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Abstract
We prove a conjecture of Dipendra Prasad on Ext-branching from GLnC1.F / to
GLn.F /, where F is a p-adic field, and we give a projectivity criterion, resulting in
some interesting consequences.

1. Introduction
Decomposing a smooth representation of GLnC1.F /, when restricted to GLn.F /,
is a well-known and well-studied problem introduced by Prasad in [19]. Today, this
problem is one of a large family of Gan–Gross–Prasad restriction problems (see [15])
at the center of much research in representation theory and number theory. In order to
describe what is known and what is new in our research here, we let Gn D GLn.F /,
with Alg.Gn/ the category of smooth representations of Gn. For every � 2Alg.Gn/,
let Wh.�/ be the space of Whittaker functionals on � . If � is irreducible, then Wh.�/
is one- or zero-dimensional. We say that � is generic or degenerate, respectively. Let
�1 be an irreducible representation of GnC1. One of the most significant results in the
subject is that the restriction of �1 to Gn is multiplicity-free (see [1], [2], [23]); that
is, for every irreducible representation �2 of Gn,

dim HomGn.�1; �2/� 1;

and it is 1 if both representations are generic. On the other hand, Prasad proved in
[20] the following beautiful formula:

EP.�1; �2/ WD
X

.�1/i dim ExtiGn.�1; �2/D dim Wh.�1/ � dim Wh.�2/:

In particular, the formula implies that EP.�1; �2/ D 1 if both representations are
generic. Since dim HomGn.�1; �2/D 1, Prasad had conjectured that ExtiGn.�1; �2/
will vanish for i > 0 if both representations are generic.
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The first main result in this article is a proof of this conjecture. In [13], we will
generalize the result to other Bessel and Fourier–Jacobi models (in the sense of [15]).
The proof is based on the theory of Bernstein–Zelevinsky derivatives (see [5], [6])
with the following, additional ingredient. The theory of derivatives describes how a
smooth representation of GnC1 restricts to the mirabolic subgroup MnC1. However,
instead ofMnC1, one can consider the transposeM>nC1 ofMnC1 and develop a theory
of derivatives with respect to M>nC1. Thus, we have two notions of derivatives: those
with respect to MnC1 are called right derivatives, and those with respect toM>nC1 are
called left derivatives. These two derivatives are related by the outer automorphism
of GnC1 defined by �nC1.g/D .g�1/>. Since M>nC1 is not conjugated to MnC1 in
GnC1, the information provided by left and right derivatives taken together is stronger
and is essential to our combinatorial arguments. Let us illustrate the argument when
�1 is the Steinberg representation of GL2.F /. Let �.g/D jgj be a character of GL1.
The theory of derivatives implies that the restriction of �1 to GL1.F / is given by the
following Bernstein–Zelevinsky filtration:

0! Cc.F
�/! �1!C! 0;

where Cc.F �/ is the space of locally constant, compactly supported functions on
F �, and GL1.F / acts on C by the character � or ��1, depending on whether we
use right or left derivatives, respectively. Thus, for a given character �2 of GL1.F /,
one can clearly arrange that the character on the quotient C in the above sequence is
different from �2. Now higher extension spaces vanish since Cc.F �/ is projective.
Even the multiplicity 1 statement is clear since it holds for Cc.F �/. The general case,
restricting fromGnC1 toGn, follows this strategy. The bottom piece of the Bernstein–
Zelevinsky filtration of �1 is the Gelfand–Graev representation of Gn, and thus the
vanishing of higher extensions and multiplicity 1 for generic representations follow
from projectivity (see [14]) and multiplicity 1 for the Gelfand–Graev representation
of Gn, respectively.

The theory of left and right derivatives is expected to have more applications on
restriction problems. In [12], we further prove that there are no isomorphic irreducible
quotients (and submodules) for the i th left- and i th right-shifted derivatives of an
irreducible representation of Gn unless the derivatives are the highest one. This result
has consequences on the indecomposability of a restricted representation, as well as
to the submodule restriction problem.

LetKr be the r th principal congruence subgroup inGn. Let � 2Alg.Gn/ be gen-
erated by the subspace �Kr of Kr -fixed vectors (so � is contained in finitely many
Bernstein components). Then the left .i/� and the right �.i/ derivatives are related
by the isomorphism .�.i//_ Š .i/.�_/. We establish this as a consequence of a “sec-
ond adjointness isomorphism” for Bernstein–Zelevinsky derivatives, which naturally
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involves the left derivative, proved in the appendix. This result is of independent inter-
est.

The second main result is a projectivity criterion for the representation �1 of
GnC1, when restricted toGn, formulated in [12]. In [12], we use the criteria to classify
all irreducible representations which are projective when restricted from GnC1 to Gn.
Assume that �1 is projective as a Gn-module. Then higher extension spaces vanish
without assuming that �2 is generic. Now assume that �1 or �2 is degenerate. Then
EP.�1; �2/D 0 by Prasad’s formula. If �2 is a quotient of �1, then ExtiGn.�1; �2/¤ 0
for some i > 0, and this contradicts the projectivity of �1. Thus, a necessary condi-
tion for �1 to be Gn-projective is that it is generic and all its irreducible quotients are
generic. In this paper, we show that this is also a sufficient condition. The proof relies
heavily on the Hecke algebra methods from our earlier paper [14]. Moreover, if �1
is projective, we identify each Bernstein component of �1 with an explicit projective
Hecke algebra module, independent of �1. We also show that the necessary condition
is satisfied if �1 is an essentially square-integrable representation. Therefore, essen-
tially square-integrable representations of GnC1 are projective Gn-modules, and any
two such representations are isomorphic as Gn-modules. This result generalizes the
classical result of Bernstein and Zelevinsky which says that any two cuspidal repre-
sentations of GnC1 are isomorphic when restricted to the mirabolic subgroup MnC1

of GnC1.
Finally, we would like to point out the following consequence of our results to the

submodule restriction problem: HomGn.�2; �1/ (note that �1 and �2 have switched
the places). The two restriction problems are related by a cohomological duality, due
to Nori and Prasad [18] (also see [11]),

ExtiGn.�2; �1/
_ Š Extd.�2/�iGn

�
�1;D.�2/

�
;

where d.�2/ is the cohomological dimension of �2 and D.�2/ is the Aubert invo-
lute of �2. This duality gives an additional importance to the cohomological restric-
tion problem that we study here. Since d.�2/ > 0, due to the presence of the one-
dimensional center in Gn, it follows that HomGn.�2; �1/D 0 for all irreducible �2
if �1 is projective; in particular, this is true if �1 is an essentially square-integrable
representation.

2. Bernstein–Zelevinsky derivatives
In this section we study Bernstein–Zelevinsky derivatives (or simply “derivatives”)
as functors from Alg.Gn/ to Alg.Gn�i /. We state a second adjointness isomorphism
for these functors, as well as an Ext version of the formula. The mirabolic group will
appear in the next section.
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2.1. Notation
Let Gn D GLn.F /, where F is a p-adic field. Let �.g/D jdet.g/j be the character
of Gn, where j � j is the absolute value on F . Let Bn be the Borel subgroup of Gn
consisting of upper triangular matrices, and let Un be the unipotent radical of Bn. Let

Rn�i D

²�
g x

0 u

�
W g 2Gn�i ; u 2 Ui ; x 2Matn�i;i .F /

³
:

We have an obvious Levi decompositionRn�i DGn�iEn�i , whereEn�i is the unipo-
tent radical of Rn�i . Moreover, En�i DNn�iUi , where Nn�i is the unipotent radical
of the maximal parabolic subgroup Pn�i consisting of block upper-triangular matri-
ces and Levi factor Gn�i �Gi . Fix a nonzero additive character  of F . Let  i be
the character of En�i defined by

 i

�
1 x

0 u

�
D .u1;2C � � � C ui�1;i /;

where u1;2; : : : ; ui�1;i are the entries of u above the diagonal. Let ıRi be the modular
character of Rn�i . The modular character is trivial on the unipotent radical En�i ,
and it is equal to �i on the Levi factor Gn�i . Let � be a smooth representation of Gn
on a vector space V . The right i th Bernstein–Zelevinsky derivative of � is a smooth
representation �.i/ of Gn�i on the vector space V .i/ defined by

V .i/ D V=
˝
�.e/v � i .e/v W e 2En�i ; v 2 V

˛
:

The representation �.i/ is the natural action of the Levi factor Gn�i on V .i/ twisted
by ı�1=2Rn�i

; that is, Bernstein–Zelevinsky derivatives in this paper are normalized, as is
parabolic induction and corresponding Jacquet functors.

From the definition of derivatives, the factorization Rn�i D Gn�iEn�i , and the
Frobenius reciprocity, one can easily prove the first adjointness isomorphism for right
Bernstein–Zelevinsky derivatives. For any smooth representation � ofGn and smooth
representation � of Gn�i ,

HomGn

�
�; IndGnRn�i .� ˝ i /

�
ŠHomGn�i .�

.i/; �/:

We termed the derivative “right” because there is also a left derivative, which is
taken with respect to the transpose of the groups used to define right derivatives. More
precisely, the underlying vector space for the left derivative .i/� is

.i/V D V=
˝
�.e/v � >i .e/v W e 2E

>
n�i ; v 2 V

˛
;

where  >i is the character of E>n�i defined by

 >i

�
1 0

x u

�
D N .u2;1C � � � C ui;i�1/:
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Let �n.g/ D .g�1/> be the outer automorphism of Gn, where g> is the transpose
of g. Then the left derivative of � is related to the right derivative by the identity

.i/� D �n�i
�
�n.�/

.i/
�
:

LetKr be the r th principal congruence subgroup inGn. Let � be a representation
of Gn generated by �Kr , the space of Kr -fixed vectors in � . By Theorem 4.2 in [5],
any submodule of � is also generated by its subspace of Kr -fixed vectors. Thus, rep-
resentations of Gn generated by Kr -fixed vectors form a categorical direct summand.
The following is the second adjointness isomorphism for left Bernstein–Zelevinsky
derivatives, proved in the appendix.

LEMMA 2.1
Let Kr be the r th principal congruence subgroup in Gn. For any representation � of
Gn generated by �Kr and any smooth representation � of Gn�i ,

HomGn

�
indGnRn�i .� ˝

N i /;�
�
ŠHomGn�i .�;

.i/�/:

This isomorphism is functorial in both � and � .

We now derive some consequences of the two adjointness isomorphisms. The first
consequence is a relationship between right and left derivatives via the contragredient.

LEMMA 2.2
Let Kr be the r th principal congruence subgroup in Gn. Let � be a representation of
Gn generated by �Kr . Then .�.i//_ Š .i/.�_/.

Proof
If we insert �_ in Lemma 2.1, then for every smooth representation � of Gn�i ,

HomGn

�
indGnRn�i .� ˝

N i /;�
_
�
ŠHomGn�i

�
�; .i/.�_/

�
:

On the other hand, by Proposition 4.2 in [20],

HomGn

�
indGnRn�i .� ˝

N i /;�
_
�
ŠHomGn�i

�
�; .�.i//_

�
:

Thus we have an isomorphism

HomGn�i

�
�; .�.i//_

�
ŠHomGn�i

�
�; .i/.�_/

�

functorial in � . Now we regard the functors

h1 WDHomGn�i

�
�; .�.i//_

�
; h2 WDHomGn�i

�
�; .i/.�_/

�
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as objects in the functor category F which contains contravariant functors from
the category of representations of Gn�i to the category of Abelian groups. The
Yoneda lemma (see, e.g., Lemma 4.3.5 in [22]) asserts that there are natural isomor-
phisms

HomF .h1; h2/ŠHomGn�i

�
.�.i//_; .i/.�_/

�

and

HomF .h2; h1/ŠHomGn�i

�
.i/.�_/; .�.i//_

�
:

The naturality is in the sense of Lemma 4.3.5 in [22], and so h1 Š h2 in F implies
that .i/.�_/Š .�.i//_.

Remark
The statement of Lemma 2.1 is optimal in the sense that it cannot be extended to all
smooth representations � . To that end, observe that Lemma 2.2, in the case i D n,
says that we have an isomorphism of vector spaces .�_/Un; n Š .�Un; n/

_ for every
Gn-module � generated by �Kr . Let � be any smooth Gn-module. It can be written
as a direct sum

� Š

1M
rD1

�r ;

where �r is generated by �Krr and �Kr�1r D 0. Then

�_ Š

1M
rD1

�_r I

hence, �_Un; n is a direct sum of .�_r /Un; n Š ..�r/Un; n/
_. But .�Un; n/

_ is a
product of ..�r/Un; n/

_ and, hence, much larger unless the sum over r is finite.

The following lemma is not needed in this work; however, it is used in the sequel
to this paper [12] to prove that both the socle and cosocle of derivatives of irreducible
representations are multiplicity-free (see Proposition 2.5 in [12]).

LEMMA 2.3
Let � be an irreducible representation of Gn. The socle of .i/� is isomorphic to the
cosocle of .i/� . In particular, if the irreducible subquotients of .i/� are multiplicity-
free, then .i/� is a direct sum of its irreducible subquotients.
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Proof
The key observation is that, in view of Lemma 2.2, we have two ways to compute
.i/� :

.i/� D �n�i
�
�n.�/

.i/
�
D
�
.�_/.i/

�_
:

Since � is irreducible, we have �n.�/ Š �_, and if we denote by � either of two
isomorphic representations �n.�/.i/ and .�_/.i/, we see that .i/� is obtained from �

on one hand by applying the covariant functor � and, on the other hand, by applying
the contravariant functor taking the contragradient. Since these two functors coincide
on irreducible representations, the corollary follows.

LEMMA 2.4
For any representation � of Gn generated by �Kr and smooth representation � of
Gn�i ,

ExtjGn
�
indGnRn�i .� ˝

N i /;�
�
Š ExtjGn�i .�;

.i/�/:

Proof
In order to compute the right-hand side, we need to use a projective resolution of � .
By using the induction in stages,

indGnRn�i .� ˝
N i /Š IndGnPn�i

�
� � indGiUi .

N i /
�
:

The Gelfand–Graev representation indGiUi .
N i / is projective by Corollary A.6 of [14].

Thus, if � is projective, then it follows that indGnRn�i .� ˝
N i / is projective, since the

parabolic induction takes projective modules into projective modules. So we have
shown that taking a projective resolution of � also gives a projective resolution of
indGnRn�i .� ˝

N i /. Hence, the lemma follows from Lemma 2.1.

2.2. Zelevinsky segments
Here we follow [24]. Let � be a cuspidal representation of Gr . For any a; b 2 C

with b � a 2 Z�0, we have a Zelevinsky segment � D Œ�a�; �aC1�; : : : ; �b��. The
absolute length of � is defined to be r.b � aC 1/, and the relative length is defined
to be b�aC 1. We can truncate� from each side to obtain two segments of absolute
length r.b � a/:

��D Œ�aC1�; : : : ; �b�� and �� D Œ�a�; : : : ; �b�1��:

Moreover, if we perform the truncation k times, then the resulting segments will be
denoted by .k/� and �.k/. The induced representation �a�� �aC1�� � � � � �b� con-
tains a unique irreducible submodule denoted by h�i.
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PROPOSITION 2.5
Let i > 0 be an integer. The i th left and right derivatives of h�i vanish unless i D r
when

.r/h�i D h��i and h�i.r/ D h��i:

COROLLARY 2.6
Let�1; : : : ;�k be segments. Let � be an irreducible subquotient of h�1i�� � ��h�ki.
If a right derivative of � is generic, then every �j is of the relative length 1 or 2, and
if the relative length is 2, then ��j contributes to the cuspidal support of the right
derivative of � . Similarly, if a left derivative of � is generic, then ��j contributes to
the cuspidal support of the left derivative.

Proof
Observe that h�i is generic if and only if the relative length of � is 1. By the Leibniz
rule, a right derivative of h�1i � � � � � h�ki has a filtration whose subquotients are
h�01i � � � � � h�

0
k
i, where �0j is �j or ��j . This representation is generic if and only

if the relative length of every �j is 1 or 2, and if it is 2, then �0j D�
�
j .

We summarize some other results from [24] that we will need. The induced repre-
sentation �a���aC1�� � � ���b� also contains a unique irreducible quotient denoted
by St.�/. This representation is an essentially square-integrable representation; that
is, its matrix coefficients are square-integrable when restricted to the derived sub-
group. Every essentially square-integrable representation is isomorphic to St.�/ for
some segment �.

PROPOSITION 2.7
Let i > 0 be an integer. The i th left and right derivatives of St.�/ vanish unless
i D jr , for some integer j , when

.i/St.�/D St.�.j // and St.�/.i/ D St..j /�/:

Finally, let mD ¹�1; : : : ;�kº be a multisegment, that is, a multiset of segments.
Let

St.m/D St.�1/� � � � � St.�k/:

We observe that this representation depends on the ordering of the segments, but
its semisimplification does not. One can say that m is generic if no two segments
are linked (see [24, p. 184]). Then, by Theorems 4.2 and 9.7 in [24], St.m/ is an
irreducible generic representation, and every such representation arises in this way.



VANISHING EXT-GROUPS FOR .GLnC1.F /;GLn.F // 2245

3. Bernstein–Zelevinsky filtration
In this section, we begin our study of the restriction problem from GnC1 to Gn. Using
the second adjointness formula, for both left and right derivatives, we prove that
degenerate representations of Gn cannot be quotients of essentially square-integrable
representations of GnC1.

3.1. Bernstein–Zelevinsky functors
Let MnC1 �GnC1 be the mirabolic subgroup

MnC1 D

²�
g u

0 1

�
W g 2Gn; u 2Matn;1.F /

³
:

We have an obvious Levi decomposition MnC1 DGnEn. Abusing notation, let  be
the character of En defined by  .u/D  .un/, where un is the bottom entry of the
column vector u. Note that the stabilizer of  inGn isMn. We have a pair of functors

ˆ� WAlg.MnC1/!Alg.Mn/ and ˆC WAlg.Mn/!Alg.MnC1/

defined by ˆ�.	/ D 	En; and ˆC.	/ D ind
MnC1
MnEn

.	 �  /. We also have a pair of
functors

‰� WAlg.MnC1/!Alg.Gn/ and ‰C WAlg.Gn/!Alg.MnC1/;

where ‰�.	/D 	En and ‰C is simply the inflation. All functors are normalized as in
[6]. Any 	 2Alg.MnC1/ has an MnC1-filtration

	n � � � � � 	0 D 	;

where 	i D .ˆC/i .ˆ�/i .	/ and

	i=	iC1 D .ˆ
C/i‰C‰�.ˆ�/i .	/:

Observe that ‰�.ˆ�/i .	/D 	 .iC1/ is the .i C 1/th derivative, and the subquotients
of the filtration, considered as Gn-modules, are

	i=	iC1 Š indGnRn�i .�
1=2 � 	 .iC1/ � i /;

where we have used notation from the preceding section. In particular, 	n is a multiple
of the Gelfand–Graev representation. We derive some consequences of this filtration
that we will need later.

LEMMA 3.1
Let 	 2 Alg.MnC1/ be such that its derivatives are all finitely generated. When 	 is
considered as a Gn-module, its Bernstein components are finitely generated.
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Proof
Recall that Pn�i � Rn�i is the maximal parabolic subgroup of Gn with the Levi
factor Gi �Gn�i . By using induction in stages, the i th subquotient in the Bernstein–
Zelevinsky filtration of 	 can be written as

IndGnPn�i
�
�1=2 � 	 .iC1/ � indGiUi . i /

�
:

By assumption, 	 .iC1/ is a finitely generated Gn�i -module and the Bernstein com-
ponents of the Gelfand–Graev representation indGiUi . i / are finitely generated (see
[7]). The lemma follows since parabolic induction sends finitely generated modules
to finitely generated modules by Variante 3.11 in [4].

LEMMA 3.2
Let �1 2 Alg.GnC1/, and let �2 be an admissible representation of Gn. If �2 is a
quotient of �1, then for some i; j 	 0,

HomGn�i .�
1=2 � �

.iC1/
1 ; .i/�2/¤ 0 and

HomGn�j .�
�1=2 � .jC1/�1; �

.j /
2 /¤ 0:

Proof
In order to prove the first isomorphism, we restrict �1 to Gn, by way of MnC1, and
we use the second adjointness formula. For the second, we restrict to Gn, by way of
M>nC1; that is, we reverse the roles of left and right derivatives.

3.2. Essentially square-integrable representations

THEOREM 3.3
Let �D Œ�a�; : : : ; �b�� be a segment of absolute length nC 1, where � is a cuspidal
representation of Gr . Let � be an irreducible Gn-module. If � is a quotient of St.�/,
then � is generic.

Proof
Let l D b � aC 1; in particular, nC 1D lr . Assume that � is degenerate. Let mD
¹�1; : : : ;�kº be a multisegment, from the Zelevinsky classification, such that � is
the unique submodule of h�1i � � � � � h�ki. Since � is degenerate, by Theorem 8.1
in [24] one segment in m has relative length at least 2. If � is a quotient of St.�/,
then by Lemma 3.2, .i/� contains �1=2 � St.�/.iC1/ as a generic submodule for some
i . Now we can apply Corollary 2.6: the relative length of each segment in m is 1 or
2, and one of them is Œ�c�1=2�; �cC1=2��, where �cC1=2� contributes to the cuspidal
support of �1=2 �St.�/.iC1/. It follows that �1=2 �St.�/.iC1/ is a generalized Steinberg
representation corresponding to a segment ending in �bC1=2 and containing �cC1=2�.
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Thus, for every d D c; : : : ; b, �dC1=2� contributes to the cuspidal support of .i/�
as well as to the cuspidal support of � . Similarly, if we use the second identity in
Lemma 3.2, then for every d D a; : : : ; c, �d�1=2� contributes to the cuspidal support
of � . We see that m contains segments of total relative length at least l and absolute
length .l C 1/r D nC 1C r > n. This is a contradiction.

4. Vanishing of Ext’s
The purpose of this section is to prove the following result.

THEOREM 4.1
Let �1 be an irreducible generic representation of GnC1, and let �2 be an irreducible
generic representation of Gn. Then

ExtiGn.�1; �2/D 0 if i > 0 and HomGn.�1; �2/DC:

Let us explain the strategy of the proof. Fix �2, and assume that �2 is a sub-
quotient of �1 � � � � � �k , where �i are cuspidal representations. Let m.�1/ be the
integer that counts the number of cuspidal representations � in the support of �1 such
that � is an unramified twist of a �i , for some 1� i � k. The proof is by induction on
m.�1/. The base casem.�1/D 0 is easy. It is deduced from the Bernstein–Zelevinsky
filtration of �1, where the bottom piece is the Gelfand–Graev representation of Gn.
Assume now that �1 D St.m1/ and �2 D St.m2/ for a pair of generic multisegments
m1 and m2, that is, no two segments in mi are linked. Let �D Œ�a�; : : : ; �b�� be a
segment in m1 such that � contributes to m.�2/. Assume that � is also a shortest
such segment. Write �1 D St.�/ � � , where � D St.m/ and mD m1 n�. Let r be
the integer such that � 2 Alg.Gr/. Let �0 2 Alg.Gr/ be another cuspidal representa-
tion such that no unramified twist of �0 appears in the cuspidal supports of �1 and
�2. Now both �0�St.��/�� and �0�St.��/�� 2Alg.GnC1/ are irreducible and
satisfy the induction assumption. We will use this information to prove the theorem
for �1.

4.1. Transfer
Let l D sC r . Recall that Ps is the maximal parabolic of Gl with the Levi Gs �Gr .
Starting with � 2 Alg.Gs/ and 	 2 Alg.Mr/, we can manufacture two representa-
tions of Ml . The first one is obtained by the (normalized) induction from Ps \Ml

and, by abusing notation, is denoted by � � 	 . The second is obtained by the nor-
malized induction from P>s \Ml but only after � is multiplied by ��1=2 (see [6,
p. 457]), where the definition uses a different subgroup but is conjugated in Ml . This
representation is denoted by 	 � � .

Our interest in these representations comes from the following.
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PROPOSITION 4.2 ([6, Proposition 4.13])
Let � 2 Alg.Gr/, let � 2 Alg.Gs/, and let 	 2 Alg.Mr/. Let �jM and � jM denote
restrictions to Mr and Ms , respectively.
(1) There exists an exact sequence in Alg.Ml/,

0! .�jM /� �! � � �! � � .� jM /! 0:

(2) If 
 is any of the four functors ˆ˙ and ‰˙, then


.� � 	/D � �
.	/:

(3) ‰�.	 � �/D‰�.	/� � , and there exists an exact sequence in Alg.Ml�1/,

0!ˆ�.	/� �!ˆ�.	 � �/!‰�.	/� .� jM /! 0:

PROPOSITION 4.3
Let � D Œ�a�; : : : ; �b�� be a segment where � 2 Alg.Gr/. Let 	r D .ˆC/r�1.1/ 2
Alg.Mr/, the Gelfand–Graev module. Then St.�/jM is isomorphic to 	r � St.��/.

Proof
Recall that �jM Š 	r . (This is true for every cuspidal representation.) Note that St.�/
is a quotient of �a� � St.��/. By Proposition 4.2(1), we have an exact sequence of
mirabolic subgroup modules

0! 	r � St.��/! �a� � St.��/! �a� �
�
St.��/jM

�
! 0:

By Proposition 4.2(2), any derivative of the quotient in the above sequence is equal to
�a��St..k/�/ with k > 1. Since �a� and .k/� are not linked, the corresponding sub-
quotients in the Bernstein–Zelevinsky filtration are irreducible as mirabolic subgroup
modules. Observe that they are nonisomorphic to the subquotients of the Bernstein–
Zelevinsky filtration of St.�/. Hence, the projection from �a� � St.��/ onto St.�/
restricted to 	r � St.��/ gives the desired isomorphism.

Now we arrive at a key result.

COROLLARY 4.4
Let �; �0 2 Alg.Gr/ be any two irreducible cuspidal representations. Let � D
Œ�a�; : : : ; �b��, and let � 2 Alg.Gs/. Then we have an isomorphism of mirabolic
modules

St.�/jM � � Š �
0jM �

�
St.��/� �

�
:
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Proof
By Proposition 4.3, we can substitute St.�/jM D 	r �St.��/. Furthermore, we have
a natural isomorphism�

	r � St.��/
�
� � Š 	r �

�
St.��/� �

�
given by the induction in stages in two different orders. We finish by observing that
	r D �

0jM .

Now we continue with the proof of vanishing for �1 D St.�/� � , with notation
as in the start of the section. By Proposition 4.2(1), there is an exact sequence in
Alg.MnC1/,

0!
�
St.�/jM

�
� �! St.�/� �! St.�/� .�jM /! 0:

Likewise, there is an exact sequence in Alg.MnC1/,

0! �0jM �
�
St.��/� �

�
! �0 �

�
St.��/� �

�
! �0 �

�
St.��/� �

�
jM ! 0:

Note that the submodules in the two sequences are isomorphic by Corollary 4.4. Fur-
thermore, by the choice of �0,

ExtiGn
�
�0 �

�
St.��/� �

�
jM ; �2

�
D 0 if i 	 0:

Now we can apply the induction assumption to �0 � St.��/� � and conclude that

ExtiGn
��

St.�/jM
�
� �;�2

�
D 0 if i > 0 and ŠC if i D 0:

Hence, in order to establish the conjecture for the pair .�1; �2/, it suffices to show
that

ExtiGn
�
St.�/� .�jM /;�2

�
D 0 if i 	 0;

and, to do this, it suffices to show vanishing for each subquotient in the Bernstein–
Zelevinsky filtration of St.�/ � .�jM /. By Proposition 4.2(2), the derivatives of
St.�/� .�jM / are computed on the second factor. Therefore, by combining this with
the second adjointness formula, it suffices to show that
� ExtjGn.�

1=2 St.�/� �.iC1/; .i/�2/D 0 for i; j 	 0.
Alternatively, by reversing the roles of left and right derivatives, it suffices to show
that
� ExtjGn.�

�1=2 St.�/� .iC1/�;�.i/2 /D 0 for i; j 	 0.

Hence, it suffices to show that the cuspidal support of �1=2.St.�/� �.iC1// and
of .i/�2 are different for all i , or they are different for ��1=2.St.�/� .iC1/�/ and �.i/2
for all i . The strategy is to show that if both statements fail, then m2 contains linked
segments.
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4.2. Combinatorics
Let mD ¹�1; : : : ;�kº be a multisegment. Then St.m/ is generic but reducible if some
segments are linked. However, if �i and �j are linked, then they can be replaced by
�i \ �j and �i [ �j . This process (called recombination henceforth) eventually
leads to a generic segment such that the corresponding irreducible generic represen-
tation is the unique generic subquotient in St.m/. An important observation is that the
recombination does not change the cuspidal support. The following is a key lemma.

LEMMA 4.5
Let m be a generic multisegment, and let m0 be a multisegment obtained by truncating
m from the right. Then the generic segment corresponding to m0 by recombination is
also obtained from m by truncating from the right.

Proof
This is proved by induction on the number of steps in the recombination process. If
that number is 0, then there is nothing to prove. Otherwise, there is a pair of linked
segments �0 and �00 in m0 such that the first step in the recombination is replacing
�0 and �00 by �0 \�00 and �0 [�00, respectively. It is trivial to see that the result-
ing multisegment is also obtained by right truncation from m. The proof follows by
induction.

4.3. Finishing the proof
Let l D b�aC1 be the relative length of�. We note that .i/�2 is glued from St.m02/,
where m02 runs over all multisegments obtained from m2 by truncating from the right
i times (in the sense of absolute length). By Lemma 4.5, the cuspidal support of
.i/�2 is given by such generic multisegments. Likewise, St.�/��.iC1/ is glued from
St.�/� St.0m/, where 0m runs over all multisegments obtained from m by truncating
from the left i C 1 times; to determine the cuspidal support, we need to consider only
generic 0m. However, ¹�º [ 0m need not be generic. There could be segments in 0m
linked to �. Since � is not linked to any segment in m and 0m is obtained from m by
left truncation, it follows that linking occurs over the right endpoint of �. Let �0 be
the longest segment in 0m linked to �. It is easy to see that � [�0 is a segment in
the generic multisegment corresponding to ¹�º [ 0m by the recombination process.
Note that�[�0 starts with �a� and is of relative length at least l . Thus, the cuspidal
supports of �1=2.St.�/ � �.iC1// and .i/�2 can have a point in common only if m2
contains a segment starting with �aC1=2� and of relative length at least l . Similarly,
the cuspidal supports of ��1=2.St.�/� .iC1/�/ and �.i/2 can have a point in common
only if m2 contains a segment ending with �b�1=2� and of length at least l . In other
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words, we have constructed a pair of linked segments in m2, which is a contradiction.
This completes the proof of the Ext-vanishing theorem, Theorem 4.1.

5. Hecke algebra methods
The main goal of this section is to prove that an irreducible representation �1 ofGnC1
when restricted to Gn is projective if �1 is generic and all its irreducibleGn-quotients
are generic. The proof uses Hecke algebras and identifies all Bernstein components of
a projective �1 with the sign-projective module of the Hecke algebra corresponding
to the Bushnell–Kutzko type (see [8]–[10]). As a consequence, any two projective
representations of GnC1 are isomorphic when restricted to Gn.

5.1. Hecke algebras
Let �D Œ�a�; : : : ; �b�� be a Zelevinsky segment. Let mD b � aC 1. The Bernstein
component of St.�/ is equivalent to the category of representations of a Hecke alge-
bra Hm arising from a simple Bushnell–Kutzko type 	�; that is, if � is a smooth rep-
resentation in the Bernstein component, then Hom.	�; �/ is the corresponding Hm-
module. The algebra Hm is isomorphic to the Iwahori Hecke algebra of GLm.E/, for
some field E . Thus, as an abstract algebra, Hm is generated by �1; : : : ; �m and Tw
(w 2 Sm) satisfying the following relations (see, e.g., [16, (50) and (57)]):
(1) �k�l D �l�k for any k; l D 1; : : : ;m;
(2) Tsk�k ��kC1Tsk D .q�1/�k , where q is a prime power depending on 	� and

sk is the transposition of numbers k and kC 1;
(3) Tsk�l D �lTsk if l ¤ k;kC 1;
(4) .Tsk �q/.Tsk C1/D 0, where sk is as in (2), and Tw satisfies a braid relation.
Let Am D CŒ�˙11 ; : : : ; �˙1m �, and let HSm be the span of Tw , w 2 Sm. Then Hm Š

Am ˝HSm . The finite-dimensional algebra HSm has a one-dimensional sign repre-
sentation sgn.Tw/D .�1/`.w/, where ` is the length function on Sm. An irreducible
representation � in the component is Whittaker-generic if and only if Hom.	�; �/
contains the sign type as an HSm -module (see [14]).

Let �1; : : : ;�r be segments such that, for i ¤ j , the cuspidal representations �i
and �j are not unramified twists of each other. The Bernstein component of St.�1/�
� � � � St.�r/ is equivalent to the category of representations of a Hecke algebra H

arising from a semisimple Bushnell–Kutzko type 	 . We have H ŠHm1 ˝ � � �˝Hmr

and H ŠA˝HS , where AŠAm1˝� � �˝Amr and HS ŠHSm1
˝� � �˝HSmr

. The
subalgebra A is isomorphic to the ring of Laurent polynomials inmDm1C� � �Cmr
variables, while HS is spanned by Tw , w 2 S D Sm1 � � � � � Smr . An irreducible
representation � in the component can be written as �1 � � � � � �r , where �i is in
the component of St.�i /. Thus, it is clear that � is Whittaker-generic if and only if
Hom.	;�/ contains the sign type of HS .
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5.2. Some projective modules
Let � be a character of A. The H -module H ˝A � is called a principal series rep-
resentation of H . A twisted Steinberg representation of H is any one-dimensional
H -module such that the restriction to HS is the sign type. For example, if � D
St.�1/� � � � � St.�r/, then Hom.	;�/ is a twisted Steinberg representation.

The following is from [14], where it is stated for H arising from the singleton
partition .m/, but the proof is applicable to a general partition .m1; : : : ;mr/.

THEOREM 5.1 ([14, Theorem 2.1])
Let … be an H -module. Assume that
(1) … is projective and finitely generated;
(2) dim HomH .…;�/� 1 for an irreducible principal series representation �;
(3) a twisted Steinberg representation is a quotient of ….
Then …ŠH ˝HS sgn. Conversely, H ˝HS sgn satisfies the above properties.

As in [14], we have the following corollary.

COROLLARY 5.2 ([14, Theorem 3.4])
Let � be the summand of the Gelfand–Graev representation corresponding to the
Bernstein component of St.�1/ � � � � � St.�r/. Then we have an isomorphism
Hom.	;�/ŠH ˝HS sgn of H -modules.

5.3. Projectivity for Hecke algebras
Let Z be the center of H . Recall that ZDAS ; in particular, H is a finitely generated
Z-module. Let J be a maximal ideal in Z. Let OH denote the J-adic completion of H

(see [3]). For every H -module …, let O… denote the J-adic completion of …. If … is
finitely generated, then O…Š OH ˝H ….

THEOREM 5.3
Let … be a finitely generated H -module, and let J be a maximal ideal in Z. Let �
be the unique irreducible H -module annihilated by J and containing the sign type.
Assume that
(1) dim HomH .…;�/D 1;
(2) … has no other irreducible quotients annihilated by J;
(3) … contains a torsion-free element for A.
Then O…Š OH ˝HS sgn.
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Proof
In order to simplify notation, write †DH ˝HS sgn. Since … is finitely generated,
O…=J O…Š…=J… is a finite-dimensional H -module, annihilated by J. By (2), it must

be generated by the sign-type subspace. Let r be the dimension of the sign type in
…=J…. By Frobenius reciprocity, we have a surjection f W †˚r !…=J… which
descends to a surjection Nf W .†=J†/˚r !…=J…. Observe that Nf is bijective on
the sign type, since the sign type in †=J† is one-dimensional. Since � is the unique
irreducible quotient of †=J† and Nf is bijective on the sign type, it follows that �r is
a quotient of…=J…. This forces r D 1 by (1), and by the Nakayama lemma, we have
a surjection Of W O†! O…. Since O†Š OA, as OA-modules, (3) implies that the surjection
is in fact an isomorphism.

COROLLARY 5.4
Let … be a finitely generated H -module, and let J be a maximal ideal in Z. Assume
that the conditions of Theorem 5.3 are satisfied. Then, for all H -modules � annihi-
lated by J and for all i > 0,

ExtiH .…;�/D 0:

Proof
To compute Exti

H
.…;�/, we take a sufficiently long free resolution of …,

� � � !H r !H s!…! 0:

Let OZ be the J-adic completion of Z. By Proposition 10.13 in [3], the completion
of finitely generated Z-modules is isomorphic to tensoring by OZ. Since OZ is a flat
Z-module, by Proposition 10.14 in [3], it follows that

� � � ! OH r ! OH s! O…! 0

is also exact. Now, since � is annihilated by J, it is easy to check that

ExtiH .…;�/Š Exti OH .
O…;�/:

The latter spaces are trivial for i > 0 by the projectivity of OH ˝HS sgn.

COROLLARY 5.5
Let … be a finitely generated H -module. Assume that the conditions of Theorem 5.3
are satisfied for every maximal ideal in Z. Then …ŠH ˝HS sgn.
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Proof
Corollary 5.4 implies that Exti

H
.…;�/ D 0, i > 0, for all finite length modules � .

Since … is also finitely generated, it is projective by [14, Theorem A.1]. Now we can
apply Theorem 5.1.

5.4. Projectivity for groups
Now we can apply the Hecke module results to the restriction problem, one Bernstein
component at a time. Let �1 be an irreducible generic representation of GnC1, and
fix a Bushnell–Kutzko type 	 for Gn. Let … D Hom.	;�1/ be the corresponding
H -module. Note that the conditions (1) and (3) in Theorem 5.3 are satisfied for every
maximal ideal J. Indeed, condition (1) is satisfied because all irreducible genericGn-
representations are quotients of �1 with multiplicity one, and (3) is satisfied because
�1, restricted to Gn, contains the Gelfand–Graev representation whose 	 -component
is a free A-module. Theorem 5.3 implies the following local Ext-vanishing result for
groups.

THEOREM 5.6
Let �1 be an irreducible generic representation of GnC1. Let J be a maximal ideal
of the Bernstein center of Gn. Assume that no degenerate irreducible representation
of Gn annihilated by J is a quotient of �1. Then ExtiGn.�1; �2/ D 0, i > 0, for all
irreducible representations �2 of Gn annihilated by J.

Finally, we have the following result (see [12]).

THEOREM 5.7
Let �1 be an irreducible generic representation of GnC1 whose irreducible Gn-
quotients are all generic. Then �1, considered as a Gn-module, is projective. More-
over, any two such representations of GnC1 are isomorphic as Gn-modules. This
holds for all essentially square-integrable representations of GnC1.

Proof
Indeed, by Corollary 5.5, Hom.	;�1/ŠH ˝HS sgn for any Bernstein component of
�1. Thus, every component of �1 is a projective Gn-module independent of �1, as
long as �1 has no degenerate quotients. And these conditions are satisfied for essen-
tially square-integrable representations by Theorem 3.3.
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Appendix
In the following, we prove Lemma 2.1, that is, the second adjointness isomorphism
for Bernstein–Zelevisky derivatives. The key ingredient is Rodier’s approximation of
the Whittaker character by characters of compact pro-p groups (see [21]).

A.1. Groups
Let F be a p-adic field, let R be its ring of integers, and let P be the maximal
ideal generated by a prime $ . Let  be the character of F of conductor R. Let
G D GLn.F /, and let U be the group of unipotent upper triangular matrices in G.
Let  U W U !C be a Whittaker character defined by

 U .u/D .u1;2C � � � C un�1;n/;

where ui;j denote the entries of the matrix u.
For every natural number r , let Lr be the lattice in Mn.F / consisting of all

matrices whose entries are in P r . Then

Kr D 1CLr

is a principal congruence subgroup of G. Let t D .ti / 2 G be a diagonal matrix
such that ti=tiC1 D $2 for i D 1; : : : ; n � 1. Let Hr D t�rKr t r . Let B> be the
Borel subgroup of lower triangular matrices. Then we have a parahoric decomposi-
tion

Hr D .Hr \B
>/.Hr \U /:

The sequence of groups Hr \ B> is decreasing with trivial intersection, while the
sequence of groups Hr \U is increasing with union U . Let  r be a character of Hr
defined by

 r .g/D .g1;2C � � � C gn�1;n/:

Observe that

 r jHr\U D U jHr\U :

A.2. Representations
Let � be a smooth G-module. For every nonnegative integer r , we have a projection
map Pr W �! �Hr ; r defined by

Pr.v/D vol.Hr/
�1

Z
Hr

N r .u/�.g/vdg:
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For r � s, we have maps i sr W �
Hr ; r ! �Hs ; s defined by restricting Ps to

�Hr ; r . From the parahoric decomposition of Hr , it is easy to see that

i sr .v/D vol.Hs \U /
�1

Z
Hs\U

N s.u/�.u/v du:

This formula, in turn, implies that these maps form a direct system, that is, i ts ı i
s
r D i

t
r ,

for r � s � t . We have natural maps ir W �Hr ; r ! �U; U . Observe that is ı i sr D ir .
Hence, we have a map from a direct limit

i� W lim
r
�Hr ; r ! �U; U :

PROPOSITION A.1
For every smooth G-module � , the map i� is an isomorphism of vector spaces.

Proof
To prove surjectivity, let v 2 � . Since Hr \ B>! ¹1º there exists r such that v is
Hr \B

>-invariant. Let

wD vol.Hr \U /
�1

Z
Hr\U

N r .u/�.u/v du 2 �
Hr ; r :

Then v andw have the same projection on �U; U . To prove injectivity, let v 2 �Hr ; r

that projects to 0 in �U; U . Then there exists an open compact subgroup Uc �U such
that Z

Uc

N s.u/�.u/v duD 0:

SinceHs\U ! U there exists s 	 r such thatHs\U 
 Uc . Then the above integral,
with Uc substituted byHs\U , vanishes. In other words, i sr .v/D 0, and hence vD 0,
viewed as an element of the direct limit.

For r � s we have maps psr W �
Hs ; s ! �Hr ; r , going in the opposite direction,

defined by restricting Pr to �Hs s . From the parahoric decomposition of Hr , it is
easy to see that

psr .v/D vol.Hr \B
>/�1

Z
Hr\B>

�.g/vdg;

and this implies that these maps form an inverse system; that is, psr ı p
t
s D p

t
r , for

r � s � t .
By Proposition 4 in [21] (see also [21, Section VI, p. 169]), there exists an inte-

ger r0, independent of � , such that psr ı i
s
r is a nonzero multiple of the identity on
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�Hr ; r if r0 � r � s. Thus, i sr is an injection, and prs is a surjection. It follows, from
Proposition A.1, that the maps ir W �Hr ; r ! �U; U are injections, for all r 	 r0.

We will use the surjectivity of the maps psr to construct a natural complement
of �Hr ; r in �U; U . So fix r 	 r0, and for every s 	 r , let 	s be the kernel of psr .
Observe that 	s is a complement of �Hr ; r in �Hs ; s , where we have identified
�Hr ; r with its image in �Hs ; s . We claim that 	s , for s 	 r , will form an injective
subsystem. To that end, let t 	 s. We need to prove that if v 2 	s , then i ts .v/ 2 	t ; that
is, ptr.i

t
s .v//D 0. Write ptr D p

s
r ı p

t
s . Then

ptr
�
i ts .v/

�
D psr ı p

t
s.
�
i ts .v/

�
D psr

�
pts ı i

t
s .v/

�
D 0;

where for the last equality we used the fact that pts ı i
t
s .v/ is a multiple of v. Hence,

the direct limit

�Hr ; rc WD lim
s�r

	s

is a complement of �Hr ; r in lims�r �
Hr ; r Š �U; U .

We apply the above considerations to � D S.G/, the space of locally constant,
compactly supported functions on G, considered as a G-module with respect to the
action by left translations. In this case, the vector spaces �Hr ; r and �U; U are nat-
urally G-modules, coming from the right translation action of G on S.G/, and the
maps i sr , psr , and ir areG-morphisms. Observe that S.G/Hr ; r D indGHr . r/ and that
S.G/U; U Š indGU . /, the Gelfand–Graev representation. Hence, limr indGHr . r/Š
indGU . /, as G-modules. Moreover, if r 	 r0, then indGHr . r/ is a direct summand of
indGU . /. We record this in the following.

PROPOSITION A.2
For every r 	 r0, indGHr . r/ is a direct G-invariant summand of indGU . /:

indGU . /Š indGHr . r/˚ indGHr . r /c :

PROPOSITION A.3
Fix r 	 r0. For almost all s 	 r , .indGHs . s/c/

Kr is trivial.

Proof
The key is the following lemma.

LEMMA A.4
Let r 	 r0. Let � be an irreducible Whittaker generic G-module such that �Kr ¤ 0.
There exists a positive integer m, independent of � , such that �Hmr mr ¤ 0.
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Proof
The first step in the proof is a reduction to supercuspidal representations. Let P D
MN be a standard parabolic subgroup of block upper triangular matrices. Assume
that � is a Whittaker generic subquotient of IndG

P>
� , where P> is the transpose

of P . LetK DGLn.R/. By using G D P>K and the normality ofKr inK , it is easy
to see that �Kr ¤ 0 implies that �K

M
r ¤ 0, where KMr DKr \M . Now assume that

�H
M
s ; Ms ¤ 0, where HM

s DHs \M and  Ms is the restriction of  s to HM
s . Let

v 2 �H
M
s ; Ms , and define f 2 IndG

P>
� , supported on P>.Hs\N/, such that f .1/D

v and such that it is right . s/jHs\N -invariant. Then f 2 .IndG
P>
�/Hs ; s . This type

must belong to the Whittaker generic subquotient of the induced representation by
injectivity of the map is .

It remains to deal with supercuspidal � . Let ` be a Whittaker functional on � ,
and for every v 2 � we have a Whittaker function fv.g/D `.�.g/v/. Let T .r/� T
be the subset of t D .t1; : : : ; tn/ such that 1=q.2m�2/r � jti=tiC1j � q.2m�2/r , for all
i . By Theorem 2.1 in [17], there existsm, independent of � , such that fv is supported
on UT .r/K for all v 2 �Kr . Since fv is nonzero, for a nonzero v, there exist t 2 T .r/
and k 2K such that `.�.tk/v/¤ 0. SinceK normalizesKr , �.k/v 2 �Kr . It follows
that �.tk/v is fixed by tKr t�1. Observe that this group contains Hmr \B>, by the
definition of T .r/; hence,

wD vol.Hmr \U /
�1

Z
Hmr\U

N U .u/�.u/�.tk/v 2 �
Hmr ; mr ;

and it is nonzero since `.w/D `.�.tk/v/¤ 0. The lemma is proved.

Take s 	mr , where m is as in the lemma. Recall that, by [7], Bernstein’s com-
ponents of indGU  U are finitely generated and, hence, admit irreducible quotients.
Thus, if .indGHs . s/c/

Kr ¤ 0, then indGHs . s/c has an irreducible quotient � such
that �Kr ¤ 0. Then �Hs ; s ¤ 0 by the lemma, and hence dimG.indGU  U ; �/	 2, by
Proposition A.2, which is a contradiction.

PROPOSITION A.5
For every G-module � generated by �Kr and every vector space � ,

HomG.� ˝ indGU  U ; �/ŠHom.�;�U; U /:

Proof
By Propositions A.2 and A.3, for almost all s 	 r ,

HomG.� ˝ indGU  U ; �/ŠHomG

�
� ˝ indGHs . s/;�

�
:
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Let CŒG� denote the group algebra of G. Then we can write

� ˝ indGHs . s/Š indGHs .� ˝ s/ŠCŒG�˝CŒHs � .� ˝ s/:

Hence, by the Frobenius reciprocity,

HomG

�
� ˝ indGHs . s/;�

�
ŠHom.�;�Hs ; s /:

Now observe that the starting space HomG.� ˝ indGU  U ; �/ does not depend on
s. It follows that the spaces �Hs ; s are isomorphic for almost all s. In particular,
�Hs ; s Š �U; U for such s. Hence,

HomG.� ˝ indGU  U ; �/ŠHom
�
�; .�/U; U

�
:

A.3. Second adjointness
Now we are ready to prove Lemma 2.1. We resume using the notation from the main
body of the paper; in particular, Gn D GLn.F /, Un is the group of upper triangular
unipotent matrices, and Pn�i DMn�iNn�i is the standard maximal parabolic sub-
group of block upper triangular matrices with the Levi Gn�i �Gi . Let � be a smooth
representation of Gn generated by vectors fixed by the r th principal congruence sub-
group in Gn, and let � be a smooth representation of Gn�i , as in the statement of the
lemma. By using induction in stages,

indGnRn�i .� ˝
N i /Š IndGnPn�i

�
� � indGiUi .

N i /
�
:

By the second adjointness isomorphism for parabolic induction, due to Bernstein,

HomGn

�
IndGnPn�i

�
� � indGiUi .

N i /
�
; �
�
ŠHomGn�i�Gi

�
� � indGiUi .

N i /;�N>
n�i

�
:

It is easy to see that �N>
n�i

, as a Gi -module, is also generated by vectors fixed by the
r th principal congruence subgroup in Gi . Thus, we can apply Proposition A.5 to Gi
to derive that

HomGn�i�Gi

�
� � indGiUi .

N i /;�N>
n�i

�
ŠHomGn�i .�;

.i/�/:
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