NAB∇DCBD)

=
1

4

∫
S2

Y A[(∆ + 2)c∇A(∆ + 2)n− (∆ + 2)n∇A(∆ + 2)c]

+
1

4

∫
S2

Y A[(∆ + 2)c∇A(∆ + 2)n− (∆ + 2)n∇A(∆ + 2)c]

+
1

4

∫
S2

Y Aε D
A ∇D[(∆ + 2)c(∆ + 2)n− (∆ + 2)c(∆ + 2)n].

(2.16)

Next we prove

Lemma 2.6.∫
S2

NABN
AB =

1

2

∫
S2

n∆(∆ + 2)n+ n∆(∆ + 2)n∫
S2

X̃kNABN
AB =

1

2

∫
S2

X̃k
[
((∆ + 2)n)2 + ((∆ + 2)n)2 − 4εAB∇An∇B(∆ + 2)n

]
.

Proof. Using the formula ε C
A εBD = δ B

A σCD−δ D
A σCB and εABεAE = σBE ,

we compute that

NABN
AB = ∇A∇Bn∇A∇Bn−

1

2
(∆n)2 +∇A∇Bn∇A∇Bn−

1

2
(∆n)2

+ 2εAC∇A∇Bn∇C∇Bn
(2.17)

Integrating by parts yields∫
S2

εAC∇A∇Bn∇C∇Bn =−
∫
S2

εAC∇B∇A∇Bn∇Cn

=−
∫
S2

εAC∇A(∆ + 1)n∇Cn = 0

The first formula now follows from the first formula in Lemma 2.3. The
second formula follows from the second and third formula in Lemma 2.3. �

The second formula of Lemma 2.6 can be polarized and we obtain∫
S2

X̃kCABN
AB =

1

2

∫
S2

X̃k
[
(∆ + 2)c(∆ + 2)n+ (∆ + 2)c(∆ + 2)n

− 2εAB(∇Ac∇B(∆ + 2)n+∇An∇B(∆ + 2)c)
]

(2.18)

3. Evolution of Conserved quantities

In this section, we compute the evolution of the classical angular momen-
tum and center of mass. These formulae will be used to calculate the total
flux of the conserved quantities.
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Let’s first review the evolution of the metric under the Einstein equation.
It is well-known (see [10, (5.102)] for example) that the evolution of the mass
aspect function is given by

∂um = −1

8
NABN

AB +
1

4
∇A∇BNAB. (3.1)

The modified mass aspect function m̂ is defined to be [24]

m̂ = m− 1

4
∇A∇BCAB = m− 1

8
∆(∆ + 2)c (3.2)

and satisfies

∂um̂ = −1

8
NABN

AB. (3.3)

Therefore,

∂uE = −1

4

∫
S2

NABN
AB

∂uP
k = −1

4

∫
S2

X̃kNABN
AB, k = 1, 2, 3.

We also recall the evolution of NA (see [10, (5.103)] for example):

∂uNA = ∇Am−
1

4
∇D(∇D∇ECEA −∇A∇ECED)

+
1

4
∇A(CBEN

BE)− 1

4
∇B(CBDNDA) +

1

2
CAB∇DNDB.

The formula can be rewritten in the following form:

Proposition 3.1. The angular momentum aspect NA evolves according to

∂uNA =∇Am+
1

4
εAB∇B(εPQ∇P∇ECEQ) +

1

8
∇A(CBEN

BE)

+
1

8
εAB∇B(εPQC E

P NEQ) +
1

2
CAB∇DNDB.

(3.4)

Proof. We rewrite the terms−1
4∇

D(∇D∇ECEA−∇A∇ECED) and−1
4∇B(CBDNDA).

First we check the following identity directly:

εAB∇B(εPQ∇P∇ECEQ) = −∇D(∇D∇ECEA −∇A∇ECED).

As for the term C D
B NDA, we use the following general formulae for sym-

metric traceless 2-tensors on the 2-sphere:

C D
B NDA +N D

B CDA = (CDEN
DE)σAB

C D
B NDA −ND

B CDA = −(εPQC E
P NEQ)εAB

Therefore,

2C D
B NDA = (CDEN

DE)σAB − (εPQC E
P NEQ)εAB.

�
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Equation (3.4) is indeed equivalent to equation (4) on page 48 of [8]. We
apply (3.4) to derive the evolution of the classical angular momentum and
center of mass.

Theorem 3.2 (Theorem 1.2). The classical angular momentum and center
of mass evolve according to the following:

∂uJ̃
k =

1

4

∫
S2

[
εAE∇EX̃k(CAB∇DNBD −NAB∇DCBD) + X̃kεAB(C D

A NDB)
]
,

(3.5)

∂uC̃
k =

1

4

∫
S2

[
∇AX̃k

(u
2
∇A|N |2 + CAB∇DNBD −NAB∇DCBD

)]
, (3.6)

where k = 1, 2, 3.

Proof. By (1.2),

∂uJ̃
k =

∫
S2

εAB∇BX̃k[∂uNA −
1

4
∂u(C D

A ∇BCDB)].

First, we deal with the term 1
4εAB∇

B(εPQ∇P∇ECEQ) on the right hand
side of (3.4) and claim that∫

S2

Y AεAB∇B(εPQ∇P∇ECEQ) = 0 (3.7)

for Y A = ∇AX̃k or εAB∇BX̃k. Integrating by parts, the integral becomes∫
S2

εAB∇AY B(εPQ∇P∇ECEQ).

Since εPQ∇P∇ECEQ = −1
2∆(∆ + 2)c and εAB∇AY B is zero or 2X̃k, the

integral vanishes.
Hence, we obtain

∂uJ̃
k

=

∫
S2

εAB∇BX̃k

[
1

8
εAE∇E(εPQC E

P NEQ) +
1

2
CAB∇DNDB − 1

4
∂u(C D

A ∇BCDB)

]
since the integral of ∇Am + 1

8∇A(CBEN
BE) against εAB∇BX̃k vanishes.

Integrating by parts the first term and use εABεAE = δBE , we obtain the
desired formula.

We now turn to the formula for C̃k. By (1.3) and (3.7),

∂uC̃
k

=

∫
S2

∇AX̃k

[
∂uNA −∇Am+

u

8
∇A|N |2 −

1

4
∂u(C D

A ∇BCDB)− 1

16
∇A∂u(CDEC

DE)

]
=

∫
S2

∇AX̃k
[u

8
∇A|N |2 +

1

8
∇A(CBEN

BE) +
1

2
CAB∇DNDB

− 1

4
∂u(C D

A ∇BCDB)− 1

16
∇A∂u(CDEC

DE)
]
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since the integral of 1
8εAB∇

B(εPQC E
P NEQ) against ∇AX̃k vanishes. We

arrive at the desired formula since ∂u(CDEC
DE) = 2(CBEN

BE). �

4. Evolution formulae in terms of potentials

In this section, we rewrite the evolution formulae in terms of the potentials
of the shear and the news tensor.

4.1. Energy and linear momentum. First we recall the formulae for the
energy and linear momentum.

Proposition 4.1. Suppose CAB and NAB are given as in (2.9) and (2.10),
we have

∂uE = −1

8

∫
S2

[n∆(∆ + 2)n+ n∆(∆ + 2)n]

∂uP
k = −1

8

∫
S2

X̃k[((∆ + 2)n)2 + ((∆ + 2)n)2 − 4εAB∇An∇B(∆ + 2)n].

Proof. These follow from Lemma 2.6.
�

4.2. Proof of Theorem 1.3. We first prove the following Proposition:

Proposition 4.2. The evolution formulae of the conserved quantities can
be written as

∂uJ̃
k =

1

8

∫
S2

X̃kεAB[∇Ac∇B∆(∆ + 2)n+∇Ac∇B∆(∆ + 2)n]

∂uC̃
k =

1

8

∫
S2

uX̃k[((∆ + 2)n)2 + ((∆ + 2)n)2 − 4εAB∇An∇B(∆ + 2)n]

+
1

16

∫
S2

[X̃k(∆(∆ + 2)c(∆ + 2)n−∆(∆ + 2)n(∆ + 2)c)]

+
1

16

∫
S2

[X̃k(∆(∆ + 2)c(∆ + 2)n−∆(∆ + 2)n(∆ + 2)c].

Proof. We write

4∂uJ̃
k =

∫
S2

−X̃kεABC D
B NDA+

∫
S2

Y A
k (CAB∇DNBD−NAB∇DCBD) = (1)+(2)

and compute (1) and (2) separately.
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Note that (1) = −
∫
S2 X̃

kε2(CAB)NAB and recall that ε2(CAB) has po-
tentials −c and c. Applying (2.18), we get

(1) =− 1

2

∫
S2

X̃k[−(∆ + 2)c(∆ + 2)n+ (∆ + 2)c(∆ + 2)n

+

∫
S2

εAB(∇Ac∇B(∆ + 2)n−∇An∇B(∆ + 2)c)]

=− 1

2

∫
S2

X̃k[−(∆ + 2)c(∆ + 2)n+ (∆ + 2)c(∆ + 2)n]

−
∫
S2

X̃kεAB[∇Ac∇B(∆ + 2)n−∇An∇B(∆ + 2)c]

=− 1

2

∫
S2

X̃k[−(∆ + 2)c(∆ + 2)n+ (∆ + 2)c(∆ + 2)n]

−
∫
S2

X̃kεAB[∇Ac∇B(∆ + 2)n+∇Ac∇B(∆ + 2)n]

where we used (2.7) in the last equality.
Applying (2.16) to Y A = Y A

k , we have

(2) =
1

2

∫
S2

X̃kεAB[∇A(∆ + 2)c∇B(∆ + 2)n+∇A(∆ + 2)c∇B(∆ + 2)n]

+
1

2

∫
S2

X̃k[(∆ + 2)c(∆ + 2)n− (∆ + 2)c(∆ + 2)n]

Therefore,

(1) + (2) = −
∫
S2

X̃kεAB[∇Ac∇B(∆ + 2)n+∇Ac∇B(∆ + 2)n]

+
1

2

∫
S2

X̃kεAB[∇A(∆ + 2)c∇B(∆ + 2)n+∇A(∆ + 2)c∇B(∆ + 2)n]

=
1

2

∫
S2

X̃k
[
εAB∇A∆c∇B(∆ + 2)n+∇A∆c∇B(∆ + 2)n

]
,

and the desired formula follows by (2.7).
As for the evolution of the center of mass, we apply (2.15) and note that

∫
S2

∇AX̃kε D
A ∇D[(∆ + 2)c(∆ + 2)n+ (∆ + 2)c(∆ + 2)n] = 0.

Therefore,



16 P.-N. CHEN, J. KELLER, M.-T. WANG, Y.-K. WANG, AND S.-T. YAU

∂uC̃
k =

1

8

∫
S2

uX̃k[((∆ + 2)n)2 + ((∆ + 2)n)2 − 4εAB∇An∇B(∆ + 2)n]

− 1

16

∫
S2

[∇AX̃k(∇A(∆ + 2)c(∆ + 2)n−∇A(∆ + 2)n(∆ + 2)c)]

− 1

16

∫
S2

[∇AX̃k(∇A(∆ + 2)c(∆ + 2)n−∇A(∆ + 2)n(∆ + 2)c]

=
1

8

∫
S2

uX̃k[((∆ + 2)n)2 + ((∆ + 2)n)2 − 4εAB∇An∇B(∆ + 2)n]

+
1

16

∫
S2

X̃k[∆(∆ + 2)c(∆ + 2)n−∆(∆ + 2)n(∆ + 2)c]

+
1

16

∫
S2

X̃k[∆(∆ + 2)c(∆ + 2)n−∆(∆ + 2)n(∆ + 2)c]

�

To obtain the formulae given in Theorem 1.3, we rewrite the above for-
mulae in terms of bracket operators on S2.

Definition 4.3. For two smooth functions u and v on S2, denote

[u, v]1 = εAB∇Au∇Bv (4.1)

and

[u, v]2 =
1

2
((∆u)v − (∆v)u). (4.2)

In view of Definition 4.3, we can write

∂uJ̃
k =

1

8

∫
S2

X̃k([c,∆(∆ + 2)n]1 + [c,∆(∆ + 2)n]1)

and similarly for the center of mass. This proves Theorem 1.3.

5. Supertranslation invariance of the total flux

5.1. Total flux of classical conserved quantities. We study the effect of
supertranslation on the total flux of conserved quantities along null infinity
or, equivalently, the difference of conserved quantities at timelike infinity
and spatial infinity. As in the previous section, suppose I = (−∞,∞) and
I + is complete extending from spatial infinity (u = −∞) to timelike infinity
(u = +∞). A supertranslation is a change of coordinates (ū, x̄A)→ (u, xA)
such that u = ū+ f(x), xA = x̄A on I +. Let m, CAB, and NAB denote the
mass aspect, the shear, and the news, respectively, in the (u, xA) coordinate
system. Since the spherical coordinate is unchanged, we use x to denote
either xA or x̄A throughout this section. It is well-known (see [10, (C.117)
and (C.119)] for example) that the shear C̄AB(ū, x), and the news N̄AB(ū, x)
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in the (ū, x) coordinate system are given by

C̄AB(ū, x) = CAB(ū+ f(x), x)− 2∇A∇Bf + ∆fσAB (5.1)

N̄AB(ū, x) = NAB(ū+ f(x), x) (5.2)

We assume that there exists a constant ε > 0 such that

NAB(u, x) = O(|u|−1−ε) as u→ ±∞. (5.3)

Note that the limits of the shear tensor exist

lim
u→±∞

CAB(u, x) = CAB(±)

as a result of (5.3).
Similarly, (5.3) implies that the limits of the angular momentum exist

lim
u→±∞

J̃k(u) = J̃k(±).

Denote the corresponding quantities after supertranslation by J̃kf (±).

Let Y A = εAB∇BX̃k. By (3.5), the total angular momentum flux is

J̃k(+)− J̃k(−)

=
1

4

∫ +∞

−∞

∫
S2

[
Y A

(
CAB∇DNBD −NAB∇DCBD

)
+ X̃kεABC D

A NDB

]
(u, x)dS2du

=
1

4

∫ +∞

−∞

∫
S2

[
−∇DY ACABN

BD + Y A
(
−∇DCABNBD −NAB∇DCBD

)]
(u, x)dS2du

+
1

4

∫ +∞

−∞

∫
S2

X̃kεAB(C D
A NDB)(u, x) dS2du

(5.4)

in the (u, x) coordinates and

J̃kf (+)− J̃kf (−)

=
1

4

∫ +∞

−∞

∫
S2

[
−∇DY AC̄ABN̄

BD + Y A
(
−∇DC̄ABN̄BD − N̄AB∇DC̄BD

)]
(ū, x)dS2dū

+
1

4

∫ +∞

−∞

∫
S2

X̃kεAB(C̄ D
A N̄DB)(ū, x) dS2dū

(5.5)

in the (ū, x) coordinates.
Applying the chain rule on (5.1) yields

∇DC̄AB(ū, x) = NAB(ū+ f, x)∇Df + (∇DCAB)(ū+ f, x)−∇DFAB,
∇DC̄BD(ū, x) = NBD(ū+ f, x)∇Df + (∇DCBD)(ū+ f, x)−∇B(∆ + 2)f.

To simplify notation, we introduce the u independent symmetric traceless
2-tensor

FAB = 2∇A∇Bf −∆fσAB

and thus ∇DFBD = ∇B(∆ + 2)f .
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Equation (5.5) can be rewritten as

J̃kf (+)− J̃kf (−)

=
1

4

∫ ∞
−∞

∫
S2

[
−∇DY A(CAB − FAB)NBD + Y AωA

]
(ū+ f, x)dS2dū

+
1

4

∫ +∞

−∞

∫
S2

[
X̃kεAB

(
C D
A − FDA

)
NDB

]
(ū+ f, x) dS2dū

(5.6)

where

ωA(u, x) =
(
−NAB(u, x)∇Df −∇DCAB +∇DFAB

)
NBD(u, x)

−NAB(u, x)
(
NBD(u, x)∇Df +∇DCBD(u, x)−∇DFBD(x)

)
.

Note that the integrand is evaluated at (ū+f, x) in equation (5.6), to which
the change of variable will be applied.

By the decaying assumption of the news (5.3), we can apply change of
variable u = ū+ f to (5.6) and rewrite it as

J̃kf (+)− J̃kf (−)

=
1

4

∫ +∞

−∞

∫
S2

[
−∇DY A(CAB − FAB)NBD + Y AωA + X̃kεAB

(
C D
A − FDA

)
NDB

]
(u, x)dS2du

(5.7)

Combining (5.4) and (5.7), we obtain(
J̃kf (+)− J̃kf (−)

)
−
(
J̃k(+)− J̃k(−)

)
=

1

4

∫ ∞
−∞

∫
S2

−Y A|N |2∇AfdS2du

+
1

4

∫ ∞
−∞

∫
S2

[
−Y AFAB∇DNBD + Y ANAB∇DFBD − X̃kεABFDA NDB

]
dS2du

where we used the identity 2NABN
BD = |N |2δDA .

Observe that the second integral is of the same form as ∂uJ̃ given in (3.5)
and one can thus simplify it as in the proof of Proposition 4.2 to get(

Jkf (+)− Jkf (−)
)
−
(
Jk(+)− Jk(−)

)
=

1

4

∫ ∞
−∞

∫
S2

fY A∇A|N |2dS2du+
1

4

∫ ∞
−∞

∫
S2

X̃kεAB∇An∇B∆(∆ + 2)fdS2du

Integrating by parts, we arrive at(
J̃kf (+)− J̃kf (−)

)
−
(
J̃k(+)− J̃k(−)

)
=

1

4

∫ +∞

−∞

∫
S2

fY A∇A
(
|N |2 −∆(∆ + 2)n

)
dS2du

=

∫
S2

−2fY A∇A(m(+)−m(−))dS2

(5.8)
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where

m(±) = lim
u→±∞

m(u, x).

Here we used the mass loss formula (3.1) in the form ∂um = 1
8∆(∆ + 2)n−

1
8 |N |

2. Note that m(+)−m(−) is of the same mode as Y A∇A(m(+)−m(−))

because Y A is a Killing field.
In summary, we obtain a necessary and sufficient condition for the total

flux of the classical angular momentum to be supertranslation invariant.

Theorem 5.1. Suppose the news tensor decays as

NAB(u, x) = O(|u|−1−ε) as u→ ±∞.

The total flux of the classical angular momentum J̃k is supertranslation
invariant if and only if

m(+)−m(−)

(as a function on S2) is supported in the l ≤ 1 modes.
Moreover, the above condition holds when the rescaled curvature compo-

nents P (see Definition A.5) at I + satisfy

lim
u→∞

P − lim
u→−∞

P (5.9)

is supported in the l ≤ 1 modes.

Remark 5.2. Theorem 5.1 is motivated by the investigation in [7], which is
built on the framework of stability of Minkowski spacetime. Indeed, equation
(11) and (12) of [7]

Z+ − Z− = ∇Φ div
(
Σ+ − Σ−

)
= Z+ − Z−

imply limu→∞ c(u, x) = limu→−∞ c(u, x). Using moreover (10) of [7]

∆Φ = −2(F − F̄ ),

we get

∇A
(
8F −∆(∆ + 2)c|+∞−∞

)
= 0.

Moreover, the total flux of the classical center of mass is supertranslation
invariant under the same condition

Theorem 5.3. Suppose the news tensor decays as

NAB(u, x) = O(|u|−1−ε) as u→ ±∞,

The total flux of the classical center of mass C̃k is supertranslation invariant
if and only if

m(+)−m(−)

is a constant function on S2.
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Proof. Denoting C̃k(±) = limu→±∞ C̃
k(u), by (3.6) we have

C̃k(+)− C̃k(−)

=
1

4

∫ +∞

−∞

∫
S2

u|N |2(u, x)X̃k +∇AX̃k
[
CAB∇DNBD −NAB∇DCBD

]
(u, x) dS2du.

(5.10)

On the other hand,

C̃kf (+)− C̃kf (−)

=
1

4

∫ +∞

−∞

∫
S2

ū|N̄ |2(ū, x)X̃k +∇AX̃k
[
C̄AB∇DN̄BD − N̄AB∇DC̄BD

]
(ū, x) dS2dū.

Proceed in the same way as in the case of angular momentum, we obtain(
C̃kf (+)− C̃kf (−)

)
−
(
C̃k(+)− C̃k(−)

)
=

1

4

∫ +∞

−∞

∫
S2

−X̃k|N |2f −∇AX̃k|N |2∇Af dS2du

+
1

4

∫ +∞

−∞

∫
S2

∇AX̃k(−2∇A∇Bf + ∆fσAB)∇DNBD +∇AX̃kNAB∇B(∆ + 2)f dS2du

We simplify the second integral as∫
S2

−2X̃k∇Af∇DNAD + 2∇AX̃k∇Af∇B∇DNBD − 2∇AX̃k∇BNAB · f

=

∫
S2

2
(
∇AX̃k∇Af∇B∇DNBD + X̃k∇A∇BNAB · f

)
and the mass loss formula ∂um = 1

4∇
A∇BNAB − 1

8 |N |
2 implies that

(
C̃kf (+)− C̃kf (−)

)
−
(
C̃k(+)− C̃k(−)

)
=

∫
S2

2X̃kf
(
m(+)−m(−)

)
+ 2∇AX̃k

(
m(+)−m(−)

)
∇Af

=

∫
S2

(
6X̃k

(
m(+)−m(−)

)
− 2∇AX̃k∇A

(
m(+)−m(−)

))
f.

Hence, C̃k(+)−C̃k(−) is invariant under arbitrary supertranslation if and

only if 6X̃k
(
m(+)−m(−)

)
−2∇AX̃k∇A

(
m(+)−m(−)

)
is supported in the

l ≤ 1 modes.
Multiplying the expression by X̃k and summing over k = 1, 2, 3, we

get m(+) − m(−) is supported in the l ≤ 2 modes. However, a direct
computations shows that if m(+) − m(−) contains a l = 2 mode, then

6X̃k
(
m(+) − m(−)

)
− 2∇AX̃k∇A

(
m(+) − m(−)

)
contains a l = 3 mode.

Simiarly, if m(+)−m(−) contains a l = 1 mode, then 6X̃k
(
m(+)−m(−)

)
−

2∇AX̃k∇A
(
m(+) −m(−)

)
contains a l = 2 mode. Thus, m(+) −m(−) is
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constant if and only if C̃k(+) − C̃k(−) is invariant under arbitrary super-
translation �

5.2. Total flux of the CWY conserved quantities. In this subsection,
we show that the total flux of the CWY angular momentum and center of
mass is supertranslation invariant. We decompose f into its modes:

f = α0 + αiX̃
i + fl≥2

and let Jk(±) be the limits of the CWY angular momentum in the u co-
ordinate and Jkf (±) be the limits of the CWY angular momentum in the ū
coordinate. We have

Theorem 5.4. Suppose the news tensor decays as

NAB(u, x) = O(|u|−1−ε) as u→ ±∞.

Then the total flux of Jk is supertranslation invariant. Namely,(
Jkf (+)− Jkf (−)

)
−
(
Jk(+)− Jk(−)

)
= αiε

ik
j(P

j(+)− P j(−)).

Proof. Note that

Jk = J̃k −
∫
S2

Y Ac∇Am (5.11)

where Y A = εAB∇BX̃k.
The assumption (5.3) on the decay of news tensor implies that the limit

of mass aspect function is invariant of supertranslation

lim
ū→±∞

m̄(ū, x) = lim
u→±∞

m(u, x) or m̄(±) = m(±). (5.12)

Moreover, we have

lim
ū→±∞

C̄AB(ū, x) = lim
u→±∞

CAB(u, x)− 2∇A∇Bf + ∆fσAB. (5.13)

If we denote the closed potential of limū→+∞ C̄AB and limū→+∞CAB by
c̄(+) and c(+) respectively, we have

c̄(+) = c(+)− 2f`≥2 (5.14)

as functions on S2. Evaluating the definition of the CWY angular momen-
tum (5.11) at +∞ gives

Jk(+) = J̃k(+)−
∫
S2

Y Ac(+)∇Am(+),

and

Jkf (+) = J̃kf (+)−
∫
S2

Y Ac̄(+)∇Am̄(+).

Taking the difference and applying (5.12) and (5.14), we derive

Jkf (+)− Jk(+) = J̃kf (+)− J̃k(+) + 2

∫
S2

f`≥2Y
A∇Am(+).
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We derive a similar equation at −∞ and thus(
Jkf (+)− Jkf (−)

)
−
(
Jk(+)− Jk(−)

)
=
(
J̃kf (+)− J̃kf (−)

)
−
(
J̃k(+)− J̃k(−)

)
+ 2

∫
S2

f`≥2Y
A∇A(m(+)−m(−))

=− 2

∫
S2

f`≤1Y
A∇A(m(+)−m(−))

by (5.8). It follows that(
Jkf (+)− Jkf (−)

)
−
(
Jk(+)− Jk(−)

)
= αiε

ik
j(P

j(+)− P j(−)).

�

Let Ck(±) be the limits of the CWY center of mass in the u coordinate
and Ckf (±) be the limits of the CWY center of mass in the ū coordinate.

Theorem 5.5. Suppose the news tensor decays as

NAB(u, x) = O(|u|−1−ε) as u→ ±∞,

then the total flux of Ck is supertranslation invariant. Namely,(
Ckf (+)− Ckf (−)

)
−
(
Ck(+)− Ck(−)

)
= α0

(
P k(+)− P k(−)

)
+αk (E(+)− E(−)) .

Proof. We write

Ck = C̃k −
∫
S2

c∇AX̃k∇Am+ 3

∫
S2

cX̃km+ Ξ(c,m), (5.15)

where Ξ is an integral over S2 that involves only c and m. Since the last
three integrals have limits at u = ±∞, the mass loss formula now implies

Ck(+)− Ck(−)

=
1

4

∫ +∞

−∞

∫
S2

u|N |2(u, x)X̃k +∇AX̃k
[
CAB∇DNBD −NAB∇DCBD

]
(u, x) dS2du

−
∫
S2

c(+)∇AX̃k∇Am(+) +

∫
S2

c(−)∇AX̃k∇Am(−)

+ 3

∫
S2

c(+)X̃km(+)− 3

∫
S2

c(−)X̃km(−)

+ Ξ(c(+),m(+))− Ξ(c(−),m(−)).
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By (5.13), c(±) is invariant under supertranslation. We apply (5.12) and
(5.14) to get(

Ckf (+)− Ckf (−)
)
−
(
Ck(+)− Ck(−)

)
=
(
C̃kf (+)− C̃kf (−)

)
−
(
C̃k(+)− C̃k(−)

)
+ 2

∫
S2

f`≥2∇AX̃k∇A
(
m(+)−m(−)

)
− 6

∫
S2

f`≥2X̃
k
(
m(+)−m(−)

)
=− 2

∫
S2

f`≤1∇AX̃k∇A
(
m(+)−m(−)

)
+ 6

∫
S2

f`≤1X̃
k
(
m(+)−m(−)

)
.

We obtain(
Ckf (+)− Ckf (−)

)
−
(
Ck(+)− Ck(−)

)
= 2

∫
S2

(α0X̃
k + αk)(m(+)−m(−))

= α0

(
P k(+)− P k(−)

)
+ αk (E(+)− E(−)) .

�

6. Spacetime with zero news

In this section, we consider a non-radiative spacetime in the sense that
the news vanishes. This includes all model spacetimes such as Minkowski
and Kerr. First, we show that the CWY angular momentum and center of
mass are constant.

Lemma 6.1. Suppose the news NAB(u, x) ≡ 0 in a Bondi-Sachs coordinate
system (u, x), then the CWY angular momentum Jk(u) and CWY center of
mass Ck(u) are constant, i.e. independent of the retarded time u.

Proof. The assumption implies ∂um(u, x) = 0, ∂uCAB(u, x) = 0 and thus

m(u, x) ≡ m̊(x), CAB(u, x) ≡ C̊AB(x)

and both potentials c and c are independent of u as well.
We recall the definition of CWY angular momentum

Jk(u) =

∫
S2

Y A

(
NA −

1

4
CAB∇DCDB − c∇Am

)
(6.1)

where Y A = εAB∇BX̃k. Since c and m are both independent of u, our
previous calculation shows

∂u

∫
S2

Y A

(
NA −

1

4
CAB∇DCDB

)
=

1

4

∫
S2

[
Y A(CAB∇DNBD −NAB∇DCBD) + X̃kεAB(C D

A NDB)
]
,

the conclusion follows.
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On the other hand, the CWY center of mass Ck is given by∫
S2

∇AX̃k

(
NA −

1

4
CAB∇DCDB −

1

16
∇A

(
CDECDE

))
−∇AX̃k(c+ u)∇Am

+

∫
S2

(
3X̃kcm+ 2∇AX̃kεAB(∇Bc)m− 1

16
X̃k∇A(∆ + 2)c∇A(∆ + 2)c

)
(6.2)

Since all m, c, and c are independent of u,

∂uC
k

=∂u

∫
S2

∇AX̃k

(
NA −

1

4
CAB∇DCDB −

1

16
∇A

(
CDECDE

))
−
∫
S2

∇AX̃k∇Am

(6.3)

Our previous calculation shows that the first term on the right hand side is∫
S2

∇AX̃k

(
∇Am+

1

4
CAB∇DNBD − 1

4
NAB∇DCBD

)
,

and the conclusion follows.
�

Finally, we show that in a spacetime with vanishing news tensor, the
angular momentum and center of mass themselves, not just their total flux,
are invariant under supertranslation.

We pin down the exact formula for the angular momentum aspect on a
spacetime with vanishing news. In this case, we have

∂uNA(u, x) = ∇Am(u, x)− 1

4
∇BPBA(u, x)

where

PBA(u, x) = (∇B∇ECEA −∇A∇ECEB)(u, x)

Therefore

∂uNA(u, x) = ∇Am̊(x)− 1

4
∇BP̊BA(x)

is independent of u. Integrating gives

NA(u, x) = NA(u0, x) + (u− u0)(∇Am̊−
1

4
∇BP̊BA) (6.4)

for any u and fixed u0.
Suppose (ū, x) is another Bondi-Sachs coordinate system that is related

to (u, x) by a supertranslation u = ū+ f for f ∈ C∞(S2).
Recall the mass aspect m̄(ū, x), the shear C̄AB(ū, x), and the news N̄AB(ū, x)

in the (ū, x) coordinate system are related to the mass aspect m(u, x), the
shear CAB(u, x), and the news NAB(u, x) in the (u, x) coordinate system
through:
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m̄(ū, x) = m(ū+ f, x) +
1

2
(∇BNBD)(ū+ f, x)∇Df

+
1

4
(∂uNBD)(ū+ f, x)∇Bf∇Df +

1

4
NBD(ū+ f, x)∇B∇Df

C̄AB(ū, x) = CAB(ū+ f(x), x)− 2∇A∇Bf + ∆fσAB

N̄AB(ū, x) = NAB(ū+ f(x), x)
(6.5)

In particular, N̄AB(ū, x) ≡ 0 and J̄k(ū) and C̄k(ū) are independent of ū.
In addition, we have

m̄(ū, x) = ˚̄m(x) = m̊(x)

C̄AB(ū, x) = ˚̄CAB(x) = C̊AB(x)− FAB
˚̄c = c̊− 2f`≥2

˚̄c = c̊

(6.6)

where FAB = 2∇A∇Bf −∆fσAB.
Finally the angular momentum aspect transforms by

N̄A(ū, x) = NA(ū+ f, x) + 3m(ū+ f, x)∇Af −
3

4
PBA(ū+ f, x)∇Bf

= NA(ū+ f, x) + 3m̊∇Af −
3

4
P̊BA∇Bf.

See [10, (C.123)]. Note that the convention of angular momentum aspect
there is −3NA.

Combining with (6.4) and setting u = ū+ f , we obtain

N̄A(ū, x) = NA(u0, x)+(ū−u0+f)(∇Am̊−
1

4
∇BP̊BA)+3m̊∇Af−

3

4
P̊BA∇Bf

(6.7)
for any ū and fixed u0.

Now fixing ū = ū0, we consider the angular momentums

J̄ = J̄(ū0) =

∫
S2

Y A

(
N̄A −

1

4
C̄AB∇DC̄DB − ˚̄c∇A˚̄m

)
(ū0, x)

J = J(u0) =

∫
S2

Y A

(
NA −

1

4
C̊AB∇DC̊DB − c̊∇Am̊

)
(u0, x)
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where Y A = εAB∇BX̃k and the center of mass

C̄ = C̄(ū0) =

∫
S2

∇AX̃k

(
N̄A −

1

4
C̄AB∇DC̄DB −

1

16
∇A(C̄DEC̄DE)

)
(ū0, x)

+

∫
S2

(
3X̃k˚̄c ˚̄m−∇AX̃k (̊c̄+ ū0)∇A˚̄m

)
+

∫
S2

(
2∇AX̃kεAB(∇B˚̄c)˚̄m− 1

16
X̃k∇A(∆ + 2)̊c̄∇A(∆ + 2)̊c̄

)
C = C(u0) =

∫
S2

∇AX̃k

(
NA −

1

4
C̊AB∇DC̊DB −

1

16
∇A(C̊DEC̊DE)

)
(u0, x)

+

∫
S2

(
3X̃k c̊ m̊−∇AX̃k (̊c+ u0)∇Am̊

)
+

∫
S2

(
2∇AX̃kεAB(∇B c̊)m− 1

16
X̃k∇A(∆ + 2)̊c∇A(∆ + 2)̊c

)
We prove the following theorem:

Theorem 6.2. On a spacetime with vanishing news, the CWY angular mo-
mentum and center of mass satisfy

J̄ − J =− 2

∫
S2

εAB∇BX̃kf`≤1∇Am̊ (6.8)

C̄ − C =

∫
S2

(
6f`≤1X̃

km̊− 2f`≤1∇AX̃k∇Am̊
)

(6.9)

Proof. Taking the difference of J̄ and J and applying (6.6), we obtain

J̄ − J =

∫
S2

Y A
[
N̄A(ū0, x)−NA(u0, x)

]
+

1

4

∫
S2

Y A
[
C̊AB∇DFBD + FAB∇DC̊BD − FAB∇DFBD

]
+ 2

∫
S2

YAf`≥2∇Am̊

We observe that
∫
S2 Y

A(FAB∇DFBD) = 0 and compute∫
S2

Y A
[
N̄A(ū0, x)−NA(u0, x)

]
=

∫
S2

Y A

[
(ū− u0 + f)(∇Am̊−

1

4
∇BP̊BA) + 3m̊∇Af −

3

4
P̊BA∇Bf

]
=

∫
S2

Y A

[
f∇Am̊−

1

4
f∇BP̊BA + 3m̊∇Af −

3

4
P̊BA∇Bf

]
=

∫
S2

Y A

[
−2f∇Am̊−

1

4
f∇BP̊BA −

3

4
P̊BA∇Bf

]
,

where we use
∫
S2 Y

A∇BP̊BA = 0 and
∫
S2 Y

A∇Am̊ = 0. Therefore,
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J̄ − J =
1

4

∫
S2

Y A
[
C̊AB∇DFBD + FAB∇DC̊BD − f∇BP̊BA − 3P̊BA∇Bf

]
− 2

∫
S2

YAf`≤1∇Am̊.

By Theorem B.1, the first integral vanishes and the result follows.
Taking the difference of C̄ and C and applying (6.6), we obtain

C̄ − C =

∫
S2

∇AX̃k
[
N̄A(ū0, x)−NA(u0, x)

]
+

1

4

∫
S2

∇AX̃k
[
C̊AB∇DFBD + FAB∇DC̊BD − FAB∇DFDB

+
1

2
∇A(CBDF

BD)− 1

4
∇A(FBDF

BD)
]

+

∫
S2

(
−6f`≥2X̃

km̊+ (2f`≥2 − ū0 + u0)∇AX̃k∇Am̊
)

We observe that∫
S2

∇AX̃k

[
−FAB∇DFDB −

1

4
∇A(FBDF

BD)

]
= 0

and compute∫
S2

∇AX̃k
[
N̄A(ū0, x)−NA(u0, x)

]
=

∫
S2

∇AX̃k

[
(ū0 − u0 + f)(∇Am̊−

1

4
∇BP̊BA) + 3m̊∇Af −

3

4
P̊BA∇Bf

]
=

∫
S2

∇AX̃k

[
(ū0 − u0 + f)∇Am̊−

1

4
f∇BP̊BA + 3m̊∇Af −

3

4
P̊BA∇Bf

]
=

∫
S2

∇AX̃k

[
(ū0 − u0 − 2f)∇Am̊−

1

4
f∇BP̊BA −

3

4
P̊BA∇Bf

]
+

∫
S2

(6fX̃km̊),

where we use
∫
S2 ∇AX̃k∇BP̊BA = 0.

Putting everything together, we arrive at

C̄ − C

=
1

4

∫
S2

∇AX̃k

[
C̊AB∇DFBD + FAB∇DC̊BD +

1

2
∇A(C̊BDF

BD)− f∇BP̊BA − 3P̊BA∇Bf
]

+

∫
S2

(
6f`≤1X̃

km̊− 2f`≤1∇AX̃k∇Am̊
)

By Theorem B.2, the first integral vanishes and the result follows. �
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7. Conservation law of angular momentum and a duality
paradigm for null infinity

7.1. Conservation law of angular momentum. In this subsection, we
derive a conservation law of angular momentum at I + à la Christodoulou
[7].

Suppose I = (−∞,+∞) and I + is complete extending from spatial in-
finity (u = −∞) to timelike infinity (u = +∞). Integrating the formula in
Proposition 3.1 from −∞ to +∞ and projecting onto the ` = 1 modes, we
obtain

εAE∇ENA(+∞)`=1 − εAE∇ENA(−∞)`=1 = G`=1, (7.1)

where

G =

∫ +∞

−∞

1

8
∇A∇A(εPQC E

P NEQ) +
1

2
εAE∇E(CAB∇DNDB)

Equation (7.1) should be considered as a conservation law for angular
momentum that complements the conservation law for linear momentum of
Christodoulou [7, Equation (13)], which in our notation is

m̂(+∞)`=0,1 − m̂(−∞)`=0,1 = −F`=0,1,

where

F =
1

8

∫ ∞
−∞

NABN
AB (7.2)

and follows from (3.3).
The above discussion can be carried over under the framework of stability

of Minkowski spacetime, provided that we take Rizzi’s definition of angular
momentum [20, 21]. Recall from [7, 8] that two symmetric traceless 2-tensors
Σ and Ξ are defined by

lim
C+

u ,r→∞
r2χ̂ = Σ, lim

C+
u ,r→∞

rχ̂ = Ξ

with

∂Σ

∂u
= −1

2
Ξ. (7.3)

See Definition A.5 for the curvature components and their limits at null
infinity.

Rizzi’s definition of angular momentum [20, (3)] is given by (omitting the
constant 1

8π )

L(Ω(i)) =

∫
S2

ΩA
(i)

(
IA − ΣAB∇CΣCB

)
, i = 1, 2, 3 (7.4)

where he assumes that the curvature component β satisfies limr→∞ r
3βA =

−IA. Here ΩA
(i) corresponds to εAB∇BX̃i. In the appendix, we show that IA
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and ΣAB correspond to NA and −1
2CAB in Bondi-Sachs coordinate system.

Hence Rizzi’s definition coincides with (1.2).
Using Bianchi identities, Rizzi derived the evolution formula [20, (4)]

∂L

∂u
=

∫
S2

ΩA

[
ΞAB∇CΣCB +

1

2

(
ΣC
B∇BΞCA − ΣAB∇CΞCB

)]
=

1

2

∫
S2

ΩA
(
ΞAB∇CΣCB − ΣAB∇CΞCB

)
+∇AΩBΣC

BΞCA, (7.5)

where the second line is obtained by integrating by parts the term ΩAΣC
B∇BΞCA.

Remark 7.1. The definition we take has the opposite sign to [20, (3),(4)].
The discrepancy comes from the fact that Kerr spacetime has angular mo-
mentum −ma under our definition.

According to the main theorem of [9],

B = O(|u|−
3
2 ) (7.6)

as |u| → ∞, where B = limr→∞ r
2β. (see also [7], the paragraph after

equation (8) where B is denoted by B there)
Estimate (7.6) and equation (2) of [7]

divΞ = B (7.7)

imply that

Ξ = O(|u|−
3
2 ) (7.8)

as |u| → ∞ and

Σ→ Σ± (7.9)

as u→ ±∞.
By (7.8) and (7.9),

∫∞
−∞

∂L
∂udu is finite and furnishes the difference of the

angular momenta at timelike infinity (u → ∞) and spatial infinity (u →
−∞).

We can write this in the spirit of [7]. In general, the peeling fails and

β decays as β = o(r−
7
2 ). Christodoulou [8] observed that Bianchi equation

nevertheless implies that

R = lim
C+

u ,r→∞
r4Dβ

exists. Moreover, one has

R = ∇P + ∗∇Q+ 2Σ ·B, (7.10)

where (P,Q) = limr→∞(r3ρ, r3σ) and ∇, ∗, · are taken with respect to stan-
dard metric σ on S2.



30 P.-N. CHEN, J. KELLER, M.-T. WANG, Y.-K. WANG, AND S.-T. YAU

In order to exhibit a physically reasonable initial data set that has a com-
plete Cauchy development without peeling, Christodoulou made the crucial
assumption

lim
u→−∞

uR = R− 6= 0, (7.11)

which we adopt here.
From (7.11) he derived [8, (5)]

β = B∗r
−4 log r +Br−4 + o(r−4)

uniformly in u with 1-forms B∗ and B on S2 satisfying [8, (6)]

∂B∗
∂u

= 0 (7.12)

∂B

∂u
=

1

2
R. (7.13)

Moreover, using Bianchi equation, he derived that

lim
C+

u ,r→∞
r4α = A∗ 6= 0

exists. A∗ is a symmetric traceless 2-tensor that is independent of u and
satisfies

divA∗ = −B∗. (7.14)

Definition 7.2. For a function f on S2, we denote the projection of f on the
sum of zeroth and first eigenspaces of ∆ by f[1]. Namely, f[1] = f`=0 + f`=1.

For a 1-form ωA = ∇Af+εAB∇Bg, we denote ωA[1] = ∇Af`=1 +εAB∇Bg`=1.

Since the spherical tangent vectors ∂A have length O(r), we have the
correspondence

BA = −IA. (7.15)

By (7.14), B∗[1] = 0 and we integrate(7.10) to get

(IA(u2, x)− IA(u1, x))[1] = −1

2

∫ u2

u1

∇AP`=1 + εAB∇BQ`=1 + (2ΣABB
B)[1]du.

By (7.6) and (7.9), the last term is integrable on (−∞,∞). For the first
two terms, we observe that equations (10, 11) of [8]

∂P

∂u
= −1

2
divB +

1

2
Σ · ∂Ξ

∂u
(7.16)

∂Q

∂u
= −1

2
curlB +

1

2
Σ ∧ ∂Ξ

∂u
(7.17)

infer that P`=1(u, x) = aiX̃
i + O(|u|−

3
2 ) and Q`=1(u, x) = biX̃

i + O(|u|−
3
2 )

for some constants ai, bi independent of u. Thanks to the main theorem of

[9], P −P`=0, Q−Q`=0 = O(|u|−
1
2 ), we have ai = 0, bi = 0. Thus P`=1, Q`=1

are also integrable on (−∞,∞).



EVOLUTION OF CONSERVED QUANTITIES AT NULL INFINITY 31

We conclude limu→∞ IA[1](u, x)− limu→−∞ IA[1](u, x) exists and is given
by

−1

2

∫ ∞
−∞

(
∇AP`=1 + εAB∇BQ`=1 + (2ΣABB

B)[1]

)
du′.

By (7.3) and Rizzi’s definition (7.4), we can interpret the following formula
as a conservation law of angular momentum

lim
u→∞

(
IA − ΣAB∇CΣCB

)
[1]
− lim
u→−∞

(
IA − ΣAB∇CΣCB

)
[1]

=
1

2

∫ ∞
−∞
−∇AP`=1 − εAB∇BQ`=1 +

(
ΞAB∇CΣCB − ΣAB∇CΞCB

)
[1]
du.

(7.18)

From Proposition A.2 and Proposition A.6, it follows that the co-closed part
of the above conservation law is equivalent to the total flux of the classical
angular momentum in a Bondi-Sachs coordinate system.

7.2. A duality paradigm for null infinity. In this subsection, we de-
scribe a duality paradigm for null infinity which creates a pair of dual space-
times with the same classical conserved quantities.

Corollary 7.3 (Corollary 1.7). Given a set of null infinity data (m,NA, CAB, NAB)
defined on [u1, u2]×S2, there exists a dual set of null infinity data (m∗, N∗A, C

∗
AB, N

∗
AB)

that has the same (classical) energy, linear momentum, angular momentum,
and center of mass.

Proof. Define C∗AB = ε2(CAB) on [u1, u2] × S2. Then N∗AB = ∂uC
∗
AB =

ε2(NAB). Define m∗(u, x) by the differential equation{
m∗(u1, x) = m(u1, x)

∂um
∗ = 1

4∇
A∇BN∗AB −N∗ABN∗

AB

and then define N∗A by the differential equation
N∗A(u1, x) = NA(u1, x)

∂uN
∗
A = ∇Am∗ − 1

4∇
D(∇D∇EC∗EA −∇A∇EC∗ED)

+1
4∇A(C∗BEN

∗BE)− 1
4∇B(C∗BDN∗DA) + 1

2C
∗
AB∇DN∗

DB.

For this subsection alone, we denote the classical conserved quantities of the
infinity data (m,NA, CAB, NAB) by E,P k, Jk, Ck and denote the classical

conserved quantities of the data (m∗, N∗A, C
∗
AB, N

∗
AB) by E∗, P ∗k, J∗k, C∗k,

we have

E∗(u1) = E(u1), P ∗k(u1) = P k(u1)

and since C∗A
D∇BC∗BD = C D

A ∇BCBD, C∗DEC∗
DE = CDEC

DE ,

J∗k(u1) = Jk(u1), C∗k(u1) = Ck(u1).

It remains to show that the evolutions of the conserved quantities are
identical. Recall that the potentials of C∗AB and N∗AB are given by (−c, c)
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and (−n, n). We observe that replacing (c, c, n, n) by (−c, c,−n, n) does not
change the following expressions

∂uE = −1

8

∫
S2

[n∆(∆ + 2)n+ n∆(∆ + 2)n],

∂uP
k = −1

8

∫
S2

X̃k[((∆ + 2)n)2 + ((∆ + 2)n)2 − 4εAB∇An∇B(∆ + 2)n],

∂uJ
k =

1

8

∫
S2

X̃kεAB[∇Ac∇B∆(∆ + 2)n+∇Ac∇B∆(∆ + 2)n]

∂uC
k =

1

8

∫
S2

X̃k[((∆ + 2)n)2 + ((∆ + 2)n)2 − 4εAB∇An∇B(∆ + 2)n]

+
1

16

∫
S2

[X̃k(∆(∆ + 2)c(∆ + 2)n−∆(∆ + 2)n(∆ + 2)c)]

+
1

16

∫
S2

[X̃k(∆(∆ + 2)c(∆ + 2)n−∆(∆ + 2)n(∆ + 2)c]

This finishes the proof. �

8. The case of quadrupole moments

In this section, we consider the case of generalized quadrupole moments.
Namely, all c, c, n, n are (−6) eigenfunctions (or ` = 2 spherical harmonics).

Therefore, c =
∑
cij(u)X̃iX̃j , c =

∑
cij(u)X̃iX̃j n =

∑
nij(u)X̃iX̃j , n =∑

nij(u)X̃iX̃j with ∂ucij = nij and ∂ucij = nij .

8.1. Classical conserved quantities. Next we compute the evolution of
classical angular momentum and center of mass for quadrupole moments.

Lemma 8.1. Suppose fij and gij are both symmetric, traceless 3 × 3 ma-
trices. Then∫

S2

(fijX̃
iX̃j)2 =

8π

15

∑
ij

f2
ij (8.1)∫

S2

X̃pεAB∇A(fijX̃
iX̃j)∇B(gklX̃

kX̃ l) =
16π

15

∑
j

fijgjkε
ikp. (8.2)

Proof. Both formulae follow from Lemma 5.3 of [6]∫
S2

X̃iX̃jX̃kX̃ l =
4π

15
(δijδkl + δikδjl + δilδjk).

�

Combining the above lemma with Theorem 1.3 and Proposition 4.1, we
conclude that
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Proposition 8.2. Suppose c =
∑
cij(u)X̃iX̃j , c =

∑
cij(u)X̃iX̃j n =∑

nij(u)X̃iX̃j , n =
∑
nij(u)X̃iX̃j, then

∂uE = −8π

5
(
∑
ij

n2
ij +

∑
ij

n2
ij)

∂uP
k = −32π

15

∑
nijnjpε

ipk

∂uJ̃
k =

16π

5

∑
(cijnjp + cijnjp)ε

ipk

∂uC̃
k =

32uπ

15

∑
nijnjpε

ipk.

(8.3)

8.2. CWY angular momentum and center of mass. Next we com-
pute the evolution of the CWY angular momentum and center of mass for
quadrupole moments. We need the following lemma.

Lemma 8.3. Suppose the potentials of the news tensor are of mode ` = 2.
Namely,

NAB = ∇A∇Bn−
1

2
∆nσAB +

1

2
(εAC∇B∇Cn+ εBC∇A∇Cn)

where n =
∑

ij nijX̃
iX̃j and n =

∑
ij nijX̃

iX̃j satisfy
∑

i nii =
∑

i nii = 0.
Introduce two ` = 2 spherical harmonics

Q =
∑
i,k,l

(niknilX̃
kX̃ l)− 1

3

∑
i,j

n2
ij ,

Q =
∑
i,k,l

(niknilX̃
kX̃ l)− 1

3

∑
i,j

n2
ij .

Then

(1) the ` = 2 component of NABN
AB is

−48

7
Q− 48

7
Q,

(2) the odd mode component of NABN
AB is

8εikmnijnklX̃
m(δjl − X̃jX̃ l).

Here εijk is the Levi-Civita symbol in three dimensions.

Proof. Note that the even-mode components (` = 0, 2, 4) and odd-mode
components (` = 1, 3) of NABN

AB are given by

∇A∇Bn∇A∇Bn−
1

2
(∆n)2 +∇A∇Bn∇A∇Bn−

1

2
(∆n)2
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and

(∇A∇Bn− 1

2
∆nσAB)(εAC∇B∇Cn+ εBC∇A∇Cn)

= 2nij∇AX̃i∇BX̃j(εAC∇B∇Cn+ εBC∇A∇Cn)

= 2nij∇AX̃i∇BX̃j · 2nkl(εAC∇BX̃k∇CX̃ l + εBC∇AX̃k∇CX̃ l)

= 8εikmnijnklX̃
m(δjl − X̃jX̃ l)

respectively. In the last equality we use the identity εAB∇AX̃i∇BX̃j =
εijkX̃

k and ∇BX̃i∇BX̃j = δij − X̃iX̃j .
For (1), we compute

∇A∇Bn∇A∇Bn = 20n2 − 8Q+
4

3

∑
ij

n2
ij .

Since the space of ` = 4 spherical harmonics is spanned by

X̃iX̃jX̃kX̃ l +
1

35

(
δijδkl + δikδjl + δilδjk

)
− 1

7

(
X̃iX̃jδkl + X̃iX̃kδjl + X̃iX̃ lδjk + X̃jX̃kδil + X̃jX̃ lδik + X̃kX̃ lδij

)
,

(8.4)

the ` = 2 component of n2 is 4
7Q. Putting these together, we obtain (1).

�

In the case of quadrupole moments, the CWY angular momentum and
center of mass take the form:

Jk =

∫
S2

εAB∇BX̃k[NA −
1

4
C D
A ∇BCDB − c∇Am] (8.5)

Ck =

∫
S2

∇AX̃k[NA−u∇Am−
1

4
C D
A ∇BCDB−

1

16
∇A(CDEC

DE)−2c εAB∇Bm],

(8.6)
Therefore,

Jk = J̃k −
∫
S2

X̃kεAB∇Ac∇Bm̂

Ck = C̃k + 2

∫
S2

X̃kεAB∇Ac∇Bm̂+
1

4

∫
S2

X̃kεAB∇Ac∇B∆(∆ + 2)c

,

where we use (3.2) and (2.7).
The evolution formulae for Jk and Ck are thus

∂uJ
k =∂uJ̃

k −
∫
S2

X̃kεAB∇An∇Bm̂−
∫
S2

X̃kεAB∇Ac∇B∂um̂

∂uC
k =∂uC̃

k + 2

∫
S2

X̃kεAB∇An∇Bm̂+ 2

∫
S2

X̃kεAB∇Ac∇B∂um̂

+
1

4

∫
S2

X̃kεAB∇An∇B∆(∆ + 2)c+
1

4

∫
S2

X̃kεAB∇Ac∇B∆(∆ + 2)n
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By Lemma 2.1, only the ` = 2 mode components of m̂ and ∂um̂ will
survive in the above integrals.

Denote the ` = 2 mode of m̂ by m̂`=2 = m̂klX̃
kX̃ l. By Lemma 8.3, we

get

∂um̂kl =
6

7

∑
i

(niknil + niknil)−
1

3
δkl
∑
i,j

(n2
ij + n2

ij)

 .
By (8.2), we obtain the evolution equation of Jk and Ck:

Proposition 8.4. Suppose c =
∑
cij(u)X̃iX̃j , c =

∑
cij(u)X̃iX̃j, n =∑

nij(u)X̃iX̃j , n =
∑
nij(u)X̃iX̃j, then

∂uE =− 8π

5
(
∑
ij

n2
ij +

∑
ij

n2
ij)

∂uP
k =− 32π

15

∑
i,j,p

nijnjpε
ipk

∂uJ
k =

16π

15

∑
i,j,p

(3cijnjp + 3cijnjp − nijm̂jp − cij∂um̂jp)ε
ipk

∂uC
k =

16π

15

∑
i,j,p

(2nijm̂jp + 2cij∂um̂jp + 6nijcjp + 6cijnjp)ε
ipk

+
32uπ

15

∑
nijnjpε

ipk,

(8.7)

where m̂kl is given by

∂um̂kl =
6

7
[
∑
i

(niknil + niknil)−
1

3
δkl
∑
i,j

(n2
ij + n2

ij)]

Appendix A. Christodoulou-Klainerman connection
coefficients and curvature components in

Bondi-Sachs formalism

We write the limit of connection coefficients and curvature components
defined in [9, 7, 8] in terms of the Bondi-Sachs metric coefficients.

We choose the null vector fields L = ∂
∂r and L = 2

U

(
∂u −WD∂D − V

2 ∂r
)
,

which satisfy 〈L,L〉 = −2.

Definition A.1. The second fundamental forms and torsion are defined by

χAB = 〈DAL, ∂B〉 =
1

2
trχgAB + χ̂AB

χ
AB

= 〈DAL, ∂B〉 =
1

2
trχgAB + χ̂

AB

ζA =
1

2
〈DAL,L〉
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Their limit as r →∞ are defined by

Σ = lim
r→∞

χ̂

Ξ = lim
r→∞

r−1χ̂

Z = lim
r→∞

rζ.

They are related to the metric coefficients in the corresponding Bondi-
Sachs coordinate system as follows:

Proposition A.2.

ΣAB = −1

2
CAB

ΞAB = NAB

ZA = −1

2
∇BCAB

Proof. Starting with gAB = r2σAB+rCAB+O(1), the determinant condition
gives trχ = 2

r and we compute

χAB = rσAB +
1

2
CAB +O(r−1)

to get ΣAB = −1
2CAB. Direct computation gives

χ
AB

= r(−σAB + ∂uCAB) +O(1)

and hence trχ = −2
r + O(r−2) and χ̂

AB
= r∂uCAB + O(1). The limit of

torsion follows from ζA = −1
rW

(−2)
A +O(r−2). �

Definition A.3. The mass aspect and conjugate mass aspect function of
Christodoulou-Klainerman are defined by

µ = K +
1

4
trχtrχ− divζ µ = K +

1

4
trχtrχ+ divζ.

Here K denotes the Gauss curvature of the two-sphere r =const. Their
limits are defined by

N = lim
r→∞

r3µ

N = lim
r→∞

r3µ.

We express them in terms of the Bondi-Sachs metric coefficients as follows:

Proposition A.4.

N = 2m+
1

2
∇A∇BCAB, N = 2m− 1

2
∇A∇BCAB

Proof. We compute K = 1
r2

+ 1
2r3
∇A∇BCAB+O(r−4) and 1

4trχtrχ = − 1
r2

+
1
r3

(2m− 1
2∇

A∇BCAB) and the assertion follows. �
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We turn to curvature components. The convention of Riemann curvature
tensor is

R(X,Y )Z = (DXDY −DYDX −D[X,Y ])Z

R(X,Y,W,Z) = 〈R(X,Y )Z,W 〉.

Definition A.5. Define the curvature components

αAB = R(∂A, L, ∂B, L)

β
A

=
1

2
R(∂A, L, L, L)

ρ =
1

4
R(L,L,L, L)

σ/εAB =
1

2
R(∂A, ∂B, L, L)

βA =
1

2
R(∂A, L, L, L)

Here /εABdx
A ∧ dxB is the area form of the two-sphere with respect to gAB.

Their limits are defined by

AAB = lim
r→∞

r−1αAB

BA = lim
r→∞

rβ
A

P = lim
r→∞

r3ρ

Q = lim
r→∞

r3σ

BA = lim
r→∞

r3βA

Note that (A,B) were denoted by (A,B) in [7].

We express them in terms of the Bondi-Sachs metric coefficients as follows:

Proposition A.6.

AAB = −2∂uNAB

BA = ∇BNAB

P = −2m− 1

4
CABN

AB

Q = εAB
(
−1

4
CDANDB −

1

2
∇A∇DCDB

)
BA = −NA

Proof. The formula for A is obtained from (6) of [7], 2∂Ξ
∂u = −A, which is

the rescaled limit of the propagation equation D̂χ̂ = −α.

The formula for B is obtained from (2) of [7], ∇BΞAB = BA, which is the
rescaled limit of the Codazzi equation /divχ̂− χ̂ · ζ = 1

2

(
/∇trχ− trχζ

)
+ β.
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The formula for P and Q are obtained from (3) of [7],

εAB∇AZB = Q− 1

2
Σ ∧ Ξ, ∇AZA = N + P − 1

2
Σ · Ξ,

which is the rescaled limit of the Hodge system

/curlζ = σ − 1

2
χ̂ ∧ χ̂, /divζ = µ+ ρ− 1

2
χ̂ · χ̂.

Finally, we consider the Codazzi equation

/divχ̂+ χ̂ · ζ =
1

2

(
/∇trχ+ trχζ

)
− β.

Its leading order at O(r−2) leads to (1) of [7] and its subleading order at
O(r−3) leads to(
−1

4
∂A|C|2 +

1

2
CBD∇DCAB +

1

4
∇ACEDCDE +

1

2
∇DCDECAE

)
+

1

4
CAB∇DCBD

=ζ
(−2)
A −BA.

We simplify the second term in the parentheses by the identity ∇(DCB)A =

∇ACBD + ∇ECAEσBD − ∇ECE(DCB)A and the left-hand side becomes
1
8∂A|C|

2+1
4CAB∇DC

BD. Direct computation yields ζ
(−2)
A = −NA+1

8∂A|C|
2+

1
4CAB∇DC

BD and the formula for B follows. �

Appendix B. Integration by Part Formula

In this section, we prove two integration formula that are used to compute
angular momentum and center of mass in spacetime with vanishing news.

Theorem B.1. Let Y A = εAB∇BX̃k, k = 1, 2, 3. Let FAB = 2∇A∇Bf −
∆fσAB and PBA = ∇B∇DCDA −∇A∇DCDB. Then∫
S2

Y A

(
1

4
CAB∇DFDB +

1

4
FAB∇DCDB −

3

4
PBA∇Bf −

1

4
∇BPBAf

)
= 0.

Proof. We integrate by parts the last two terms to get∫
S2

−1

2
Y A(∇B∇DCAD −∇A∇DCBD)∇Bf +

1

2
∇BY A∇B∇DCAD · f.

=

∫
S2

1

2
∇BY A∇DCAD∇Bf +

1

2
Y A∇DCAD∆f − 1

2
Y A∇DCBD∇A∇Bf

+

∫
S2

1

2
Y A∇DCADf −

1

2
∇BY A∇DCAD∇Bf

=

∫
S2

−1

2
Y A∇DCBD(∇A∇Bf −

1

2
∆fσAB) +

1

4
Y A∇DCAD(∆ + 2)f

�
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Theorem B.2. Let FAB = 2∇A∇Bf −∆fσAB and PBA = ∇B∇DCDA −
∇A∇DCDB. Then∫
S2

∇AX̃k

(
CAB∇DFBD + FAB∇DCBD +

1

2
∇A(CBDF

BD)− f∇BPBA − 3PBA∇Bf
)

= 0.

Proof. We integrate by parts the last two terms to get∫
S2

∇AX̃k(−2PBA)∇Bf

=

∫
S2

−2∇AX̃k(∇B∇DCDA −∇A∇DCDB)∇Bf

=

∫
S2

−2X̃k∇DCDA∇Af + 2∇AX̃k∇DCDA∆f + 4X̃k∇DCDB∇Bf − 2∇AX̃k∇DCDB∇A∇Bf

=

∫
S2

2X̃k∇DCDA∇Af −∇AX̃k∇DCDBFAB +∇AX̃k∇DCDA∆f

=

∫
S2

−2∇DX̃kCDA∇Af − 2X̃kCDA∇D∇Af −∇AX̃k∇DCDBFAB +∇AX̃k∇DCDA∆f

=

∫
S2

2∇AX̃k∇DCDA∇Af +
1

2
∆X̃kCDAF

DA −∇AX̃k∇DCDBFAB +∇AX̃k∇DCDA∆f

=

∫
S2

−∇AX̃kCDA∇D(∆ + 2)f − 1

2
∇AX̃k∇A(CDBF

DB)−∇AX̃k∇DCDBFAB.

�
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