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ON THE K-THEORY STABLE BASES
OF THE SPRINGER RESOLUTION

 C SU, G ZHAO  C ZHONG

A. – Cohomological and K-theoretic stable bases originated from the study of quantum
cohomology and quantum K-theory. Restriction formula for cohomological stable bases played an
important role in computing the quantum connection of cotangent bundle of partial flag varieties. In
this paper we study the K-theoretic stable bases of cotangent bundles of flag varieties. We describe these
bases in terms of the action of the affine Hecke algebra and the twisted group algebra of Kostant-
Kumar. Using this algebraic description and the method of root polynomials, we give a restriction
formula of the stable bases. We apply it to obtain the restriction formula for partial flag varieties.
We also build a relation between the stable basis and the Casselman basis in the principal series
representations of the Langlands dual group. As an application, we give a closed formula for the
transition matrix between Casselman basis and the characteristic functions.

R. – Les bases stables cohomologiques et K-théoriques proviennent de l’étude de la coho-
mologie quantique et de la K-théorie quantique. La formule de restriction pour les bases stables coho-
mologiques a joué un rôle important dans le calcul de la connexion quantique du fibré cotangent de
variétés de drapeaux partielles. Dans cet article, nous étudions les bases stables K-théoriques de fibré
cotangents des variétés de drapeaux. Nous décrivons ces bases en fonction de l’action de l’algèbre de
Hecke affine et de l’algèbre de Kostant-Kumar. En utilisant cette description algébrique et la méthode
des polynômes de racine, nous donnons une formule de restriction des bases stables. Nous l’appliquons
pour obtenir la formule de restriction pour les variétés de drapeaux partielles. Nous construisons égale-
ment une relation entre la base stable et la base de Casselman dans les représentations de la série princi-
pale du groupe dual de Langlands p-adique. Comme une application, nous donnons une formule close
pour la matrice de transition entre la base de Casselman et les fonctions caractéristiques.

1. Introduction

In [30], Maulik-Okounkov defined the cohomological stable envelope for symplectic reso-
lutions (see also [10]). The image of certain cohomology classes under the stable envelope
map are called the cohomological stable bases. The stable envelope is used to construct a
quantum group action on the cohomology of quiver varieties, and to compute the quantum
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664 C. SU, G. ZHAO AND C. ZHONG

connection of quiver varieties. Moreover, Nakajima gave a sheaf theoretic definition of the
stable envelope [33]. We refer the readers to [8, 32, 44, 46] for other applications.

The K-theoretic stable envelope is defined in [31] (see also [36, 45, 40]). It is constructed
in [31] and used to define a quantum group action on the equivariant K-theory of quiver
varieties [45]. Based on that, in [36], difference equations in quantum K-theory of quiver
varieties are constructed geometrically, which are further identified algebraically with the
quantum Knizhnik-Zamolodchikov equations [17, 36] and quantum Weyl group actions
[45]. The monodromy of these difference equations is studied in [1] using the elliptic stable
envelope. The K-theoretic stable bases for Hilbert scheme of points on C2 are studied in [35]
and [18].

Stable bases for cotangent bundle of flag varieties and partial flag varieties are also of
interest. The cohomological stable bases for T �.G=B/ turn out to be the characteristic cycles
of certain D-modules on the flag variety G=B. Pulling it back to G=B, we get the Chern-
Schwartz-MacPherson classes for the Schubert cells [3, 42]. Moreover, for cohomological
stable bases of the cotangent bundle T �.G=P /, in [48], the first-named author obtained their
restriction formula, which played an important role in computing the quantum connection
of T �.G=P / in [47].

The goal of the present paper is to study the K-theory stable bases of cotangent bundle
of flag varieties, and to find a restriction formula for the K-theoretic stable bases, formula
expressing the stable bases in terms of the torus fixed point basis in T �.G=B/. For each choice
of a Weyl chamber, there is a set of stable bases, labeled by Weyl group elementsw 2 W . For
the positive/negative Weyl chambers, the stable basis will be denoted by fstab˙.w/ j w 2 W g.
(There are other choices involved in the definition. See § 4.2 for the detail.) In the special cases
when w 2 W is the identity e or the longest element w0 2 W , stabC.e/ and stab�.w0/ are
equal to the structure sheaves of the corresponding fixed points, up to a factor.

Let Z be the Steinberg variety and A be the maximal torus of G. The convolution
algebra KG�C�.Z/, which is isomorphic to the affine Hecke algebra by a well known
theorem of Kazhdan-Lusztig and Ginzburg ([22, 16]), acts on KA�C�.T �G=B/ on the left
and on the right. Under these two actions, the Demazure-Lusztig operators corresponding
to simple root ˛ are denoted respectively by T˛ and T 0˛. Our first main result is the following:

T 1.1 (Theorem 4.5). – The elements stab˙.w/ are generated by the action
of KG�C�.Z/. More precisely,

stabC.w/ D q�`.w/=2T 0w�1.stabC.e//; stab�.w/ D q`.w0w/=2.Tw0w/
�1.stab�.w0//:

In the proof of this theorem, we use the rigidity technique (see § 3) to calculate the affine
Hecke algebra actions on the stable bases in Proposition 4.3.

Theorem 1.1 allows us to give a purely algebraic definition of the stable bases (Defini-
tion 6.3), involving only the affine Hecke algebra, the twisted group algebra of Kostant-
Kumar and its dual. The study of properties of the stable bases boils down to combinatorics
of the twisted group algebra.

We use Theorem 1.1 and the root polynomial method to find a restriction formula of
stable bases. Such polynomials for cohomology and K-theory of flag varieties were studied
by Billey, Graham, and Willems [7, 19, 51], and then generalized by Lenart-Zainoulline [25].
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K-THEORETIC STABLE BASES 665

In this method, a formula of the Schubert classes in terms of classes of torus fixed points
is determined by the coefficients of root polynomials (see Theorem 7.3). Generalizing the
root polynomial method, we obtain our second main result. For the cotangent bundle of
partial flag varieties in type A, this is also obtained by Rimányi, Tarasov and Varchenko
using weight functions in [40, 41]. In a work in progress of Knutson-Zinn-Justin, K-theory
stable basis is also studied from the point of view of integrable systems.

T 1.2 (Theorem 7.5). – With aCw;v (resp. K�w;v) defined in Lemma 5.2 (resp.
§7.3), we have

stabC.w/jv D q
�`.w/=2v.aC

w�1;v�1
/
Y
˛>0

.1 � e˛/:

stab�.w/jv D q
`.w/=2K�w;vŒ

Y
˛>0;v�1˛>0

.1 � qe�˛/� � Œ
Y

˛>0;v�1˛<0

.1 � e˛/�:

We also give some applications of the above theorems in § 8. We obtain the restriction
formula for stable bases in KT .T �G=PJ / in Theorem 8.6. This is done by showing that
the stable bases coincide with the image of stab˙.w/ 2 KT .T

�G=B/ via the Lagrange
correspondence from T �G=B to T �G=PJ .

As an application, we study the relation betweenK-theory of the Springer resolution and
the principal series representations of p-adic groups.

In Theorem 9.4, we relate the T -equivariant K-theory of the Springer resolution to the
bases in the Iwahori invariants of an unramified principle series [14, 37]. Such an isomor-
phism has been well-known, and has been studied by Lusztig [28] and Braverman-Kazhdan
[9] from different points of view. However, the present paper explicitly identifies different
bases from K-theory and from p-adic representation theory, which had been previously
unknown. In particular, the K-theory stable basis is identified with the characteristic func-
tions on certain semi-infinite orbits; the T -fixed-point basis is identified with the Casselman
basis. Consequently, Theorem 1.2 also gives a closed formula for the transition matrix
between these characteristic functions and the Casselman basis. A formula for the gener-
ating function of the matrix coefficients has been previously achieved by Reeder via a
different approach [37, Proposition 5.2].

Under the isomorphism in Theorem 9.4, various structures from the p-adic represen-
tations, e.g., the intertwiners, Macdonald’s formula for the spherical functions [29, 14],
and the Casselman-Shalika formula for Whittaker functions [15], have meanings in terms
ofK-theory. Although this isomorphism is well-known, theK-theory interpretation of these
structures is not well-documented. For the convenience of the readers, we also spell these
out in § 9.

The results in the present paper also provide a way to study the transition matrix between
stable bases and the Schubert classes of KT .G=B/, as will be explained in a future publi-
cation. Such transition matrix is related with [24] which studies the (spherical) Whittaker
functions of p-adic groups. It is also shadowed by the two geometric realizations of the
affine Hecke algebras [5] and the periodic modules [9, 27, 28]. The cohomological analogue
of this transition matrix, i.e., the transition matrix from cohomological Schubert classes to
the cohomological stable bases, is of independent interest. It was proved in [3] that coho-
mological stable bases can be identified with Chern-Schwartz-MacPherson classes. In [2],
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666 C. SU, G. ZHAO AND C. ZHONG

Aluffi and Mihalcea raised a positivity conjecture concerning this matrix. Recently, the
non-equivariant case is proved in [3], in which the cohomological stable basis played an
important role.

Another future application is a relation between the K-theory stable basis and the local-
izations of baby Verma modules in modular representations of Lie algebras [6]. This subject
is interesting on its own, and is related to the wall-crossings of stable bases. We will briefly
discuss this in § 6.4 and postpone the details in a separate paper.

The structure of this paper is as follows: In Section 2 we recall the definition of stable bases.
In Section 3 we recall rigidity in K-theory. In Section 4 we define the two convolution actions
by the Hecke algebra, and compute their effects on the stable bases. In Section 5 we recall
an algebraic description of affine Hecke algebra in terms of Kostant-Kumar’s twisted group
algebra. In Section 6 we give an algebraic description of stable bases. In Section 7 we define
the root polynomials for Hecke algebra and in Theorem 7.3; we relate some coefficients of
Hecke algebra with root polynomials, and obtain the restriction formula in Theorem 7.5.
In Section 8 we give an algebraic description of the stable bases for partial flag varieties. In
Section 9 we talk about the relation between the K-theory stable basis and the Casselman
basis in p-adic representations.
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Notations

Throughout this paper, G is a complex reductive group with maximal torus A, a Borel
subgroup B and its opposite Borel subgroup B�. Letƒ be the group of characters of A. Let
† be the set of roots ofG. Let†C be the roots in B, which is the set of positive roots, and let
†� be the negative roots. For each root ˛, we use ˛ > 0 or ˛ < 0 to say that it is positive or
negative. Let… D f˛1; : : : ; ˛ng be the set of simple roots, and � D 1

2

P
˛2†C ˛. Let� denote

the Bruhat order in the Weyl group W .
Let G=B be the complete flag variety. The maximal torus A acts on G=B by left multipli-

cation. Hence, it also acts on the cotangent bundle T �G=B and the tangent bundle T .G=B/.
Let T D A�C�. We denote the standard representation of C� by q

1
2 . The factor C� � T acts

trivially on G=B, and dilates the fibers of T �G=B by the character q�1. The T -fixed points
of T �G=B and G=B are both bijective to W , the Weyl group of G.

For any J � …, let WJ � W be the corresponding subgroup, and PJ � B be the
corresponding parabolic subgroup. Let †J D f˛ 2 †js˛ 2 WJ g, and similarly define †˙J .
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K-THEORETIC STABLE BASES 667

Let w0 be the longest element of W , and wJ0 the longest element of WJ . We write as W J

the set of minimal length representatives of elements in WJ . For a reduced decomposition
w D si1 � � � sil , define

†w WD w†
�
\†C D f˛i1 ; si1.˛i2/; : : : ; si1si2 � � � sil�1.˛il /g:

We will frequently use the identities

w0†
�
D †C; si†

�
D .f˛ig t†

�/nf�˛ig; v.†Cn†CJ / D †
C
n†CJ ; for v 2 WJ :

Let R D ZŒq 12 ; q� 12 �; S D RŒƒ�, then S Š KT .C/, and let Q D Frac.S/ be its field of
fractions.

2. Stable bases of T �G=B

In this section, we recall Maulik and Okounkov’s definition of the K-theoretic stable bases
for the Springer resolution.

Recall that C� act on the cotangent fiber of T �G=B by a non-trivial character q�1, where
q�

1
2 corresponds to the standard representation of the torus C�. Therefore KC�.C/ D R D

ZŒq 12 ; q� 12 �; KT .C/ Š S D RŒƒ�. For any T -invariant vector space V , let^�

V WD
X
k

.�1/k
^k

V _ D
Y
.1 � e�˛/ 2 KT .C/;

where the product is over all Lie.T /-weights in V counted with multiplicities.

The set of T -fixed points of T �G=B is discrete and is in one-to-one correspondence
with W . For an element w 2 W , the corresponding fixed point is still denoted by w. Let
�w be the inclusion of the fixed point w 2 W into T �G=B. By Thomason’s theorem [50],
KT .T

�G=B/˝S Q is a finite dimensional Q-vector space with basis f�w�1 j w 2 W g. This
basis is referred to as the fixed-point basis. For any F 2 KT .T

�G=B/, let F jw denote the
restriction of F to the fixed point w 2 T �G=B. Let .�; �/ denote the K-theoretic pairing
on KT .T �G=B/, which can be defined using localization as follows:

.F 1; F 2/ D
X
w

F 1jw
˝ F 2jwQ

˛>0.1 � e
w˛/.1 � qe�w˛/

; F 1; F 2 2 KT .T
�G=B/:

2.1. The definition of stable bases

Let ƒ_ be the lattice of cocharacters of A. The Lie algebra of the maximal compact
subgroup ofA is aR D ƒ_˝ZR:TheA-weights occurring in the normal bundle to .T �G=B/A

coincide with the usual roots forG. The root hyperplanes ˛?i partition aR into finitely many
chambers

aR n
[
˛?i D

a
Ci :

Let C be a chamber. For any cocharacter � 2 C, the stable leaf of w 2 W is defined as

LeafC.w/ D
�
x 2 T �G=B j lim

z!0
�.z/ � x D w

�
:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



668 C. SU, G. ZHAO AND C. ZHONG

Note that the limit, and hence LeafC.w/ per se, is independent of the choice of � . Define a
partial order on W as follows:

w �C v if LeafC.v/ \ w ¤ ;:

Then the order determined by the positive (resp. negative) chamber is the same as the Bruhat
order (resp. the opposite Bruhat order). Define the slope of a fixed point v by

SlopeC.v/ D
[
w�Cv

LeafC.w/:

LetC denote the chamber such that all roots in†C are positive on it, and � the opposite
chamber. In particular, LeafC.w/ D T �BwB=BG=B, and Leaf�.w/ D T �B�wB=BG=B.

D 2.1. – A polarization T
1
2 2 KT .T

�G=B/ is the choice of a Lagrangian
subbundle of the tangent bundle T .T �G=B/ 2 KT .T �G=B/, so that

T
1
2 C q�1.T

1
2 /_ D T .T �G=B/

as T -equivariant vector bundles.

For any polarization T
1
2 , there is an opposite one defined as

T
1
2

opp D q
�1.T

1
2 /_:

There are two natural polarizations: T .G=B/ and T �G=B which are opposite to each other.
Let Nw denote the normal bundle of T �G=B at w 2 W .

Any chamber C determines a decomposition Nw D Nw;C ˚ Nw;� into A-weight
spaces which are positive and negative with respect to C respectively. For any polariza-

tion T
1
2 , denote N

1
2
w by Nw \ T 1=2jw . Similarly, we have N

1
2

w;C and N
1
2
w;�. In particular,

Nw;� D N
1
2
w;� ˚ q

�1.N
1
2

w;C/
_. Consequently, we have

Nw;� �N
1
2
w D q

�1.N
1
2

w;C/
_
�N

1
2

w;C

as virtual vector bundles. The determinantal bundle of the virtual bundle Nw;� � N
1
2
w is a

complete square, hence, its square root will be denoted by 
detNw;�

detN
1
2
w

! 1
2

:

Recall that for any weight �, let L� be the associated line bundle on G=B. Pulling it
back to T �G=B via the projection map, we get the corresponding line bundle on T �G=B,
denoted by O.�/. The assignment associating � 2 ƒ to O.�/ 2 PicA.T �G=B/ induced an
isomorphsim. For every rational weight � 2 P ˝Z Q, let O.�/ denote the corresponding
element in PicA.T �G=B/˝ZQ. We say �, or the corresponding O.�/ is sufficiently general if

(1) � � w� … ƒ for any w 2 W:

For a Laurent polynomial f WD
P
� f�e

� 2 KT .pt/, where e� 2 KA.pt/ and f� 2 R, we
define its Newton Polygon, denoted by degA f to be

degA f D Convex hull.f�jf� ¤ 0g/ � ƒ˝Z Q:
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K-THEORETIC STABLE BASES 669

We use the following theorem as the definition of K-theoretic stable bases.

T 2.2. – [36, §9.1] For any chamber C, a sufficiently general L , and a polariza-
tion T 1=2, there exists a unique map of S -modules

stab
C;T

1
2 ; L
W KT ..T

�G=B/A/! KT .T
�G=B/

such that for any w 2 W , � D stab
C;T

1
2 ; L
.w/ satisfies:

1. (support) supp� � SlopeC.w/;

2. (normalization) �jw D .�1/
rankN

1
2
w;C

 
detNw;�

detN
1
2
w

! 1
2

OLeafC.w/jw
;

3. (degree) degA
�
�jv
˝ L jw

�
� degA

�
.stab

C;T
1
2 ; L
.v/˝ L /jv

�
, for any v �C w,

where w in stab
C;T

1
2 ; L
.w/ is the unit in K�T .w/.

2.2. Comments and examples

R 2.3. – (1). From the characterization, the transition matrix from
fstab

C;T
1
2 ; L
.w/ j w 2 W g to the fixed point basis is a triangular matrix with nonzero

diagonal entries. Hence, after localization, fstab
C;T

1
2 ; L
.w/ j w 2 W g form a basis, which is

called the stable bases.
(2). It is shown in [45, Proposition 1] that via the K-theory pairing, fstab

C;T
1
2 ; L
.w/jw 2 W g

and fstab
�C;T

1
2

opp; L
�1
.w/jw 2 W g are dual to each other, i.e.,�

stab
C;T

1
2 ; L
.v/; stab

�C;T
1
2

opp; L
�1
.w/

�
D ıv;w :

(3). Let the alcoves of g D LieG be the connected components of .aR/� n H˛;n, with
H˛;n D f� 2 a

�
R D .LieAR/

� j .�; ˛_/ D ng. Then stab
C;T

1
2 ; L

stays the same if L is in the

same alcove. In other words, stab
C;T

1
2 ; L

depends on L locally.

(4). By the uniqueness property, we have

stab
C;T

1
2 ; L˝ O.�/

.w/ D e�w�Œ O.�/�˝ stab
C;T

1
2 ; L
.w/;

where � is an integral weight of g. Combining with part (3), it is sufficient to study stable
bases for those alcoves near 0 2 LieA�R.

(5). Let us explain why Condition (1) on L D O.�/ is imposed. Suppose� WD v��u� 2 ƒ
for some v �C u, and suppose we already have a map stab

C;T
1
2 ; L

as in Theorem 2.2. For any

Laurent polynomial f .q/, we define a new map stab0
C;T

1
2 ; L

as follows:

stab0
C;T 1=2; L

.y/ D

(
stabC;T 1=2; L .y/; if y ¤ uI

stabC;T 1=2; L .u/C f .q/e
� stabC;T 1=2; L .v/; if y D u:

Then the new map also satisfies the conditions in Theorem 2.2, which contradicts with the
uniqueness. We check this as follows: The first two conditions are obvious. For the degree
condition, there are four cases: u �C y, y D u, y �C u, and y is not comparable with u. The
last two cases are easy to check, so we only consider the first two.
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670 C. SU, G. ZHAO AND C. ZHONG

— Case u �C y.
In this case, stab0

C;T 1=2; L
.y/ D stabC;T 1=2; L .y/. If w ¤ u, then stab0

C;T 1=2; L
.w/ D

stabC;T 1=2; L .w/. Thus the condition is satisfied. If w D u, then stab0
C;T 1=2; L

.u/ju
D

stabC;T 1=2; L .u/ju because v �C u. So the condition is also satisfied.

— Case y D u.
In this case, stab0

C;T 1=2; L
.w/ D stabC;T 1=2; L .w/, for any w �C u. By definition,

degA
�

stab0
C;T 1=2; L

.u/jw

�
C u� D degA

�
stabC;T 1=2; L .u/jw C f .q/e

� stabC;T 1=2; L .v/jw

�
C u�:

Since

degA
�

stabC;T 1=2; L .u/jw

�
C u� � degA

�
stabC;T 1=2; L .w/jw

�
C w�

and

degA
�
f .q/e� stabC;T 1=2; L .v/jw

�
C u� � degA

�
stabC;T 1=2; L .w/jw

�
C w�;

therefore,

degA
�

stab0
C;T 1=2; L

.u/jw

�
C u� � degA

�
stab0

C;T 1=2; L
.w/jw

�
C w�:

E 2.4. – Let us study the easiest example in which G D SL.2;C/, and hence
G=B D P1. Let ˛ be the unique positive root. Let 0 and 1 denote the two fixed points,
which correspond to 1 and s˛ in the Weyl group. Then S D ZŒq˙ 12 �Œe˙˛2 �, T0P1 has
weight e�˛, T �0 P1 has weight q�1e˛, T1P1 has weight e˛, and T �1P1 has weight q�1e�˛.
The condition (1) on � is equivalent to � … Z

4
˛. The alcoves are .n˛

2
; .nC1/˛

2
/, where n 2 Z.

Let us pick the negative chamber, and fix the polarization to be T �P1. Then Leaf.1/ D
T �1P1, and Leaf.0/ D P1 n f1g. Thus 0 >1. It is easy to see that for any slope O.�/,

stab.1/ D �q
1
2 e˛Œ OT �1P1 �:

By Remark 2.3.(4), we only need to study the case for a fixed � 2 .0; ˛
2
/. By the support

and normalization conditions in Theorem 2.2, we get

stab.0/ D Œ OP1 �C aŒ OT �1P1 �; a 2 Q:

However, by the support condition, .stab.0/; Œ OP1 �/ 2 S D ZŒe˙˛2 �Œq 12 ; q� 12 �. Since
.Œ OP1 �; Œ OP1 �/ 2 S and .Œ OT �1P1 �; Œ OP1 �/ D 1, we get a 2 S .

We have
stab.0/j1 D 1 � qe

˛
C a.1 � e�˛/:

Since degA stab.1/j1 D Œ0; ˛�, we have

degA.1 � qe
˛
C a.1 � e�˛// � Œs˛� � �; s˛� � �C ˛� D Œ�.�; ˛

_/˛;�.�; ˛_/˛ C ˛�:

There are two cases.

(1) Case � 2 .0; ˛
4
/. – In this case,

degA.1 � qe
˛
C a.1 � e�˛// � Œ�.�; ˛_/˛;�.�; ˛_/˛ C ˛� � .�

˛

2
; ˛/:

Since a 2 S , we get a D qe˛.
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(2) Case � 2 .˛
4
; ˛
2
/. – In this case,

degA.1 � qe
˛
C a.1 � e�˛// � Œ�.�; ˛_/˛;�.�; ˛_/˛ C ˛� � .�˛;

˛

2
/:

Then amust be of the form a1e
˛Ca2e

˛
2 for some ai 2 R. Plugging into 1�qe˛Ca.1�e�˛/,

we get 1�qe˛Ca1e˛Ca2e
˛
2Ca1Ca2e

�˛2 . Since degA.1�qe
˛Ca1e

˛Ca2e
˛
2Ca1Ca2e

�˛2 / �

.�˛; ˛
2
/, we get a1 D q, a2 D 0. Thus a D qe˛.

To conclude, when �0 2 .0; ˛2 /, we have

stab�;T �P1;�0.0/ D Œ OP1 �C qe
˛Œ OT �1P1 �;

and

stab�;T �P1;�0.1/ D �q
1
2 e˛Œ OT �1P1 �:

In general, when �n 2 .n˛2 ;
.nC1/˛
2

/, then � � n
2
˛ 2 .0; ˛

2
/. Thus for w D 1; s˛,

stab�;T �P1;�n.w/ D e
�n2w˛Œ O.

n

2
˛/�˝ stab.w/:

For the positive chamber, the opposite polarization T P1 and the opposite slope
��1 2 .�

˛
2
; 0/, we have

stabC;T P1;��1.0/ D Œ OT �0 P1 �;

and

stabC;T P1;��1.1/ D �q
� 12 e�˛Œ OP1 �C

�
�q

1
2 e�2˛ C .q�

1
2 � q

1
2 /e�˛

�
Œ OT �

0
P1 �:

It is easy to check that �
stabC;T P1;��1.v/; stab�;T �P1;�0.w/

�
D ıv;w :

3. Rigidity

In this section, we introduce rigidity, and make the normalization axiom for stable bases
more explicit.

In equivariant cohomology, degree counting is a very useful method in computations.
In equivariant K-theory, this method is often replaced by a rigidity argument. If a T -equi-
variant sheaf F has compact support, then the equivariant holomorphic Euler character-
istic �.F / 2 KT .pt/ is a Laurent polynomial, which, in general, is difficult to calculate.
However, the calculation is simplified if �.F / depends on few or even no equivariant vari-
ables. This property is known as rigidity. One standard way to prove such a property is to
use the following elementary observation: for any p.z/ 2 CŒz˙�,

(2) p.z/ is bounded as z˙1 !1” p D constant:

For applications of this observation, see [36, §2.4].
We will need the following lemma.

L 3.1. – Suppose f D
P
�2I

a�e
� 2 S is a Laurent polynomial, with � 2 .LieA/�

and 0 ¤ a� 2 R.
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1. There exists � 2 LieAR in the positive chamber, such that for any � 2 I , .�; �/ 2 Z, and
furthermore, .�; �/ ¤ .�; �0/ for any � ¤ �0 in I .

2. Moreover, if both of the limits lim
t!˙1

f .t�/ are bounded, and one of them equals g.q/ for

some g.q/ 2 R, then f D g.q/.

Proof. – The existence of such � follows easily from the fact that f has only finitely many
terms. The second part follows from the equivalence in Equation (2) in the paragraph before
this lemma.

With Lemma 3.1 we can define the following two scalars

max�f D max
�2I

.�; �/ and min�f D min
�2I

.�; �/:

For any v 2 W , we denote q`.v/ simply by qv.

By Theorem 2.2, we have the following.

L 3.2. – For v;w 2 W ,

1. stab�;T �G=B; L .v/jw D 0, unless w � v;

2. stab�;T �G=B; L .v/jv D q
1
2
v

Q
˛2†�\v†�

.1 � qe˛/ �
Q

˛2†C\v†�
.1 � e˛/;

3. stabC;T .G=B/; L .v/jw D 0, unless w � v;

4. stabC;T .G=B/; L .v/jv D q
� 12
v

Q
˛2†�\v†C

.q � e˛/ �
Q

˛2†C\v†C
.1 � e˛/.

Proof. – (1) and (3) follow from the support condition.

Now we prove (2). For the negative chamber, we have

A � weights in Nv;C D fe�vˇ jˇ > 0; vˇ > 0g [ fq�1evˇ jˇ > 0; vˇ < 0g;

A � weights in Nv;� D fe�vˇ jˇ > 0; vˇ < 0g [ fq�1evˇ jˇ > 0; vˇ > 0g;

A � weights in N
1
2
v D fq

�1evˇ jˇ > 0g:

Therefore,

stab�;T �G=B; L .v/jv D .�1/
rankN

1
2
v;C

 
detNv;�

detN
1
2
v

! 1
2

OLeafC.v/jv

D .�1/`.v/

 Q
ˇ>0;vˇ<0 e

�vˇ
Q
ˇ>0;vˇ>0 q

�1evˇQ
ˇ>0 q

�1evˇ

! 1
2

�

Y
ˇ>0;vˇ<0

.1 � evˇ /
Y

ˇ>0;vˇ>0

.1 � qe�vˇ /

]1
D .�1/`.v/q

1
2
v

Y
ˇ>0;vˇ<0

.e�vˇ � 1/
Y

ˇ>0;vˇ>0

.1 � qe�vˇ /:
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We comment on the proof of the equality ]1. In
�Q

ˇ>0;vˇ<0 e
�vˇ

Q
ˇ>0;vˇ>0 q

�1evˇQ
ˇ>0 q

�1evˇ

� 1
2

, the

factors involving powers of e can be regrouped into two copies of †C \ v†�: Equality ]1
then follows from the identity e�˛.1 � e˛/ D e�˛ � 1.

(4) follows from a similar argument as that of (2).

Lemma 3.2 implies that
�
stabC;T .G=B/; L .v/; stab�;T �G=B; L .v/

�
D 1, keeping in mind thatY

˛2†C\v†�

.1 � e˛/ �
Y

˛2†�\v†�

.1 � qe˛/
Y

˛2†�\v†C

.q � e˛/ �
Y

˛2†C\v†C

.1 � e˛/ D
^�

Tv.T
�G=B/:

Choosing � 2 LieA as in Lemma 3.1, regarding the Laurent polynomials stabC;T .G=B/; L .v/jv
and stab�;T �G=B; L .v/jv, we have

max
�
.stabC;T .G=B/; L .v/jv/ D .�;

X
ˇ>0;vˇ>0

vˇ/;(3)

min
�
.stabC;T .G=B/; L .v/jv/ D .�;

X
ˇ>0;vˇ<0

vˇ/;(4)

max
�
.stab�;T �G=B; L .v/jv/ D .�;

X
ˇ>0;vˇ<0

�vˇ/;(5)

min
�
.stab�;T �G=B; L .v/jv/ D .�;

X
ˇ>0;vˇ>0

�vˇ/:(6)

Let � be half sum of all the positive roots. For any simple root ˛, we have

max�.stabC;T .G=B/; L .v/jv/Cmax
�
.stab�;T �G=B; L .v/jv/ D .�; 2�/;(7)

min
�
.stabC;T .G=B/; L .v/jv/Cmin

�
.stab�;T �G=B; L .v/jv/ D �.�; 2�/;(8)

max
�
.stabC;T .G=B/; L .vs˛/jvs˛

/Cmax
�
.stab�;T �G=B; L .v/jv/C .�; v˛/ D .�; 2�/;(9)

min
�
.stabC;T .G=B/; L .vs˛/jvs˛

/Cmin
�
.stab�;T �G=B; L .v/jv/C .�; v˛/ D �.�; 2�/:(10)

4. The two Hecke actions

In this section, we compute the action of the affine Hecke algebra on stable bases.

4.1. Reminder on the Demazure-Lusztig operators

LetZ D T �G=B�N T �G=B be the Steinberg variety, where N is the nilpotent cone. Let
H be the affine Hecke algebra (see Chapter 7 in [16]). There is an isomorphism

(11) H ' KG�C�.Z/

defined as follows. The diagonalG-orbits onG=B�G=B are indexed by the Weyl group. For
each simple root ˛ 2 …, let Y ı˛ be the orbit corresponding to the simple reflection s˛, whose
closure is

Y˛ WD Y ı˛ D G=B �P˛
G=B;

where P˛ D G=P˛ and P˛ is the minimal parabolic subgroup corresponding to ˛. There-
fore, only two kinds of torus fixed points lie in Y˛: .w;w/ and .w;ws˛/. Let�˛ be the sheaf
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of differentials along the first projection from Y˛ to G=B. Let T �Y˛ WD T �Y˛ .G=B � G=B/ be
the conormal bundle to Y˛, and consider �˛ as a sheaf on T �Y˛ .G=B � G=B/ via pullback.
Then, Œ�˛� D Œ��2 O.˛/� as a sheaf on T �Y˛ , where �1 and �2 are the two projections from
T �Y˛ .G=B�G=B/ toT �G=B respectively. The isomorphism (11) sends the simple generator �˛
to�Œ O��� Œ�˛�, where O� is the structure sheaf of the diagonal component of the Steinberg
varietyZ, and it sends e� 2 X�.A/ to Œ O�.�/� (see [39, Prop. 6.1.5]). This morphism is conju-
gate to the one in the loc. cit. by the sheaf O.�/, and it is related to the one used in [16] by an
Iwahori-Matsumoto involution (without signs). (1)

There is a natural embedding of the convolution algebras KG�C�.T �G=B �N T �G=B/

into KA�C�.T �G=B �N T �G=B/, which in turn acts on KT .T �G=B/ by convolution from
left and from right (see [16, §5.2.20]). The left action is given by

D˛.F / WD �1�.�
�
2 F ˝�˛/;

where F 2 KT .T
�G=B/. The pushforward is understood as derived pushforward in equiv-

ariant K-theory. Similarly, the right action is

D0˛.F / WD �2�.�
�
1 F ˝�˛/:

For F 2 KT .T
�G=B/, the left (resp. right) actions of �w 2 H on F is denoted by Tw.F /

(resp. and T 0w.F /). By definition, D˛ D �T˛ � 1 and D0˛ D �T
0
˛ � 1:

4.2. Hecke algebra action D˛ on stab�;T �G=B; L

We will need the following lemma, which can be proved easily by calculating the weights.

L 4.1. – For any v 2 W and simple root ˛, with X D T �G=B, we have^�

.T.v;v/T
�
Y˛
/ D

^�

.TvX/
1 � ev˛

1 � qe�v˛
;^�

.T.v;vs˛/T
�
Y˛
/ D

^�

.T.vs˛ ;v/T
�
Y˛
/ D

^�

.TvX/
1 � e�v˛

1 � qe�v˛
:

Among the alcoves for g, there is a fundamental one defined by

r WD f� 2 .LieA/�R j 0 < .�; ˛
_/ < 1; for all positive roots ˛g:

If we pick the slope L 2 r, we have the following lemma

L 4.2. – Given v > w 2 W under the Bruhat order, then for any � 2 Lie.A/� in the
positive chamber, .�; L jv � L jw/ < 0.

Proof. – By [4, §2], there exists a sequence of positive roots ˛i , 1 � i � l , such that
v > vs˛1 > � � � > vs˛1 � � � s˛l D w. Therefore, v˛1 < 0, vs˛1˛2 < 0, : : : , vs˛1 � � � s˛l�1˛l < 0.
So

.�; L jv � L jw/ D
X
i

.�; L jvs˛1 ���s˛i�1
� L jvs˛1 ���s˛i�1 s˛i

/

D

X
i

. L ; ˛_i /.�; vs˛1 � � � s˛i�1˛i / < 0:

(1) We thank J. Schuermann for pointing this out to us.
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In the remaining part of this paper, we fix L 2 Pic.X/ ˝Z Q lying in the fundamental
alcove, i.e., in the positive chamber and near 0. Denote

(12) stab�.w/ D stab�;T �G=B; L .w/; stabC.w/ D stab
C;T .G=B/; L

�1.w/:

P 4.3. – With notations as above, we have

D˛.stab�.w// D

(
�q stab�.w/ � q

1
2 stab�.ws˛/; if ws˛ < wI

� stab�.w/ � q
1
2 stab�.ws˛/; if ws˛ > w:

Proof. – By Remark 2.3.(2),

D˛.stab�.w// D
X
v

.D˛.stab�.w//; stabC.v// stab�.v/:

Next, we show that .D˛.stab�.w//; stabC.v//, a priori an element in Q, actually belongs
to S , i.e., it is a Laurent polynomial. This is similar to [30, Theorem 4.6.1]. Indeed, the
support condition in the definition of stable basis (Theorem 2.2(1)) yields that the K-theo-
retic stable basis has the same support as that of the cohomological stable basis. In the
proof in [30, Theorem 4.6.1], it is shown that the intersection of the support of stab�.w/,
the support of stabC.v/, and the component of the Steinberg variety corresponding to D˛,
is a proper variety. Hence, .D˛.stab�.w//; stabC.v//, which is defined as the direct image
from the intersection above, belongs to KT .pt/ Š S .

By the localization formula and Lemma 4.1,

.D˛.stab�.w//; stabC.v// D
X
u

stabC.v/ju stab�.w/juV�
.T.u;u/T

�
Y˛
/

eu˛ C
X
u

stabC.v/jus˛
stab�.w/juV�

.T.us˛ ;u/T
�
Y˛
/

eu˛

D

X
w�u�y

stabC.v/ju stab�.w/juV�
.TuX/

eu˛ � q

1 � eu˛

C

X
w�u;us˛�y

stabC.v/jus˛
stab�.w/juV�

.TuX/

1 � qe�u˛

1 � e�u˛
eu˛:

We first show that if v … fw;ws˛g, this is 0.

Denote

f1 WD stabC.v/ju stab�.w/ju; f2 WD
^�

.TuX/;

f3 WD stabC.v/jus˛
stab�.w/jue

u˛:

We can find a common � as in Lemma 3.1 for all w; u; v. Then, by the degree condition for
stable bases, we have

max
�
f1 � max

�
.stabC.u/ju/Cmax

�
.stab�.u/ju/C .�; L ju � L jw C L

�1
ju
� L

�1
jv
/

D .�; 2�C L jv � L jw/;

max
�
f2 D .�; 2�/; max

�
f3 � .�; 2�C L ju � L jw C L jv � L jus˛

/;

where the last inequality follows from the degree condition for stable bases and Equation (9).
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By Lemma 4.2, .�; L jv� L jw/ < 0, and .�; L ju� L jwC L jv� L jus˛
/ < 0 because u > w

and v > us˛. Therefore,

(13) lim
t!1

.D˛.stab�.w//; stabC.v// .t�/ D 0:

For the minimal degree, we have

min
�
f1 � min

�
.stabC.u/ju/Cmin

�
.stab�.u/ju/

C .�; L ju � L jw C L
�1
ju
� L

�1
jv
/ D .�;�2�C L jv � L jw/;

min
�
f2 D .�;�2�/; min

�
f3 � .�;�2�C L ju � L jw C L jv � L jus˛

/;

where the last inequality follows from the degree condition for stable bases and Equation
(10).

We can choose L sufficiently close to 0, such that

�1 < .�; L jv � L jw/ < 0; and � 1 < .�; L ju � L jw C L jv � L jus˛
/ < 0:

Then,

(14) lim
t!�1

�
D˛.stab.w//; stabC.v/

�
.t�/ is bounded:

Due to Lemma 3.1 and (13), (14), we get

.stab�.w//; stabC.v// D 0; if v … fw;ws˛g:

Hence we only need to compute

.D˛.stab�.w//; stabC.w// and .D˛.stab�.w//; stabC.ws˛// :

This is done by analyzing two cases below, depending on the order of w and ws˛.

(1). Casews˛ < w. – There is only one term in the localization of .D˛.stab�.w//; stabC.ws˛//.
Therefore, by Lemma 3.2 and Lemma 4.1, we get

.D˛.stab�.w//; stabC.ws˛// D
stabC.ws˛/jws˛

stab�.w//jwV�
.T.ws˛ ;w/T

�
Y˛
/

ew˛ D �q
1
2 :

There are two terms in the localization of .D˛.stab�.w//; stabC.w//.

.D˛.stab�.w//; stabC.w// D
stabC.w/jw stab�.w//jwV�

.T.w;w/T
�
Y˛
/

ew˛ C
stabC.w/jws˛

stab�.w/jwV�
.T.ws˛ ;w/T

�
Y˛
/

ew˛

D
ew˛ � q

1 � ew˛
C

stabC.w/jws˛
stab�.w/jwV�

.TwX/

1 � qe�w˛

1 � e�w˛
ew˛:

As in the first part of the proof, we can find a � 2 LieA in the positive chamber, such
that �1 < .�; L jw � L jws˛

/ < 0. Notice that w˛ < 0. We have

lim
t!1

.D˛.stab�.w//; stabC.w// .t�/ D �q;

lim
t!�1

.D˛.stab�.w//; stabC.w// .t�/ is bounded.

Therefore, due to Lemma 3.1, we get

.D˛.stab�.w//; stabC.w// D �q:
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(2). Case ws˛ > w. – Although this case can be proved directly using the relation
D2
˛ C .q C 1/D˛ D 0, we still give a localization proof for it.

.D˛.stab�.w//; stabC.w// D
ew˛ � q

1 � ew˛
C

stabC.w/jw stab�.w/jws˛V�
.TwX/

1 � qe�w˛

1 � e�w˛
e�w˛:

As in the first case, the limit as t ! C1 is �1, while the limit as t ! �1 is bounded.
Therefore,

.D˛.stab�.w//; stabC.w// D �1:

For the other one, we have

.D˛.stab�.w//; stabC.ws˛// D
stabC.ws˛/jw stab�.w/jwV�

.TwX/

ew˛ � q

1 � ew˛

C

stabC.ws˛/jws˛
stab�.w/jws˛V�

.Tws˛X/

e�w˛ � q

1 � e�w˛

C

stabC.ws˛/jws˛
stab�.w/jwV�

.TwX/

1 � qe�w˛

1 � e�w˛
ew˛

C

stabC.ws˛/jw stab�.w/jws˛V�
.TwX/

1 � qe�w˛

1 � e�w˛
e�w˛:

Because of Lemma 3.2, the third term is �q�
1
2
1�qew˛

1�ew˛
1�qe�w˛

1�e�w˛
. Since ws˛ > w, w˛ > 0. As

in the first case, pick good �, then the limit as t !C1 is �q
1
2 , while the limit as t ! �1 is

bounded. Therefore,
.D˛.stab�.w//; stabC.ws˛// D �q

1
2 :

4.3. Hecke algebra action D0˛ on stab
C;T .G=B/; L

�1

In this section, we compute the second Hecke algebra H action on the stable bases for the
positive chamberC. Although the method from 4.2 still works in this case, we use a different
method for illustration purpose.

The relation between these two Hecke actions is the following adjoint property, which is
a K-theoretic analogue of [3, Lemma 5.2].

L 4.4. – For any F and G in K�T .T
�G=B/, we have

.D˛.F /; G / D .F ;D0˛. G //:

Therefore, for any Tw 2 H,

.Tw.F /; G / D .F ; T 0
w�1

. G //:

By definition, under this pairing, operators from the subalgebra KG�C�.T �G=B/ �
KG�C�.T

�G=B �N T �G=B/ are self-adjoint.

Proof of Lemma 4.4. – We only need to prove the first one. And we can check on the fixed
point basis. Using localization and Lemma 4.1, we get
(15)

D˛.�v�1/ D
ev˛ � q

1 � ev˛
�v�1C

ev˛ � q

1 � e�v˛
�vs˛�1; D0˛.�v�1/ D

ev˛ � q

1 � ev˛
�v�1C

1 � qe�v˛

ev˛ � 1
�vs˛�1:
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Therefore,

.D˛.�v�1/; �w�1/ D ıv;w
ev˛ � q

1 � ev˛

^�

.TvT
�G=B/C ıvs˛ ;w

ev˛ � q

1 � e�v˛

^�

.Tvs˛T
�G=B/;

.�v�1;D
0
˛.�w�1// D ıv;w

ev˛ � q

1 � ev˛

^�

.TvT
�G=B/C ıvs˛ ;w

1 � qe�w˛

ew˛ � 1

^�

.TvT
�G=B/:

Now it is easy to see they are equal to each other.

T 4.5. – With notations defined in (12), the affine Hecke algebra H acts on the
stable bases as follows:

Ts˛ .stab�.w// D

(
q
1
2 stab�.ws˛/C .q � 1/ stab�.w/; if ws˛ < wI

q
1
2 stab�.ws˛/; if ws˛ > w:

T 0s˛ .stabC.w// D

(
q
1
2 stabC.ws˛/C .q � 1/ stabC.w/; if ws˛ < wI

q
1
2 stabC.ws˛/; if ws˛ > w:

Proof. – The formula concerning the Ts˛ action comes from the identity Ts˛ D �D˛ � 1
and Proposition 4.3.

We look at the T 0s˛ action. By the duality of stable bases (see Remark 2.3) and Proposi-
tion 4.3, we have

T 0s˛ .stabC.w// D
X
y

�
T 0s˛ .stabC.w//; stab�.y/

�
stabC.y/

D

X
y

.stabC.w/; Ts˛ .stab�.y/// stabC.y/

D .stabC.w/; Ts˛ .stab�.w/// stabC.w/

C .stabC.w/; Ts˛ .stab�.ws˛/// stabC.ws˛/:

The rest follows from the first part of this theorem and the duality property in Remark 2.3.(2).

4.4. A recursive formula of the restriction coefficients

Using the Hecke actions, we give a recursive formula for the restriction coefficients
of stab�.w/. In Theorem 7.5, we will give a closed formula of those coefficients.

P 4.6. – With notations defined in (12), the restriction coefficients stab�.w/jv
are uniquely characterized by

1. stab�.w/jv D 0, unless v � w.

2. stab�.w/jw D q
1
2
w

Q
˛2†�\w†�

.1 � qe˛/ �
Q

˛2†C\w†�
.1 � e˛/.

3. stab�.w/jvs˛
D

(
.1�q/ev˛

1�qe�v˛
stab�.w/jv C q

1
2

1�ev˛

1�qe�v˛
stab�.ws˛/jv; if ws˛ < wI

1�q
1�qe�v˛

stab�.w/jv C q
1
2

1�ev˛

1�qe�v˛
stab�.ws˛/jv; if ws˛ > w:

This is an analogue of Corollary 3.3 in [48].
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Proof. – The uniqueness can be easily proved by induction on `.y/. The first two equal-
ities now follow directly from Lemma 3.2.

The last equality follows from Proposition 4.3 and (15) by applying D˛ to the following
identity

stab�.w/ D
X
v

stab�.w/jv
�v�1V�

.TvT �G=B/
:

A similar recursive formula for stabC.w/jy can also be obtained from Theorem 4.5.

5. More on the affine Hecke algebra

In this section we recall the definition of the affine Hecke algebra in terms of the twisted
group algebra of Kostant and Kumar [23], while following notions from [12, 13]. The root
system we consider will be the one associated to the group G.

5.1. The Demazure-Lusztig elements

In the ring S D RŒƒ�, we use the following notations.

x˛ D 1 � e
�˛; x�˛ D �e

˛x˛; Qx˛ D q � e
˛; Ox˛ D �e

�˛
Qx˛ D 1 � qe

�˛; qw D q
`.w/:

x˙w D
Y
ˇ2†w

x˙ˇ ; Qx˙w D
Y
ˇ2†w

Qx˙ˇ ; Ox˙w D
Y
ˇ2†w

Ox˙ˇ :(16)

Note that u.x�/ D xu.�/ for u 2 W;� 2 ƒ, but u.xw/ ¤ xuw .
Consider the twisted product QW D Q o RŒW �, which has a Q-basis fıwgw2W . The

ring QW naturally acts on Q by

pıw � p
0
D pw.p0/; p; p0 2 Q:

For each root ˛, we define the push-pull element

Y˛ D
1

x�˛
C

1

x˛
ı˛ D

1

1 � e˛
C

1

1 � e�˛
ı˛:

We also define the divided difference operator (or the Demazure operator)

�˛.p/ WD
s˛.p/ � p

1 � e�˛
D .Y˛ � 1/ � p; p 2 Q:

It restricts to an SW -linear endomorphism on S . We define the Demazure-Lusztig elements:

C
� ˛ D Qx˛Y˛ � 1 D

q � 1

x�˛
C
Qx˛

x˛
ı˛ D

q � 1

1 � e˛
C

q � e˛

1 � e�˛
ı˛;(17)

�
�˛ D Ox˛Y�˛ � 1 D

q � 1

x�˛
C
Ox˛

x�˛
ı˛ D

q � 1

1 � e˛
C
1 � qe�˛

1 � e˛
ı˛:(18)

For simplicity, for simple root ˛i , we will write x˙i ; Qx˙i ; Ox˙i ; Y˙i ; �˙i ;
˙
� i for x˙˛i ; Qx˙˛i ,

Ox˙˛i , Y˙˛i ; �˙˛i and
˙
� ˛i , respectively. For each reduced decomposition w D si1 � � � sik ,

define
˙
�w D

˙
� i1 � � �

˙
� ik , and similarly define Y˙w (e.g., Y�w is a product of Y�i ). As shown

in [23], they do not depend on the choice of the reduced decomposition.
By straightforward computations, we have the following properties:
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L 5.1. – 1. Y 2i D Yi , Yip � si .p/Yi D ���i .p/; p 2 Q.

2.
˙
� ip � si .p/

˙
� i D �.q � 1/��i .p/; p 2 Q:

3.
˙
�
2

i D .q � 1/
˙
� i C q,

˙
�
�1

i D q
�1.
˙
� i C 1 � q/.

4. ıi D xiYi �
xi
x�i
D

x�i
Oxi

�
� i �

q�1
Oxi
D

xi
Qxi

C
� i �

.q�1/xi
x�i Qxi

:

L 5.2. – 1. We have
˙
�w D

P
v�w a

˙
w;vıv and ıw D

P
v�w b

˙
w;v

˙
� v such that

a˙w;v 2 SŒ
1

xw0
�; b˙w;v 2 SŒ

1

Oxw0
�; bCw;w D

1

aCw;w
D
xw

Qxw
; b�w;w D

1

a�w;w
D
x�w

Oxw
:

2. We have
˙
�w D

P
v�w d

˙
w;vY˙v such that

d˙w;v 2 S; dCw;w D Qxw ; d�w;w D Oxw ; d˙w;e D .�1/
`.w/:

Proof. – Similar to [13, Lemma 3.2], these identities follow from Lemma 5.1.

R 5.3. – (1). There is an anti-involution on QW defined by

� W QW ! QW ; pıv 7! ıv�1p
v.x�w0 Oxw0/

x�w0 Oxw0
; p 2 Q;

such that

�.
˙
� ˛/ D

�
� ˛:

(2). Recall the following operator of Lusztig in [26]

T L˛ D
q � 1

1 � e˛
C
1 � qe˛

1 � e˛
ı˛:

They satisfy the same relations as �˛ do. We have identities

(19) e��
C
� ˛e

�
D e�

�
�˛e
��
D �q � .T L˛ jq!q�1

/:

5.2. The Hecke algebra

D 5.4. – Define the affine 0-Hecke algebraD to be theR-subalgebra generated
by S and Yi for all i . Define the affine Hecke algebra H to be the R-subalgebra of QW
generated by S and

C
� i for all i . It is not difficult to see that all

�
� i together with S also

generate H.

L 5.5 ([23, 26]). – The sets fYwgw2W , f
C
�wgw2W and f

�
�wgw2W areQ-bases ofQW .

Moreover, the first set is a S -basis of D and the last two are S -bases of H.

Proof. – The first statement follows from Lemma 5.2, and the second one is from [12,
Proposition 7.7] and [52, Corollary 3.4].

The following lemma is used to give an algebraic proof of duality of stable bases in
Theorem 6.7.

L 5.6. – Writing
˙
�w.

˙
�w0u/

�1 D
P
v2W cv

˙
� v, then cw0 D q

�1
w0u

ıw;u.
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Proof. – This is a special case of [34, Proposition 3]. More precisely, in loc.it., letting

t1 D q
1
2 ; t2 D �q

� 12 , then one can identify hi with q�
1
2
˙
� i and Ohi with q

1
2
˙
�
�1

i , and the
conclusion follows.

6. Algebraic description of Stable bases

In this section, we first briefly recall the algebraic models of KT .G=B/, KT .T �G=B/ and
the morphisms between them (details can be found in [23, 13, 11]). We then obtain a formula
of stable bases in this algebraic setting.

6.1. The dual of the twisted group algebra

Define

D� WD HomS .D; S/ � Q�W D Hom.W;Q/:

Let ffwgw2W be the standard basis of Q�W , that is, fw.ıv/ D fw.v/ D ıw;v. There is a
commutative product with identity:

fw � fv D ıw;vfv; 1 WD
X
w2W

fw 2 D� � Q�W :

Indeed, Q�W is a commutative Q-algebra and D� is a commutative S -algebra.

There is a canonical action of QW on Q�W defined as follows:

.z � f /.z0/ D f .z0z/; z; z0 2 QW ; f 2 Q
�
W :

We will frequently use the following identities, whose proof can be checked easily, or found
in [13, §6].
(20)
p � fv D v.p/fv; ıw � fv D fvw�1 ; p � .f � g/ D .p � f / � g D f � .p � g/; p 2 S; f; g 2 Q�W :

The action indeed restricts to an action of D on D�. Moreover, it induces an action of
W � QW onQ�W . TheWJ -invariantQ-submodule .Q�W /

WJ has a basis f
P
v2WJ

fwvgw2W J .

For each J � …, define the following elements in QW :

Y…=J D
X
w2W J

ıw
x
�wJ

0

x�w0
D

X
w2W J

ıw
Y

˛2†Cn†
C

J

1

1 � e˛
;(21)

YJ D
X
w2WJ

ıw
1

x
�wJ

0

D

X
w2WJ

ıw
Y
˛2†

C

J

1

1 � e˛
;(22)

OY…=J D
X
w2W J

ıw
x
�wJ

0
OxwJ
0

x�w0 Oxw0
D

X
w2W J

ıw
Y

˛2†Cn†
C

J

1

.1 � e˛/.1 � qe�˛/
;(23)

OYJ D
X
w2WJ

ıw
1

x
�wJ

0
OxwJ
0

D

X
w2WJ

ıw
Y
˛2†

C

J

1

.1 � e˛/.1 � qe�˛/
:(24)
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In particular, Y… and OY… are defined when J D …. Similar as [13, Lemmas 5.7 and 6.4], we
have the composition rule and the Projection Formula:

Y…=JYJ D Y…; OY…=J OYJ D OY…;(25)

f � .YJ � f
0/ D YJ .ff

0/; f � . OYJ � f
0/ D OYJ � .ff

0/; f 0 2 Q�W ; f 2 .Q
�
W /

WJ :(26)

Via the embedding H � QW , we can restrict the �-action to a left action of H onQ�W . On

the other hand, H also acts on the right on Q�W , where the action of
C
�w 2 H on f 2 Q�W is

given by
C
�w�1 � f:

The �-action is a well-defined action of H on Q�W , which is linear with respect to the
Q-module structure on Q�W coming from Hom.W;Q/, hence so is the right action defined

above. Indeed,
�
�˛ �_ and

C
� ˛ �_ correspond to the T˛ and T 0˛ actions in Section 4, respectively

(see Lemma 6.5). The following lemma is the algebraic model of Lemma 4.4:

L 6.1 (Adjointness). – For any ˛i 2 J; f; g 2 Q�W , we have

OYJ � ..
C
� i � f / � g/ D OYJ � .f � .

�
� i � g//:

Proof. – Note that the �-action is Q-linear, so it suffices to assume that f D fv; g D fu
with u; v 2 W . The identity then follows from direct computation.

We get an easy corollary of the coefficients appearing in Lemma 5.2.

L 6.2. – We have

a˙
w�1;v

v.x�w0/v. Oxw0/ D v.a
�

w;v�1
/x�w0 Oxw0 :

Proof. – From Lemma 6.1 we know that

OY… � ..
˙
�w � fe/ � fv/ D OY… � .fe � .

�
�w�1 � fv//:

Direct computations using Lemma 5.2 and (20) shows that the left hand side is
v.a˙

w;v�1
/

v.x�w0 /v. Oxw0 /
1,

and the right hand side is equal to
a
�

w�1;v

x�w0 Oxw0
1. Hence, the conclusion follows.

6.2. An algebraic model of stable bases

We define (e being the identity element of W )

(27) pt WD pte D x�w0fe; ptw0 WD x�w0fw0 :

Both of them belong to D� ([13, Lemma 10.3]). They can be viewed (up to certain normaliza-
tion) as the push-forward of the fundamental class in KA.G=B/ along the A-fixed points e,
w0 2 W .

D 6.3. – Define StCw D
C
�w�1 � pte and St�u D .

�
�w0u/

�1 � ptw0 .

4 e SÉRIE – TOME 53 – 2020 – No 3



K-THEORETIC STABLE BASES 683

By definition it is easy to see that if `.wsi / � `.w/, then,
˙
� i � St˙w D St˙wsi :

Therefore, for any w 2 W , St˙w D
˙
�w�1 � St˙e : Note that StCe D pte, St�w0 D ptw0 .

By the standard theory of Kostant-Kumar, KT .G=B/ Š D� and KT .T �G=B/ ˝S Q Š
Hom.W;Q/ D Q�W [23, Theorem (3.13)]. Let p W T �G=B ! G=B be the canonical

projections. Then the isomorphismQ�W Š KT .G=B/˝S Q
p�

�!
�
KT .T

�G=B/˝S Q is given

by the formula p� D Oxw0 � _; the map

KT .T
�G=B/

.p�/�1

�!
'

KT .G=B/ �! KT .C/

is given by the formula OY… � _.
For any F 2 KT .T

�G=B/ � Q�W , we can write F D
P
w F jwfw 2 Q

�
W with F jw 2 S:

For example, �w�1 D w.x�w0 Oxw0/fw , where �w W Spec.C/ ! T �G=B is the embedding of
the T -fixed point corresponding to w 2 W , and

w.x�w0 Oxw0/ D
Y
˛>0

.1 � ew˛/.1 � qe�w˛/ D
^�

Tw.T
�G=B/:

T 6.4. – Under the above identifications, for any u 2 W we have

stabC.u/ D q
� 12
u StCu ; stab�.u/ D qw0q

� 12
u St�u :

Now we prove this theorem. First of all, we have the following relation between
˙
� ˛ in (17)

and the above operators Ts˛ , T 0s˛ .

L 6.5. – As operators on KT .T �G=B/, we have

T 0s˛ D
C
� ˛; Ts˛ D

�
�˛:

Proof. – By (15), the operators Ts˛ D �D˛ � 1 and T 0s˛ D �D
0
˛ � 1 act on the basis

ffv D
�v�1V�

.TvT �G=B/
jv 2 W g as follows:

T˛.fv/ D
q � 1

1 � ev˛
fv C

1 � qev˛

1 � e�v˛
fvs˛ ; T 0˛.fv/ D

q � 1

1 � ev˛
fv C

q � e�v˛

1 � ev˛
fvs˛ :

Comparing with the �-action of
˙
� ˛ on fv 2 Q�W using (20), we get the conclusion.

Proof of Theorem 6.4. – Let us consider the first identity. By Lemma 3.2, Equation (27),
and Definition 6.3, we have

stab�.w0/ D q
1
2
w0

Y
ˇ>0

.1 � eˇ /fw0 D q
1
2
w0 ptw0 D q

1
2
w0 St�w0 ;

and moreover, St�u D .
�
�w0u/

�1 � ptw0 . On the other hand, by Proposition 4.3, we get

Tw0u.stab�.u// D q
1
2
w0u stab�.w0/:

Using Lemma 6.5, we get

St�u D .
�
�w0u/

�1
� ptw0 D .Tw0u/

�1.q
� 12
w0 stab�.w0// D q

� 12
w0 q

� 12
w0u stab�.u/ D q�1w0q

1
2
u stab�.u/:
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This proves the formula for stab�.u/.

Lemma 3.2, (27) and Definition 6.3 show that

stabC.e/ D
Y
ˇ>0

.1 � eˇ /fe D StCe :

Moreover, Theorem 4.5 shows that T 0
u�1

.stabC.e// D q
1
2
u stabC.u/. Comparing with Defini-

tion 6.3 and using Lemma 6.5, we get the formula for stabC.u/.

6.3. The duality

Let
˙
�
�

w be the bases of Q�W dual to
˙
�w , then

˙
�
�

w D
P
v�w b

˙
v;wfv by Lemma 5.2.

L 6.6. – The map Q�W � Q
�
W ! Q; .f; g/ 7! OY… � .fg/ defines a perfect pairing

and the basis Oxw0
�
�
�

v is dual to the basis
˙
�w�1 � pte. In particular,

�
�
�

v is dual to StCw :

Proof. – By Lemma 5.2 we know
�
�
�

v D
P
v0 b
�

v0;vfv0 and
˙
�w�1 D

P
u a
˙

w�1;u
ıu, so

˙
�w�1 � pte D .

X
u

a˙
w�1;u

ıu/ � .x�w0fe/ D
X
u

x�w0u
�1.a˙

w�1;u
/fu�1

D

X
u

x�w0u.a
˙

w�1;u�1
/fu

]1
D

X
u

a�w;uu.x�w0/u. Oxw0/

Ox�w0
fu:

Here ]1 follows from Lemma 6.2. According to (20), we have

OY… � Œ. Oxw0
�
�
�

v/ � .
˙
�w�1 � pt/� D OY… � .

X
v0

Oxw0b
�

v0;vfv0 �
X
u

a�w;uu.x�w0/u. Oxw0/

Oxw0
fu/

D OY… � .
X
u

b�u;va
�
w;uu.x�w0/u. Oxw0/fu/

D

X
w02W

ıw0
1

x�w0 Oxw0
� .
X
u

b�u;va
�
w;uu.x�w0/u. Oxw0/fu/

D

X
w0

X
u

a�w;ub
�
u;v

u.x�w0/u. Oxw0/

u.x�w0/u. Oxw0/
fuw0�1

D

X
w0

.
X
u

a�w;ub
�
u;v/fu.w0/�1 D ıw;v

X
w0

fu.w0/�1 D ıw;v1:

The following is the algebraic model of the duality between stable bases for the positive
and negative chambers, see Remark 2.3.(2).

T 6.7. – 1. Notations as above, we have

OY… �
�
StCw � St�u

�
D ıw;uq

�1
w0u

1:

2. This duality coincides with the duality in Remark 2.3.(2).
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Proof. – We have

OY… � .StCw � St�u / D OY… �
�
.
C
�w�1 � pte/ � Œ.

�
�w0u/

�1
� ptw0 �

�
]
D OY… �

�
pte �Œ

�
�w � .

�
�w0u/

�1
� ptw0 �

�
;

where ] follows from Lemma 6.1. Since pte D x�w0fe and fu �fv D ıu;vfu, it suffices to look
at the term involving fe in

�
�w.
�
�w0u/

�1 �ptw0 . Furthermore, since ıu �fv D fvu�1 (see (20))

and ptw0 D x�w0fw0 , it suffices to look at the term involving ıw0 inside
�
�w.
�
�w0u/

�1. Lastly,

from Lemma 5.2 we know that
�
�w D

P
v�w a

�
w;vıv, so it reduces to look at the term

�
�w0

inside
�
�w.
�
�w0u/

�1, which is ıw;uq�1w0u
�
�w0 by Lemma 5.6. So we have

OY… � .StCw � St�u / D OY… � .pte �.ıw;uq
�1
w0u

�
�w0 � ptw0//

]1
D ıw;uq

�1
w0u
OY… �

�
Œx�w0fe� � Œ

Oxw0
x�w0

ıw0 � .x�w0fw0/�

�
D ıw;uq

�1
w0u

X
v2W

ıv
1

x�w0 Oxw0
�
�
Œx�w0fe� � Œ Oxw0fe�

�
D ıw;uq

�1
w0u

X
v2W

ıv
1

x�w0 Oxw0
�
�
x�w0 Oxw0fe/

�
D ıw;uq

�1
w0u

X
v2W

fv�1 D ıw;uq
�1
w0u

1:

Here ]1 follows from Lemma 5.2 and the other identities follow from (20).

R 6.8. – Recall from [23, 12] that there is an element Xi D Yi � 1 (called the
divided difference element) insideQW , and one can defineXw correspondingly. The method
in Theorem 6.7 works also for the Xw and Yw operators. More precisely, by using analogue
of Lemma 5.6 and [13, Lemma 7.1], we can similarly show that

Y… �
�
ŒXw�1 � pte� � ŒYu�1w0 � .xw0fw0/�

�
D ıw;u1;

Y… �
�
ŒYw�1 � pte� � ŒXu�1w0 � .xw0fw0/�

�
D ıw;u1:

Note that Yw�1 �pte gives the Schubert class corresponding tow. This proof is different from
the one given in [25], moreover, it can be easily generalized to the connective K-theory case.

6.4. Remarks on wall-crossings

It is worth mentioning that the stable bases fstabC;T 1=2; L .w/ j w 2 W g ofKT .T �G=B/ are
well-defined over an algebraically closed field of sufficiently large positive characteristic. In
that setting, based on the results of the present paper, it can be shown that each St�w is equal
to the image of certain Verma modules overU g under the localization functor of [6]. In other
words, the positive characteristic analogue of the stable bases form a set of standard modules
over the quantization of T �G=B of loc. cit.. Notably, the combinatorics of the wall-crossings
of the stable bases is controlled by the local affine braid group action considered in loc. cit..
As this is interesting on its own, we postpone the details to a sequel [49]. Nevertheless, for
the completeness of the present paper, we briefly summarize the ingredients of wall-crossings
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here. In particular, in this section we give a description of the stable basis associated to an
arbitrary chamber C and arbitrary L .

Recall that h is the Lie algebra of the maximal torus A, and the alcoves are connected
components of

h�R n [H˛_;n:

We call the walls the sets

H˛_;n WD f� 2 h
�
R j .�; ˛

_/ D ng

for coroots ˛_ and n 2 Z. For any w 2 W , the stable basis stab
C;T

1
2 ; L
.w/ is constant when

L varies in the interior of any alcove.
Let the chamber C be the positive chamber C, the polarization T

1
2 D T .G=B/. When L

lies in the interior of the anti-fundamental alcove

�5 WD f� j �1 < .�; ˛_/ < 0; for any positive coroot ˛_g;

the formula for the stable bases are given explicitly in § 6.
Now let ˛ be a root. In general, let �1 and �2 be two elements in two nearby alcoves

separated by a wall H˛_;n, and .�1; ˛_/ < n < .�2; ˛
_/. It follows from [45, Theorem 1]

that for any y 2 W ,

stabC;T .G=B/;�1.y/ D

(
stabC;T .G=B/;�2.y/C f

�1 �2
y � stabC;T .G=B/;�2.ys˛/; if ys˛ < yI

stabC;T .G=B/;�2.y/; if y < ys˛;

where f �1 �2y 2 KA�C�.pt/. Moreover, when n D 0, f �1 �2y 2 KC�.pt/, hence, does not
depend on the equivariant parameters of the maximal torus A.

It can be shown that for any simple coroot ˛_, m 2 Z and y 2 W , we have

f �1Cm$˛ �2Cm$˛y D e�my˛f �1 �2y ;

where$˛ is the fundamental weight corresponding to ˛. Therefore, the wall crossings for the
wallsH˛_;n are uniquely determined by the wall crossing for the single wallH˛_;0. Moreover,
we have the following formula. If �1 2 �5, and �2 lies in the alcove s˛.�5/, then

(28) f �1 �2y D q
1
2 � q�

1
2 :

The proof of this formula, as well as the details of the statements above, lines better with the
up-coming sequel. As this will not be used in the rest of the present paper, we postpone the
details to the sequel.

As has been commented in Remark 2.3(4), for any integral weight � and any fractional
weight �, we have

(29) stab
C;T

1
2 ;�C�

.y/ D e�y� L� ˝ stab
C;T

1
2 ;�
.y/:

Note that the extended affine Weyl group acts transitively on the set of alcoves, hence any
alcove can be obtained from an integral translation of one alcove near the origin. In partic-
ular, in the sequel [49], when C be the positive chamberC and T

1
2 D T .G=B/, the stable basis

stab
C;T

1
2 ; L
.w/ for any L and anyw 2 W is calculated using a general form of Equation (28),

Theorem 6.4, and Remark 2.3(4).

4 e SÉRIE – TOME 53 – 2020 – No 3



K-THEORETIC STABLE BASES 687

Recall on KA�C�.T �.G=B//, we have a Weyl group action (see § 9.4 for the detail). It can
be proved that for any w and y in W , we have

w.stab
C;T

1
2 ; L
.y// D stab

wC;w.T
1
2 /; L

.wy/:

Notice that the L -parameter is unchanged under this action. This gives stab
C;T

1
2 ; L
.w/ for

any C.

However, a systematic study of the affine braid group action induced by wall-crossings of
K-theory stable basis is interesting on its own. It is related to the affine braid group action of
[6], which in turn controls the monodromy of the quantum connections of T �G=B.

7. The restriction formula

In this section we use the root polynomials to study the coefficients b˙w;v introduced in
Lemma 5.2. Our method generalizes the formulation in [25]. In particular, this allows us
to avoid the direct calculations in checking the dependence of root polynomials on reduced
sequences.

7.1. The evaluation map

Throughout this section, we denoteQx Š Q if variables ofQ are denoted by x� D 1�e��.
Variables of Qy Š Q will be denoted by y�. Let OQ D Qy ˝R Qx , and consider the
ring OQW WD Qy ˝R Q

x
W where elements of Qy commute with elements of Qx

W . The free
OQ-module OQW has basis fıxwgw2W . We define a ring homomorphism

ev W OQ D Qy
˝R Q

x
! Qx ; y� ˝ x� 7! x�x�;

which induces a left OQ-module structure on Qx
W . The map ev also induces a left OQ-module

homomorphism ev W OQW Š Qy ˝R Q
x
W ! Qx

W . It is easy to check that

(30) ev.y Ozz/ D ev.y/ ev. Oz/ ev.z/; y 2 Qy ; Oz 2 OQW ; z 2 Q
x
W :

Given a set fa˛; b˛g˛2† � Q, denote ai D a˛i ; bi D b˛i , and define aw ; bw as the
corresponding products of a˛ and b˛, similar as in (16). We will use ay

�
; b
y

�
(resp. ax

�
; bx
�

) when
they are considered as inside Qy (resp. Qx).

For each simple root ˛i , we consider �i D aiıiCbi 2 Qw . They satisfy the braid relations,
hence �v is well-defined for any v. When considering �v as an element in Qx

W , we denote it
by �xv .

7.2. The root polynomials

D 7.1. – For any w D si1 � � � sil , denote ǰ D si1 � � � sij�1 j̨ , and define the
root polynomial

(31) R
�
w D

lY
jD1

h�ij . ǰ / 2 OQW ; where h�i .ˇ/ D �
x
i � b

y

ˇ
2 OQW :
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Denote

(32) R
�
w D

X
v�w

K�v;w�
x
v 2

OQW ; K�v;w 2 Q
y
˝Qx :

Since �xi satisfy the braid relations, we have K�v;w 2 Q
y . The following theorem generalizes

[25, Lemma 3.3].

T 7.2. – 1. ev.R
�
w/ D a

x
wı

x
w .

2. Writing ıxw D
P
v b

�
w;v�

x
v , then axwb

�
w;v D ev.K�v;w/. In particular,K�v;w and hence R

�
w

do not depend on the choice of the reduced sequence of w.

Proof. – (1). We use induction on `.w/. If w D si ,

ev.R
�
i / D ev.�xi � b

y
i / D �

x
i � b

x
i D a

x
i ı
x
i :

Assume the conclusion holds for all v such that `.v/ � k, i.e., ev.R
�
v / D axv ı

x
v . Suppose

that w D vsi with `.v/ D k D `.w/ � 1. Then †w D †v t fv.˛i /g, and we have

ev.R
�
w/ D evŒR�

v � .�
x
i � b

y

v.˛i /
/�
]1
D evŒR�

v�
x
i � b

y

v.˛i /
R

�
v �

]2
D axv ı

x
v �

x
i � b

x
v.˛i /

axv ı
x
v D avıv.�

x
i � b

x
i / D a

x
v ı
x
va
x
i ı
x
i D a

x
wı

x
w :

Here identity ]1 follows since by
ˇ
2 Qy commutes with elements of OQW , and ]2 follows

from (30).
(2). Applying ev on (31), we have

axwı
x
w D ev.R

�
w/ D

X
v

ev.K�v;w/ ev.�xv / D
X
v

ev.K�v;w/�
x
v :

So 1
axw

ev.K�v;w/ D b�w;v. Since K�v;w 2 Qy and ev only changes the y-variables into
x-variables, we see that K�v;w D ev.K�v;w/ D axwb

�
w;v if we identify the x and y-variables.

Therefore,K�v;w and hence R
�
w do not depend on the choice of reduced decompositions.

7.3. Root polynomials of Demazure-Lusztig elements

We now apply the root polynomial construction to the
˙
� i operators. We have

(33) R
˙
�
w D

lY
jD1

h
˙
�
ij
. ǰ /; where h

˙
�
i .ˇ/ D

˙
�
x

i �
q � 1

y�ˇ
:

Expanding in terms of
˙
�
x

v , we write R
˙
�
w D

P
v K

˙
�
v;w

˙
�
x

v :

By Lemma 5.1.(3.), the operators
C
� i and

�
� i both satisfy the quadratic relation of Hecke

algebra. Note also that their corresponding root polynomials h
C
�
i .ˇ/ and h

�
�
i .ˇ/ both have

the form in (33). Therefore, K
C
�
v;w D K

�
�
v;w 2 Q

y , which will be denoted by K�v;w . Applying

Theorem 7.2 to R
˙
�
w , we get the following.

T 7.3. – 1. ev.R
C
�
w/ D

Qxw
xw
ıxw ; ev.R

�
�
w/ D

Oxw
x�w

ıxw .

2. Qxw
xw
bCw;v D K

�
v;w D

Oxw
x�w

b�w;v.
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R 7.4. – The formal root polynomials can be defined similarly for the formal
affine Hecke algebra [52]. They do not depend on the choice of reduced sequence for hyper-
bolic formal group law. Moreover, restricting to the connectiveK-theory, one gets a uniform
treatment of the restriction formulas of K-theoretic stable bases in this paper and that of
cohomological stable bases in [48].

7.4. Restriction formula via root polynomials

The following theorem gives the restriction formulas of stable bases of T �G=B:

T 7.5. – 1. StCw D
P
v�w v.a

C

w�1;v�1
/x�w0fv:

2. qw0w St�w D Oxw0
�
�
�

w D
P
v�w Oxw0b

�
v;wfv D

P
v�w

Oxw0x�v

Oxv
K�w;vfv

D
P
v�w v. Oxv�1w0/x�vK

�
w;vfv:

Proof. – (1). This follows from definition and Lemma 5.2.

(2). Via the pairing defined in Lemma 6.6, Oxw0
�
�
�

w is dual to StCu . According to Theorem 6.7,

qw0w St�w is also dual to StCu . Hence, qw0w St�w D Oxw0
�
�
�

w . The second equality in the theorem

follows from the definition of
�
�
�

u; the third equality follows from Theorem 7.3; the last iden-
tity follows the identities

†Cn.v†� \†C/ D †Cnv†� D v
�
v�1†Cn†�

�
D v

�
v�1†C \†C

�
D v

�
v�1w0†

�
\†C

�
D v.†v�1w0/:

E 7.6. – From Theorem 7.5 and Lemma 5.2 we have

StCw jw D w.a
C

w�1;w�1
/x�w0 D .

Y
˛<0;w�1˛>0

Qx˛/ � .
Y

ˇ>0;w�1ˇ>0

x�ˇ /

D Œ
Y

˛<0;w�1˛>0

.q � e˛/� � Œ
Y

ˇ>0;w�1ˇ>0

.1 � eˇ /�;

qw0w St�w jw D Oxw0
x�w

Oxw
D .

Y
˛>0;w�1˛>0

Ox˛/ � .
Y

ˇ>0;w�1ˇ<0

x�ˇ /

D Œ
Y

˛>0;w�1˛>0

.1 � qe�˛/� � Œ
Y

ˇ>0;w�1ˇ<0

.1 � eˇ /�:

8. Stable bases of partial flag varieties

Let J be a subset in the set of simple roots, let G=PJ be the partial flag variety corre-
sponding to J . In this section, we consider the stable bases ofKT .T �G=PJ /. The main result
of this section (Theorem 8.3) says that such bases coincide with the image of the stable bases
of KT .T �G=B/ via the map (36). We then give an algebraic formula for the stable bases in
this case.
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8.1. The definition of stable basis

The A-fixed points of T �G=PJ under the maximal torus A are indexed by the left
cosets W=WJ , or by W J . Moreover, v†CJ � †C for v 2 W J . As in Section 2.1, we can
define chambers, partial orders on the fixed points, leaves, slopes and polarizations in the
setting of T �G=PJ . The group Pic.T �G=PJ / is isomorphic to the lattice f� 2 ƒj.�; ˛_/ D 0
for any ˛ 2 J g.

We use the following theorem as the definition of stable bases of T �G=PJ :

T 8.1. – [36, §9.1] For any chamber C, any polarization T
1
2 of T �G=PJ , and any

rational line bundle L , there exists a unique map of S -modules

stabJ
C;T

1
2 ; L
W KT ..T

�G=PJ /
A/! KT .T

�G=PJ /;

such that for any w 2 W J , � D stabJ
C;T

1
2 ; L
.w/ satisfies:

1. (support) supp� � SlopeC.w/;

2. (normalization) �jw D .�1/
rankN

1
2
w;C

 
detNw;�

detN
1
2
w

! 1
2

OLeafC.w/jw
;

3. (degree) degA
�
�jv
˝ L jw

�
� degA

�
.stabJ

C;T
1
2 ; L
.v/˝ L /jv

�
, for any v 2 W J and

v �C w,

where w in stabJ
C;T

1
2 ; L
.w/ is the unit in K�T .w/.

Then the stable basis for KT .T �G=PJ /loc is fstabJ
C;T

1
2 ; L
.w/jw 2 W J g. And we have the

following duality property [45, Proposition 1]:

(34)

 
stabJ

C;T
1
2 ; L
.v/; stabJ

�C;T
1
2

opp; L
�1
.w/

!
D ıv;w :

Let �J denote the Bruhat order on W J , i.e., for any v;w 2 W J , v �J w if BvPJ =PJ �
BwPJ =PJ . Similarly to Lemma 3.2, we have

L 8.2. – For any v;w 2 W J , we have

1. stabJ
�;T �G=PJ ; L

.v/jw
D 0, unless v �J w.

2. stabJ
�;T �G=PJ ; L

.v/jv
D q

1
2
v

Q
ˇ2†Cn†

C

J
;�vˇ2†C

.1 � e�vˇ /
Q

ˇ2†Cn†
C

J
;vˇ2†C

.1 � qe�vˇ /.

Proof. – (1) follows from the support condition.

(2). Since we choose the negative chamber �, we have

A � weights in Nv;C D fe�vˇ jˇ 2 †C n†CJ ; vˇ > 0g [ fq
�1evˇ jˇ 2 †C n†CJ ; vˇ < 0g;

A � weights in Nv;� D fe�vˇ jˇ 2 †C n†CJ ; vˇ < 0g [ fq
�1evˇ jˇ 2 †C n†CJ ; vˇ > 0g;

A � weights in N
1
2
v D fq

�1evˇ jˇ 2 †C n†CJ g:
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And Leaf.w/ D T �
B�vPJ =PJ

.G=PJ /, where PJ is the corresponding parabolic subgroup.
Therefore

stab�.v/jv D .�1/
rankN

1
2
v;C

 
detNv;�

detN
1
2
v

! 1
2

OLeafC.v/jv

D .�1/`.v/

0BB@
Q

ˇ2†Cn†
C

J
;vˇ<0

e�vˇ
Q

ˇ2†Cn†
C

J
;vˇ>0

q�1evˇQ
ˇ2†Cn†

C

J

q�1evˇ

1CCA
1
2

�

Y
ˇ2†Cn†

C

J
;vˇ<0

.1 � evˇ /
Y

ˇ2†Cn†
C

J
;vˇ>0

.1 � qe�vˇ /

D q
1
2
v

Y
ˇ2†Cn†

C

J
;vˇ<0

.1 � e�vˇ /
Y

ˇ2†Cn†
C

J
;vˇ>0

.1 � qe�vˇ /:

Therefore, as in Section 3, we have

max
�
.stabJ

�;T �G=PJ ; L
.v/jv

/ D .�;
X

ˇ2†Cn†
C

J
;vˇ<0

�vˇ/;

min
�
.stabJ

�;T �G=PJ ; L
.v/jv

/ D .�;
X

ˇ2†Cn†
C

J
;vˇ>0

�vˇ/:
(35)

We have a projection � W G=B ! G=PJ and a Lagrangian correspondence
G=B �G=PJ T

�G=PJ in T �G=B � T �G=PJ :

T �G=B G=B �G=PJ T
�G=PJ

p1oo
p2 // T �G=PJ :

Therefore, we have the following map:

(36) p2�p
�
1 W KT .T

�G=B/! KT .T
�G=PJ /:

Recall L D O.�/ 2 Pic.T �G=B/ ˝Z Q, where � lies in the fundamental alcove and � is
sufficiently near 0. Let LJ WD O.� �

P
˛2J .�; ˛

_/$˛/ 2 Pic.T �G=PJ /˝Z Q, where $˛ is
the fundamental weight associated to the simple root ˛.

For any v 2 W J , denote

stabJC.v/ D stabJ
C;T .G=PJ /; L

�1
J

.v/; stabJ�.v/ D stabJ
�;T �.G=PJ /; LJ

.v/:

The image of the stable bases under the map (36) is given as follows.

T 8.3. – For any v 2 W J , we have

p2�p
�
1 .stabC.v// D stabJC.v/;

and
p2�p

�
1 .stab�.v// D stabJ�.v/:

We use the rigidity technique from Section 3.
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Proof. – Thanks to the duality property (34), the first identity is equivalent to�
p2�p

�
1 .stabC.v//; stabJ�.u/

�
D ıv;u;

for any u 2 W J , which we now prove.

Similar to the argument in Proposition 4.3, the support condition of stable basis
Theorem 2.2(1) and the properness of the intersection of support [30, Theorem 4.6.1]

together imply that
�
p2�p

�
1 .stabC.v//; stabJ�.u/

�
is an element in KT .pt/, i.e., a Laurent

polynomial. Localizing to the T -fixed points, we get�
p2�p

�
1 .stabC.v//; stabJ�.u/

�
D

�
p�1 .stabC.v//; p�2 .stabJ�.u//

�
(37)

D

X
w2W J

y2wWJ
y�v;u�Jw

stabC.v/jy stabJ�.u/jwV�
T.y;w/.G=B �G=PJ T

�G=PJ /
:(38)

Note that

(39)
^�

T.y;w/.G=B �G=PJ T
�G=PJ / D

Y
ˇ>0

.1 � eyˇ /
Y

ˇ2†Cn†
C

J

.1 � qe�wˇ /:

Let � be as in Lemma 3.1. In particular,

max
�
.
^�

T.y;w/.G=B �G=PJ T
�G=PJ // D

X
ˇ>0;yˇ>0

.�; yˇ/C
X

ˇ2†Cn†
C

J
;wˇ<0

.�;�wˇ/:

By the third conditions of Theorem 2.2 and Theorem 8.1, and Equations (3) and (35), we
have

max
�
.stabC.v/jy stabJ�.u/jw/ �

X
ˇ>0
yˇ>0

.�; yˇ/C
X

ˇ2†Cn†
C

J

wˇ<0

.�;�wˇ/C .�; L jv � L jy C LJ jw � LJ ju/:

Since v � y and w �J u, Lemma 4.2 shows that

.�; L jv � L jy C LJ jw � LJ ju/ � 0;

with strict inequality if u ¤ v.

Now we analyze separately the following two cases: u ¤ v and u D v. In the case when
u ¤ v, we have

lim
t!1

�
p2�p

�
1 .stabC.v//; stabJ�.u/

�
.t�/ D 0:

To analyze the limit as t goes to �1, we may assume � sufficiently small so that

.�; L jv � L jy C LJ jw � LJ ju/ > �1:

Here L D O.�/. Under this condition, keeping in mind that u ¤ v, we have

lim
t!�1

�
p2�p

�
1 .stabC.v//; stabJ�.u/

�
.t�/ is bounded.

Hence, by Lemma 3.1, �
p2�p

�
1 .stabC.v//; stabJ�.u/

�
D 0:
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In the case when u D v 2 W J , we have

f.y; w/ j y 2 W;w 2 W J ; y 2 wWJ ; y � v; u �
J wg D f.u; v/g:

Indeed, any .y; w/ in the left hand side satisfies

`.y/ � `.v/ D `.u/ � `.w/ � `.y/;

hence also in the right hand side. Therefore, the summation (37) has only one term. Using
Lemma 3.2, Lemma 8.2, Equation (39), keeping in mind that v†CJ � †

C, we get�
p2�p

�
1 .stabC.v//; stabJ�.v/

�
D

stabC.v/jv stabJ�.v/jvV�
T.v;u/.G=B �G=PJ T

�G=PJ /
D 1:

This proves the identity p2�p�1 .stabC.v// D stabJC.v/: The identity p2�p�1 .stab�.v// D
stabJ�.v/ is proved using the same argument.

8.2. More on the twisted group algebra

Let � W G=B ! G=PJ be the canonical map. By [13, Lemma 10.12], YJ 2 D. Indeed,
Yf˛i g D Yi . It follows from Kostant-Kumar (or see [11, Theorem 8.2 and Corollary 8.7] for
more details) that we have commutative diagrams

KT .G=B/

�

��

���� // KT .G=B/

�

��

KT .G=PJ / //

�

��

KT .C/

�

��

D�
YJ �_ // D� .D�/WJ

Y…=J �_
// .D�/W :

Here the top horizontal map in the second diagram is induced by the structure map
G=PJ ! Spec.C/.

Let p W T �G=B ! G=B and pJ W T �G=PJ ! G=PJ be the canonical projections. Then

Q�W Š KT .G=B/˝S Q
p�

�!
�
KT .T

�G=B/˝S Q;

.Q�W /
WJ Š KT .G=PJ /˝S Q

p�
J
�!
�
KT .T

�G=PJ /˝S Q:

Moreover, p� D Oxw0 � _ and p�J D
Oxw0
Ox
wJ
0

� _.

Via these isomorphisms, OY… � _ and OY…=J � _ coincide with the following composites,
respectively:

KT .T
�G=B/

.p�/�1

�!
�

KT .G=B/ �! KT .C/; KT .T
�G=PJ /

.p�
J
/�1

�!
�

KT .G=PJ / �! KT .C/:

Concerning the map p2�p�1 in (36), we have

L 8.4. – 1. We have a commutative diagram

KT .G=B/
p�
//

��

��

KT .T
�G=B/

p2�p
�
1

��

KT .G=PJ /
p�
J // KT .T

�G=PJ /:
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That is, p�J ı �� D .p2�p
�
1 / ı p

�.

2. Via the �-action of QW on Q�W , we have p2�p1� D OYJ .

Proof. – (1). This follows from the proper base change property of K-theory.

(2). We know that �� D YJ � _, p�J D
Oxw0
Ox
wJ
0

� _ and p� D Oxw0 � _. So

p2�p
�
1 D p

�
J ı �� ı .p

�/�1 D
Oxw0
OxwJ
0

X
w2WJ

ıw
1

x
�wJ

0

1

Oxw0

]
D

X
w2WJ

ıw
1

x
�wJ

0
OxwJ
0

D OYJ :

Here to show ], note that in the case w 2 WJ , we have w.†Cn†CJ / D †Cn†CJ and

consequently w.
Oxw0
Ox
wJ
0

/ D
Oxw0
Ox
wJ
0

.

8.3. The algebraic descriptions

D 8.5. – Let w 2 W J . We define elements in Q�W by

StC;Jw WD OYJ � StCw D OYJ � .
C
�w�1 � pte/; St�;Jw WD OYJ � St�w D OYJ � ..

�
�w0w/

�1
� ptw0/:

T 8.6. – For any w 2 W J , denote gw D
P
u2WJ

fwu, then we have

StC;Jw D

X
v�w;v2W J

xw0v.
aC
w�1;v�1

x
�wJ

0
OxwJ
0

/gv;

qw0v St�;Jv D

X
v�w;v2W J

x�vK
�
w;vv.

Oxv�1w0
x
�wJ

0
OxwJ
0

/gv D
X

v�w;v2W J

Oxw0b
�
v;w

v.x
�wJ

0
OxwJ
0
/
gv:

Proof. – It follows from the definition of OYJ in (24), the identities in (20), and Theorem 7.5.

The following give a purely algebraic description of the geometrically defined stable bases.

C 8.7. – We have

stabJC.w/ D q
� 12
w StC;Jw ; stabJ�.w/ D qw0q

� 12
w St�;Jw :

Proof. – According to Lemma 8.4.(1), p2�p�1 D OYJ � _. This corollary now follows from
Corollary 6.4.

C 8.8. – OY…=J � .StC;Jw � St�;Jv / D ıw;vq
�1
w0v

1:

Proof. – Let �J W G=PJ ! C be the structure map. The composition

KT .T
�G=PJ /

.p�
J
/�1

�! KT .G=PJ /
�J�
! KT .C/

is given by the formula OY…=J � _ W .Q�W /
WJ ! .Q�W /

W . By (34) and Corollary 8.7, we have

ıw;v1 D OY…=J � .stabJC.w/ � stabJ�.v// D OY…=J � .q
� 12
w StC;Jw �qw0q

� 12
v St�;Jv /;

the conclusion then follows.

C 8.9. – Expressing
�
�w OYJ .

�
�w0v/

�1 in terms of
�
�u; u 2 W , the coefficient in

front of
�
�w0 is equal to ıw;vq�1w0v.
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Proof. – Denote this coefficient by c. By definition of OYJ we know that St˙;Jw 2 .Q�W /
WJ .

By Corollary 8.8 we have

q�1w0vıw;v1
]1
D OY…=J � Œ. OYJ � StCw/ � . OYJ � St�v /�

]2
D OY…=J � Œ OYJ � .StCw �. OYJ � St�v //�

]3
D OY… � ŒStCw �. OYJ � St�v /� D OY… � Œ.

C
�w�1 � pte/ � . OYJ .

�
�w0v/

�1
� ptw0/�

]4
D OY… � Œpte �.

�
�w OYJ .

�
�w0v/

�1
� ptw0/�

]5
D OY… � Œ.x�w0fe/ � .c

�
�w0 � x�w0fw0/�

]6
D c

x�w0 Ox�w0
x�w0 Oxw0

1 D c1:

Here ]1 follows from the definition of St˙;Jw ; ]2 follows from the projection Formula (26);
]3 follows from (25); ]4 follows from Lemma 6.1; ]5 follows from similar idea in the proof of
Theorem 6.7; ]6 follows from (20). We then have c D q�1w0v.

This corollary is the parabolic version of Lemma 5.6 and hence a generalization of [34,
Proposition 3]. Geometrically, this corollary (resp. Lemma 5.6) reflects the fact that the stable
bases of KT .T �G=PJ / (resp. of KT .T �G=B/) corresponding to the opposite chambers are
dual via the K-theory pairing.

9. Relations with p-adic unramified principal series representations

In this section we compare the K-theory stable basis and the T -fixed point basis with
certain bases in unramified principal series ofp-adic groups. The nature of such a connection
is the local geometric Langlands duality. Hence, the stable bases of T �.G_=.B_;�// will be
considered in comparison with representations of GQp .

For the convenience of the readers, we also give a K-theory interpretation of the inter-
twiners, Macdonald’s formula for the spherical functions [29, 14], and the Casselman-
Shalika formula for Whittaker functions [15] from p-adic representations.

9.1. Results from p-adic representations

9.1.1. Notations. – First, we recall some notions fromp-adic representations, following [37].

Let F be a nonarchimedean local field, with ring of integers O, a uniformizer $ 2 O,
and residue field Fq . Let GF be a split reductive group over F , with maximal torus AF
and Borel subgroup BF D AFNF . Let I be an Iwahori subgroup, i.e., the inverse image
of B.Fq/ under the evaluation map G. O/ ! G.Fq/. Note that the notations here differ
from [37], where in loc. cit., B is used to denote the Iwahori subgroup, and P denotes the
Borel subgroup. To simplify notations, we let ˛; ˇ denote the coroots of G. We also have the
following decomposition

GF D
G
w2W

BFwI:

Let H D Cc ŒInGF =I � be the Iwahori Hecke algebra. It has two subalgebras, the finite
Hecke algebraHW , and a commutative subalgebra‚ which is isomorphic to the coordinate
ring CŒA_� of the complex dual torus A_ D C� ˝ X�.A/. More precisely, ‚ has a C-linear
basis f�a j a 2 AF =A Og. For any coroot ˛ ofG, let h˛ W F � ! AF be the corresponding one
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parameter subgroup. The isomorphism ‚ ' CŒA_� maps �h˛.$/ to e˛ 2 X�.A_/ � CŒA_�.
So for any character � of A, we have e˛.�/ D �.h˛.$//. We have the following pairing

h ; i W AF =A O � A
_
! C�

given by

ha; z ˝ �i D zval.�.a//:

This induces an isomorphism between AF =A O and the groupX�.A_/ of rational characters
of A_. It also induces an identification between A_ and unramified characters of A, i.e.,
characters which are trivial on A O. As a C-vector space, we have

H D ‚˝C HW :

Let � be an unramified character of A avoiding all the root hyperplanes. We consider the
induced representation I.�/ D IndGB .�/. As a C-vector space, IndGB .�/ consists of locally
constant functions f on GF such that f .bg/ D �.b/ı

1
2 .b/f .g/ for any b 2 BF , where

ı.b/ WD
Q
˛>0 j˛

_.a/jF is the modulus function on the Borel subgroup. The algebra H
acts through convolution from the right on the Iwahori invariant subspace I.�/I , so that
the restriction of this action to HW is a regular representation. This right action is denoted
by � W H! EndC.I.�/

I /.

9.1.2. Interwiners. – For any character � and x 2 W , we can define x� 2 X�.A/ by the
formula x�.a/ WD �.x�1ax/ for any a 2 A. Since we assume � is unramified and has trivial
stabilizer under the Weyl group action, the space HomG.I.�/; I.x

�1�// is one dimensional,
spanned by an operator A x D A �

x
(2) defined by

A x.'/.g/ WD

Z
Nx

'. Pxng/dn;

where Px is a representative of x 2 W , Nx D N \ Px�1N� Px with N (resp. N�) being the
unipotent radical of the (opposite) Borel subgroup B, and the measure onNx is normalized
by the condition that vol.Nx \G. O// D 1 [37]. If x; y 2 W satisfy `.x/C`.y/ D `.xy/, then

A x�1�
y A �

x D A �
xy .

For any coroot ˛, let

(40) c˛ D
1 � q�1e˛.�/

1 � e˛.�/
:

We normalize the intertwiner as in [20, Section 2.2] as follows:

I �w WD
Y

˛>0;w�1˛<0

1

c˛
A �
w :

Then for any simple coroot ˛ and any y;w 2 W , we have

(41) I s˛�s˛
I �s˛ D 1; and I y

�1�
w I �y D I

�
yw :

(2) This intertwiner Ax is related to the one Tx in [14] by the formula Ax D Tx�1 .
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9.1.3. Bases in Iwahori-invariants. – There are two bases of interest in I.�/I . One of these
bases consists of normalized characteristic functions on the orbits, denoted by f'�w j w 2 W g.
Here for any w 2 W the element '�w is characterized by the two conditions [37, pg. 319]:

1. '�w is supported on BFwI ;

2. '�w.bwg/ D �.b/ı
1
2 .b/ for any b 2 BF and g 2 I .

The action of H on I.�/I has explicit formula under this basis [37, pg. 325]. For any simple
coroot ˛, we have

(42) �.Ts˛ /.'
�
w/ D

(
q'�ws˛ C .q � 1/'

�
w ; if ws˛ < wI

'�ws˛ ; if ws˛ > w:

Under the intertwiner I �s˛ , this basis behaves as follows [14, Theorem 3.4]

(43) I �s˛ .'
�
w/ D

(
1
qc˛
'
s˛�
s˛w C .1 �

1
c˛
/'
s˛�
w ; if s˛w > wI

1
c˛
'
s˛�
s˛w C .1 �

1
qc˛
/'
s˛�
w ; if s˛w < w:

The second basis is called the Casselman’s basis, denoted by ff �w j w 2 W g. It consists
of‚-eigenvectors in I.�/I , and is further characterized in terms of the intertwining operators
by the following formula (3)

A �
x.f

�
w /.1/ D ıx;w :

The formula of the Hecke algebra action under this basis is also known [37, Lemma 4.1
and Proposition 4.9]. For any simple coroot ˛ and w 2 W , write

J˛;w D

(
cw˛c�w˛; if ws˛ > wI

1; if ws˛ < w:

Then, we have

(44) �.Ts˛ /.f
�
w / D q.1 � cw˛/f

�
w C qJ˛;wf

�
ws˛

;

(45) �.�a/f
�
w D �.waw

�1/f �w D .w
�1�.a//f �w ; for any a 2 A;

and ([37, Theorem 4.2])

(46) I �s˛ .f
�
w / D

(
c�˛f

s˛�
s˛w ; if s˛w > wI

1
c˛
f
s˛�
s˛w ; if s˛w < w:

(3) This basis is related to the one in [14] by an inversion of the index w.
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9.1.4. Transition matrices. – The change of bases matrix

(47) f �w D
X
y�w

aw;y.�/'
�
y

is interesting (see, e.g., [34]). It is clear that aw;w D 1. A formula for the generating series
of general aw;y is given in [37, Proposition 5.2], in terms of the canonical basis of [21]. The
inverse matrix bw;y.�/ defined by

(48) '�w D
X
y�w

bw;y.�/f
�
y

plays an important role in explicit computations of the Whittaker function on '�w (see, e.g.,
[38]).

In Corollary 9.6, we explain how Theorem 1.2 gives a closed formula for these two
matrices.

9.1.5. Macdonald’s formula for spherical function. – In this section, we review the Mac-
donald’s formula for spherical functions.

According to the Iwasawa decomposition G D BG. O/, the vector space I.�/G. O/ is one
dimensional. Let �� be the basis normalized by the condition that �� .1/ D 1. Then we
have ([14])

�� D
X
w

'�w D
X
w

Y
˛>0;w�1˛<0

1 � q�1e˛.�/

1 � e˛.�/
f �w :

It follows from either (43) or (46) that

(49) I �w.�
� / D �w

�1� :

This formula is refereed to as the Gindikin-Karpelevich formula in literature.

We consider a sesquilinear paring h�;�i W I.��1/ ˝ I.�/ ! C [20, § 1.9]. For any
g 2 G.F /, we consider the following matrix coefficient

�� .g/ D hg � �
� ; ��

�1

i:(50)

It satisfies

�� .1/ D 1; �� D �w� ;

and

�� .k1gk2/ D �� .g/

for any k1; k2 2 G. O/, and g 2 G. This gives a well-defined C-valued function on
G. O/nG.F /=G. O/. This function �� is called the zonal spherical function corresponding
to � .

Let X�.A/C be the dominant coweights. By the Cartan decomposition,

G.F / D
G

�2X�.A/C

G. O/$�G. O/;

in order to know this function, it sufficed to know the value of �� at the $�’s, where
$� D h�.$/.
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For any dominant coweight � ofG, the characteristic function 1I$�I is an element in the
affine Hecke algebra H D Cc ŒInG=I �. Let

(51) eI$�I D
1I$�I

vol.I$�I /
D ıB.$

�/
1
2 �� 2 H:

Then by the definition of �� , we have

(52) �� .$
�/ D h�.eI$�I /.�

� /; ��
�1

i:

The following is the Macdonald formula.

T 9.1 ([29]). – Let Q be the volume of Bw0B and � 2 X�.A/C. We have

�� .$
�/ D

ı
1
2

B .$
�/

Q

X
w2W

ew�.�/
Y
ˇ>0

1 � q�1e�wˇ .�/

1 � e�wˇ .�/
;

where ıB is the modulus function on the Borel subgroup B.

The proof by Casselman [14] uses theW -invariance of the function and the eigenbasis f �w .
This formula gives the Satake transform for the spherical Hecke algebra [20, Theorem 5.6.1].

In Theorem 9.9, we give an equivariant K-theoretic interpretation of this formula.

9.1.6. Casselman-Shalika formula. – In this section, we review the Casselman-Shalika
formula for the Whittaker functions, see [15].

Recall N is the unipotent radical of the Borel subgroup B, and
Q
˛2…N˛ is a quotient

of N , where the product runs over all simple roots, and N˛ is the corresponding root
subgroup, all of which are isomorphic to the additive group. Given characters �˛ of N˛, the
product � WD

Q
�˛ is a character of N . We say � is principle if all the �˛ are non-trivial. We

say � is unramified if all the characters �˛ are trivial on O, but nontrivial on $�1 O. From
now on, we assume � is principal and unramified. Let IndGN � be the induced representation.

For every unramified character � as before, a Whittaker functional on I.�/ is a C-module
map

L W I.�/! C;

such that L.n�/ D �.n/L.�/ for any n 2 N and � 2 I.�/. It is proved in [43] (see also
[15]) that the space of Whittaker functionals is one-dimensional. For any f 2 I.�/, define
W� .f / W G ! C by

W� .f /.g/ WD L.gf /:

Then W� .f / is a function on G satisfying

W� .f /.ng/ D �.n/W� .f /.g/; if n 2 N:

And f 7! W� .f / is a G-map from I.�/ to IndGN � , denoted by W� . (4) It follows from
[15, Proposition 2.1] that for fixed g 2 G and f 2 I.�/, the function � ! W� .f /.g/ is
a polynomial function on the dual torus A_.

(4) This is the notation used in [38]. We normalize ourL such that our W� .f /.g/ coincides with the one in loc. cit.
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The Whittaker functional W� enjoys the following properties (see [38, Equation (1.3),
Proposition 3.1]) :

(53) Ww�1�I
�
w D

Y
ˇ>0;w�1ˇ<0

1 � q�1e�ˇ .�/

1 � q�1eˇ .�/
W� ;

and for every dominant coweight �,

(54) W� .f
�
w /.$

�/ D ı
1
2

B .$
�/ew�.�/

Y
ˇ>0;w�1ˇ>0

1 � q�1eˇ .�/

1 � e�ˇ .�/
:

Recall we have the spherical function �� 2 I.�/G. O/. We define the Whittaker function

W� .g/ WD W� .�
� /.g/ D L.g�� /:

The Casselman-Shalika formula is an explicit formula for W� . Since W� is right G. O/-invariant,
and for any n 2 N ,

W� .ng/ D �.n/W� .g/;

we only need to determine the value of W� at the elements $� for any coweight � 2 X�.A/.
Moreover,W� .$�/ D 0, unless� is dominant, cause if not, there exists some x 2 N˛\G. O/,
such that �˛.$�x$��/ is nontrivial. However,

W� .$
�/ D W� .$

�x/ D �˛.$
�x$��/W� .$

�/;

forcing W� .$�/ D 0.

Assume � is dominant. By the Iwahori factorization I D .I \ NB/.I \ N/, we have
I$��I D I$��.I \ N/. Since � is trivial on I \ N and �� is invariant under I , we have
[20, Theorem 6.5.1]

(55) W� .$
�/ D L.�.eI$��I /�

� /:

The Casselman-Shalika formula is given by the following theorem.

T 9.2. – [15, Theorem 5.4] Let � be a dominant coweight of G, then

W� .$
�/ D ı

1
2

B .$
�/
Y
ˇ>0

.1 � q�1eˇ .�//
X
w

ew�.�/Q
ˇ>0.1 � e

�wˇ .�//

D ı
1
2

B .$
�/
Y
ˇ>0

.1 � q�1eˇ .�//E�.�/;

where E� is the character of the representation of the Langlands dual groupG_ having highest
weight �.
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9.2. Bases in equivariant K-theory for the complex dual group G_

From now on we only consider K-theory with C coefficients. The Iwahori-Hecke
algebra H (with C coefficients) of GF can be expressed in terms of the complex reduc-
tive group G_, whose root datum is Langlands dual to that of GF .

More precisely, let G_ be the complex reductive group , whose root datum is Langlands
dual to that of GF . We fix the set of positive simple roots of G_ determined by BF . In
particular, the maximal torus of G_ is naturally isomorphic to A_, the complex dual of
AF � GF . Let B_ D B_;� be the Borel subgroup of G_ associated to the negative roots.

R 9.3. – We honor the conventions adapted in the literature of local geometric
Langlands duality (see, e.g., [39, 5]), and consider complex-valued functions on GF and
coherent sheaves on T �G_=.B_;�/. In particular, the isomorphism H ' KG_�C�.Z/ used in
this section is the same as [39, Prop. 6.1.5]. Note that this is different from § 5, where the stable
bases considered were associated to T �G=B whereG is complex reductive, andB is the Borel
subgroup associated to the positive roots. Therefore, we describe the modified isomorphism
below, and hence modify the formulas from § 4 correspondingly.

Under the modified isomorphism [39, Prop. 6.1.5], e� 2 X�.A_/ is mapped to ���. O.�//

with O.�/ being the line bundle on T �.G_=B_/; �� W Z� D �.T �.G_=B_// !

T �.G_=B_/; the operator T˛ 2 H for simple root ˛ is mapped to

�Œ O�� � Œ OT �
Y˛
.��; � � ˛/�:

The above isomorphism has symmetryŒ OT �
Y˛
.��; � � ˛/� ' Œ OT �

Y˛
.� � ˛;��/� [39,

Lemma 1.5.1]. Hence, the right convolution and the left convolution by T˛ will give the
same operator on KA_�C�.T �.G_=B_//. In what follows, the right convolution action of H
on KA_�C�.T �.G_=B_// will be denoted by � . As in § 4, we use T˛ (resp. T 0˛) to denote
the left (resp. right) convolution by the simple generator of H. The relations between these
convolution operators are

(56) �.T˛/ D O.��/T˛ O.�/ D O.�/T 0˛ O.��/;

where O.˙�/ is the operator of multiplication by the line bundle. Note that the second
equality also gives a geometric proof of the first equality in (19).

For the bases of KG_�C�.Z/, we will then consider the following instead:

.�w�1/�� WD �w�1˝ O.��/; .stab�.w//�� WD stab�.w/˝ O.��/:

The fixed point basis is an eigenbasis for the action of the lattice part ‚ of H. Therefore, for
any e� 2 X�.A_/,

�.e�/.�w�1˝ O.��// D ew��w�1˝ O.��/:(57)

From the proof of Lemma 4.4 and Equation (56) (we switch the positive and negative roots),
we have

(58) �.Ts˛ /.�w�1/�� D Ts˛ .�w�1/˝ O.��/ D
q � 1

1 � e�w˛
.�w�1/�� C

q � e�w˛

1 � ew˛
.�ws�1/��:
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As for the second basis, we get from Theorem 4.5 the following

(59) �.Ts˛ /.stab�.w/��/ D

(
q
1
2 .stab�.ws˛//�� C .q � 1/.stab�.w/��; if ws˛ < wI

q
1
2 .stab�.ws˛//��; if ws˛ > w:

By definition, the fixed point basis �w�1 is supported at w with restriction

�w�1jw
D

Y
ˇ>0

.1 � e�wˇ /.1 � qewˇ /:

Hence, by the definition of stab�.w/ (Theorem 2.2), the second part of Remark 2.3 and
Lemma 3.2, we can write
(60)

�w�1 D q
�
`.w/
2

Y
ˇ>0;wˇ>0

.1�e�wˇ /
Y

ˇ>0;wˇ<0

.q�e�wˇ / stab�.w/C
X
y>w

stabC.y/jw stab�.y/;

where stabC.y/jw is given by Theorem 1.2.
Since an unramified character � of AF corresponds to a maximal ideal in KA_.pt/, we

have the evaluation map KA_.pt/! C� . Consequently, we have the tensor product

KA_�C�.T
�.G_=B_//˝KA_ .pt/ C�

which without raising any confusion will also be denoted by

K� WD KA_�C�.T
�.G_=B_//˝KA_�C� .pt/ C� :

For any f 2 KA_�C�.T
�.G_=B_//, the corresponding class f ˝ 1 2 K� will also be

denoted by f for simplicity. We further assume that the values of the roots of G_ at � do
not equal q˙1, so that the above tensor product has the following two bases

f.�w�1/�� j w 2 W g and f.stab�.w//�� j w 2 W g:

9.3. The comparison

The main result of this section is the following.

T 9.4. – Fix an unramified character � of A. There is a unique isomorphism
between the following two right H-modules

‰ W KA_�C�.T
�.G_=B_//˝KA_�C� .pt/ C� ! I.�/I ;

with the equivariant parameter q for C� evaluated to the cardinality of the residue field of OF ,
satisfying the following properties:

1. for any w 2 W ,

gw WD
q`.w/Q

ˇ>0;wˇ>0.1 � e
�wˇ /

Q
ˇ>0;wˇ<0.q � e

�wˇ /
.�w�1/�� 7! f �w ;

2. .stab�.w//�� 7! q�
`.w/
2 '�w .

R 9.5. – 1. Such an isomorphism has been studied by Lusztig [28] and
Braverman-Kazhdan [9] from different points of view. However, the present paper
explicitly identifies different bases from K-theory and from p-adic representation
theory, which had been previously unknown.
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2. Under this isomorphism, the spherical function �� corresponds to the following
element on the K-theory side:

Q�� W D
X
w

q
`.w/
2 .stab�.w//�� D

X
w

.�w�1/��Q
ˇ>0.1 � e

�wˇ /
(61)

D Œ OG_=B_ ˝ O.��/� 2 KA_�C�.T
�.G_=B_//˝KA_�C� .pt/ C� ;(62)

where the last equality follows from localization. Hence, in what follow we refer to Q��

as the K-theoretic spherical class.

Proof. – Condition (1) uniquely defines‰ as a map of C-vector spaces. We need to check
that ‰ is a map of H-modules, and that it satisfies Condition (2).

First we verify that ‰ is a map of H-modules. For any simple root ˛, by (58), we have

�.Ts˛ /.gw/ D
q`.w/Q

ˇ>0;wˇ>0.1 � e
�wˇ /

Q
ˇ>0;wˇ<0.q � e

�wˇ /

�

�
q � 1

1 � e�w˛
�w�1˝ O.��/C

q � e�w˛

1 � ew˛
�ws�1˝ O.��/

�
D

q � 1

1 � e�w˛
gw C

(
qgws˛ ; if ws˛ < wI
q�e�w˛

1�ew˛
q�ew˛

1�e�w˛
q�1gws˛ ; if ws˛ > w:

Applying the map ‰, we get

‰ .�.Ts˛ /.gw// D
q � 1

1 � e�w˛.�/
f �w C

(
qf �ws; if ws˛ < w;
.1�q�1e�w˛.�//

1�ew˛.�/
1�q�1ew˛.�/
1�e�w˛.�/

qf �ws; if ws˛ > w;

D q.1 � cw˛/f
�
w C qJ˛;wf

�
ws

D �.Ts˛ /.f
�
w /

D �.Ts˛ /.‰.gw//:

Therefore, ‰ commutes with the HW -actions. Next we consider the action of ‚. For any
e� 2 X�.A_/ We have

‰..�.e�/gw/ D ‰.e
w�gw/ D e

w�.�/f �w D �.��/f
�
w D �.��/‰.gw/:

This proves that ‰ is a map of H-modules.
We now prove Condition (2) by descending induction on `.w/. For the longest element

w D w0 2 W , we have f �w0 D '
�
w0

, and

�w0�1 D q
�
`.w0/

2

Y
ˇ>0;w0ˇ>0

.1 � e�w0ˇ /
Y

ˇ>0;w0ˇ<0

.q � e�w0ˇ / stab�.w0/:

Therefore,

.stab�.w0//�� D q�
`.w0/

2 gw0 :

This proves Condition (2) for w D w0. The inductive step follows directly from (42) and
(59).

One immediate corollary is the following relation between the restriction formulas in
Theorem 1.1 and the transition matrix in Equations (47) and (48).
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C 9.6. – For any y;w 2 W with w � y, we have

(63) stabC.y/jw D q
`.y/
2 �`.w/aw;y

Y
ˇ>0;wˇ>0

.1 � e�wˇ /
Y

ˇ>0;wˇ<0

.q � e�wˇ /;

and

(64) stab�.w/jy D q
`.y/� `.w/2 bw;y

Y
ˇ>0;yˇ>0

.1 � qeyˇ /
Y

ˇ>0;yˇ<0

.1 � eyˇ /:

Proof. – By the definition of aw;y in Equation (47) and the above theorem, we have

gw D
X
z

aw;zq
`.z/
2 .stab�.z//��:

Pairing with stabC.y/˝ O.�/ on both sides and using the duality between the opposite stable
bases (see Remark 2.3), we get the first equation. The other equation follows immediately
from the theorem and the localization formula.

9.4. Weyl group action and intertwiners

In this section, we compare, under Theorem 9.4, the Weyl group action on the equi-
variant K-theory side, and the intertwiner action I �x on the p-adic side. Recall for any
G_ � C�-variety Y , we have a Weyl group action on KA_�C�.Y / defined as follows. For
any w 2 W , pick a representative Pw 2 NG_.A_/, the normalizers of A_ in G_. Then left
multiplication by Pw�1 defines a morphism from Y to itself, which is notA_�C�-equivariant.
For any F 2 KA_�C�.Y /, the pullback sheaf . Pw�1/� F has a natural A � C�-equivariant
coherent sheaf structure. Hence . Pw�1/� F 2 KA_�C�.Y /, and this construction does not
depend on the choice of the representative. So we get a Weyl group action on KA_�C�.Y /.
Note that W acts on the base ring KA_˝C�.pt/ by w.e�/ D ew� for any e� 2 KA_˝C�.pt/.
The action on KA_�C�.Y / makes it a W -equivariant KA_˝C�.pt/-module.

More explicitly, for Y D T �.G_=B_/, the action can be written under localization as
follows. For any F 2 KA_�C�.T

�.G_=B_//, we have

w.F /jy
D w.F jw�1y/:

In particular, we have

w.�y�1/ D �wy�1:

Let us use ‰� to denote the isomorphism ‰ in Theorem 9.4. Then we have the following
compatibility result, which is also studied by Braverman-Kazhdan from a different point of
view [9, Corollary 5.7].

C 9.7. – For any w 2 W , the following diagram is commutative

K�
‰� //

w˝1

��

I.�/I

I�
w�1

��

Kw�
‰w� // I.w�/I :
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Note that the map w ˝ 1 is well-defined. For any F 2 KA_�C�.T
�.G_=B_//,

e� 2 KA_�C�.pt/ and z 2 C� , e� F ˝ z D F ˝ ze�.�/. And .w ˝ 1/.e� F ˝ z/ D

w.e� F /˝ z D ew�w.F /˝ z D w.F /˝ zew�.�/ D .w ˝ 1/.F ˝ ze�.�//.

Proof. – By the properties of the intertwiners I �w (41), we only need to prove the corollary
in the case when w is a simple reflection s˛. Using the notations in Theorem 9.4, we check
the commutativity using the basis gw .

First of all, we have the following easy identitiesY
ˇ>0;s˛wˇ>0

.1 � e�s˛wˇ .s˛�//
Y

ˇ>0;s˛wˇ<0

.q � e�s˛wˇ .s˛�//

D

Y
ˇ>0;s˛wˇ>0

.1 � e�wˇ .�//
Y

ˇ>0;s˛wˇ<0

.q � e�wˇ .�//

D

(
qc�˛

Q
ˇ>0;wˇ>0.1 � e

�wˇ .�//
Q
ˇ>0;wˇ<0.q � e

�wˇ .�//; if w�1˛ > 0I
1
qc˛

Q
ˇ>0;wˇ>0.1 � e

�wˇ .�//
Q
ˇ>0;wˇ<0.q � e

�wˇ .�//; if w�1˛ < 0;

where c˛ is defined in (40). For example, if w�1˛ > 0, thenY
ˇ>0;s˛wˇ>0

.1 � e�wˇ / D
Y

ˇ2RCnfw�1˛g;s˛wˇ>0

.1 � e�wˇ /

D

Y
ˇ2RCnfw�1˛g;wˇ>0

.1 � e�wˇ / D
1

1 � e�˛

Y
ˇ>0;wˇ>0

.1 � e�wˇ /:

Notice that w�1˛ > 0 iff s˛w > w, and w�1˛ < 0 iff s˛w < w.

Using these, we have

.s˛ ˝ 1/.gw/ D .s˛ ˝ 1/

 
q`.w/�w�1˝

e�w�.�/Q
ˇ>0;wˇ>0.1 � e

�wˇ .�//
Q
ˇ>0;wˇ<0.q � e

�wˇ .�//

!
D q`.w/�s˛w�1˝

e�s˛w�.s˛�/Q
ˇ>0;wˇ>0.1 � e

�wˇ .�//
Q
ˇ>0;wˇ<0.q � e

�wˇ .�//

D

(
gs˛w ˝ c�˛; if w�1˛ > 0I

gs˛w ˝
1
c˛
; if w�1˛ < 0:

2 Ks˛� :

Comparing with (46), we get

‰s˛� .s˛ ˝ 1/.gw/ D I
�
s˛
.‰� .gw// ;

which finishes the proof.

R 9.8. – As an application of this corollary, we reprove the Gindikin-Karpelevich
Formula (49). According to Remark 9.5, the two sides of the Gindikin-Karpelevich formula
become w. Q�� / and Q�w� , where Q�� is the K-theoretic spherical vector defined in (61). The
equality between these two K-theory classes follows directly from the definition of w ˝ 1.
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9.5. Macdonald’s formula in equivariant K-theory

In this section, we give a K-theory interpretation of the Macdonald’s formula from
Theorem 9.1.

We define theK-theory analogue of the pairing h�;�i W I.�/˝I.��1/! C [20, § 1.9] to be
the following. Let � W A_ ! A_ be the endomorphism of abelian groups sending an element
to its inverse. It induced a map � W KA_.Y / ! KA_.Y / for any A_-variety Y . Explicitly,
onKA_�C�.T �.G_=B_//, using localization we have �.F /jw

.�/ D F jw.�
�1/, for any point

� 2 A_. We consider the pairing

h�;�i� W K� �K��1 ! C

defined as
.F ; G / 7! .p��.Hom .F ; G /// .�/;

with p W T �.G_=B_/ ! g_ being the Springer map. Here .�/.�/ means evaluating the
K-theory classes using the map KA_�C�.pt/ ! C� induced by the character � and the
C�-equivariant parameter q is evaluated to be the cardinality of the residue field of OF . It
is easy to see this pairing is well defined. Using localization, the above pairing can be written
as

(65) .F ; G / 7!
X
w2W

F jw.�/ G jw.�
�1/V�

Tw.T �.G_=B_//.��1/
:

We will show in Remark 9.10 that under the isomorphism in Theorem 9.4, this pairing differs
from h�;�i W I.�/˝ I.��1/! C [20, § 1.9] by a scalar.

For any � in the dominant coweights X�.A/C of G, we have the element

eI$�I D ıB.$
�/

1
2 �� 2 H:

We define the K-theoretic analogue of the spherical function (52) as follows

Q�� W X�.A/C ! C; �! h�.eI$�I / Q�
� ; Q��

�1

i� ;

where recall that �.eI$�I / is the action of ‚ on the equivariant K-theory.

Then our K-theoretic interpretation of Macdonald’s formula is the following

T 9.9. – For any dominant coweight � of G, we have

Q�� .�/ D q
dimG=BQ � �� .$

�/;

where Q is defined as the volume of Bw0B.

R 9.10. – By the linear independence of the coweights �, it follows from the
theorem that if we normalize the pairing in (65) by multiplying by qdimG=BQ, then the
isomorphism ‰� in Theorem 9.4 respects this pairing and the pairing between the contra-
gredient modules I.�/ and I.��1/.

Proof. – We use localization formula. First of all, we have

(66) �.eI$�I / Q�
�
D ıB.$

�/
1
2

X
w

ew��w�.�/
.�w�1/�� ˝ 1Q
ˇ>0.1 � e

�wˇ .�//
:
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Then

Q�� .�/ D h�.eI$�I / Q�
� ; Q��

�1

i�

D ıB.$
�/

1
2

X
w

ew�.�/

V�
Tw.T

�.G_=B_//.�/Q
ˇ>0.1 � e

�wˇ .�//.1 � ewˇ .�//

D ıB.$
�/

1
2

X
w

ew�.�/
Y
ˇ>0

1 � qewˇ .�/

1 � ewˇ .�/

D qdimG=BıB.$
�/

1
2

X
w

ew�.�/
Y
ˇ>0

1 � q�1e�wˇ .�/

1 � e�wˇ .�/

D qdimG=BQ � �� .$
�/:

9.6. Casselman-Shalika formula in equivariant K-theory

In this section, we investigate the K-theoretic meaning of the Casselman-Shalika formula,
see Theorem 9.2.

First of all, we define the K-theoretic analogue of the Whittaker functional. On the
space K� , we have the equivariant Euler characteristic map

p� W K� ! C

induced by p W T �.G_=B_/! g_. Via localization, for any F 2 K� , we have

p�.F / WD
X
i

.�1/iH i .T �.G_=B_/; F /.�/ D
X
w2W

F jw.�/V�
.Tw.T �G=B//.�/

2 C:

In particular, p�.�w�1/ D 1 for any w 2 W .

The K-theoretic analogue of the Whittaker functional is defined to be a modification of
the above

QL� .�/ WD
Y
ˇ>0

.1 � q�1eˇ .�// � p�.�˝ O.�// W K� ! C:

For any F 2 K� and any dominant coweight � of G, we consider

QW� .F /.$�/ WD QL� .�.eI$�I /F / ;

where eI$�I is defined in (51). Here recall that eI$�I D ıB.$�/
1
2 �� 2 H, and �.eI$�I / is

the action of ‚ on the equivariant K-theory. The K-theory analogue of the Whittaker
function is defined to be

QW� W X�.A/C ! C; QW� .�/ WD QL�
�
�.eI$�I / Q�

�
�
;

where Q�� is our K-theoretic spherical class defined in (61).

Under the isomorphism in Theorem 9.4, properties of the Whittaker functions in (53) and
(54) correspond to the following lemma, according to Corollary 9.7.

L 9.11. – For any w 2 W , we have
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1. The following diagram is commutative

K�
QL� //

w�1˝1

��

CQ
ˇ>0;w�1ˇ<0

1�q�1e�ˇ.�/

1�q�1eˇ.�/
��

Kw�1�

QL
w�1� // C:

2. For the gw defined in Theorem 9.4, we have

QW� .gw/.$
�/ D W� .f

�
w /.$

�/:

Proof. – 1. Since any F 2 K� can be written as C-linear combination of the fixed
point basis �y�1 ˝ 1 2 K� , we only need to check for these basis elements. Then it
follows from the following easy identityY

ˇ>0

.1 � q�1eˇ /
Y

ˇ>0;w�1ˇ<0

1 � q�1e�ˇ

1 � q�1eˇ
D

Y
ˇ>0

.1 � q�1ewˇ /:

2. The second one is verified immediately once we know �.eI$�I /.gw/ D ı
1
2

B .$
�/ew�gw .

Then the following is the K-theoretic interpretation of the Casselman-Shalika formula.

T 9.12. – For any dominant coweight � of G, we have

QW� .�/ D W� .$
�/:

Proof. – From (66) and the fact p�.�w�1/ D 1, we get

QW� .�/ D QL�
�
�.eI$�I / Q�

�
�

D ı
1
2

B .$
�/
Y
ˇ>0

.1 � q�1eˇ .�//
X
w2W

ew�.�/
1Q

ˇ>0.1 � e
�wˇ .�//

D W� .$
�/:
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