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Restriction for general linear groups:
The local non-tempered Gan–Gross–Prasad

conjecture (non-Archimedean case)
By Kei Yuen Chan at Shanghai

Abstract. We prove a local Gan–Gross–Prasad conjecture on predicting the branch-
ing law for the non-tempered representations of general linear groups in the case of non-
Archimedean fields. We also generalize to Bessel and Fourier–Jacobi models and study a pos-
sible generalization to Ext-branching laws.

1. Introduction

In 1990s, Gross and Prasad [22] formulated conjectures which determine when an irre-
ducible generic representation of SOn�1.F / appears in a quotient of an irreducible generic
representation of SOn.F /, where F is a local field. The conjectural answer is in terms of
symplectic root numbers, providing deep connections with number theory. About ten years
ago, Gan, Gross and Prasad [18] generalized the conjectures to other classical groups. For
p-adic groups, the local generic conjectures in orthogonal, unitary and symplectic-metaplectic
cases have been respectively settled by Waldspurger [43], Mœglin and Waldspurger [32], and
by Beuzart-Plessis [8], Gan and Ichino [20], and by Atobe [4]; and for real groups, the uni-
tary cases for tempered representations and independently for discrete series are settled by
Beuzart-Plessis [9] and H. He [25], respectively. We remark that the generic case for general
linear groups has been known long from the work of Jacquet, Piateski-Shapiro and Shalika [27].

Recently, Gan, Gross and Prasad [19] have formulated new conjectures for certain non-
tempered representations arising from a local component of an automorphic representation.
The main goal of this paper is to prove one of those conjectures for general linear groups over
a non-Archimedean local field and study related generalizations.

1.1. Local non-tempered Gan–Gross–Prasad conjecture. We begin with a precise
formulation of the non-tempered conjecture. Let Gn D GLn.F /, the general linear group over
a local field F . LetWF be the Weil group of F . The Weil–Deligne group WDF of F is defined
as

WDF D

´
WF � SL2.C/ if F is non-Archimedean,

WF if F is Archimedean.
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The set of Langlands parameters of Gn is the set of equivalence classes of homomorphisms

� WWDF ! LG D GLn.C/;

under conjugation by elements in GLn.C/, and the restriction to the factor of SL2.C/ inWF is
algebraic. The local Langlands correspondence for GLn.F / is now known by [24,26,31,37,44].

Define the Arthur parameters [3] as the set of LG-orbits of maps

 WWDF � SL2.C/! LG

such that jWDF has bounded image, i.e. has tempered Langlands parameter, and the restriction
to the SL2.C/ factor is algebraic. For each Arthur parameter  , one assigns an L-parameter
given by

� .w/ D  

 
w;

 
jwj1=2 0

0 jwj�1=2

!!
:

Let Symk.C2/ be the unique .k C 1/-dimensional irreducible representation of SL2.C/.
The Arthur parameter, as a finite WDF � SL2.C/-representation  , takes the form

MA D
X
d

Md ˝ Symd .C2/;(1.1)

where eachMd is a representation of WDF such that  jWDF has bounded image, i.e. eachMi

corresponds to a tempered representation. It gives rise to a Langlands parameterM as described
above, and gives a Gn-representation denoted by �M . Any irreducible smooth representation
of Gn associated to the Langlands parameter � coming from an Arthur parameter is called
a representation of Arthur type.

A key notion in [19] is the relevant pair which governs the branching law of representa-
tions of Arthur type:

Definition 1.1 ([19]). For any n;m 2 Z�0, two Arthur parameters MA and NA for
respective Gn and Gm are said to form a relevant pair if there exists WDF -representations
MC0 ; : : : ;M

C
r ;M

�
0 ; : : : ;M

�
s (possibly zero) corresponding to tempered representations such

that

MA D

rX
dD0

MC
d
˝ Symd .C2/˚

sX
dD1

M�d ˝ Symd�1.C2/(1.2)

and

NA D

rX
dD1

MC
d
˝ Symd�1.C2/˚

sX
dD0

M�d ˝ Symd .C2/:(1.3)

We remark that in the above definition, the dimensions of the Arthur parameters MA and
NA are not required to be of corank 1.

We regardGn as a subgroup ofGnC1 via the embedding g 7! diag.g; 1/. A non-tempered
Gan–Gross–Prasad conjecture predicts which Arthur-type representations of Gn appear in the
quotient of an Arthur-type representation of GnC1, in terms of relevant pairs.

Conjecture 1.2 ([19, Conjecture 5.1]). Let F be a local field, and let �M and �N be
Arthur-type representations of GLnC1.F / and GLn.F /, respectively. Then HomGn.�M ; �N /
is non-zero if and only if their respective associated Arthur parametersMA andNA are relevant.
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The main result of the paper is to prove the conjecture for non-Archimedean field F . Pre-
viously, for non-Archimedean F , certain cases including when the Deligne SL2.C/ in WDF
acts trivially are proved in [19], and M. Gurevich [23] proves the only if direction. We shall
give another proof for the only if direction in this paper. Recently, Gourevitch and Sayag [21]
have results towards the Archimedean case. The unitary restriction problem is studied in [42]
by Venkatesh.

Theorem 1.3. If F is non-Archimedean, then Conjecture 1.2 holds.

1.2. Representation-theoretic reformulation. From now on, we assume F is non-
Archimedean. Let Alg.Gn/ be the category of smoothGn-representations. We first reformulate
the problem into a representation theory setup.

For representations �i in Alg.Gni / .i D 1; : : : ; k/ and n D n1 C � � � C nk , we define the
product

�1 � � � � � �k 2 Alg.Gn/

to be the normalized parabolic parabolically induced module from �1 � � � �� �k . For more
detailed notions of Zelevinsky segments and product, see Section 2.4. For an irreducible unita-
rizable cuspidal representation � of Gl , let

��.m/ D Œ�
�.m�1/=2�; �.m�1/=2��

be a Zelevinsky segment. Any square integrable representation is known to be isomorphic to
St.��.m// for some such Zelevinsky segment ��.m/ (see [44]). Any tempered representa-
tion is isomorphic to a product of some square-integrable representations, and corresponds to
a WDF -representation  with bounded image  .WDF /.

Let v�.m; d/ be the unique irreducible quotient of the product

St.�.d�1/=2��.m// � � � � � St.��.d�1/=2��.m//;

which is so-called a Speh representation and is unitarizable. Each factor Md ˝ Symd .C/ in
(1.1) corresponds to a product of Speh representations of the form

v�1.m1; d C 1/ � � � � � v�r .mr ; d C 1/:(1.4)

Any Arthur-type representation is a product of some Speh representations. It follows from
[5, 41] that such a product is irreducible, and is independent of the ordering of Speh represen-
tations.

The notion of a derivative is defined in [44] (see Section 2.1 for the detail). For an
irreducible � 2 Alg.Gr/, let e� be the highest derivative of � and let �� D �1=2e� , where
�.g/ D jdetgjF . A key observation in [19] is that

v�.m; d C 1/
�
Š v�.m; d/(1.5)

(when d D 0, we regard v�.m; 0/ D 1) and so

.v�1.m1; d C 1/ � � � � � v�r .mr ; d C 1//
�
Š v�1.m1; d / � � � � � v�r .mr ; d /;(1.6)

which is also a motivation for the notion of relevant pairs in [19]. The isomorphism (1.5)
follows from the well-known highest derivative of Zelevinsky [44] (and its translation to the
Zelevinsky classification via [41]).

Thus combining Definition 1.1, (1.4) and (1.6), we have the following reformulation.
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Reformulation of Conjecture 1.2 in the non-Archimedean case. Let F be a non-
Archimedean local field. Let �M and �N be Arthur-type representations of GLnC1.F / and
GLn.F /, respectively. Then HomGn.�M ; �N / ¤ 0 if and only if there exist Speh representa-
tions �p;1; : : : ; �p;r and �q;1; : : : ; �q;s such that

�M Š �p;1 � � � � � �p;r � �
�
q;1 � � � � � �

�
q;s

and
�N Š �

�
p;1 � � � � � �

�
p;r � �q;1 � � � � � �q;s:

1.3. Generalizations. The first generalization is on Bessel and Fourier–Jacobi models
(Theorem 5.12). Such a generalization is also expected in [19]. The strategy for proving general
cases is connecting those models functorially via Bernstein–Zelevinsky theory (Corollary 6.3)
and then using the reduction to basic case similar to [18]. The functorial connection is a key
difference of our study from the one in [18]. We remark that we also deduce the equal rank
Fourier–Jacobi case from the basic case of restricting GnC1 to Gn representations, which dif-
fers from that some results (such as multiplicity one theorems, e.g., [39]) are proved separately
for equal rank Fourier–Jacobi models.

In more detail, let

HR
r D

8̂<̂
:
0B@g x

1 vt

u

1CA W g 2 Gr ; x 2 Matr�.n�r/; v 2 F
n�r ; u 2 Un�r

9>=>; � GnC1;
whereUn�r is the subgroup of unipotent upper triangular matrices. It is sometimes referred to a
Rankin–Selberg subgroup. Let  be a non-degenerate character on a subgroup Un�r Ë F n�r ,
extending trivially to HR

r (also see Section 5.2). We show that the restriction problem for
a Bessel model or a Fourier–Jacobi model is equivalent to the problem of determining the
corresponding Rankin–Selberg model (Corollary 6.3), i.e. determining if

HomHR
r
.�1 ˝  ˝ �

�.n�r/=2; �2/ ¤ 0;

where �1 and �2 are respective irreducible GnC1 and Gr representations.
The second generalization is on Ext-branching laws. The generic case for Ext-branching

law is simpler: for respective generic irreducible representations �1 and �2 of GnC1 and Gn,

HomGn.�1; �2/ Š C

and
ExtiGn.�1; �2/ D 0 for i � 1:

The Ext-vanishing part is conjectured by D. Prasad [36] and proved in [16], and the Ext-result
also extends to standard modules in [12]. One may consider an analogous problem of Ext-
branching laws for Arthur representations. However, there is no such general Ext-vanishing
result for Arthur representations, and we do not have a way predicting non-vanishing Ext at
the moment.

Nevertheless, we formulate a conjecture in Section 7.1, which reduces computations of
Ext-groups for branching laws to computation of Ext-groups of derivatives. The conjecture
is partly based on the derivative approach in [19], as well as some examples computed in
this paper.
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1.4. Outline of the proof of non-tempered GGP. We shall consider the reformulated
problem in Section 1.2. Let

�M D �p;1 � � � � � �p;r 2 Alg.GnC1/;(1.7)

and

�N D �q;1 � � � � � �q;s 2 Alg.Gn/;

where each �p;i and �q;j is an (irreducible) Speh representation.
The proof is on the induction of the total number of factors �p;i and �q;j which are not

cuspidal representations. The basic case is that all factors are cuspidal representations. Then the
associated Arthur parameters MA and NA are automatically relevant. Since the representations
�M and �N are generic in this case, we always have HomGn.�M ; �N / ¤ 0.

The strategy of the general case is to find a suitable filtration on �M jGn

0! �! �M jGn ! ! ! 0

such that

HomGn.!; �N / D Ext1Gn.!; �N / D 0(1.8)

and HomGn.�; �N / can be transferred to another Hom space computable from the inductive
case. Now a long exact sequence argument gives

HomGn.�M jGn ; �N / Š HomGn.�; �N /

and so one concludes the former from the latter one. The way to find such filtration is based
on a combination of Bernstein–Zelevinsky filtration and Mackey theory, and (1.8) would fol-
low from comparing cuspidal supports on ! and �N . A more systematic filtration is given in
Proposition 5.13.

In more detail, an Arthur-type representation �M is written as a product of Speh repre-
sentations in (1.7). Now we write �p;k D v�k .mk; dk/ for all k. As shown in Proposition 4.1,
there is a duality between the original restriction problem HomGn.�M ; �N / ¤ 0 and the dual
restriction problem

HomGnC1.�
0
� �N ; �M / ¤ 0;

where � 0 is a certain unitarizable cuspidal representation of G2. With the commutation of the
Speh representations in the product, we may assume thatm1 C d1 is the largest among all Speh
representation factors in �M and �N . Such arrangement allows one (easily) finds a suitable
filtration to obtain the vanishing (1.8).

Now some cuspidal support consideration in the filtration reduces to the study of the
bottom layer (of the filtration):

HomGnC1.v
�
� ..… N� � 0/jGk /; �N /;(1.9)

for some Gk , where v D v�1.m1; d1/, �
0 D �p;2 � � � � � �p;r , … is the Gelfand–Graev repre-

sentation and N� indicates the mirabolic induction considered in Section 3. A key here is that
a Gan–Gross–Prasad-type reduction can be used to transfer the study of .… N�� 0/ to .� �� 0/jGk
for some suitable choice of a unitarizable cuspidal representation � . (Here � � � 0 is an irre-
ducible GkC1-representation.)
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Now � � � 0 is still Arthur type and so induction can be applied. It is clear that if � is
a quotient of .� � � 0/jGk , then v� � � is still a quotient of v� � ..� � � 0/jGk /, which basi-
cally deals with the if direction. The converse of the statement is not true in general, but holds
under suitable assumption that fulfills our purpose. For which, we have to study the product
with ��p;1 preserves extensions in some situations (Corollary 9.4), which handles the only if
direction. We also need some product preserving irreducibility results from [30].

1.5. Remarks. For irreducible generic quotients of Gn appearing in an irreducible
generic representation of GnC1 (also known as generic GGP conjecture for GL-case), it is
shown by Rankin–Selberg integrals [27,35]. In [16], G. Savin and the author give another proof
for the generic case using variations of Bernstein–Zelevinsky filtrations. We also remark that in
the above outline, one may replace the mirabolic induction… N� � with certain Rankin–Selberg
model discussed in Section 5. Such interpretation is later motivated by the approach in the
generic case of orthogonal groups by Mœglin and Waldspurger [32].

Our method for Arthur-type representations is again a variation of Bernstein–Zelevinsky
filtration method which exploits the product structure of Arthur representations. To illustrate
how the refinement gives more information, we consider respective representations in GL5.F /
and GL4.F / in [19, Remark 5.6] with A-parameters:

MA D 1˝Sym0.C2/˝Sym2.C2/˚1˝Sym0.C2/˝Sym0.C2/˚1˝Sym0.C2/˝Sym0.C2/

and
NA D 1˝ Sym0.C2/˝ Sym1.C2/˚ 1˝ Sym1.C2/˝ Sym0.C2/:

(Here 1 is the trivial representation of the Weil group and the first Symk factor is the irre-
ducible .k C 1/-dimensional representation of the SL2.C/ in the Weil–Deligne group.) Their
respective representations take the form

�1 D hŒ�
�1; ��i � 1 � 1 and �2 D hŒ�

�1=2; �1=2�i � St.Œ��1=2; �1=2�/:

(Here 1 is the trivial character of F �.) Now the Mackey theory gives two layers on �1jG4 :

hŒ��1=2; �3=2�i � ..1 � 1/jG1/ and hŒ��1=2; �1=2�i � ..1jM1 � 1 � 1/jG2/:

Set � D hŒ��1=2; �1=2�i. A key difference of our method from the one in [19] is to use transfer
in (1.9) to deduce that � � ..1jM1 � 1 � 1/jG2/ has a quotient of �2, asG4 representations. The
above filtration is coarser than the full Bernstein–Zelevinsky filtration, but has the advantage
of using transfer and induction as mentioned before. It can also deal with an obstruction in
[19, Remark 5.6].

An irreducible cuspidal representation of Gn restricted to the mirabolic subgroup is iso-
morphic to the Gelfand–Graev representation, which is an essential step in our proof. This
classical fact plays crucial roles, and is generalized to essentially square-integrable representa-
tions when restricted to Gn�1 via Hecke algebra realization [14–16] (also see [13] for further
generalization to representations restricted to be projective), but we do not critically need any
Hecke algebra technique in this paper. We also remark that such fact also plays important roles,
for example, in the reductions in [18] and in proving the Ext-vanishing theorem in [16].

Our approach in only if direction only requires a study of producting with one Speh
representations (rather than several generalized Speh representations), compared with the study
of multiple products of generalized Speh representations in [23]. We also work directly in the
p-adic group without passing to other categories, and so the method is different from [23]. We
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show under some conditions on cuspidal supports that producting with a Speh representation
preserves extensions and is a fully-faithful functor. This improves one of results of Lapid and
Mínguez [30] which shows producting with Speh representations preserves irreducibility under
a related condition.

1.6. Summary of results and structure of the paper. We summarize the key results
of this paper below:

(1) A proof of Conjecture 1.2 in the case of a non-Archimedean field (Theorem 4.5).

(2) Generalize Conjecture 1.2 to Bessel, Fourier–Jacobi and other mixed models (Theo-
rem 5.12).

(3) A filtration as a tool to study restriction problem for parabolically induced modules
(Proposition 5.13).

(4) Product with a Speh representation preserves indecomposability and is a fully-faith func-
tor under some conditions (Theorems 8.1 and 9.1).

In Section 2, we set up notations and recall some results such as properties of Speh
representations. In Section 3, we study parabolically induced modules restricted to mirabolic
subgroups. In Section 4, we prove Conjecture 1.2 for non-Archimedean case. In Section 5,
we generalize results to general cases including Bessel models and Fourier–Jacobi models. In
Section 6, we establish connections between models. In Section 7, we study Ext-branching
laws for Arthur-type representations. In Sections 8 and 9, we prove Theorems 8.1 and 9.1.

Acknowledgement. This project grows out from discussions with Dipendra Prasad,
and the author would like to thank him for helpful discussions and comments. He would also
like to thank Gordan Savin for discussions on various topics and helpful comments. The author
would also like to thank Max Gurevich for helpful correspondences on the preprint. The author
would like to thank the referee for careful reading and useful comments.

2. Notations and Preliminaries

2.1. Bernstein–Zelevinsky functors. For a connected reductive group G, let Alg.G/
be the category of smooth (complex) representations of G. Let Gn D GLn.F /. All representa-
tions in this paper are smooth and we usually drop the term “smooth”. For a representation �
of Gn, set n� D n.

LetG D Gn. For a closed subgroupH ofG and a representation � in Alg.H/, let IndGH�
be the space of smooth functions f W G ! � satisfying

f .hg/ D ı.h/1=2h:f .g/;

where ı is the modulus function of H . The G-action on IndGH� is given by

.g:f /.g0/ D f .g0g/ for any g; g0 2 G.

Let indGH� be the subrepresentation of IndGH� containing all functions with compact support
modulo H . We shall use uind and uInd for corresponding unnormalized inductions of ind
and Ind, respectively. Those functors Ind; ind; uInd; uInd are exact [7, Proposition 2.25 (a)].
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Let Mn be the mirabolic subgroup of Gn, i.e. Mn is the subgroup of Gn with all the
matrices with the last row .0; : : : ; 0; 1/. We shall also regardGn�1 as a subgroup ofMn via the
embedding

g 7!

 
g

1

!
:

Thus we have a chain of subgroups:

1 D G0 DM1 � � � � �Mn�1 � Gn�1 �Mn � Gn:

For � 2 Alg.Gn/, we may simply write �jM for the restriction �jMn
Let V D Vn�1 be the unipotent radical of Mn. Let N W F ! C be a non-degenerate

character. Let  W V ! C by  .v/ D N .vn�1/, where vn�1 is the last entry in v. Note the
action of Mn�1 stabilizes  W V ! C. For a character � of V and a representation � of Mn,
define

�V;� D ı
�1=2�=hv:x � �.v/x W v 2 V; x 2 �i;

where ı is the modulus function ofMn. When � D 1 (respectively, � D  ), we regard �V;� as
Gn�1-representation (respectively, Mn�1-representation).

Define � D �n W Gn ! Gn by �.g/ D g�t , the Gelfand–Kazhdan involution [7, Sec-
tion 7]. For any irreducible representation � of Gn, �.�/ Š �_.

Define

ˆC W Alg.Mn/! Alg.MnC1/; ‰C W Alg.Gn/! Alg.MnC1/;

ˆ� W Alg.MnC1/! Alg.Mn/; ‰� W Alg.MnC1/! Alg.Gn/:

by
ˆC.�/ D indMnC1MnVn

� �  ; ‰C.�/ D indMnC1GnVn
� � 1;

ˆ�.�/ D �Vn; ; ‰�.�/ D �Vn;1:

In particular, ‰C is just an inflation of representations. Some major properties of the
functors [6, Proposition 3.2]:

(1) All the above functors are exact.

(2) ˆ� is left-adjoint to ˆC and ‰� is left-adjoint to ˆC.

(3) ˆ�‰C D 0 and ‰�ˆC D 0

(4) There is an exact sequence:

0! ˆCˆ� ! Id! ‰C‰� ! 0:

(5) All the irreducible representations of Mn are isomorphic to .ˆC/k�1‰C.�/ for some k
and some irreducible smooth Gn�k-representation.

(6) [7, 5.18] For any cuspidal representation � of Gn, � jMn Š .ˆ
C/n�1.1/. Here 1 is the

1-dimensional representation of M1.

Denote, the Gelfand–Graev representation,

…n WD .ˆ
C/n�1.1/ 2 Alg.Mn/:

Let � D �n W Gn ! C be a character given by �.g/ D jdet.g/jF . For � 2 Alg.Gn/, the
k-th right and left derivatives of � are respectively defined as

�.k/ D ‰�.ˆ�/k�1.�jMn/;
.k/� D �.�.�/.k//:
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and the k-th shifted right and left derivatives of � are defined as

� Œk� D �1=2 � �.k/; Œk�� D ��1=2 � .k/�:

Let k� be the largest integer such that �.k
�/ ¤ 0. We shall call �.k

�/ to be the highest
derivative of � , and k� to be the level of � . We also set �� D � Œk

��.

2.2. Parabolic induction and Jacquet functors. Let Un be the subgroup of Gn con-
taining all unipotent upper triangular matrices. Let Ni be the unipotent subgroup of Gn con-
taining matrices of the form  

In�i u

Ii

!
for any .n � i/ � i matrices u over F . We regard Gn�i �Gi as a subgroup of Gn via the
embedding .g1; g2/ 7! diag.g1; g2/. Let Pi be the parabolic subgroup .Gn�i �Gi /Ni .

For �1 2 Alg.Gn�i / and �2 2 Alg.Gi /, define the product of �1 and �2 as

�1 � �2 D IndGn
.Gn�i�Gi /ËNi

�1 � �2 � 1:

For a family of representations �i 2 Alg.Gni / (i D 1; : : : ; k), define

�1 � � � � � �k WD �1 � .� � � � .�k�1 � �k/ � � � /:

The parabolic induction is an exact functor [7]. For more properties for parabolic inductions,
see [30].

LetN�i D N
t
i be the opposite unipotent subgroup. For � 2 Alg.Gn/, we shall denote by

�Ni and �N�
i

the corresponding normalized Jacquet modules, as Gn�i �Gi -representations.
They are also exact functors. Since the parabolic induction has usual and opposite Jacquet func-
tors as left and right adjoint functors respectively, parabolic induction also preserves injective
and projective objects.

For an irreducible representation � of Gk , there is a unique set (with multiplicities) of
cuspidal representations �1; : : : ; �r such that � is a composition factor of �1 � � � � � �r , and
we denote the multiset

cupp.�/ D ¹�1; : : : ; �rº;

and denote the set
cuppZ.�/ D ¹�

i�j ºi2Z;jD1;:::;r :

2.3. Bernstein–Zelevinsky filtrations. Since Bernstein–Zelevinsky filtration [6, Sec-
tion 3.5] (and its variations) is a main tool in this article, we recall in this section.

Let � be in Alg.GnC1/. Then �jGn admits a filtration

0 D �nC1 � �n � � � � � �1 � �0 D �jGn

such that
�k�1=�k Š �

Œk�
� indGk�1Uk�1

 k;

where  k is a non-degenerate character on Uk�1. Note that indGk�1Uk�1
 k Š …kC1jGk . There is

a “left” version of the filtration (see [16] and [12]), while we do not need this in this article.
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2.4. Speh representations and Zelevinsky segments. Let � be an irreducible cuspidal
representation of Gm. For any a; b 2 C with b � a 2 Z�0, a Zelevinsky segment

� D Œ�a�; �b��

is the set ¹�a�; �aC1�; : : : ; �b�º, and we denote a.�/ D �a� and b.�/ D �b�. Denote by h�i
(respectively, St.�/) the unique submodule (respectively, quotient) of �a� � � � � � �b�.

A Zelevinsky multisegment is a multiset of Zelevinsky segments. For a Zelevinsky mul-
tisegment

m D ¹�1; : : : ; �rº;

denote by hmi the unique irreducible subrepresentation of h�1i � � � � � h�ri, and denote by
St.m/ the unique irreducible quotient of St.�1/ � � � � � St.�r/, where�1; : : : ; �r are ordered
in the way as in [44, Theorem 6.1]. We also denote the parabolic induction h�1i � � � � � h�ri
by �.m/.

Let Irrc.Gk/ be the set of all (isomorphism classes of) irreducible cuspidal representa-
tions ofGk , and let Irrc D

F
k�0 Irrc.Gk/. Let Irru;c.Gk/ be the set of irreducible unitarizable

cuspidal representations of Gk . Let Irru;c D
F
k�0 Irru;c.Gk/.

Let � 2 Irrc.Gm/. For a positive integer d , define

��.d/ D Œ�
�.d�1/=2�; �.d�1/=2��:

For a positive integer m, define

u�.m; d/ D h¹�
�.m�1/=2��.d/; : : : ; �

.m�1/=2��.d/ºi:

When � is unitarizable, we shall call those representations to be Speh representations, and they
are unitarizable [5, Section 8] (see [41]).

In Section 1.2, we also introduce the notion v�.m; d/. The two notions coincide (and
here we do not assume � to be unitarizable):

Lemma 2.1 ([41, Theorem A10]). For any � 2 Irrc.Gn/, any d;m � 1,

v�.m; d/ Š u�.m; d/:

The above result can also be deduced from Mœglin–Waldspurger algorithm.
Explicit derivatives of a Speh representation are particularly simple to describe, and one

refers to [29] (also see [15, Section 7]). We collect some useful information for our study:

Lemma 2.2 ([29, Theorem 14]). Let � D u�.m; d/ be a Speh representation.

(1) The level of � is n�m.

(2) If k is not the level of � and � Œk� ¤ 0, then the cuspidal support of � Œk� contains
�.dCm�2/=2C1=2�.

(3) If k is the level of � , then �� D � Œk� Š u�.m; d � 1/ and �.k/ Š ��1=2u�.m; d � 1/.

2.5. Weakly relevant condition for general branching law. For a segment �, set
Œ0�� D ��1=2� and �Œ0� D �1=2�. For a segment � D Œ�a�; �b��, set �� D Œ�a�; �b�1��
and �� D Œ�aC1�; �b��; and set �Œ�� D �1=2�� and Œ��� D ��1=2 � ��.
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Let m and n be two Zelevinsky multisegments. We say that m and n are weakly relevant
if there exists segments

�p;1; : : : ; �p;r ; �q;1; : : : ; �q;s

and
�a;1; : : : ; �a;k; �b;1; : : : ; �b;l

such that

m D ¹�p;1; : : : ; �p;r ; �
Œ��
q;1; : : : ; �

Œ��
q;sº [ ¹�a;1; : : : ; �a;k;

Œ0��b;1; : : :
Œ0��b;lº

and

n D ¹Œ���p;1; : : : ;
Œ���p;r ; �q;1; : : : ; �q;sº [ ¹

Œ0��a;1; : : : ;
Œ0��a;k; �b;1; : : : ; �b;lº:

While we do not need the following result, it gives one guiding principle in general
smooth branching law. One may also compare with an Archimedean result [21] in terms of
wavefront sets. We remark that the converse is not true in general (for example, see the quotient
branching law for the Steinberg representation in [16]).

Proposition 2.3. Let �1; �2 be irreducible smooth representations of GnC1 and Gn,
respectively. Let m and n be their associated Zelevinsky multisegments. If HomGn.�1; �2/¤ 0,
then m and n are weakly relevant.

Proof. Since HomGn.�1; �2/ ¤ 0, we have that HomGn.�.�.m//
_; �.n// ¤ 0. (We

remark that �.�.m//_ has a quotient of hmi as �.hmi/_ Š hmi.) Let �1 D �.�.m//_ and
�2 D �.n/. Now using Bernstein–Zelevinsky filtration (Section 2.3, also see [16, Lemma 2.4]
and [13, Lemma 2.1]), we obtain that, for some i ,

HomGnC1�i .�
ŒiC1�
1 ; .i/�2/ ¤ 0:

Write m D ¹�1; : : : ; �kº and n D ¹e�1; : : : ;e�lº. For convenience, we also set the notion
�0 D � and 0� D � (i.e. no effect on �). Using the geometric lemma on �1 (with suit-
able arrangement of segments, see for example the proof of [13, Lemma 6.3]), we obtain
a filtration on �ŒiC1�1 whose successive quotients are �.�.p/_/ with p taking the form

p D ¹�1=2�#
1; : : : ; �

1=2�#
kº

and similarly a filtration on .i/�2 whose successive quotients are �.q/ with q taking the form

q D ¹#e�1; : : : ; #e�lº;
where each # D � orD 0. Now the previous non-vanishing Hom implies that

HomGn.�.�.p/
_/; �.q// ¤ 0

for some p and q of the form. The ordering [44, Theorem 7.1] of Zelevinsky classification
implies that a non-zero map in HomGn.�.�.p/

_/; �.q// factors through the Zelevinsky sub-
module of �.q/ and hence p D q for some p and q taking the above form. In other words, we
have for each j , �1=2��j D e�ij or �1=2��j D 1 (asG0-representation), or�j D ��1=2 ��e�ij ,
or �1=2�j D e�ij , or �1=2��j D

�e�ij for some ij . These conditions give the weakly relevant
condition on the pair .m;n/.
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2.6. Ext-vanishing on cuspidal supports. The following result is standard. Since we
shall frequently use the following result, we give a proof on it.

Lemma 2.4. Let �1 be an irreducible Gn�i -representation and let �2 2 Alg.Gi / (not
necessarily admissible). Let � be an admissibleGn-representation. Suppose that for any simple
composition factor � of � , cupp.�/ \ cupp.�1/ D ;. Then, for all i ,

ExtiGn.�1 � �2; �/ D 0

Proof. It suffices to prove for � to be irreducible. One first applies Frobenius reciprocity,
for any i ,

ExtiGn.�1 � �2; �/ Š ExtiGn�i�Gi .�1 � �2; �N�i /:
Since �N�

i
is admissible, it suffices to check the Ext-vanishing for each simple composition

factor � 0 of �N�
i

. Now we write � 0 D �a � �b for simple Gn�i and Gi representations �a
and �b , respectively. Now we have that ExtiGi .�1; �a/ D 0 since, by using the cuspidal support
condition, one can find an element in the Bernstein center which acts by a different scalar on
�1 and �a. Now we conclude ExtiGn.�1 � �2; �

0/ D 0 by Künneth formula.

3. Mirabolic induction

In this section, we discuss inductions involving mirabolic subgroups, which will be used
in Sections 4, 5 and 6.

3.1. Mirabolic induction. Let � 2 Alg.Mm/ and let � 2 Alg.Gn/. Define two types
of mirabolic inductions, similar to [6, Section 4.12].

(1) Type 1: Let Q D Pm \MnCm � GnCm, i.e.

Q D

´ 
g u

m

!
W g 2 Gn; m 2Mm; u 2 Matn�m

µ
:

Let � W Q! C be the identity.

(2) Type 2: Let Q D P tm \MnCm � GnCm, i.e.

Q D

8̂<̂
:
0B@gu h v

1

1CA W g 2 Gn; u 2 Matm�1;n; h 2 Gm�1; v 2 Fm�1

9>=>; :
Let � W Q W! C given by � D ��1=2.

For type 1 (respectively, type 2), extend � � � trivially toQ. Define theMnCm-represen-
tation � N� � (respectively, � N� �) to be the space of smooth functions f WMnCm ! � � �
satisfying f .qg/ D �.q/ı.q/1=2q:f .g/ for any q 2 Q and g 2MnCm, and f is compactly-
supported modulo Q, where ı is the modulus function of Q.

In type 1, when restricting to GnCm�1, we have

.� N� �/jGnCm�1 Š .�
1=2�/ � .� jGm�1/;(3.1)

where the isomorphism is given by f 7! .g 7! f .diag.g; 1///. Here we naturally identify
� � � and .�1=2�/� .� jGm�1/. We may also sometimes simply write � for N�.
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3.2. Associative property. The following lemma follows from an inspection. We omit
the details.

Lemma 3.1 ([44]). Let �1 2 Alg.Gn1/. Let �2 2 Alg.Gn2/. Let � 2 Alg.Mr/. Then:

(1) .�1 N� �/ N� �2 Š �1 N� .� N� �2/,

(2) .�1 � �2/ N� � Š �1 N� .�2 N� �/,

(3) .� N� �1/ N� �2 Š � N� .�1 � �2/.

3.3. From parabolic to mirabolic induction. The appearance of mirabolic inductions
comes from the study of parabolic inductions when restricting to the mirabolic subgroup via
Mackey theory. The following lemma will be used several times.

Lemma 3.2 ([6, Proposition 4.13]). Let �1 and �2 be Gn1 and Gn2-representations.
Then .�1 � �2/jM admits a short exact sequence

0! �1jM N� �2 ! .�1 � �2/jM ! �1 N� .�2jM /! 0:

3.4. Connection to Bernstein–Zelevinsky functors.

Lemma 3.3 ([6, Proposition 4.13]). Let � 2 Alg.Gn/. Let � 2 Alg.Mk/. Then:

(1) ‰�.� N� �/ Š ‰�.�/ � � ,

(2) 0! ˆ�.�/ N� � ! ˆ�.� N� �/! ‰�.�/ N� .�jM /! 0.

The following result is standard. We omit the details.

Lemma 3.4. For � 2 Alg.Gr/,

.ˆC/k‰C.�/ Š � N�…kC1:

It is also convenient to define another functor:

ƒ W Alg.Gn/! Alg.MnC1/

by
ƒ.�/ D uIndMnC1Gn

��1=2�:

By definitions, ƒ.�/ Š 1jM1 N� � . When n D 0, then ƒ defines an isomorphism between vec-
tor spaces.

Proposition 3.5. Let r � 0. Let � 2 Alg.Gr/. For s � 0,

…sC1 N� � Š .ˆ
C/s.ƒ.�//:

Proof. Recall that…sC1 D .ˆC/s.1/ (and 1 is the trivial representation ofM1) and so,
by ‰� ıˆC D 0, ‰�.…sC1�k/ D 0 for k D 0; : : : ; s � 1. This with Lemma 3.3(2) implies,
for k D 0; : : : ; s � 1,

ˆ�.…sC1�k N� �/ Š ˆ
�.…sC1�k/ N� � Š …s�k N� �:(�)

Here in the last isomorphism, we use …sC1�k D .ˆC/s�k.1/ for any k and ˆ� ıˆC Š Id.
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Now, for 0 � k � s � 1,

.‰�/.…sC1�k N� �/ D 0;(��)

where the equality follows from Lemma 3.3 (1) and above discussions.
Now repeatedly using Bernstein–Zelevinsky theory [6, Proposition 3.2] (see property (4)

of the functors in Section 2.1) on …sC1�k N� � (k D 0; 1; : : : ; s � 1) with (�) and (��), we
have

…sC1 N� � Š ˆ
C.…s N� �/ Š � � � Š .ˆ

C/s.…1 N� �/:

The last isomorphism simply yields

…sC1 N� � Š .ˆ
C/s.ƒ.�//:

3.5. A transfer lemma. We shall need the following transfer or reduction:

Lemma 3.6. Let �1 2 Alg.Gk/ and �2 2 Alg.Gl/. Let �3 2 Alg.Gn/ with n � l C k.
Let a D nC1�.kC l/. Then, for any � in Irrc.GnC1�.kCl// such that � … csuppZ.�

�1=2�3/,
and for any i ,

ExtiGn.�1 � ..� � �2/jGn�k /; �3/ Š ExtiGn.�1 � ..…a N� �2/jGn�k /; �3/:

Proof. Again Lemma 3.2 gives a filtration on .� � �2/jMnC1�k as

0! � jM N� �2 ! .� � �2/jM ! � N� .�2jM /! 0:

Restricting to Gn�k , this gives the filtration

0! .� jM N� �2/jGn�k ! .� � �2/jGn�k ! .�1=2�/ � .�2jGl�1/! 0:

With …a D � jM , producting with �1 gives the exact sequence

0! �1 � ..…a N� �2/jGn�k /! �1 � ..� � �2/jGn�k /(3.2)

! �1 � .�
1=2�/ � .�2jGl�1/! 0:

The standard argument using second adjointness of Frobenius reciprocity and comparing
cuspidal support at �1=2� gives that, for all i ,

ExtiGn.�1 � .�
1=2�/ � .�2jGl�1/; �3/ D 0:

Thus long exact sequence from (3.2) gives that, for all i ,

ExtiGn.�1 � ..…a N� �2/jGn�k /; �3/ Š ExtiGn.�1 � ..� � �2/jGn�k /; �3/:

3.6. A lemma on Speh representation.

Lemma 3.7. Let � D u�.m; d/ be a Speh representation. Let � 0 be in Alg.Gk/. Let
nC 1 D n� C k. Let � 00 be an irreducible representation of Gn such that �1=2.�.mCd�2/=2�/
is not in cupp.� 00/. Then there exists a short exact sequence, as Gn-representations,

0! K ! .�jM N� �
0/jGn ! Q! 0
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such that, for all i ,
ExtiGn.Q; �

00/ D 0

and

K Š ..��1=2u�.m; d � 1// N� .…p N� �
0//jGn Š u�.m; d � 1/ � ..…p N� �

0/jGkCp�1/;

where p D n�m, and

ExtiGn.K; �
00/ Š ExtiGn..�jM N� �

0/jGn ; �
00/:

Proof. From the bottom piece of Bernstein–Zelevinsky filtration (Lemma 2.2), �jM has
the submodule (see Section 2.1 and Lemma 3.4)

K 0 WD ��1=2u�.m; d � 1/ N�…p

and .�jM /=K 0 admits a M -filtration whose successive quotients isomorphic to �.j / N�…j for
j < p (see similar discussions in Section 2.3). Let G D Gn. Now taking mirabolic product is
exact and so one would have, by a long exact sequence argument,

ExtiG..�jM N� �
0/jG ; �

00/ Š ExtiG..K
0
N� � 0/jG ; �

00/

if we can show that, for all i ,

ExtiG...�jM /=K
0
N� � 0jG ; �

00/ D 0

To show the last Ext vanishing, it suffices to show that for each piece of Bernstein–
Zelevinsky layer � D �.j / �…j (j < p) appearing in .�jM /=K 0,

ExtiG..� N� �
0/jG ; �

00/ D 0

for any i , which indeed follows from:

ExtiG...�
.j /
N�…j / N� �

0/jG ; �
00/

Š ExtiG..�
1=2�.j // � ..…j N� �

0/jGjCk�1/; �
00/

Š ExtiGn��j�GjCk�1..�
1=2�.j //� .…j N� � 0/; .� 00/N�

jCk�1
/

Š 0;

where the first isomorphism follows from Lemma 3.1 (1) and (3.1), the second isomorphism
follows from Frobenius reciprocity, and the last isomorphism follows from Lemma 2.2 (2) with
comparing cuspidal supports. The last isomorphism follows from Lemma 2.4.

4. Proof of Conjecture 1.2 (non-Archimedean)

The main goal of this section is to prove Conjecture 1.2 (non-Archimedean) modulo
Proposition 4.1 and Proposition 4.2. Roughly speaking, Lemmas 3.6 and 3.7 reduce to a bottom
layer in a filtration and then Lemma 4.4 reduces the computation of the bottom layer to an
inductive case. One also needs a Gan–Gross–Prasad-type reduction (Lemma 4.3) to transfer
the study to the inductive case.
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4.1. Dual restriction.

Proposition 4.1. Let �1 and �2 be irreducible representations ofGnC1 andGn, respec-
tively. For � 2 Irrc.G2/ such that � is not in cuppZ.�

�1=2�_1 / [ cuppZ.�2/, and for all i ,

ExtiGn.�1jGn ; �
_
2 / Š ExtiGnC1..�2 � �/jGnC1 ; �

_
1 /:

The proof of Proposition 4.1 will be postponed to Proposition 5.5, where we will prove
a more general statement. Note that the additional cuspidal support condition � … cuppZ.�2/

(cf. Proposition 5.5) guarantees that � � �2 Š �2 � � , while it is not critical in the proof of
the GGP conjecture.

4.2. Product preserving quotients .

Proposition 4.2. Let � 2 Irru;c . Fix m; d . Let �1 be a (not necessarily admissible) rep-
resentation of Gn. Let p D n�md . Let �2 be an irreducible representation of GnCp such that
any cuspidal representation in cupp.�2/ is either

(1) lying in cupp.u�.m; d// D ¹��.mCd�2/=2�; : : : ; �.mCd�2/=2�º, or

(2) not lying in ¹�n�.mCd/=2�ºn2Z.

Then if
HomGnCp .u�.m; d/ � �1; �2/ ¤ 0;

then there exists a non-zero irreducible quotient ! of �1 such that �2 Š u�.m; d/ � !, more-
over, if �2 is an irreducible Arthur-type representation, then such ! is also an irreducible
Arthur-type representation.

Proposition 4.2 will be proved as a special case of Corollary 9.4. Proposition 4.2 is only
needed for the only if direction.

4.3. Proof of non-tempered GGP. Recall that Irru;c.Gk/ is the set of irreducible uni-
tarizable cuspidal representations of Gk .

The following two lemmas are the keys for reductions to an inductive case.

Lemma 4.3. Let �p and �q be Arthur-type representations of GnC1 and Gn, respec-
tively. Write

�p D �p;1 � � � � � �p;r ; �q D �q;1 � � � � � �q;s

for some Speh representations �p;i ; �q;j . Write �p;i D u�i .mi ; di / and �q;j D u�j .lj ; ej /.
Suppose m1 C d1 � mi C di and m1 C d1 � lj C ej for all i; j . Then

HomGn.�p; �q/ ¤ 0

if and only if for anye� 2 Irru;c.Gn�1m1 / such thate� … cuppZ.�p/ [ cuppZ.�
�1=2�q/,

HomGn.u�1.m1; d1 � 1/ � ..e� � � 0p/jGa/; �q/ ¤ 0;
where � 0p D �p;2 � � � � � �p;r and a D n � n�1m1.d1 � 1/.
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Proof. By Lemma 3.2,

0! �p;1jM N� �
0
p ! �pjM ! �p;1 N� .�

0
pjM /! 0:(4.1)

Let n1 D n�1d1m1 and n0 D n � n1. Now

ExtiGn..�p;1 N� .�
0
pjM //jGn ; �q/ Š ExtiGn..�

1=2�p;1/ � .�
0
pjGn0 /; �q/

Š ExtiGn1�Gn�n1 ..�
1=2�p;1/� .� 0pjGn0 /; .�q/N�n�n1 /

D 0;

where the first isomorphism follows from (3.1) and Lemma 3.1 (1) and the second isomorphism
follows from second adjointness of Frobenius reciprocity and the third isomorphism follows
by comparing cuspidal support at �1=2�.d1Cm1�2/=2�1.

Thus long exact sequence argument on (4.1) gives that, for all i ,

ExtiGn..�p;1jM N� �
0
p/jGn ; �q/ Š ExtiGn.�pjGn ; �q/:(4.2)

Set u0 D ��p;1 Š u�1.m1; d1 � 1/ and u00 D ��1=2u0. Now Lemma 3.7 gives that

ExtiGn...u
00
N�…/ � � 0p/jGn ; �q/ Š ExtiGn..�p;1jM N� �

0
p/jGn ; �q/;(4.3)

where … D …n�1m1 .
For anye� 2 Irru;c.Gn�1m1/ not appearing in cuppZ.�p/ [ cuppZ.�

�1=2�q/,

ExtiGn.u
0
� ..e� � � 0p/jGt /; �q/ Š ExtiGn.u

0
� ..… N� � 0p/jGt /; �q/(4.4)

Š ExtiGn...u
00
N�…/ � � 0p/jGn ; �q/;

where t D n0 C n�1m1. Here the first isomorphism follows from Lemma 3.6 and the second
isomorphism follows from Lemma 3.1 (1) and (3.1),

By equations (4.2), (4.3) and (4.4) at the case that i D 0, we obtain the following equiv-
alent statements:

(1) one has HomGn.�pjGn ; �q/ ¤ 0,

(2) one has HomGn.u�1.m1; d1 � 1/ � ..e� � � 0p/jGt /; �q/ ¤ 0 for anye� 2 Irru;c.Gn�1m1/
not appearing in cuppZ.�p/[cuppZ.�

�1=2�q/.

Lemma 4.4. We keep using notations in the previous lemma. We still assume that
m1 C d1 � mi C di and m1 C d1 � lj C ej for all i; j . Then

HomGn.�pjGn ; �q/ ¤ 0

if and only if there exists k such that

�q;k Š u�1.m1; d1 � 1/;

and for anye� 2 Irru;c.Gn�1m1/ withe� … cuppZ.�p/ [ cuppZ.�
�1=2�q/,

HomGn0 ..e� � � 0p/jGn0 ; � 0q/ ¤ 0;
where n0 D n � n�1m1.d1 � 1/ and � 0q D �q;1 � � � � � �q;k�1 � �q;kC1 � � � � � �q;s .
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Proof. We first consider the “if” direction. To this end, let e� 2 Irru;c.Gn�1m1/ not
appear in cuppZ.�p/ [ cuppZ.�

�1=2�q/. By the hypothesis of the “if” direction, e� � � 0p has
a quotient � 0q (where � 0q is defined as in the lemma). Hence, by exactness of parabolic induc-
tion,

u�1.m1; d1 � 1/ � .e� � � 0p/
has a quotient

�q;k � �
0
q Š u�1.m1; d1 � 1/ � �

0
q Š �q:

Thus, by the “if” part of Lemma 4.3, we obtain

HomGn.�pjGn ; �q/ ¤ 0:

We now consider the “only if” direction. Suppose HomGn.�pjGn ; �q/ ¤ 0. By using the
“only if” part of Lemma 4.3, we have

HomGn.u�1.m1; d1 � 1/ � ..e� � � 0p/jGt /; �q/ ¤ 0
for somee� 2 Irru;c.Gn�1m1 / not in cuppZ.�p/ [ cuppZ.�

�1=2�q/. Here

t D n � n�1m1.d1 � 1/:

From the condition on m1 C d1, one checks the conditions in Proposition 4.2 and so we
can apply it to obtain that

�2 Š u�1.m1; d1 � 1/ � !

for some irreducible Arthur-type quotient ! of .e� � � 0p/jGt . Now by uniqueness of factoriza-
tion of Arthur-type representations in terms of Speh representations, there exists some k� such
that

�q;k� Š u�1.m1; d1 � 1/; �q;1 � � � � � �q;k��1 � �q;k�C1 � � � � � �q;s Š !:

This proves the only if direction.

Theorem 4.5. Conjecture 1.2 holds for non-Archimedean field F .

Proof. We shall prove the reformulated problem in Section 1.2. Let �p and �q be
Arthur-type representations of GnC1 and Gn, respectively. We can write as the product of
Speh representations, i.e.

�p D �p;1 � � � � � �p;r and �q D �q;1 � � � � � �q;s

such that each �p;i (respectively, �q;j ) is an (irreducible unitarizable) Speh representation
u�i .mi ; di / (respectively, u�j .lj ; ej /). Let N.�p; �q/ be the total number of factors �p;i and
�p;j which are not cuspidal representation. The basic case is that all �p;i and �q;j are cuspidal
representations, i.e.N.�p; �q/ D 0, and so �p and �q are generic. In that case, it is well known
from [18, 27].

By [41, Theorem 7.1], we may and shall assume that for 1 � i � r , 1 � j � s,

m1 C d1 � mi C di and l1 C e1 � lj C ej :

We may also assume that m1 C d1 > 2 or l1 C e1 > 2, and so either �p;1 or �q;1 is not
cuspidal. Otherwise, it is the basic case.



Chan, Non-tempered Gan–Gross–Prasad conjecture 19

We now consider two cases:

Case 1: m1 C d1 � l1 C e1. Then

m1 C d1 � 2

2
C
1

2
>
li C ei � 2

2

for all i , and so �1=2�.d1Cm1�2/=2�1 is in cupp.�1=2�p;1/, but is not in the cuspidal support of
any �q;i . Let

� 0p D �p;2 � � � � � �p;r :

Let u D �p;1 Š u�1.m1; d1/.
We first prove the “only if” direction and assume that HomGn.�p; �q/ ¤ 0. Using Lem-

ma 4.4, there exists � 2 Irru;c.Gn�1m1/ with � … cuppZ.�
�1=2�q/ and k� such that

�q;k� D u
� and HomGt .� � �

0
p; �

0
q/ ¤ 0;

where � 0q D �q;1 � � � � � �q;k��1 � �q;k�C1 � � � � � �q;s and t D n � n�1m1.d1 � 1/. Since
� � � 0p is also an Arthur-type representation with

N.� � � 0p; �
0
q/ D N.�

0
p; �

0
q/ < N.�p; �q/;

we can apply inductive hypothesis to obtain

� � � 0p Š �p;1 � � � � � �p;k � �
�
q;1 � � � � � �

�
q;l

and
� 0q Š �

�
p;1 � � � � � �

�
p;k � �q;1 � � � � � �q;l

for some Speh representations �p;1; : : : ; �p;k; �q;1; : : : ; �q;l . Since the product is uniquely deter-
mined by the factors of those Speh representations [41] and � … cuppZ.�

�1=2� 0q/, we must
have �p;i� Š � for some i�. Since the products between Speh representations commute, we
may simply set i� D 1. With ��p;1 D 1, now we have

�p Š u � �
0
p Š u � �p;2 � � � � � �p;k � �

�
q;1 � � � � � �

�
q;l

and
�q Š u

�
� � 0q Š u

�
� ��p;2 � � � � � �

�
p;k � �q;1 � � � � � �q;l ;

as desired.
Now we prove the “if” direction and so we consider

�p Š �p;1 � � � � � �p;k � �
�
q;1 � � � � � �

�
q;l

and
�q Š �

�
p;1 � � � � � �

�
p;k � �q;1 � � � � � �q;l

for some Speh representations �p;1; : : : ; �p;k; �q;1; : : : ; �q;l . From our choice of �p;1 and the
assumption for Case 1, we must have that, by reindexing if necessary,

�p;1 Š �p;1:

Then ��p;1 Š u�1.m1; d1 � 1/. This implies that

�p;2 � � � � � �p;k � �
�
q;1 � � � � � �

�
q;l Š �p;2 � � � � � �p;r D �

0
p;
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by unique factorization of Speh representations [41]. Since

N.� � � 0p; �
00
q / D N.�

0
p; �

00
q / < N.�p; �

00
q / � N.�p; �q/;

induction gives that for any � of Irru;c.Gn�1m1/,

HomGn0 .� � �
0
p; �

00
q / ¤ 0;

where
� 00q Š �

�
� ��p;2 � � � � � �

�
p;k � �q;1 � � � � � �q;l :

Lemma 4.4 implies that HomGn.�pjGn ; �q/ ¤ 0, as desired.

Case 2: l1 C e1 > m1 C d1. Then

l1 C e1 � 2

2
C
1

2
>
m1 C d1 � 2

2
:

There are infinitely many unitarizable cuspidal representations of G2, and we can find one
satisfying the hypothesis in Proposition 4.1 so that

HomGnC1.�q � � jGnC1 ; �p/ ¤ 0 ” HomGn.�
_
p jGn ; �

_
q / ¤ 0

” HomGnC1.�pjGn ; �q/ ¤ 0

” HomGnC1.�pjGn ; �q/ ¤ 0:

Here �p; �q are complex conjugate representations of �p; �q , respectively, and so the last
“if and only if” implication is immediate. The first “if and only if” implication follows from
Proposition 4.1 and the second one follows from that �p; �q are unitarizable and so Hermitian
self-dual.

We also have that �q � � is still an Arthur-type representation. Note that

N.�q � �; �p/ D N.�p; �q/:

We now use the argument in Case 1 and inductive hypothesis to prove this case, where the role
of �q;1 replaces the one of �p;1.

5. General cases: Bessel, Fourier–Jacobi and Rankin–Selberg models

In this section, we shall generalize the non-tempered GGP to other models of general lin-
ear groups. We study some connections between models, which will be continued in Section 6.
We also improve some previous multiplicity results for Bessel and Fourier–Jacobi models to
the Ext versions.

5.1. Equal rank Fourier–Jacobi models. Let S.F n/ be the space of Bruhat–Schwartz
functions on F n. For a character � of Gn, let !�;0 (respectively, b!�;0) be a Gn-representation
with underlying space S.F n/ and the Gn-action given by

.g:f /.v/ D �.g/f .g�1v/ (respectively, .g:f /.v/ D �.g/f .gtv/):
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Let � 2 Alg.Gn/. Since Gn nMnC1 Š F
n as topological spaces, and !���1=2;0 ˝ �

can be viewed as the space of smooth compactly-supported functions f W F n ! ���1=2�

with Gn acting by .g:f /.v/ D g:f .g�1v/, we have

�˝ƒ.�/jGn Š !���1=2;0 ˝ �

via the natural map for f 2 ƒ.�/,

f 7!

 
v 7! f

  
In v

0 1

!!!
:

Set �F D !��1=2;0 and setb�F D b!�1=2;0.

Proposition 5.1. Let �; � 0 2 Alg.Gn/. Then there exists a character � of F � such that
� … cuppZ.�

�1=2� 0/ and, for all i ,

ExtiGn..� � �/jGn ; �
0/ Š ExtiGn.� ˝ �

F ; � 0/:

The assertion also holds if we replace for �F byb�F .

Proof. By Lemma 3.2,

0! �jM1 N� � ! .� � �/jM ! � N� .�jM /! 0:(5.1)

Then �jM1 N� � Š ƒ.�/ by the definition of mirabolic induction. By using the above identifi-
cation, we have

�jM1 N� � Š � ˝ �
F :(5.2)

On the other hand, via Frobenius reciprocity, due to the condition that � … cuppZ.�
�1=2� 0/,

Lemma 2.4 implies that for all i ,

ExtiGn..� N� .�jM //jGn ; �
0/ Š ExtiGn..�

1=2�/ � .�jGn�1/; �
0/ D 0:(5.3)

Now standard long exact sequence argument on (5.1) with (5.2) and (5.3) gives, for all i ,

ExtiGn.� � �; �
0/ Š ExtiGn..�jM1 N� �/jGn ; �

0/ Š ExtiGn.� ˝ �
F ; � 0/:

The proof forb�F is similar.

Remark 5.2. From Proposition 5.1, one can deduce explicit restriction for equal rank
Fourier–Jacobi model from the basic restriction fromGnC1 toGn. One may also compare with
the method using theta correspondence to deduce Fourier–Jacobi models from Bessel models
in [20] and [4].

5.2. Bessel, Rankin–Selberg and mixed models. Let m1; m2; r � 0. Recall that N is
a choice of a non-degenerate character on F . Let

H D
°� u1 x y

h z
u2

�
W u1 2 Um1 ; u2 2 Um2 ; h 2

eGrC1; x 2 Matm1�.rC1/;

z 2 Mat.rC1/�m2 ; y 2 Matm1�m2
±
� Gm1Cm2CrC1
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and eGrC1 D ¹diag.1; g/ W g 2 Grº:

We shall also write HB or HB
m1;m2;r

for H .
Let 'n W Un ! C be a non-degenerate character on Un. For example, one may take

'n.u/ D N .u1;2 C � � � C un�1;n/:

Let � W H ! C such that

�

0B@
0B@u1 x y

g z

u2

1CA
1CA D 'm1.u1/'m2.u2/ N .xm1;1/ N .z1;1/�.g/�.m2�m1/=2;

where xm1;1 (respectively, z1;1) is the .m1; 1/-(respectively, .1; 1/-)coordinate of x (respec-
tively, z). We shall also sometimes write �B for �. Note that �m2�m1 is the modulus function
of H (i.e. a normalizing factor).

Let U 0 be the unipotent radical of the group H . The orbit by the conjugation action
of .Tm1C1 �Gr � Tm2/U

0 on � is the unique dense orbit on the character space of U 0, where
Tm1C1 (respectively, Tm2) be the subgroup of diagonal matrices ofGm1C1 (respectively,Gm2),
and as subgroup of H via embedding to the upper (respectively, lower) corner.

Remark 5.3. The Bessel subgroup defined in [18, Sections 12 and 13] is conjugate
toHB

m;m;r , where r D n � 2m, for somem. Whenm1 D 0 orm2 D 0, the model is sometimes
called a Rankin–Selberg model [17, 21]. We shall also write

HR
m;r D H

B
0;m;r and �R D �B :

(The matrix HR
m;r is conjugate to the one in Section 1.3.) When r D 0, the model is Whittaker

[38], and when m1 D m2 D 0, it is related to the restriction from GnC1 to Gn in [1].

There is another formulation of Bessel models, using Bernstein–Zelevinsky functors.

Proposition 5.4. Let � be a Gr -representation, which extends to an H -representation
trivially. Let n D m1 Cm2 C r C 1. Then there exist natural isomorphisms:

uindGn
HB
m1;m2;r

� ˝ �B ˝ �.m2�m1/ Š .ˆC/m2C1.…m1C1 N� �/jGn

Š .ˆC/.m1Cm2C1/.ƒ.�//jGn

Š
uindGn

HR
m1Cm2;r

� ˝ �R ˝ �m1Cm2 :

Proof. The second isomorphism follows from Proposition 3.5. Note that the last iso-
morphism is a special case of the first isomorphism. It remains to prove the first isomorphism.
Let

w D diag

  
0 Ir

Im1C1 0

!
; Im2C1

!
:

Using induction in stages, the subgroup from which

.ˆC/m2C1.…m1C1 N� �//jGn
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is induced, takes the form

Q0 D

0BBBB@
g �

� m � �

1 �

u

1CCCCA ;
where g 2 Gr , m 2 Gm1 and u 2 Um2 , and so

w�1Q0w D HB
m1;m2;r

:

The conjugation by the element w then defines a map � from uindGnH � ˝ �B ˝ �m2�m1

to .ˆC/m2C1.…m1C1 N� �//jGn , as vector spaces, given by

f 7!

 
g 7! f

 
w

 
g

1

!!!
:

Restricted to the unipotent subgroup U 0 of HB , �.f / is copies of character �B , while a func-
tion in .ˆC/m2C1.…m1C1 N� �/ restricted to U 0 is copies of another character in the same
B 0-orbit as �B , whereB 0 contains matrices of the form diag.Ir ; TlUl/, where l D m1Cm2C1.
Hence there exists b 2 B 0 such that the map

f 7!

 
g 7! f

 
bw

 
g

1

!!!

is a Gn-isomorphism.
We also remark that the character �1=2 arisen when restricted to Gn cancels with the

character ��1=2 arisen from the mirabolic induction in …m1C1 N� � .

The following result is proved by a similar method as in [18], also see [17].

Proposition 5.5. Let �1; �2 be representations of Gn and Gr , respectively. Let

m1 Cm2 C r C 1 D n:

For any irreducible cuspidal representation � of Gm1Cm2C2 such that � … cuppZ.�
�1=2�_1 /,

and for all i ,
Exti

HB
m1;m2;r

.�1 ˝ �
B ; �_2 / Š ExtiGn.� � �2; �

_
1 /:

Remark 5.6. Proposition 4.1 is a particular case of Proposition 5.5 form1 D 0,m2 D 0
and r D n � 1.

Proof. By Lemma 3.2 again,

0! � jM N� �2 ! .� � �2/jM ! � N� .�2jM /! 0:

Since � is cuspidal, we have � jM Š …m1Cm2C2. Now with Propositions 3.5 and 5.4,

uindGH�2 ˝ �
B
D .� jM N� �2/jGn :
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Again the cuspidal condition guarantees that, for all i ,

ExtiGn..�
1=2�/ � .�2jGr�1/; �

_
1 / D 0:

Now similar argument with the proof of Proposition 5.1, one reduces to, for all i ,

ExtiGn.� � �2; �
_
1 / Š ExtiGn..� jM N� �2/jGn ; �

_
1 /

Š ExtiGn.
uindGnH �2 ˝ �

B
˝ �m2�m1 ; �_1 /

Š ExtiGn.�1;
uIndGnH .�2 ˝ �

B/_/ (taking duals)

Š ExtiH .�1; .�2 ˝ �
B/_/ (Frobenius reciprocity)

Š ExtiH .�1 ˝ �
B ; �_2 / (taking duals):

For the last three isomorphism, also see [36].

5.3. Fourier–Jacobi models. Let S.F r/ be the space of Bruhat–Schwartz functions
on F r . Let W D F r and let Kr be the Heisenberg group, i.e. Kr is the group isomorphic to
F ˚W ˚W _ with the multiplication

.a; v; w/ � .a0; v0; w0/ D .aC a0 C wtv0; v C v0; w C w0/:

Define

H 0r D

8̂<̂
:
0B@1 wt a

g v

1

1CA W v;w 2 F r ; a 2 F; g 2 Gr
9>=>;

and so H 0r Š Gr ËKr . Here we identify W and W _ with F r so that y.x/ D ytx for x 2 W
and y 2 W _.

Fix a character � of Gr . Let � be a non-trivial character on F . The Weil representation
!�;� ofKr associated to � is the representation with underlying space as S.W / with the action
of Kr given by: for f 2 S.W / Š S.F r/,

..a; v; w/:f /.x/ D �.a � wtx � wtv/f .x C v/:

and for f 2 S.W _/ Š S.F r/,

..a; v; w/:f /.y/ D �.aC ytv/f .y C w/:

This extends!�;� to anH 0r -representatione!�;� (respectively,b!�;�) given by: for g 2Gr
and f 2 S.W / (respectively, f 2 S.W _/),

.g:f /.x/ D �.g/ � f .g�1:x/ (respectively, .g:f /.y/ D �.g/ � f .gt :y/).

Lemma 5.7. Let � 2 Alg.Gr/, extend trivially to H 0r . Then

� ˝b!�; N Š uindH
0
r

HB
0;1;r

�� ˝ .�B ˝ �1=2/:

Proof. We can identify ��1=2� ˝b!�; N with the space of smooth compactly supported
functions f W F r ! ��1=2� with the action given by

.g:f /.y/ D g:f .gty/:
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Since HB
0;1;r nH

0
r Š F

r as topological spaces, the identification gives a map

F W � ˝b!�; N ! uindH
0
r

HB
0;1;r

�� ˝ .�B�1=2/

given by

F .f /.y/ D f

0B@
0B@1 yt

Ir

1

1CA
1CA :

Now we consider general Fourier–Jacobi models. Let m1; m2 � 1. Let H (respectively,
UH ) be the subgroups of Gm1Cm2Cr containing all elements of the form0B@u1 x y

h z

u2

1CA
0B@respectively,

0B@u1 x y

IrC2 z

u2

1CA
1CA

with entries u1 2 Um1�1, u2 2 Um2�1, h 2 H 0r , x 2 Matm1�1;rC2, y 2 Matm1�1;m2�1 and
z 2 MatrC2;m2�1. We shall also write HF

m1;m2;r
or HF for H . Note that H Š H 0r Ë UH . In

the case that m1 D m2 D 1, it recovers the notion for H 0r .
We now extend the representations !�;� of H 0r to be a representation of H , still denoted

!�;� by abuse of notation, whose underlying space is S.F r/ with the action, for f 2 S.F r/,0B@u1 x y

h z

u2

1CA :f D 'm1.u1/'m2.u2/.h:f /:
We similarly define the representation b!�;�.

Set
� D �Fm1;m2;r;� D �

F
D �.m1�m2/=2e!��1=2;�

and b� Db�Fm1;m2;r;� Db�F D �.m1�m2/=2b!�1=2;�:
Again when m1 D m2, it is the original notion of Fourier–Jacobi model in [18, Section 15].
The restriction problems involving �F (andb�F ) (i.e. HomH .�1 ˝ �F ; �2/) do not depend on
a choice of �.

Proposition 5.8. Let n D m1 Cm2 C r with m1; m2; r � 1. Let � 2 Alg.Gr/. Then

uindGn
HB
m1�1;m2;r

� ˝ �B ˝ �m2�m1C1 Š uindGn
HF
m1;m2;r

� ˝b�F ˝ �m2�m1 :
Proof. From constructions, �B jUH Šb�F jUH . Note that H 0r normalizes UH and the

conjugation action of H 0r onb�F jUH is trivial. One can extend the identification in Lemma 5.7
to, as HF -representations,

� ˝ .b�F ˝ ��1=2�.m2�m1/=2/ Š uindH
F

HB � ˝ .�
B
˝ �.m2�m1C1/=2/:

Now applying induction from HF to G, an induction by stages gives the lemma.
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In view of Propositions 3.5, 5.4 and 5.8, we can prove in a similar way as in the proof of
Proposition 5.5 (also similar to the proof of Proposition 5.1). We omit the details.

Proposition 5.9. Let m1; m2; r � 1. Let n D m1 Cm2 C r . Let �1 2 Alg.Gn/ and let
�2 2 Alg.Gr/. Then, for any cuspidal representation � of GnC1�r that does not appear in
cuppZ.�2/ [ cuppZ.�

�1=2�_1 /, and for any i ,

Exti
HF
m1;m2;r

.�1 ˝b�F ; �_2 / Š ExtiGn.� � �2; �
_
1 /:

Now we give a connection of the two notions �F andb�F .

Proposition 5.10. Letm1; m2; r � 1 and let n D m1 Cm2 C r . Let �1 2 Alg.Gn/ and
let �2 2 Alg.Gr/. For all i ,

ExtiH .�1 ˝ �
F ; �_2 / Š Exti�H .�.�1/˝b�F ; �.�2/_/;

where eH D HF
m2;m1;r

D w�.H/w�1. Here w is the matrix with all 1 in the antidiagonal and
0 elsewhere.

Proof. Let �w be the action of � followed by the conjugation of w. We use the same
�w for the induced map on representations. Note that �w.�1/ Š �.�1/ as Gn-representations,
�w.�_2 / Š �.�

_
2 / Š �.�2/

_ as Gr -representation, and �w.�F
�
/ Šb�F

��1
.

5.4. Restrictions. We state the multiplicity one and finiteness for the general cases
(cf. [18]):

Corollary 5.11. Let .H; �/ be any pair described in Sections 5.1, 5.2 and 5.3. Let �1
and �2 be irreducible representations of Gn and Gr , respectively. Then

dim HomH .�1 ˝ �; �2/ � 1

and for all i ,
dim ExtiH .�1 ˝ �; �2/ <1

Proof. Proposition 5.5 reduces to the case that restricting from GnC1 to Gn, which is
proved in [1] for Hom and follows from [2, 36] for higher Ext.

Theorem 5.12. Let .H; �/ be any pair described in Sections 5.1, 5.2 and 5.3. Let �M
and �N be Arthur-type representations of Gn and Gr , respectively. Then

HomH .�M ˝ �; �N / ¤ 0

if and only if their associated Arthur parameters MA and NA are relevant.

Proof. When r D 0, the model is Whittaker and it is well known. Assume r � 1. For
the Bessel models, this follows from Proposition 5.5 (in which we choose � to be a unitariz-
able cuspidal representation) and Theorem 4.5. For the Fourier–Jacobi models, using Propo-
sitions 5.9 and 5.10, it is equivalent to show that �.�M / and �.�N / have relevant Arthur
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parameters. By the Gelfand–Kazhdan isomorphism [7], �.�M / Š �_M and �.�N / Š �_N . Thus
now the statement follows from that �M ; �N have relevant Arthur parameter if and only if
�_M ; �

_
N have relevant Arthur parameter.

5.5. A filtration on parabolically induced modules. The notion of those models also
provide a convenient way to state the following filtration, which can be regarded as a systematic
tool for studying restriction of parabolically induced representations (e.g. [12]). For example,
one may use it to replace some arguments in Lemmas 3.6 and 3.7.

Proposition 5.13. Let �1 2 Alg.Gn1/ and let �2 2 Alg.Gn2/. Let n1 C n2 D nC 1.
Then there exists a filtration on .�1 � �2/jGn

0 � �n � �n�1 � � � � � �1 � �0 D �1 � �2

such that
�0=�1 Š .�

1=2�1/ � .�2jGn2�1/

and
�1=�2 Š �

Œ1�
1 � .�2 ˝ �

F /;

and for k � 2,
�k=�kC1 Š �

Œk�
1 �

uind
Gn2Ck�1

HR
k�2;n2

�2 ˝ �
R
˝ �k�2:

Proof. This is a consequence of Lemma 3.2, Bernstein–Zelevinsky filtrations (for some
details, see Lemma 3.7), and Proposition 3.5.

5.6. Consequence on Ext-branching law. We also deduce the Ext-analog result in [16]
for Bessel and Fourier–Jacobi models.

Corollary 5.14. Let .H; �/ be any pair described in Sections 5.1, 5.2 and 5.3. Let �1
and �2 be irreducible generic representations of Gn and Gr , respectively. Then, for all i � 1,

ExtiH .�1 ˝ �; �2/ D 0:

Proof. The case of the Bessel model for r D n � 1 is proved in [16]. The general case
now follows from the case in [16] and Propositions 5.1, 5.5, 5.9 and 5.10. (We remark that for
a suitable choice of � 2 Irru;c , � � �1 is still generic.)

6. Fourier–Jacobi models and Bernstein–Zelevinsky theory

In Section 5, we apply Bernstein–Zelevinsky theory to obtain isomorphisms of models.
In this section, we further investigate the isomorphisms, and a goal is to obtain Corollary 6.3.

6.1. Fourier–Jacobi model and its dual. Recall that �F andb�F are defined in Sec-
tions 5.1 and 5.3. We first consider the equal rank case.

Proposition 6.1. In the equal rank case, �F Šb�F as Gn-representations.



28 Chan, Non-tempered Gan–Gross–Prasad conjecture

Proof. Let a 2 F �. For f 2 S.F r/, define the Fourier transform

bf .y/ D Z
F r

N .aytx/f .x/ dx;(6.1)

which is still smooth and compactly supported, and so in S.F r/, and we regard it as a map
from �F tob�F . It is straightforward to check well-definedness of the map. One can define the
inverse similarly.

The above proposition can also be proved by considering the Hecke algebra realization
at each Bernstein component, and deduced from left and right filtrations in [13, 16].

Proposition 6.2. We use the Fourier–Jacobi models in Section 5.3 and the Fourier
transform defined in (6.1). The map � W S.F r/! S.F r/ by f 7! .y 7! bf .�a�1y// defines
an H 0r -map from �F

1;1;r; N 
tob�F

1;1;r; N 
.

Proof. It follows from a straightforward computation as in the previous proposition. We
omit the details.

We summarize the identifications as follow:

Corollary 6.3. Let � 2 Alg.Gr/. For m1; m2; r � 1,

uindGn
HF
m1;m2;r

� ˝ �F ˝ �m2�m1 Š uindGn
HF
m1;m2;r

� ˝b�F ˝ �m2�m1
Š
uindGn

HB
m1�1;m2;r

� ˝ �B ˝ �m2�m1C1

Š
uindGn

HR
m1�1Cm2;r

� ˝ �R ˝ �m1Cm2�1:

Proof. Proposition 6.2 implies that, as HF
m1;m2;r

-representations,

� ˝ �F Š � ˝b�F
and hence we obtain the isomorphism. Now the remaining isomorphisms follow from Proposi-
tion 5.4.

Remark 6.4. As we have seen, there is a more direct connection via (5.8) and the first
isomorphism of Proposition 5.4

uindGn
HF
m1;m2;r

� ˝b�F ˝ �m2�m1 Š .ˆC/m2C1.…m1 N� �//jGn ;(6.2)

and similarly, we can obtain

uindGn
HF
m1;m2;r

� ˝ �F ˝ �m2�m1 Š .ˆC/m2.…m1C1 N� �//jGn :(6.3)

The left-hand side of (6.2) and (6.3) are connected via Fourier transform in Proposition 6.2,
while the right-hand side of (6.2) and (6.3) can be directly connected via Bernstein–Zelevinsky
theory (Proposition 3.5).
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Corollary 6.5. Let m1; m2; r � 1. Let �1 2 Alg.Gm1Cm2Cr/ and let �2 2 Alg.Gr/.
There are natural isomorphisms

Exti
HF
m1;m2;r

.�1 ˝ �
F ; �_2 / Š Exti

HF
m1;m2;r

.�1 ˝b�F ; �_2 /
Š Exti

HB
m1�1;m2;r

.�1 ˝ �
B ; �_2 /

Š Exti
HR
m1Cm2�1;r

.�1 ˝ �
R; �_2 /:

Example 6.6. We consider the equal rank Fourier–Jacobi model. For a generalized
Steinberg representation St.�/ of Gn, we expect that St.�/˝ �F is projective and is iso-
morphic to the Gelfand–Graev representation of Gn (cf. [13–16]).

7. Ext-branching laws

7.1. Conjecture on Ext-branching laws. We formulate the following question about
Ext-branching laws stated in the form of a conjecture, which gives a possible generalization of
some observations in [19].

Conjecture 7.1. Let �M and �N be Arthur-type representations of GnC1 and Gn,
respectively. Then, for any i ,

ExtiGn.�M ; �N / Š
M
k

ExtiGnC1�k .�
Œk�
M ; .k�1/�N /:

It would be an interesting question to give a more precise formulation on predicting non-
vanishing Ext-groups of Arthur-type representations (see [19, Proposition 5.7, Remark 5.8]).

We remark that the appearance of left derivatives in the second spot comes from the
second adjointness property of an induction in the Bernstein–Zelevinsky filtration (see e.g.
[16, Lemma 2.4]). We shall give few examples of the above conjecture below.

7.2. Hom-branching.

Example 7.2. Let �M and �N be generic Arthur-type representations ofGnC1 andGn,
respectively. Then �M D St.m/ and �N D St.n/ for some multisegments m and n. A compu-
tation via comparing cuspidal support gives that, for i ¤ 0 or k ¤ n,

ExtiGn.�
ŒkC1�
M ; .k/�N / D 0:

Then
HomGn.�M ; �N / Š HomG0.�

ŒnC1�
M ; .n/�N / Š C:

This recovers the Ext-vanishing theorem [16, 36] and the multiplicity one theorem [1, 40] in
this special case.

We remark that the same formulation of Conjecture 7.1 for arbitrary respective generic
representations �M and �N of GnC1 and Gn is not true.

Example 7.3. Let �M and �N be Arthur-type representations ofGnC1 andGn, respec-
tively. Suppose their associated Arthur parameters are relevant. Write those Arthur parameters
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MA and NA as (1.2) and (1.3), respectively. Then Conjecture 7.1 for Hom-case follows from
(Theorem 4.5 and) the following:

HomGnC1�k .�
ŒkC1�
M ; .k/�N / ¤ 0 ” k D

rX
dD0

dimMC
d
� 1 D

sX
dD0

dimM�d :(7.1)

The direction “(” is easy. For the “)” direction, one may hope to compute the Hom of those
derivatives directly while it seems it have not been done so far. We shall sketch how to modify
the proof of Theorem 4.5 to see (7.1). We use all the notations in the proof of Theorem 4.5, and
in particular, write

�M D �p D �p;1 � � � � � �p;r ; and �N D �q D �q;1 � � � � � �q;s:

The basic case is again all �p;i ; �q;j are cuspidal, which is included in Example 7.2. Since
taking duals behaves well with derivatives, Case 2 (in Theorem 4.5) follows from Case 1.

We only consider Case 1. Again, we use the short exact sequence

0! �p;1jM N� �
0
p ! �pjM ! �p;1 N� .�

0
pjM /! 0:

Note that any Bernstein–Zelevinsky layer of �p;1 � .� 0pjM / cannot contribute a non-zero Hom
with �2, by comparing cuspidal support. With similar consideration as in Theorem 4.5, the
only Bernstein–Zelevinsky layer that can contribute non-zero Hom with �1 takes the form

.��1=2��p;1/ N� .… � �
0
p/;

which can then be transferred to study the layers in .��1=2��p;1/ N� ..� � �
0
p/jM /. Now one

applies induction on the unique layer in .� � � 0p/jM that can contribute non-zero Hom with �q ,
which gives the required integer in (7.1).

7.3. Generic representations. An irreducible representation � of Gn is generic if it
admits a Whittaker model or equivalently �.n/ ¤ 0. The classification of generic representa-
tions of Gn in terms of segments is obtained in [44, Section 9]. We now treat the case that
when one of Arthur-type representations is tempered and hence is generic. Compared to the
Hom-case (also see [23, Theorem 5.1] and [13, Corollary 2.8]), a wider class of Arthur-type
representations can be paired to obtain non-vanishing higher Ext-groups.

Theorem 7.4. Let �p and �q be Arthur-type representations of GnC1 and Gn, respec-
tively. Suppose at least one of �p or �q is generic.

(1) Then there exists at most one integer j � such that

ExtiGn.�
Œj��
p ; .j

��1/�q/ ¤ 0

for some i and furthermore if �p (respectively, �q) is not generic, then j � (respectively,
j � � 1) is the level of �p (respectively, �q); and if both �p and �q are generic, then
j � D nC 1.

(2) Suppose �p is generic. Then such j � in (1) exists if and only if �p Š �
gen
q � �

0, where
�

gen
q is the generic representation with same cuspidal support as ��q , and � 0 is some

irreducible generic (tempered) representation.

(3) Suppose �q is generic. An analogous statement holds by switching the role of �p and �q
in (2).
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Proof. We first consider (1). Assume that �p is not a generic representation and �q is
a generic representation. Let

�p D �p;1 � � � � � �p;r ; �q D �q;1 � � � � � �q;s;

where each �p;i is a Speh representation and each �q;j is isomorphic to St.�q;j / for some
segment �q;j . Then the i -th derivative � Œi�p takes the form, for i1 C � � � C ir D i ,

�1=2.�
.i1/
p;1 � � � � � �

.ir /
p;r /:

For each representation !, we call the cuspidal support cupp.!/ is:

(1) G-positive (respectively, G-negative) if for each irreducible unitarizable cuspidal repre-
sentation � and for all positive (respectively, negative) integer a, the multiplicity of �a�
in cupp.!/ is at least that of ��a� ,

(2) balanced if cupp.!/ is both G-positive and G-negative.

Write �p;j D u�.m; d/. Note that for any i such that �.i/p;j is non-zero,

cupp.�1=2�.i/p;j / D cupp.��p;j /C cupp.St.�//

for � D Œ�.m�d/=2CkC1=2�; �.mCd�2/=2C1=2��, where k D i=n�. Since cupp.��p;j / is bal-
anced and cupp.St.�// is G-positive, it follows that �1=2�.i/p;j is G-positive for any i and is
balanced only if i is the level of �p;j .

On the other hand, since �q;j is a generalized Steinberg representation, it follows that
.i�1/�q;j is G-negative for all i and is balanced only if i D 0 or i is the level of �q;j . Thus we
have cupp.� Œi�1 / D cupp..i�1/�2/ only if i is the level of �1 as desired.

Other cases are similar, or one may use Lemma 4.1.
We now consider (2). The above discussion proves the only if direction by the cuspidal

support consideration. It remains to prove the if direction. From above discussion, it suffices to
show that ExtiGnC1�j� .�

gen
q ; ��q / ¤ 0 for some i . Since �gen

q is generic, we can write �gen
q as

�
gen
q Š St.�1/ � � � � � St.�k/;

where each�i D Œ��a�; �a�� for some a and some unitarizable representation �. For simplic-
ity, set � 0 D ��q . Thus via Frobenius reciprocity, it suffices to show

Ei WD Exti .St.�1/� � � �� St.�k/; �
0
N�/ ¤ 0;(�)

where N� is the opposite unipotent radical associated to the parabolic subgroup in the prod-
uct St.�1/ � � � � � St.�k/. Now the Jacquet module of � 0N� is computed in [28]. In order to
describe the composition factors of � 0N� which contribute non-zero Ext take the form, we need
some more notations: For a Speh representation � D u�.m; d/, we associate with a collection
S�;m;d of “hook-shaped multisegments”:

¹Œ��.mCd�2/=2��; : : : ; Œ�.m�d/=2�1��; Œ�.m�d/=2�; �.mCd�2/=2��º;

¹Œ��.mCd�2/=2C1��; : : : ; Œ�.m�d/=2�1��; Œ�.m�d/=2�; �.mCd�2/=2�1��º; : : : :

It ends in a segment depending on m; d : if m > d , the last multisegment takes the form

¹Œ��.m�d/=2��; : : : ; Œ�.m�d/=2��º
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and, if m < d , the last multisegment takes the form

¹Œ��.m�d/=2�; �.m�d/=2��º

and if m D d , the last multisegment takes the form Œ��.
Now we arrange the segments �1; : : : ; �k such that if �i \�j ¤ ; and i < j , then

�i � �j . For a Speh representation u�.m; d/, define X.u�.m; d// D .m � d/=2. We shall
arrange the Speh representations in

� 0 D ��q D �
�
q;1 � � � � � �

�
q;s

such that X.��q;1/ � � � � � X.�
�
q;s/.

Using the Kret–Lapid description of Jacquet modules of Speh representations [28], we
have the following key properties of u�.m; d/N�r (for some r):

� u�.m; d/N�r is semisimple,

� for any irreducible composition factor!1�!2 of u�.m;d/N�r , �.m�d/=2� is in cupp.!2/.

In order to compute (�), we first consider Ext of the form

Exti ..St.�1/ � � � � � St.�k�1/� St.�k/; �
0
N�/(��)

and so we have to compute � 0N� . By the geometric lemma, a composition factor takes the form

� � .!1 � � � � � !s/;

where each !l comes from an irreducible composition factor ı � !l in some Jacquet functor
.��
q;l
/N� for some opposite unipotent subgroup N�. We claim the following.

Claim. Let � 2 �k . Suppose

Exti ..St.�1/ � � � � � St.�k�1/� St.�k/; � � .!1 � � � � � !s// ¤ 0:(���)

Then the sequence cupp.!1/; : : : ; cupp.!s/ satisfies a descending pattern, which means that,
for any �c� 2 cupp.!x/ and �d� 2 cupp.!y/ with x < y, we have c > d .

Proof of Claim. In order to have (���) to be non-zero, by Künneth formula, we must
have that Exti

0

.St.�k/; !1 � � � � � !s/ ¤ 0 for some i 0. Now one applies Frobenius reciprocity,
and the corresponding Jacquet functor on St.�k/ is known (see Section 8.2 below). The claim
then follows by comparing cuspidal support.

Recall that the Speh representations in � 0 is specially arranged, and so the claim with the
second bullet of the key properties above implies that there is exactly one !l is not the trivial
representation of G0.

Now we also recall that the Steinberg representations in �gen
q is specially arranged with

�k satisfying certain maximality condition. Such arrangement actually forces that the under-
lying multisegment of !l is a hook-shaped multisegment, which comes from �q;l and the
corresponding composition factor in � 0N� takes the form � � !l , where

� D �q;1 � � � � � �q;l�1 �e�q;l � �q;lC1 � � � � � �q;s;
and e�q;l is a Speh representation such that e�q;l � !l is a compaction factor of � 0N� .
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Now, rearranging the Speh representations in � if necessary, one proceeds similarly and
inductively for �k�1; : : : ; �1 to find a composition factor in � 0N� contributing a non-zero Ei .

Hence, the composition factor of � 0N� that could contribute a non-zero Ext is isomorphic
to objects taking the form

��;m;d �m2[S�;m;d hmi;

where �;m; d runs through all the data that u�.m; d/ is a factor in the Arthur-type representa-
tion ��N , counting multiplicities. Now using Künneth formula, the computation of Exti follows
from M

P
k�;m;dDi

O
�;m;d

O
m2S�;m;d

Extk�;m;d .St.�gen.m//; hmi/;(�)

where �gen.m/ is the segment with the same cuspidal representations as hmi, and �;m; d run
over all data as above. Then when � D 1, it follows from [34] that for each set of data �;m; d ,
there is at least one k such that

Extk.St.�gen.m//; hmi/ ¤ 0

and one can deduce the general case from a transfer argument of Hecke algebra. We pick the
smallest such integers k and denote the sum of those integers k by k�. Such a k� is the smallest
integer such that Ext of the form

Extk
�

�O
�;m;d

O
m2S�;m;d

St.�gen.m//;
O
�;m;d

O
m2S�;m;d

hmi

�
is non-zero. The hook-shaped multisegments obtained above (see (��) and (���)) come from
all Speh representations ¹�q;aºsaD1 possibly in different orders, but any simple composition
factors in � 0N� obtained above will still give the same (�) after Künneth formula. Thus, a long
exact sequence argument can conclude that Ek� ¤ 0.

Assertion (3) is similar to (2). We omit the details.

Remark 7.5. For some other related computations of Arthur-type representations, e.g.,
see Ext-groups of tempered representations [33] and Speh representations from Koszul resolu-
tion [10].

7.4. Another example. One can obtain different information from various filtrations
on restricted representations [13, 16, 35] such as left and right Bernstein–Zelevinsky filtrations
[13, 16]. We shall see another example below using combinations of filtrations:

Example 7.6. Let �Œd� D Œ��.d�1/=2; �.d�1/=2�. For e � 3, let

�1 D h�Œe�i � St.�Œe � 2�/ � �;

and let
�2 D St.�Œe � 1�/ � h�Œe � 1�i;

where � is a ramified character. We first investigate possible Bernstein–Zelevinsky layers
contributing non-zero Ext-groups. Consider the derivatives

.i1/h�Œe�i � .i2/St.�Œe � 2�/ � .i3/� and St.�Œe � 1�/.j1/ � h�Œe � 1�i.j2/
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and, by comparing cuspidal supports, we must have i1 D 1. Then we have the following two
possibilities: either

(1) j1 D e � 1, or

(2) j2 D 1.

In the case j1 D e � 1, by comparing cuspidal support, we have j2 D 0, and then i2 D e � 2.
In the case j2 D 1, we have two possibilities:

(1) j1 D 0, i2 D 0.

(2) j1 D e � 2, i2 D e � 2

Now we find a cuspidal representation � 0 as in Proposition 4.1 to consider the represen-
tation �2 � � 0. Now we observe that there is two layers .�2 � � 0/jM that contribute non-zero
Ext-groups (after restricting to G): Now .j1; j2/ D .e � 1; 0/, it contributes one layer

�1 WD h�Œe � 1�i �…eC1

and .j1; j2/ D .0; 1/, it contributes one layer

�2 WD St.�Œe � 1�/ � h��1=2�Œe � 2�i �…3

and .j1; j2/ D .e � 2; 1/, it contributes one (reducible) layer

�3 WD � D h�
�1=2�Œe � 2�i � �.e�1/=2 �…eC1:

We remark that �3 is indecomposable as h�1=2�Œe � 2�i � ��.e�1/=2 is indecomposable.
We now consider the dual restriction problem in Proposition 4.1, and so we consider the

restriction for �2 � � 0 for some cuspidal representation � 0 of G2.
Using the following short exact sequence (Lemma 3.2):

0! h�Œe � 1�ijM N� .St.�Œe � 1�/ � � 0/! .�2 � �
0/jM

! h�Œe � 1�i N� ..St.�Œe � 1�/ N� � 0/jM /! 0;

and letting
X� D h�Œe � 1�ijM N� .St.�Œe � 1�/ � � 0/;

X� admits a filtration, in which there is one successive quotient isomorphic to �2 and another
successive quotient isomorphic to �3.

Using Bernstein–Zelevinsky filtration, we obtain a filtration on .�2 � � 0/jM of the form

0 D Y2e � Y2e�1 � � � � � Y0 D .�2 � �
0/jM

so that

(1) Ye=YeC1 Š .�2 � � 0/.eC1/ N�…eC1, and

(2) YeC1 is a simple module which is not isomorphic to any simple composition factor of
�1; �2; �3, and

(3) Ye=YeC1 admits a filtration with one quotient isomorphic to �1 and another quotient
isomorphic to �3.

The key of two filtrations is to obtain the following filtration, as MnC2, and the direct
sum in the quotient roughly contributes the direct sum of Ext-groups in Conjecture 7.1:

0! I ! X� C Ye ! X�=I ˚ Ye=I ! 0;
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where I D X� \ Ye. Let

ˇ WD h¹��1=2�Œe � 2�; �.e�1/=2ºi �…eC1;

which has multiplicity one in �2 � � 0jM . With the above information on X� and Ye, we can
obtain further structure on I . The multiplicity forces that I contains the unique composition
factor ˇ, but the indecomposability of �3 also forces I contains the composition factor ˇ, and
a count on multiplicities gives that other composition factor of I is not isomorphic to �1; �2
or ˇ (those are all the possible factors contributing non-zero Ext). Thus, we have that, for all k,

ExtkGnC1.I jGnC1 ; �1/ D ExtkGnC1.�3jGnC1 ; �1/ D 0:

Then we have

ExtkGnC1.�2 � �
0; �1/ Š ExtkGnC1..X

�
C Ye/jGnC1 ; �1/

Š ExtkGnC1.X
�=I; �1/˚ ExtkGnC1.Ye=I; �1/

Š ExtkGnC1.�2; �1/˚ ExtkGnC1.�1; �1/

Š ExtkGn�1..�
Œ1�
2 ; .2/�1/˚ ExtkGnC1�e .�

Œe�1�
2 ; .e/�1/

The first isomorphism follows from that the quotients by X� C Ye has zero Ext by looking at
the possible composition factors and some computations on comparing cuspidal supports. The
fourth isomorphism follows from the adjointness of the functors (see [16, Lemma 2.1] for more
discussions).

Since �_1 Š �1 and �_2 Š �2, taking duals and using Proposition 4.1 gives that

ExtkGn.�1; �2/ Š ExtkGn�1.�
Œ2�
1 ; .1/�2/˚ ExtkGnC1�e .�

Œe�
1 ; .e�1/�2/:

The last isomorphism follows from [16, Lemma 2.2].

8. Product preserving extensions

A motivating example in this section is the following. Let � be an irreducible cuspidal
representation of Gn. Let �1 and �2 be two admissible representations of Gk such that the
cuspidal supports of irreducible composition factors of �1 and �2 do not contain � . Then
a simple application of Frobenius reciprocity and geometric lemma gives

HomGnCk .� � �1; � � �2/ Š HomGn.�; �/� HomGk .�1; �2/ Š HomGk .�1; �2/:

Our goal is to generalize the above isomorphism to a larger class of examples in a functorial
way, which is Theorem 9.1.

8.1. Preserving extensions. Let C � Irrc . Define AlgC .Gm/ to be the full subcategory
of Alg.Gm/ whose objects � have finite lengths and satisfy the property that for any simple
composition factor � 0 of � , and for any � 2 cupp.� 0/, � lies in C .

Theorem 8.1. Let � 2 Irrc.Gk/. Let C D Cu�.d;m/. Let � 2 AlgC .Gn/ with length 2.
Then � is indecomposable if and only if u�.m; d/ � � is indecomposable.

We will prove Theorem 8.1 in Section 8.5. We expect to prove a more general result
elsewhere using some ideas from [11] (see Section 9.2) as well as the case mentioned here.
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The idea of the proof is to first prove for a large Speh representation (in the sense of Sec-
tion 8.3). In such case, one can compute via some simpler computations of Jacquet modules and
standard modules. The general case is deduced from “truncating” large Speh representations to
the desired one.

Remark 8.2. In general, a product does not preserve extensions even if it preserves
irreducibility of composition factors. The standard example is that � � .1 � �/, which is of
length 2. In this case, � � hŒ1; ��i and � � St.Œ1; ��/ are both irreducible, but 1 � � is indecom-
posable and � � .1 � �/ is semisimple.

8.2. Jacquet functors. Recall that Np is the subgroup of Gn containing all matrices 
In�p u

Ip

!
;

where u 2 Matn�p;p. Let � D Œ�a�; �b�� be a Zelevinsky segment. Let m D n�. Then, by
[44, Propositions 3.4 and 9.5], the Jacquet modules are

h�iNmi D Œ�
a�; �b�i��� Œ�b�iC1�; �b��;

h�iN�
mi
D hŒ�aCi�; �b��i� hŒ�a�; �aCi�1��i;

St.�/Nmi D St.Œ�aCi�; �b��/� St.Œ�a�; �aCi�1��/;

St.�/N�
mi
D St.Œ�a�; �b�i��� St.Œ�b�iC1�; �b��/:

Note that computing �N�
i

is equivalent to first computing �Nn�i to obtain a Gi �Gn�i -repre-
sentation, then twisting by the action by the element 

0 Ii

In�i 0

!
to obtain a Gn�i �Gi -representation.

8.3. Fully-faith product for large Speh. For � 2 Irrc.Gk/, d;m 2 Z�1, let

e��.d; k/ D Œ��.d�1/=2�; �.d�1/=2Ck��:
We first consider

em�.m; d; k/ D ¹�
�.m�1/=2e�.d; k/; : : : ; �.m�1/=2e�.d; k/º:

Let eu�.m; d; k/ D hem�.m; d; k/i, which is sometimes called essentially Speh representation
as it is a Speh representation twisted by a character. In particular,eu�.m; d; 0/ D u�.m; d/ if �
is unitarizable.

Lemma 8.3. Let �1; �2 be admissible representations of Gn. Fix � 2 Irrc and integers
d;m 2 Z�1. For any k � 0, set euk Deu�.m; d; k/. For k large enough, we have a natural
isomorphism

HomGn.�1; �2/ Š HomGnCp .euk � �1;euk � �2/;
where p D n�m.d C k/. Here naturality holds when the isomorphism holds, for both �1 and
�2 for the same k.
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Proof. We set k large enough such that �.d�m/=2Ck� is not in the cuspidal supports of
any irreducible representation of �1 and �2.

Let m D em�.m; d; k/ and leteu Deu�.m; d; k/. By using the injection

eu � �2 D hmi � �2 ,! �.m/ � �2;

the left exactness of HomGnCp .eu � �1; � / gives

HomGnCp .eu � �1; �.m/ � �2/ - HomGnCp .eu � �1;eu � �2/:(8.1)

Let � D Œ�.�dCm/=2�; �.dCm�2/=2Ck��. Since �.m/ D h�i � �.m n ¹�º/,

HomGnCp .hmi � �1; �.m/ � �2/ Š HomGnCp .hmi � �1; h�i � �
0/;

where � 0 D �.m n ¹�º/ � �2.
Let q D n�m. Now Frobenius reciprocity gives that

HomGnCp .hmi � �1; h�i � �
0/ Š HomGq�GnCp�q ..hmi � �1/NnCp�q ; h�i� �

0/:

Note that �.dCm�2/=2Ck� does not appear in the cuspidal support of irreducible factors of �1.
With some analysis on Jacquet module from the geometric lemma (see, for example the proof
of Lemma 8.6 below for more details), the only composition factor in .hmi � �1/NnCp�q that
has the same cuspidal support as h�i� � 0 is

h�i� hm n ¹�ºi � �1:

Thus we have

Hom.hmi � �1; h�i � � 0/ Š Hom.hm n ¹�ºi � �1; � 0/

D Hom.hm0i � �1; �.m0/ � �2/;

where m0 D m n ¹�º, and so

Hom.hmi � �1; �.m/ � �2/ D Hom.hm0i � �1; �.m0/ � �2/:

Since �.dCm�2/=2Ck�1� does not appear in the cuspidal support of � 0 (when k � 2,
otherwise we are done), we can repeat the similar process by replacing m n ¹�º with m.
Inductively (which works by our choice of large k), we obtain

HomGnCp .hmi � �1; �.m/ � �2/ Š HomGn.�1; �2/:

With (8.1),

HomGn.�1; �2/ - HomGnCp .eu � �1;eu � �2/:(8.2)

Viewing eu� as a functor and using the faithfulness of eu� (see Section 9.1 below), we
have

HomGn.�1; �2/ ,! HomGnCp .eu � �1;eu � �2/(8.3)

Since we are dealing with admissible representations, the injections in (8.2) and (8.3) must be
isomorphisms. Hence, we have

HomGn.�1; �2/ Š HomGnCp .eu � �1;eu � �2/:
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Remark 8.4. We remark that the above lemma does not require �1 and �2 to be in
AlgC .Gn/. In such case,eu�.m; d; k/ � �1 may have more complicated structure. For example,
when �1 has unique quotient, the cosocle ofeu�.m; d; k/ � � may not be irreducible. We give
an example here.

Let � D Œ�1=2; �k� for sufficiently large k. Let � D ��1=2 � �1=2, which is reducible
with length 2. Then

h�i � �

has the quotient hŒ��1=2; �k�i � �1=2 since h�i � ��1=2 has quotient hŒ��1=2; �k�i, and has
the quotient h�i � St.Œ��1=2; �1=2�/, which is irreducible (deduced from similar way as in
[13, Appendix]), since � has the quotient St.Œ��1=2; �1=2�/.

8.4. Product for irreducibility. We use the notations introduced in the previous sub-
section.

Lemma 8.5 ([30]). Fix m; d and � 2 Irrc . Let m1 and m2 be multisegments with each
segment� satisfying that any cuspidal representation in� is in Cu�.m;d/. Then, for any k � 0:

(1) eu�.m; d; k/ � hmi i (i D 1; 2) is irreducible.

(2) eu�.m; d; k/ � hm1i Šeu�.m; d; k/ � hm2i if and only if m1 D m2.

(3) eu�.m; d; k/ � hmi i Š hmi i �eu�.m; d; k/, for i D 1; 2.

(4) Let ! be an irreducible representation of GaCp. If eu�.m; d; k/� � is an irreducible
quotient of !N , then ! Šeu�.m; d; k/ � � . The statement also holds if we replace !N
by !N� as well as replace quotient by submodule.

Proof. Assertions (1) and (2) follow from [30, Corollary 6.7]. We only sketch how to
deduce from [13, Appendix]. Using a modified version of a lemma in [13, Appendix], we have

�.�.em�.m; d; k/Cmi //
_� u�.m; d; k/ � hmi i ,! �.em�.m; d; k/Cmi /;

which forces thateu�.m; d; k/ � hmi i is the unique submodule of �.em�.m; d; k/Cmi /. Asser-
tion (4) follows from Frobenius reciprocity and (1). Finally, assertion (3) follows from the
Gelfand–Kazhdan involution.

8.5. Proof of Theorem 8.1. We fix �; d;m. For simplicity, set euk D u�.m; d; k/ for
k � 0. Let �kC1 D Œ�.m�d/=2CkC1�; �.mCd�2/=2CkC1��. Let C be as in Theorem 8.1 for
such �, d and m.

Lemma 8.6. Let p D n�m. Let � 0 be an irreducible representation in AlgC .Gn0/. Let
n D n0 C .d C k C 1/mn�. There is a unique irreducible composition factor ! in

.St.�kC1/ �euk � � 0/N�n�p
which is isomorphic to St.�kC1/� � for some irreducible � of Gn�p, and moreover,

! Š St.�kC1/� .euk � � 0/:
Proof. For simplicity, set � Deuk � � 0, which is irreducible by Lemma 8.5. Note that

�.mCd�2/=2CkC1� is not in the cuspidal support ofeuk � � 0. To compute .St.�kC1/ � �/N�n�p ,
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we first compute
.St.�kC1/ � �/Np

(see discussions in Section 8.2), and then twisting the action by an element. Then geometric
lemma on .St.�kC1/ � �/Np yields a filtration successive quotients of the form

St.Œ�lC1�; �b��/ � ! � St.Œ�a�; �l �/ � !0;

and this gives a filtration on .euk � St.�kC1//N�n�p with successive quotients taking the form

St.Œ�a�; �l��/ � !0 � St.�lC1�; �b��/ � !:(8.4)

Here ! and !0 are representations whose cuspidal supports do not contain �.mCd�2/=2CkC1�.
It follows that an irreducible composition factor  of .St.�kC1/ � �/N�n�p can take the form
St.�kC1/� � only if l D b in (8.4). In such case, the successive quotient from geometric
lemma is irreducible and is isomorphic to  Š St.�kC1/� �.

Lemma 8.7. There exists a surjection from St.�kC1/ �euk toeukC1.

Proof. Let � D �kC1. It follows from Lemma 2.1 that there is a surjection

� WD St.�/ � St.��1�/ � � � � � St.��.dCk/�/!eukC1;
and similarly, � 0 WD St.��1�/ � � � � � St.��.dCk/�/!euk . By uniqueness of the irreducible
quotient for � , we then also have that St.�/ �euk has the same unique irreducible quotient as � .
This gives surjections

� D St.�/ � � 0� St.�/ �euk�eukC1:
Lemma 8.8. Let K be the kernel of the surjection in Lemma 8.7. Then, for any �

in AlgC .Gn0/ and any � 0 in AlgC .Gn0/,

Hom.K � �;eukC1 � � 0/ D 0:
Proof. Let � D �kC1. We have the short exact sequence

0! K ! St.�/ �euk !eukC1 ! 0;

which gives the short exact sequence

0! K � � ! St.�/ �euk � � !eukC1 � � ! 0:

Let N� D N�
n0Cn�m.dCk/

. The Jacquet functor is exact and so we have another short exact
sequence

0! .K � �/N� ! .St.�/ �euk � �/N� ! .eukC1 � �/N� ! 0:(8.5)

Now, by second adjointness of Frobenius reciprocity, we have a map

St.�/� .euk � �/! .eukC1 � �/N� :



40 Chan, Non-tempered Gan–Gross–Prasad conjecture

The map is indeed injective. This follows first from the case that � is irreducible by using
irreducibility ofeuk � � (Lemma 8.5), and then lift to the general case by an inductive argument
using functoriality of Frobenius reciprocity. (One can also prove the map is injective by directly
computing the composition factors of .eukC1 � �/N� taking the form St.�/� � , see the proof
of Lemma 8.6.)

Now by Lemma 8.6 and counting on composition factors, all irreducible composition
factors of the form St.�/� � in .St.�/ �euk � �/N� are mapped onto .eukC1 � �/N� under
the surjection map in (8.5).

Thus there is no irreducible composition factor of .K � �/N� taking the form St.�/� � .
On the other hand, for any irreducible � 0, .eukC1 � � 0/N� has irreducible composition factor
of the form St.�/� � , which can be deduced by an argument using Frobenius reciprocity.
Hence, following from the exactness of Jacquet functor (and Lemma 8.5 (1)), we must have

Hom.K � �;eukC1 � � 0/ D 0:
Proof of Theorem 8.1. We keep using the above notations. Let � 2 AlgC .Gn/ be of

length 2. The if direction is easy and so we now consider the only if direction. Suppose �
is indecomposable. We shall use backward induction to prove that, for any k � 0, euk � � is
indecomposable, and moreovereuk � � has unique irreducible quotient. When k is sufficiently
large, Lemma 8.5 implies thateuk � � has length 2, and Lemma 8.3 (and Lemma 8.5 (2)) imply
the uniqueness of the quotient, which also then implies the indecomposability.

Let �1 and �2 be the two irreducible composition factors of � . Let �i Deuk � �i for
i D 1; 2. Note that �1 and �2 are irreducible, and �1Š �2 if and only if �1Š �2 by Lemma 8.5.

Supposeeuk � � is not indecomposable. Let � D �kC1. This gives an isomorphismeuk � � Š �1 ˚ �2;
and so there exists surjections, by Lemma 8.7,

St.�/ �euk � � Š St.�/ � �1 ˚ St.�/ � �2 !eukC1 � �1 ˚eukC1 � �2:
This implies that:

(1) If �1 6Š �2, then for both i D 1; 2,

HomG.St.�/ �euk � �;eukC1 � �i / ¤ 0:
(2) If �1 Š �2, then

dim HomG.St.�/ �euk � �;eukC1 � �1/ � 2:
On the other hand, we have the following short exact sequence from Lemma 8.7:

0! K � � ! St.�/ �euk � � !eukC1 � � ! 0:

By Lemma 8.8, Hom.K � �;eukC1 � �i / D 0 for i D 1; 2. Hence we have

Hom.eukC1 � �;eukC1 � �i / Š Hom.St.�/ �euk � �;eukC1 � �i /:
However, by induction hypothesis and the irreducibility of eukC1 � �i , the former Hom has
dimension one for both i D 1 or 2 if �1 Š �2, and has dimension one for precisely one of
i D 1; 2 if �1 6Š �2. This gives a contradiction to (1) or (2) above. Thus euk � � is indecom-
posable as desired, and sinceeuk � � has length 2, it also has unique irreducible quotient. This
completes the proof.
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9. Product functor of a Speh representation

9.1. Fully-faithful product. For an irreducible cuspidal representation � of some Gk ,
define cuppZ.�/ D ¹�

n�ºn2Z.
Let � 2 AlgC .Gp/. Define the functor

��;C D ��;C ;n W AlgC .Gn/! AlgC .GnCp/

as
��;C .!/ D � � !;

and, for a map � W !1 ! !2 in AlgC .Gn/,

��;C .�/.f /.g/ D .Id� ��/.f .g//;

where f 2 u�.m; d/ � !1 is a smooth function f W GnCp ! u�.m; d/� !1 (Section 2.2).
Note that since ��;C is exact and sends a non-zero object to a non-zero object, it follows that
��;C is faithful. We may sometimes simply write �� for ��;C .

For an irreducible representation � , we define a stable cuspidal set C� of � as

C� D cupp.�/ [ .Irrc n cuppZ.�//:

(Here we regard cupp.�/ as a set.) A motivation for the term stable cuspidal set is in the case
that for � D u�.d;m/, and for any � 2 C� , � � � is irreducible. (However, this is not true for
general � . We avoid some complications for the generality in our study for branching laws.)

Theorem 9.1. Let d;m be positive integers, and let � 2 Irru;c.Gk/. Let

C D Cu�.m;d/:

Then the functor �u�.m;d/;C is fully-faithful.

Proof. It suffices to check the conditions in Lemma A.1 in Appendix A. It follows
from definition that AlgC .Gk/ is Serre. Condition (1) is automatic. Condition (2) follows from
Theorem 8.1. Conditions (3) and (4) follow from Lemma 8.5 (see [30]).

As mentioned in introduction, a key input for the above result is the irreducibility of
parabolic induction due to Lapid-Mínguz [30]. It is possible to modify the proof of Theorem
8.1 to give another proof of Theorem 9.1 without deducing from the length 2 case while the
length 2 case is simpler.

Let p D n�md . For � 2AlgC .GnCp/, define Ru�.m;d/.�/ D HomGp .u�.m; d/; �N�n /,
which is regarded as a Gn-representation by .g:f /.u/ D diag.1; g/:.f .u//, and is an object
in AlgC .Gn/. Using adjointness, one checks that �u�.m;d/ is left adjoint to Ru�.m;d/.

Corollary 9.2. Let u D u�.m; d/. Let � be in AlgC .Gn/. Then

� Š Ru�.m;d/.u�.m; d/ � �/:

Proof. Since Ru�.m;d/ is right adjoint to �u�.m;d/, it follows from Theorem 9.1 that
Ru�.m;d/ ı �u�.m;d/ is isomorphic to the identity functor (see e.g. [45, Lemma 4.24.3]).
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Corollary 9.2 also gives the following:

Corollary 9.3. Let � 0 be in AlgC .Gn/. Suppose that � is an irreducible quotient of
u�.m; d/ � �

0. Then � Š u�.m; d/ � ! for an irreducible quotient ! of � 0.

Proof. By Frobenius reciprocity, !0 ,! Ru�.m;d/.�/ for some irreducible composition
factor !0 of � 0. Since !0 is also in AlgC .Gn/, we have

� Š u�.m; d/ � !
0

(see Lemma 8.5). Applying the Frobenius reciprocity on the quotient map from u�.m; d/ � �
0

to � Š u�.m; d/�!0 and Corollary 9.2, we have a non-zero map from � 0 to !0, as desired.

We need a stronger variation for Corollary 9.3:

Corollary 9.4. Let C be as in Theorem 9.1. Let �1 be a (not necessarily admissible)
representation of Gn. Let �2 be in AlgC .GnCp/, where p D n�md . Then if �2 is a quotient of
u�.m; d/ � �1, there exists a non-zero quotient ! of �1 such that

�2 Š u�.m; d/ � !:

In particular, if �2 is irreducible, then

�2 Š u�.m; d/ � !

for an irreducible quotient ! of �1. If �2 is an irreducible Arthur-type (respectively, unitariz-
able) representation, then

�2 Š u�.m; d/ � !

for some irreducible Arthur-type (respectively, unitarizable) representation !.

Proof. Let u D u�.m; d/. By adjointness, we have

0 ¤ HomGnCp .u � �1; �2/ Š HomGn.�1; Ru.�2//:

Let f be the map in HomGn.�1; Ru.�2// corresponding to the surjection from u�.m; d/ � �1
to �2.

Now using adjointness, we have the following commutative diagram:

HomGnCp .u � !; �2/

Š

��

HomGnCp .u � �1; �2/oo

Š

��

HomGnCp .u � �; �2/

Š

��

oo 0oo

HomGn.!;Ru.�2// HomGn.�1; Ru.�2//oo HomGn.�; Ru.�2//oo 0,oo

where the two horizontal rows are exact from the short exact sequence

0! ! D ker f ! �1 ! � D im f ! 0:

In particular, we have im f embeds to Ru.�2/.
The image of the embedding under the leftmost bottom horizontal map is zero by defi-

nition and by the commutative diagram, it comes from an element in HomGnCp .u � �1; �2/
with zero image by the leftmost top horizontal map. Thus when adjointness back, we get back
the surjective map

u � � ! �2;
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and the injection
im f Š � ,! Ru.�2/:

Since �2 is in AlgC .GnCp/, it follows that � is also in AlgC .Gn/. Thus the first surjection
implies that the number of composition factors in �2 is at most that of � by Lemma 8.5. By
Corollary 9.2, for each irreducible � 0 2 AlgC .GnCp/, Ru.�

0/ is either irreducible or zero.
Thus with the fact that Ru is a left exact functor, the number of composition factors of �2 is
at least that of composition factors of Ru.�2/. Hence, the second injection implies that the
number of composition factors in �2 is at least that of � . This implies the coincidence on the
numbers and so the surjection must be an isomorphism, i.e. u � � Š �2.

It remains to prove the last statement. Suppose �2 Š u�.m; d/ � ! is an Arthur-type
representation. Then �2 and u�.m; d/ being Hermitian self-dual implies that

N!_ � u�.m; d/ Š N�
_
2 Š �2 Š u�.m; d/ � ! Š ! � u�.m; d/:

This implies that N!_ Š ! by Lemma 8.5 and so it is Hermitian self-dual. Thus ! is unita-
rizable by a result of Bernstein [5, Corollary 8.2]. Now the classification [41] of unitarizable
representations and unique factorization give that ! is an Arthur-type representation. The proof
for the assertion for unitarizable representation is similar.

9.2. Generalizations. While our result of Theorem 9.1 is for a special class of repre-
sentations, one can generalize to a larger class of examples as long as an analogue of Theo-
rem 8.1 is established.

In [30, Proposition 5.1], it describes a criteria which � � h�i is irreducible for an irreduc-
ible representation � and a segment �. For a fixed irreducible representation � , let Alg�.Gn/
be the full subcategory of Alg.Gn/ which contains objects of finite length with simple com-
position factors � satisfying the property that � � h�i for any segment � in the associated
multisegment m of � . We expect that if � is Alg�.Gn/ is an indecomposable representation of
length 2, then � � � is also indecomposable of length 2.

A. Some homological algebra

Let A D Alg.Gl/. Let B D Alg.Gn/. Via Yoneda extension, any element in Ext1
A
.X; Y /

corresponds to a short exact sequence in A, and zero element corresponds to the split sequence.
Then, for an additive exact functor F , F sends a short exact sequence to a short exact sequence,
and this defines a map from Ext1

A
.X; Y / to Ext1

B
.F .X/;F .Y //.

Lemma A.1. Let C be a full Serre subcategory of A D Alg.Gl/. Let B D Alg.Gn/
and let D be a Serre full subcategory of B. Let F W C ! D be an exact additive functor. We
also regard objects in C as objects in A via the inclusion. Assume that:

(1) any object in C is of finite length,

(2) for any simple objectsX;Y in the subcategory C, the induced map of F , from Ext1
A
.X;Y /

to Ext1
B
.F .X/;F .Y // is an injection,

(3) F .X/ is a simple object in D if X is simple in C ,

(4) for any simple objects X and Y in C , F .X/ Š F .Y / if and only if X Š Y .
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Then for any objects X; Y in C , the induced map from Ext1
A
.X; Y / to Ext1

B
.F .X/;F .Y // is

also injective, and F W C ! D is fully-faithful, i.e.

HomB.F .X/;F .Y // Š HomD.F .X/;F .Y // Š HomC .X; Y / Š HomA.X; Y /

for any objects X; Y in C .

Proof. Let X and Y be objects in C . When both lengths of X and Y are 1 in C ,

HomD.F .X/;F .Y // Š HomC .X; Y /; Ext1A.X; Y / ,! Ext1B.F .X/;F .Y //

are guaranteed by (2), (3) and (4). We first fix the length of X to be at most some n. We shall
prove the statement for arbitrary Y by induction on the length of Y .

For an object Y in C , let Y1 be an irreducible quotient of Y . Then we have a short exact
sequence

0! Y2 ! Y ! Y1 ! 0:

Since C is Serre, it follows that Y1 and Y2 are in C .
Note that we have the following commutative diagram:

HomA.X; Y1/ //

��

Ext1
A
.X; Y2/ //

��

Ext1
A
.X; Y / //

��

Ext1
A
.X; Y1/

��

HomB.F .X/;F .Y1// // Ext1
B
.F .X/;F .Y2// // Ext1

B
.F .X/;F .Y // // Ext1

B
.F .X/;F .Y1//,

where the horizontal maps come from long exact sequences, in which the connecting homo-
morphism is the Yoneda product, and vertical maps for Ext1 are described in the beginning of
this section, and the vertical map for Hom is the map induced from the functor.

We have the first vertical arrow is isomorphism and the second and forth vertical arrows
are injections by induction hypothesis. Then it is direct to check that the third vertical arrow is
also an injection.

Now we consider another commutative diagram:

0 // HomA.X; Y1/ //

��

HomA.X; Y / //

��

HomA.X; Y2/ //

��

Ext1
A
.X; Y1/

��

0 // HomB.F .X/;F .Y1// // HomB.F .X/;F .Y // // HomB.F .X/;F .Y2// // Ext1
B
.F .X/;F .Y1//.

The first and third vertical arrows are isomorphisms by induction and the last vertical arrow is
an injection by induction again. Thus we have that the second vertical arrow is an isomorphism.

Now we switch the role of X and Y , and use similar argument to prove that the assertion
is true for X and Y of arbitrary finite length.

Remark A.2. The above lemma is also valid for arbitrary abelian categories A and B

which are Schurian k-categories, where k is a field, i.e.

HomA.X;X/ Š k and HomB.Y; Y / Š k

for any simple objects X and Y in A and B, respectively.
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