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CHAO LI

Abstract. The study of comparison theorems in geometry has a rich
history. In this paper, we establish a comparison theorem for polyhe-
dra in 3-manifolds with nonnegative scalar curvature, answering affirma-
tively a dihedral rigidity conjecture by Gromov. For a large collections of
polyhedra with interior non-negative scalar curvature and mean convex
faces, we prove the dihedral angles along its edges cannot be everywhere
less or equal than those of the corresponding Euclidean model, unless it
is a isometric to a flat polyhedron.

1. Introduction

A fundamental question in differential geometry is to understand met-
ric/measure properties of Riemannian manifolds under global curvature con-
ditions, and study notions of curvature lower bounds in spaces with low
regularity. Such goals are usually achieved via geometric comparison the-
orems. The quest started with Alexandrov [Ale51], who introduced the
notion of sectional curvature lower bounds for metric spaces via geomet-
ric comparison theorems for geodesic triangles. Similar questions for Ricci
curvature have also attracted a wide wealth of research recently (Cheeger-
Colding-Naber theory; see, e.g., [CC97, CC00a, CC00b, CN12, CN13]; for
an optimal transport approach, see, e.g., [LV09] [Stu06a, Stu06b, Stu06c]).

The case of scalar curvature lower bounds, however, is not as well estab-
lished, possibly due to a lack of satisfactory geometric comparison theory.
The first progress in this direction was made by Shi-Tam [ST02], who proved
a total boundary mean curvature comparison theorem for regions in mani-
folds with nonnegative scalar curvature. However, it requires a presumption
of the existence of boundary isometric embedding into Euclidean spaces,
which is not satisfied for general domains.

As triangles play an essential role in the comparison theorems for sectional
curvature, Gromov [Gro14] suggested that Riemannian polyhedra should
be of particular importance for the study of scalar curvature. In this paper,
we place our focus specifically in three dimensions, and make the following

Definition 1.1. Let P be a flat polyhedron in R3. A closed Riemannian
manifold M3 with non-empty boundary is called a P -type polyhedron, if it
admits a Lipschitz diffeomorphism φ : M → P , such that φ−1 is smooth
when restricted to the interior, the faces and the edges of P . We thus define
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the faces, edges and vertices of M as the image of φ−1 when restricted to
the corresponding objects of P .

The first case that Gromov investigated was cube-type polyhedra in three-
manifolds with nonnegative scalar curvature (P = [0, 1]3 ⊂ R3). Let (Mn, g)
be a cube-type polyhedron with faces Fj . Let ]ij(M, g) denote the (possibly
nonconstant) dihedral angle between two adjacent faces Fi and Fj . Then
Gromov proposed that (M, g) cannot simultaneously satisfy:

(1) the scalar curvature R(g) ≥ 0;
(2) each Fi is mean convex;
(3) for all pairs (i, j), ]ij(M, g) < π

2 .

Notice that conditions (2) and (3) above may be interpreted as C0 prop-
erties of g. In fact, a face F is strictly mean convex if and only if it is locally
one-sided area minimizing: for any outward compactly support small per-
turbation F ′ of F , we have |F | < |F |′; the dihedral angle can be measured
with the metric g.

The crucial and elegant observation from Gromov is that, if such a cube
exists, then by “doubling” M three times across the front, the right and the
bottom faces, the new cube M̃ has isometric opposite faces. Then we identify
the opposite faces of M̃ and obtain a torus T 3 with a singular metric g̃. Due
to the geometric assumptions, the metric g̃ has positive scalar curvature
away from a stratified singular set S = F 2 ∪ L1 ∪ V 0, where:

(1) g̃ is smooth on both sides from F 2. The mean curvatures of F 2 from
two sides satisfy a positive jump;

(2) g̃ is an edge metric along L with angle less than 2π;
(3) g̃ is bounded measurable across isolated vertices V 0.

It is known that condition (1) above implies that g̃ has positive scalar
curvature on F 2 in a weak sense: a Yamabe nonpositive manifold cannot
support any metric which is singular along a hypersurface satisfying the
“positive jump of mean curvature” assumption, and has positive scalar cur-
vature on its regular part [Mia02][ST16]. The affect of condition (2) and (3)
above on the Yamabe type of a manifold was investigated by C. Mantoulidis
and the author in a recent paper [LM17]. We proved that in dimension 3,
skeleton singularities with cone angle less than 2π do not effect the Yamabe
type. We refer the readers to these papers and the references therein for
more details.

This idea of Gromov relies on the fact that cubes are the fundamental do-
mains of the Z3 actions on R3, hence is not applicable to general polyhedra.
An interesting question is then: which types of polyhedra share properties
like those observed by Gromov for cube-type polyhedra in manifolds with
nonnegative scalar curvature?

Another related question concerns the rigidity: what types of polyhedra
are “mean convexly extremetal”? Surprisingly, this question is unsettled
even in the Euclidean spaces:
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Conjecture 1.2 (Dihedral rigidity conjecture, section 2.2 of [Gro14]). Let
P ∈ Rn be a convex polyhedron with faces Fi. Let P ′ ⊂ Rn be a P -type
polyhedron with faces F ′i . If

(1) each F ′i is mean convex, and
(2) the dihedral angles satisfy ]′ij(P

′) ≤ ]ij(P ),

then P ′ is flat.

The primary scope of this paper is to answer affirmatively this conjecture
for a large collection of polyhedral types in three-manifolds with nonnegative
scalar curvature. We also obtain a comparison theorem for Riemannian
polyhedra.

Let us define two general polyhedron types.

Definition 1.3. (1) Let k ≥ 3 be an integer. In R3, let B ⊂ {x3 = 0}
be a convex k-polygon, and p ∈ {x3 = 1} be a point. Call the set

{tp+ (1− t)x : t ∈ [0, 1], x ∈ B}
a (B, p)-cone. Call B the base face and all the other faces side faces.

(2) Let k ≥ 3 be an integer. In R3, let B1 ⊂ {x3 = 0}, B2 ⊂ {x3 = 1} be
two similar convex k-polygons whose corresponding edges are parallel
(i.e. the polygons are congruent up to scaling but not rotation). Call
the set

{tp+ (1− t)q : t ∈ [0, 1], p ∈ B1, q ∈ B2}
a (B1, B2)-prism. Call B1, B2 the base faces and all the other faces
side faces.

If (M, g) is a Riemannian polyhedron of P -type, where P is a (B, p)-cone
(or a (B1, B2)-prism), we call (M, g) is of cone type (prism type, respec-
tively).

B

p

B1

B2

Figure 1. A (B, p)-cone and a (B1, B2)-prism.

The major objects we consider are Riemannian polyhedra (M3, g) of cone
type or prism type, as in Definition 1.3. Let us fix some notations that will
be used throughout the paper. We use F1, · · · , Fk to denote the side faces
of M ; if M is of cone type, we use p to denote the cone vertex, and B
to denote its base face; if M is of prism type, we use B1, B2 to denote its
two bases. Let F = ∪kj=1Fj be the union of all side faces. Our first theorem
makes a comparison between Riemannian polyhedra with nonnegative scalar
curvature and their Euclidean models:
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Theorem 1.4. Let (M3, g) be a Riemannian polyhedron of P -type with
side faces F1, · · · , Fk, where P ⊂ R3 is a cone or prism with side faces
F ′1, · · · , F ′k. Denote γj the angle between F ′j and the base face of P (if P is

a prism, fix one base face). Assume that everywhere along Fj ∩ Fj+1,

|π − (γj + γj+1)| < ](Fj , Fj+1). (1.1)

Then the strict comparison statement holds for (M, g). Namely, if R(g) ≥
0, and each Fj is mean convex, then the dihedral angles of M cannot be
everywhere less than those of P .

Our theorem should be contextualized in the rich history of the study of
comparison theorems in differential geometry. In fact, it is not hard to argue
as in [Gro14] that the converse is also true: on a three-manifold with negative
scalar curvature, one may construct a polyhedron which entirely invalidates
the conclusions of Theorem 1.4. Thus the metric properties introduced by
Theorem 1.4 characterize R(g) ≥ 0 faithfully, and may very well serve as a
definition of R(g) ≥ 0 for a metric g that is only continuous.

A more refined analysis enables us to characterize the rigidity behavior
for Theorem 1.4, thus answering Conjecture 1.2 for cone type and prism
type polyhedra, with the very mild a priori angle assumptions (1.1). In fact,
we obtain:

Theorem 1.5. Under the same assumptions of Theorem 1.4 and the extra
assumption that

γj ≤ π/2, j = 1, 2, · · · , k, or γj ≥ π/2, j = 1, 2, · · · , k, (1.2)

we have the rigidity statement. Namely, if R(g) ≥ 0, each Fj is mean
convex, and ]ij(M, g) ≤ ]ij(P, gEuclid), then (M, g) is isometric to a flat
polyhedron in R3.

The angle assumption (1.1) may be regarded as a mild regularity assump-
tion on (M, g). It is satisfied, for instance, by any small C0 perturbation of
the Euclidean polyhedron P . Moreover, assumption (1.1) is vacuous, if all
the angles γj are π/2. In this case, the Euclidean model is a prism with or-
thogonal base and side faces, and we are able to obtain the prism inequality
in section 5.4, [Gro14] as a special case.

Motivated by the Schoen-Yau dimension reduction argument [SY79], we
have also been able to generalize Theorem 1.4 and Theorem 1.5 in higher
dimensions. They will appear in a forthcoming paper.

Now we indicate the strategy of the proof for Theorem 1.4 and Theo-
rem 1.5 and the organization of the paper. Consider the following energy
functional:

F(E) = H2(∂E ∩ M̊)−
k∑
j=1

(cos γj)H2(∂E ∩ Fj), (1.3)

and the variational problem

I = inf{F(E) : E ∈ E }, (1.4)
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here E is the collection of contractible open subset E′ such that: if M is of
cone type, then p ∈ E′ and E′ ∩B = ∅; if M is of prism type, then B2 ⊂ E′
and E′∩B1 = ∅. If the solution to (1.4) is regular, its boundary Σ2 = ∂E∩M̊
is called a capillary minimal surface. That is, Σ is a minimal surface that
contacts each side face Fj at constant angle γj . The existence, regularity
and geometric properties of capillary surfaces have attracted a wealth of
research throughout the rich history of geometric variational problems. We
refer the readers to the book of Finn [Fin86] for a beautiful and thorough
introduction.

Our first observation is that I is always finite: since M is compact, we
deduce that

I ≥ −
k∑
j=1

(cos γj)H2(Fj) > −∞.

Thus a minimizing sequence exists. The existence and boundary regularity
of the solution to (1.4) was treated by Taylor [Tay77] (see page 328-(6); see
also the discussion for more general anisotropic capillary problems by De
Philippis-Maggi [DPM15]). Using the language of integral currents, Taylor
proved the existence of the minimizer Σ, and that Σ is C∞ regular up to its
boundary, where ∂M is smooth. However, the variational problem (1.4) has
obstacles: the base face(s) of M . To overcome this difficulty, we apply the
interior varifold maximum principle [SW89] and a new boundary maximum
principle, and reduce (1.4) to a variational problem without obstacles. We
then adapt ideas from Simon [Sim80] and Lieberman [Lie88], and obtain
a C1,α regularity property of Σ at its corners. This is the only place we
need to use the angle assumption (1.1). The existence and regularity of Σ
is established in section 2. In section 3, we unveil the connection between
interior scalar curvature, the boundary mean curvature and the dihedral an-
gle captured by the variational problem (1.4), and derive various geometric
consequences with Σ. We prove Theorem 1.4 with the second variational
inequality and the Gauss-Bonnet formula. We then proceed to section 4 for
the proof of Theorem 1.5, where an analysis for the “infinitesimally rigid”
minimal capillary surface Σ is carried out, with the idea pioneered by Bray-
Brendle-Neves [BBN10]. The new challenge here is to deal with the case
when I = 0. We develop a new general existence result of constant mean
curvature capillary foliations near the vertex p, and establish the dynamical
behavior of such foliations in nonnegative scalar curvature.
Acknowledgement: The author wishes to thank Rick Schoen, Brian White,
Leon Simon, Rafe Mazzeo, Or Hershkovits and Christos Mantoulidis for
stimulating conversations. He also wishes to thanks the referee for greatly
improving the exposition. Part of this work was carried out when the au-
thor was visiting the University of California, Irvine. He wants to thank
Department of Mathematics, UCI, for their hospitality.
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2. Existence and regularity

We discuss the existence and regularity of the minimizer for the variational
problem (1.4). The goal of this section is:

Theorem 2.1. Consider the variational problem (1.4) in a Riemannian
polyhedron (M3, g) of cone or prism type. Assume I < 0 if M is of cone

type. Then I is achieved by an open subset E. Moreover, Σ = E ∩ M̊ is an
area minimizing surface, C1,α to its corners for some α > 0, and meets Fj
at constant angle γj.

We first introduce some notations and basic geometric facts on capillary
surfaces. Then we reduce the obstacle problem (1.4) equivalently to a vari-
ational problem without any obstacle. This is done via a varifold maximum
principle. Hence the regularity theory developed in [Tay77] is applicable,

and we get regularity in Σ̊, and in ∂Σ in F̊j . The regularity at the corners
of Σ is then studied with an idea of Simon [Sim80]. At the corner, we prove
that the surface is graphical over its planar tangent cone. Then we invoke
the result of Lieberman [Lie88], which showed that the unit normal vector
field is Hölder continuous up to the corners.

2.1. Preliminaries. We start by discussing some geometric properties of
capillary surfaces. In particular, we deduce the first and second variation
formulas for the energy functional (1.3). Let us fix some notation.

Let P be an orientable Riemannian manifold of dimension p and M a
closed compact polyhedron of cone or prism types in N . Let Σn−1 be an
orientable n−1 dimensional compact manifold with non-empty boundary ∂Σ
and ∂Σ ⊂ ∂M . We denote the topological interior of a set U by Ů . Assume
Σ separates M̊ into two connected components. Fix one component and call
it E. Denote X the outward pointing unit normal vector field of ∂M in M ,
N the unit normal vector field of Σ in E pointing into E, ν the outward
pointing unit normal vector field of ∂Σ in Σ, ν the unit normal vector field
of ∂Σ in ∂M pointing outward E. Let A denote the second fundamental
form of Σ ⊂ E, II denote the second fundamental form of ∂M ⊂ M . We
take the convention that A(X1, X2) = 〈∇X1X2, N〉. Denote H,H the mean
curvature of Σ ⊂ E, ∂M ⊂ M , respectively. Note that in our convention,
the unit sphere in R3 has mean curvature 2.

E
N

X

ν

ν

Σ
γ

Figure 2. Capillary surfaces
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By an admissible deformation we mean a diffeomorphism Ψ : (−ε, ε) ×
Σ→ M such that Ψt : Σ→ M , t ∈ (−ε, ε), defined by Ψt(q) = Ψ(t, q), q ∈
Σ, is an embedding satisfying Ψt(Σ) ⊂ M̊ and Ψt(∂Σ) ⊂ ∂M , and Ψ0(x) = x
for all x ∈ Σ. Denote Σt = Ψt(Σ). Let Et be the corresponding component

separated by Σt. Denote Y = ∂Ψ(t,·)
∂t |t=0 the vector field generating Ψ. Then

Y is tangential to ∂M along ∂Σ. Fix the angles γ1, · · · , γk ∈ (0, π) on the
faces F1, · · · , Fk of M . Consider the energy functional

F (t) = Hn−1(Σt)−
k∑
j=1

(cos γj)Hn−1(∂Et ∩ Fj).

We now deduce the first variation formula of F (t). Let f = 〈Y,N〉 be the
normal component of the vector field Y . By the usual first variation formula
on volume function and integration by parts,

d

dt

∣∣∣∣
t=0

Hn−1(Σt) =

∫
Σ

divΣ Y dHn−1 = −
∫

Σ
HfdHn−1 +

∫
∂Σ
〈Y, ν〉 dHn−2.

On the other hand, for each j, 1 ≤ j ≤ k,

d

dt

∣∣∣∣
t=0

− (cos γj)Hn−1(∂Et ∩ Fj) = − cos γj

∫
∂Σ∩Fj

〈Y, ν〉 dHn−2.

Adding the above two equations, the first variation of F (t) is given by

d

dt

∣∣∣∣
t=0

F (t) = −
∫

Σ
HfdHn−1 +

k∑
j=1

∫
∂Σ∩Fj

〈Y, ν − (cos γj)ν〉 dHn−2, (2.1)

We note that (2.1) holds more generally in the context of varifolds, see (2.21).
Also, in the first variation (2.1), there is no contribution from the corners
of Σ. The surface Σ is said to be minimal capillary if F ′(t) = 0 for any
admissible deformations. If follows from (2.1) that Σ is minimal capillary if
and only if H ≡ 0 and ν − (cos γj)ν is normal to Fj ; that is, along Fj the
angle between the normal vectors N and X, or equivalently, between ν and
ν, is everywhere equal to γj .

Assume Σ is minimal capillary. We then have the second variational
formula:

d2

dt2

∣∣∣∣
t=0

F (0) = −
∫

Σ
(f∆f + (|A|2 + Ric(N,N))f2)dHn−1

+
k∑
j=1

∫
∂Σ∩Fj

f

(
∂f

∂ν
−Qf

)
dHn−2, (2.2)

where on ∂Σ ∩ Fj ,

Q =
1

sin γj
II(ν, ν) + cot γjA(ν, ν).
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Here ∆ is the Laplace operator of the induced metric on Σ, and Ric is the
Ricci curvature of M . For a proof of the second variation formula, we refer
the readers to the appendix of [RS97].

2.2. Maximum principles. We first observe that (1.4) is a variational
problem with obstacles: E ∩ B1 = ∅ if M is of cone type, and B2 ⊂ E,
E ∩B1 = ∅ if M is of prism type. To apply the existence and the regularity
theories of Taylor [Tay77], we first prove that it suffices to consider a vari-
ational problem without any obstacles. Such reduction is usually achieved
via varifold maximum principles, see e.g. [SW89, Whi10][LZ17]. In our
case, the maximum principles hinge upon the special structure of the obsta-
cle: that B (or B1, B2) is mean convex, and that the dihedral angles along

∂Fj ∩B are nowhere larger than γj . In fact, if Σ = ∂E ∩ M̊ is a C1 surface
with piecewise smooth boundary, then it is not hard to see from the first
variational formula (2.1) that

• Σ and B do not touch in the interior.
• ∂Σ does not contain any point on Fj ∩ B where the dihedral angle

is strictly less than γj .

Thus Σ is a minimal surface that meets each Fj at constant angle γj .
The interior maximum principle has been investigated in different sce-

narios [Sim87][SW89][Whi10][Wic14]. Notice that the energy minimizer of
(1.4) is necessarily area minimizing in the interior. We apply the strong
maximum principle by Solomon-White [SW89] and conclude that the sur-

face Σ = ∂E ∩ M̊ cannot touch the base face B, unless lies entirely in B.
Here we develop a new boundary maximum principle. For the purpose of

this paper, we only consider energy minimizing currents of codimension 1
associated to (1.4). However, we conjecture that a similar statement should
hold for varifolds with boundary in general codimension. (See, for instance,
the boundary maximum principle of Li-Zhou [LZ17].)

Proposition 2.2. Let M be a polyhedron of cone type. Let T ∈ D2(M), E ∈
D3(U) be rectifiable currents with T = ∂E ∩ M̊ and spt(∂T ) ⊂ F . Assume
E is an energy minimizer of (1.4). Then spt(T ) does not contain any point
on the edge Fj ∩B where the dihedral angle is less than γj.

By a similar argument, in the case that M is of prism type, spt(T ) does
not contain any point on Fj∩B1 where the dihedral angle is less than π−γj ,
or any point on Fj ∩ B2 where the dihedral angle is less than γj . Combine
this with the interior maximum principle, we conclude that the minimizer
to (1.4) lies in the interior of M , and hence an energy-minimizer for the F
without any barriers. Thus the existence and regularity theory developed in
[Tay77][DPM15] concludes that the minimizer T = ∂E ∩ M̊ exists, and is
regular away from the corners.

Proof. Assume, for the sake of contradiction, that a point q ∈ Fj ∩B is also
in sptT , and that the dihedral angle between Fj and B at q is less than
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γj . In the rest of proof we use ‖T‖ to denote the associated varifold. Fix
a vector field Y tangential to ∂M , such that Y is transversal along B and
points into M at B. Since T = ∂E ∩ M̊ , it is a rectifiable current with
multiplicity one, the first variational formula for the energy functional F
applies:

d

dt

∣∣∣∣
t=0

F(Ψt(E)) = −
∫
Hfd‖T‖+

∑
j

∫
〈Y, ν − (cos γj)ν〉 d‖∂T‖, (2.3)

where f, ν are the geometric quantities defined as before, H is the generalized
mean curvature of T , and ν is the generalized outward unit normal of ‖∂T‖.
Since the dihedral angle between Fj and B at q is strictly less than γj , we
have 〈

Y, ν ′ − cos γjν
〉
> 0, (2.4)

for any ν ′ at q which is the outward unit normal vector of some two-plane
in TqM . By the interior maximum principle, H ≡ 0.1 Hence

‖∂T‖(spt(T ) ∩ B) = 0, (2.5)

where

B =
⋃
j

{q ∈ Fj ∩B : the dihedral angle at q is less than γj .}

The boundary regularity theorem of Taylor [Tay77] implies that for any
point q′ ∈ ∂T \B, the current T is smooth up to q′. In particular, the density
of T at q′ is given by Θ2(‖T‖, q′) = 1

2 . Denote W the two dimensional
varifold v(∂E ∩ Fj) associated with E ∩ Fj , Z = ‖T‖ − cos γjW . Since the
faces Fj and B intersects smoothly at q, we have the following monotonicity
formula (we delay the derivation of a more general monotonicity formula in
the next section, see (2.22)):

exp(crα)
‖Z‖(Br(q))

r2
is increasing in r, (2.6)

for r sufficiently small, where c and α > 0 depends only on the geometry of
Fj and B. It is then straightforward to check as in Theorem 3.5-(1) in [All75]
that the θ2(‖T‖, ·) is an uppersemicontinuous function on spt(T ) ∩ ∂T . By
(2.5) we then conclude

Θ2(‖T‖, ·) ≥ 1

2
> 0 (2.7)

everywhere on spt(T ) ∩ ∂T .
Consider a tangent cone T∞ of T at q. Let E∞ be the associated three

dimensional current with T∞ = ∂E∞. By the monotonicity (2.6) and the
lower density bound (2.7), T∞ is a nonempty cone in C through q∞, where
C is the region in R3 enclosed by the two planes Fj,∞ and B∞ intersecting

1The same argument here applies to the general case where the barrier B has bounded
mean curvature, see Remark 2.3.
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at an angle γ′ < γj , and where q∞ ∈ F∞ ∩B∞. By scaling, for any open set
U ⊂⊂ R3, E∞ minimizes the energy functional

F∞(E′) = H2(∂E′ ∩ C̊ ∩ U)− (cos γj)H2(∂E′ ∩ F∞ ∩ U) (2.8)

among open sets E′ with ∂E′ ⊂ F∞. Since two-planes are the only minimal
cones in R3, T∞ is a two-plane through q∞. However, since ](F∞, B̊∞) < γj ,
no two-plane through q∞ can be the minimizer of (2.8). Contradiction.

�

Remark 2.3. The above proof only uses the fact that T is minimal in a very
weak manner. In fact, the same argument holds under the assumption that
the generalized mean curvature H is bounded measurable. This is implied,
for instance, by that the barrier B has bounded mean curvature (instead of
being mean convex).

Remark 2.4. The fact that T is energy minimizing is only used to guarantee
the existence of an area minimizing tangent cone. Motivated by [SW89], we
speculate that a similar statement should hold for varifolds with boundary
that are stationary for the energy functional (1.4).

2.3. Regularity at the corners. We proceed to study the regularity of
the minimizer T = ∂E ∩ M̊ at the corners. Since T is regular away from
the corners, our idea is to adapt the argument of Simon [Sim80], and prove
spt(T ) is graphical near a corner. We refer the readers to [Sim80] for full
details. Then we apply the theorem of Lieberman [Lie88] to conclude that
spt(T ) has a Hölder continuous unit normal vector field to its corners.

Consider any two adjacent side faces Fj , Fj+1 and let L = Fj ∩ Fj+1.
Without loss of generality let j = 1. Fix a point q ∈ spt(T ) ∩ L. Let θ be
the angle between F1 and F2 at q. Recall that we assume

|π − (γ1 + γ2)| < θ ≤ θ′,
where θ′ is the (constant) dihedral angle between corresponding faces in
the Euclidean model. To start the regularity discussion, we first make the
following simple calculation in Euclidean space.

Lemma 2.5. Let Γ1,Γ2 be two half-planes in R3, enclosing a wedge region
W with opening angle θ′ ∈ (0, π). Suppose Γ is a plane in R3, such that the
dihedral angle between Γ and Γi, i = 1, 2, is γi ∈ (0, π). Then we have

|π − (γ1 + γ2)| < θ′ < π − |γ1 − γ2|.
Proof. Let νi be the unit normal vector of Γi pointing out of W , ν is the
unit normal vector of Γ. Then by assumption, we have that

ν1 · ν2 = − cos θ′, νi · ν = cos γi, i = 1, 2.

We calculate

(ν1 × ν) · (ν2 × ν) = ν1 · ν2 − (ν1 · ν)(ν2 · ν) = − cos θ′ − cos γ1 cos γ2.
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On the other hand, we have that |ν1× ν| = sin γi, i = 1, 2. Hence |(ν1× ν) ·
(ν2 × ν)| ≤ sin γ1 sin γ2. Since Γ intersects Γ1,Γ2 transversely, we actually
have |(ν1× ν) · (ν2× ν)| < sin γ1 sin γ2. By a simple calculation, this implies
that

cos(γ1 + γ2) < cos(π − θ′) < cos(γ1 − γ2).

Thus |π − (γ1 + γ2)| < θ′ < π − |γ1 − γ2|, as desired. �

We therefore may assume that

|π − (γ1 + γ2)| < θ < π − |γ1 − γ2|. (2.9)

As an immediate observation following Lemma 2.5, (2.9) is a necessary con-
dition for the regularity statement in Theorem 2.12. Precisely, if the capillary
surface Σ is C1,α regular up to the corners, its tangent plane at the corner
satisfies the assumption of Lemma 2.5, imposing the range for θ as in (2.9).
To prove Theorem 2.1, we verify that condition (2.9) is also sufficient to
guarantee the regularity of Σ.

For ρ > 0, denote Cρ = {x ∈ M : distM (x, L) < ρ}, Bρ = {x ∈ M :
distM (x, q) < ρ}. In this section, and subsequently, let c be a constant
that may change from line to line, but only depend on the geometry of
the polyhedron M . Our argument is parallel to that of [Sim80]: we prove a
uniform lower density bound around q, and consequently analyze the tangent
cone at q.

2.3.1. Lower density bound. Our first task is to establish an upper bound
for the area of T . Precisely, we prove:

Lemma 2.6. For ρ small enough, H2(T ∩ Cρ) ≤ cρ.

Proof. This is straightforward consequence of the fact that T = ∂E ∩ M̊
minimizes the energy F . In fact, for any open subset U ⊂⊂M , E minimizes
the functional

H2(E′ ∩ M̊ ∩ U)−
k∑
j=1

(cos γj)H2(∂E′ ∩ ∂M ∩ U)

among all sets E′ ⊂ M with finite perimeter, p (or B2)⊂ E′, E′ ∩ B = ∅.
In particular, choose E′ to be a small open neighborhood of p when M is a

2When condition (2.9) is not satisfied, we conjecture that there will be a “cusp” singu-
larity forming at the corner. For instance, see (0.4) and (0.5) in [Sim80], and the discussion
therein.
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(B, p)-cone, and a small tubular neighborhood of B2 when M is a (B1, B2)-

prism. Let T ′ = ∂E′ ∩ M̊ . Choose U = Cρ. We conclude that

H2(T ∩ Cρ)−
2∑
j=1

(cos γj)H2(∂E ∩ Cρ ∩ Fj)

≤ H2(T ′ ∩ Cρ)−
2∑
j=1

(cos γj)H2(∂E′ ∩ Cρ ∩ Fj). (2.10)

By the rough estimate that

H2(Cρ ∩ Fj) ≤ cρ and H2(Cρ ∩B) ≤ cρ2,

we conclude the proof. �

Denote Σ = spt(T ) \ L. Since the mean curvature of T is zero in its
interior, from the first variation formula for varifolds, we have that, for any
C1 vector field φ compactly supported in M \ L,∫

Σ
divΣ φdH2 =

∫
∂Σ
φ · νdH1. (2.11)

We first bound the length of ∂Σ. Precisely, let r be the radial distance
function r = dist(·, L), let φ be any vector field, supported in M with

sup r|Dφ| <∞ and C1 in M̊ . (Note that we allow φ to have support on L.)
By a standard approximation argument as in [Sim80], we deduce that

ρ−1

∫
Σ∩Cρ

φ · ∇ΣrdH2 −
∫
∂Σ

min

{
r

ρ
, 1

}
φ · νdH1

= −
∫

Σ
min

{
r

ρ
, 1

}
divΣ φdH2. (2.12)

We are going to use (2.12) in two different ways. By the angle assumption
(2.9), |π − (γ1 + γ2)| < θ. Therefore in the 2-plane (TqL)⊥ ⊂ TqM , there is
a unit vector τ such that

(−X)|Fj · τ > cos γj , j = 1, 2, (2.13)

where (−X)|Fj is the inward pointing unit normal vector of ∂M ⊂ M ,
restricted to the face Fj . Extend τ in a neighborhood of q ∈M as a constant
vector field, and with slight abuse of notation, denote this constant vector
field also by τ . In (2.12), replace φ to be the constant vector τ . (2.13) then
implies that

(−ν) · τ ≥ c > 0, (2.14)

in Σ∩Cρ0 , for sufficiently small ρ0. Taking ρ→ 0 in (2.12) and using Lemma
2.6, we deduce that

H1(∂Σ ∩ Cρ) <∞. (2.15)
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The angle assumption θ < π then guarantees that the vector τ ∈ TqM
defined above also satisfies

τ · ∇Mr ≥ c > 0, (2.16)

where r is the radial distance function. See Figure 3 for an illustration of
the choice of τ .

q

τ−X

> π
2 − γ1 > π

2 − γ2

Figure 3. The choice of the vector τ .

Now we use (2.12) in a second way. We replace φ by ψτ , where τ is the
constant vector field defined in a neighborhood of q ∈M as above. Then by
the same argument as (1.8)-(1.10) in [Sim80],

ρ−1

∫
Σ∩Cρ

ψτ · ∇MrdH2 −
∫
∂Σ
ψτ · νdH1

≤ c
∫

Σ
(ψ + |∇Mψ|)dH2 + o(1). (2.17)

As a consequence of (2.14) and (2.16),

‖δT‖(ψ) ≤ c
∫

(ψ + |∇Mψ|)d‖T‖, (2.18)

where here we view T as the associated varifold. Then we apply the isoperi-
metric inequality (7.1 in [All72]) and the Moser type iteration (7.5(6) in
[All72]) as in [Sim80], and conclude that

H2(T ∩Bρ(q)) ≥ cρ2. (2.19)

Remark 2.7. The argument above does not use the fact that Σ is a two
dimensional surface in an essential way. The same argument should work
for capillary surfaces in general dimensions.

Remark 2.8. Notice that we only require the weaker angle assumption |π−
(γ1 + γ2)| < θ < π for the lower density bound. We are going to see that the
assumption θ < π − |γ1 − γ2| is used to classify the tangent cone.

2.3.2. Monotonicity and tangent plane. We proceed to derive the mono-
tonicity formula and study the tangent cone at a point q ∈ spt(T ) ∩ L. For
j = 1, 2, denote Wj = Ej∩(Fj \L). We also use Wj to denote the associated
two dimensional varifold. The divergence theorem implies that

δWj(ψφ) =

∫
∂Σ
ψφ · ν, (2.20)
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where recall ν is the unit normal vector of ∂Σ which is tangent to ∂M and
points outward E.

Since φ is tangential on Fj \ L, ν − (cos γj)ν is normal to φ. We then
multiply − cos γj to (2.20) and add the result to (2.11), thus obtainingδ‖T‖ − 2∑

j=1

(cos γj)δWj

 (ψφ) = 0. (2.21)

Denote Z = ‖T‖ −∑2
j=1(cos γj)Wj . Now since F1, F2 are smooth surfaces

intersecting transversely on L, we may choose a vector field φ that is C1,α

close to the radial vector field ∇M dist(·, q). For a complete argument, see
(2.4) of [Sim80]. Then by a minor modification of the argument of 5.1 in
[All72], we conclude that

exp(cρα)
‖Z‖(Bρ(0))

ρ2
is increasing in ρ, for ρ < ρ0. (2.22)

We thus deduce from (2.19) and (2.22) that there is a nontrivial tangent
cone Z∞ of Z at q. Precisely, under the homothetic transformations µr
defined by x 7→ r(x − q) (r > 0), (µrk#T, µrk#W1, µrk#W2, µrk#Z) subse-

quentially converges to Z∞ = ‖T∞‖−
∑2

j=1Wj,∞ in R3. Let Fj,∞, j = 1, 2,

denote the corresponding limit planes in R3 of Fj , L∞ = F1,∞ ∩ F2,∞. De-

note P∞ = L⊥ the two-plane through 0 that is perpendicular to L. Denote
Dr the open disk of radius r centered at 0 on the plane P∞.

Proposition 2.9. The tangent cone T∞ ⊂ R3 is a single-sheeted planar
domain that intersects Fj,∞, j = 1, 2, at angle γj. Moreover, it is unique.
Namely, T∞ does not depend on the choice of subsequence for its construc-
tion.

Proof. We first notice that the tangent cone ‖T∞‖ is nontrivial by virtue of
(2.19). Moreover, since (T,E) solves the variational problem (1.4), (T∞, E∞)
minimizes the corresponding energy in R3. Precisely, let C be the open set
in R3 enclosed by F1,∞ and F2,∞. Then for any open subset U ⊂⊂ R3, E∞
minimizes the energy

F(E′∞) = H2(∂E′∞ ∩ C̊ ∩ U)−
2∑
j=1

(cos γj)H2(∂E′∞ ∩ ∂C ∩ U). (2.23)

It follows immediately that T∞ is minimal in C̊. Therefore each connected
component of T∞ is part of a two-plane. We conclude that

T∞ =

N⋃
j=1

πj ∩ C, (2.24)

where πj are planes through the origin and πi ∩ πj ∩ C = ∅ for i 6= j.
Therefore we conclude either



A POLYHEDRON COMPARISON THEOREM IN POSITIVE SCALAR CURVATURE 15

Case 1 N = 1 and T∞ = π1∩C for some plane π1 such that π1∩L∞ = {0},
or

Case 2 N <∞ and T∞ = ∪Nj=1πj ∩C, where π1, · · · , πN are planes with the
line L∞ in common.

Now we rule out case 2 by constructing proper competitors. Notice that in

case 2, E∞ = E
(1)
∞ ×R for some open E

(1)
∞ ⊂ P∞, here P∞ is a wedge region

in R2 such that C = P∞ ×R, and ∂E
(1)
∞ a finite union of rays emanating

from the origin. Define the functional

F (1)
∞ (E′) = H1(∂E′ ∩ C ∩D1)−

2∑
j=1

(cos γj)H1(∂E′ ∩ Fj,∞ ∩D1). (2.25)

Notice that since E∞ minimizes (2.23),

F (1)
∞ (E(1)

∞ ) ≤ F (1)
∞ (E′),

for any competitor E′.

Observe that P∞ \ E(1)
∞ satisfies a variational principle similar to that

satisfied by E
(1)
∞ but with π − γj in place of γj . In case N > 1, we may

simply “smooth out” the vertex of (π1 ∩ π2)∩D1 to decrease the functional

E
(1)
∞ . Thus N = 1. Without loss of generality assume that γ1 ≤ γ2.
To show that N = 1 in case 2 cannot happen, we first observe that if

β0 is the angle formed by E
(1)
∞ and F1,∞ at 0, then β0 ≥ γ1. Otherwise we

may construct a competitor E′ that has strictly smaller functional (2.25) as

follows. Let q1 ∈ ∂D1/2∩(∂E
(1)
∞ \∂C) and let q2 be the point on ∂E

(1)
∞ ∩F1,∞

at distance ε from 0. Then let E′ = E
(1)
∞ \ H, where H is the closed half

plane with 0 ∈ H \ ∂H and {q1, q2} ∈ ∂H. If β0 < γ1, then it is easily
checked (as illustrated in Figure 4) that

F (1)
∞ (E′) < F (1)

∞ (E(1)
∞ ).

b

b

q1

q2

E′

F2,∞ ∩D1 F1,∞ ∩D1

0

Figure 4. The construction of a competitor when β0 < γ1.
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On the other hand, since P∞ \E(1)
∞ satisfies a similar variational principle

with angle π − γj in place of γj , we deduce that

θ − β0 ≥ π − γ2.

We therefore conclude that θ ≥ π + γ1 − γ2, contradiction. Thus case 2 is
impossible.

In case 1, T∞ contains a single sheet of plane. Namely, there exists some
plane π1 ⊂ R3 such that T∞ = π1 ∩ C.

Notice also that the plane π1 ⊂ R3 should have constant contact angle
along Fj,∞, j = 1, 2:

](π1, F1,∞) = γ1, ](π1, F2,∞) = γ2, (2.26)

since everywhere on ∂Σ ∩ (Fj \ L), Σ and Fj meet at constant contact
angle γj . We point out that the angle assumption (2.9) is also a necessary
and sufficient condition for the existence of π1 ⊂ R3. As a consequence,
T∞ = π1 ∩ C̊ with π1 uniquely determined by (2.26), independent of choice
of the particular sequence of rk chosen to construct T∞. In other words, we
have the strong property that the tangent cone is unique for T at q. �

Remark 2.10. This part of the argument relies heavily on the fact that T
is two dimensional in two ways:

• The planes are the only minimal cones in R3.
• A plane is uniquely determined by its intersection angles with two

fixed planes.

Neither of these two statements is valid in higher dimensions.

Remark 2.11. The proof suggests that without the upper bound θ < π −
|γ1 − γ2|, the tangent cone of T at the corners could be a half plane through
L∞. Moreover, T∞ may depend on the choice of the sequences of rk in its
construction.

2.3.3. Curvature estimates and consequences. We prove a curvature esti-
mate for Σ near the corner q. Combined with the uniqueness of tangent
cone, we deduce that Σ must be graphical over its tangent plane at q. Then
we may apply the PDE theory from [Lie88] to conclude that Σ is a C1,α

surface.
We begin with the following lemma, which is a consequence of the mono-

tonicity formula.

Lemma 2.12. Let C ∈ R3 be an open subset enclosed by two planes F1, F2

with ](F1, F2) = θ. Let Σ be an area minimizing surface in C such that
Σ intersects Fj at constant angles γ1, γ2, and that H2(Σ ∩ B0(R)) < C0R

2

holds for large R and some C0 > 0. Assume also that

|π − (γ1 + γ2)| < θ < π − |γ1 − γ2|.
Then there is a plane π1 ⊂ R3 such that Σ = π1 ∩ C.
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Proof. Without loss of generality assume 0 ∈ Σ. Consider the tangent cone
of Σ at∞ and at 0. Since Σ satisfies the angle assumption (2.9), its tangent
cone at 0, denoted by Σ0, exists and is planar. Now by the monotonic-
ity formula (2.22) and the growth assumption H2(Σ ∩ B0(R)) < C0R

2, its
tangent cone at infinity, denoted by Σ∞, exists and is an area minimizing
cone. Since Σ0 and Σ∞ are both minimal cones in C ⊂ R3, they are parts
of planes. However, the same argument as in the proof of Proposition 2.9
implies that Σ0 = Σ∞ = π ∩C, where π is the unique plane intersecting Fj
at angle γj . Therefore the equality in the monotonicity formula holds, and
Σ = Σ0 = Σ∞ is planar. �

We are ready to prove the curvature estimates:

Proposition 2.13. Let Σ = spt(T ) ∩ M̊ be a minimizer of the variational
problem (1.4). Let L = F1 ∩ F2, q ∈ ∂Σ ∩ L. Then the following curvature
estimate holds:

|AΣ|(x) · dist(x, q)→ 0, (2.27)

as x ∈ Σ converges to q.

Proof. Assume, for the sake of contradiction, that there is δ > 0 and a
sequence of points qk ∈ Σ such that

dist(qk, q) = εk > 0, εk|AΣ|(qk) = δk > δ.

By a standard point-picking argument, we could also assume that

|AΣ|(x) <
2δk
εk
, x ∈ C2εk . (2.28)

Consider the rescaled surfaces

Σk =
δk
εk

(Σ− qk) ⊂
δk
εk

(M − qk).

Since δk > δ, εk → 0, the ambient manifold M converges, in the sense
of Gromov-Hausdorff, to (C, gEuclid). Since Σk is area minimizing, a sub-
sequence (which we still denote by Σk) converges to an area minimizing
surface Σ∞. By (2.19), Σ∞ is nontrivial. We consider two different cases

• If lim supk δk = ∞, then by taking a further subsequence (which
we still denote by Σk), Σk converges to an area minimizing surface
in R3. Moreover, (2.28) guarantees that the |AΣ∞ |(x) < 2 for all
x ∈ R3. Therefore the convergence Σk → Σ∞ is, in fact, in C∞.
This produces a contradiction, since |AΣk |(0) = 1 for all k, and Σ∞
is a plane through the origin.
• If lim supk δk < C < ∞, then the sequence Σk converges to an area

minimizing surface in the open set C ⊂ R3 enclosed by the two limit
planes. This produces a similar contradiction, because |AΣk |(0) = 1,
Σk → Σ∞ smoothly, and by Lemma 2.12, Σ∞ is flat in its interior.

�
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With the curvature estimate, we may conclude the regularity discussion
by concluding that Σ is graphical near the corner q:

Proposition 2.14. Let Σ be an energy minimizer of (1.4), q ∈ Σ ∩ L.
Then Σ is a graph over the tangent plane at q, and its normal vector extends
Hölder continuously to q; thus Σ is a C1,α surface with corners.

Proof. We first prove that Σ is graphical near q. Embed a neighborhood
of q isometrically into some Euclidean space RN . Take the unique plane
π1 ⊂ TqM obtained above such that the tangent cone of Σ at q is π1 ∩ C.
Assume, for the sake of contradiction, that there is a sequence of points
qk ∈ Σ, distM (qk, q) → 0, and that the normal vectors Nk of Σ ⊂ M at qk
is parallel to π1. Denote εk = distM (qk, q). Consider the rescaled surfaces
Σk = ε−1

k (Σ− q). By the monotonicity formula (2.22) and the lower density
bound (2.19), a subsequence of {Σk} converges to the unique tangent cone
π1∩C in the sense of varifolds. Notice that on Σk, the image of qk under the
homothety has unit distance to the origin. By taking a further subsequence
(which we still denote by {(Σk, qk, Nk)}), we may assume that qk → q∞,
Nk → N∞, and distR3(q∞, 0) = 1. Now the curvature estimate (2.27)
implies that,

|AΣ∞ |(x) < 2, for all points x ∈ Σ ∩B1/2(q∞).

For any point x ∈ Σ∞, and any curve l connecting q∞ and x, we have

|N∞(x)−N∞(q∞)| <
∫
l
|AΣ∞ |(y)dy.

Therefore we conclude that, for points x on a neighborhood V of q∞ on Σ∞,

|N∞(x)−Nπ1 | >
1

2
,

where Nπ1 is the unit normal vector of π1. This contradicts the fact that
Σk converges to Σ∞ as varifolds.

Once we know that Σ is a graph over TqΣ near q, the result of [Lie88]
directly applies, and we conclude that Σ has a Hölder continuous unit normal
vector field up to q. �

3. Non-rigid case

We prove Theorem 1.4 in this section. Let P be a polyhedron in R3 of
cone or prism types. Assume, for the sake of contradiction, that there exists
a P -type polyhedron (M3, g) with R(g) ≥ 0, H ≥ 0 and ]ij(M) < ]ij(P ).
The strategy is to take the minimizer Σ = ∂E of the (1.4). When M is
of prism type, the existence and regularity of Σ follows from the maximum
principle in Proposition 2.2. When M is of cone type, we need the extra
assumption that I < 0 to guarantee that E 6= ∅. Hence we prove the
following:

Lemma 3.1. Let P ⊂ R3 be polyhedron of cone type, (M, g) be of P -type.
Assume ]ij(M) < ]ij(P ), then the infimum I appeared in (1.4) is negative.
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Proof. As before let Fj , F
′
j denote the side faces of M , P , respectively; B,

B′ denote their base faces. Assume, for the sake of contradiction, that

H2(∂E ∩ M̊)−
k∑
j=1

(cos γj)H2(∂E ∩ Fj) ≥ 0. (3.1)

Notice that the inequality (3.1) is scaling invariant. Precisely, if E ⊂ M
satisfies (3.1), then under the homothety µr defined by x 7→ r(x − p), the
set (µr)#(E) ⊂ (µr)#(M) satisfies (3.1). Letting r → ∞, the tangent cone
TpMof M at p should share the same property. Let Fj,∞ denote the cor-
responding faces in TpM . By assumption, ](Fj,∞, Fj+1,∞) < ](F ′j , F

′
j+1).

Therefore TpM can be placed strictly inside the tangent cone of P at its
vertex. By elementary Euclidean geometry, there exists a plane π ⊂ R3

such that π meets Fj,∞ with angle γ′j > γj . See Figure 5 for an illustration,
where the dashed polyhedral cone is TpM .

p

the plane π

Figure 5. The tangent cone TpM contained in P .

Let projπ denote the projection R3 → π. Then the Jacobian of projπ,
restricted to each Fj,∞, is cos γ′j . Denote E∞ the open domain enclosed by
π and Fj,∞, j = 1, · · · , k. By the area formula,

H2(π ∩ ∂E∞)−
k∑
j=1

(cos γ′j)H2(Fj,∞ ∩ ∂E∞) = 0.

Since γ′j > γj , we conclude

H2(π ∩ ∂E∞)−
k∑
j=1

(cos γj)H2(Fj,∞ ∩ ∂E∞) < 0,

contradiction. �

In the proof we are going to need another simple fact from Euclidean
geometry.

Lemma 3.2. Let Pi, Qi, Ri, i = 1, 2, be six planes in R3 with the prop-
erty that ](P1, R1) = ](P2, R2), ](Q1, R1) = ](Q2, R2) and ](P1, Q1) ≤
](P2, Q2). Let Li = Pi ∩ Ri, L′i = Qi ∩ Ri, i = 1, 2. Then ](L1, L

′
1) ≤

](L2, L
′
2).
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Proof. The proof is very similar to that of Lemma 2.5. Let ui,vi,wi be the
unit normal vectors of Pi, Qi, Ri, i = 1, 2, with the same choice of orientation,
and such that ui,vi are pointing out of the wedge region formed by Pi and
Qi. Denote γ1 = ](P1, R1) = ](P2, R2), γ2 = ](Q1, R1) = ](Q2, R2), θ =
](P1, Q1), and θ′ = ](P2, Q2). Then ](Li, L

′
i) is given by the angle between

ui × wi and wi × vi, i = 1, 2. Notice that for i = 1, 2, |ui × wi| = sin γ1,
and |wi × vi| = sin γ2. By assumptions, we have that

u1 · v1 = − cos θ, u2 · v2 = − cos θ′, ui ·wi = cos γ1, vi ·wi = cos γ2.

Therefore

(u1 ×w1) · (w1 × v1) = cos γ1 cos γ2 + cos θ′.

Hence if θ′ ≤ θ, (u1 ×w1) · (w1 × v1) ≥ (u2 ×w2) · (w2 × v2). This implies
that ](L1, L

′
1) ≤ ](L2, L

′
2). �

Now we prove Theorem 1.4.

Proof. Assume, for the sake of contradiction, that ]ij(M) < ]ij(P ). By
Theorem 2.1 and Lemma 3.1, the infimum in (1.4) is achieved by an open

set E, with Σ = ∂E∩M̊ a smooth surface which is C1,α up to its corners for
some α ∈ (0, 1). By the first variation formula (2.1), Σ is capillary minimal.
We apply the second variational formula (2.2) and conclude∫

Σ
[|∇f |2 − (|A|2 + Ric(N,N))f2]dH2 −

∫
∂Σ
Qf2dH1 ≥ 0, (3.2)

for any C2 function f compactly supported away from the corners, where
on ∂Σ ∩ Fj ,

Q =
1

sin γj
II(ν, ν) + (cot γj)A(ν, ν).

Since the surface Σ is C1,α to its corners, its curvature |A| is square
integrable. Hence by a standard approximation argument we conclude that
the above inequality holds for the constant function f = 1. We have

−
∫

Σ
(|A|2 + Ric(N,N))−

n∑
j=1

∫
∂Σ∩Fj

[
1

sin γj
II(ν, ν) + cot γjA(ν, ν)

]
≥ 0. (3.3)

Applying the Gauss equation on Σ, we have

|A|2 + Ric(N,N) =
1

2
(R− 2KΣ + |A|2), (3.4)

where R is the scalar curvature of M , KΣ is the Gauss curvature of Σ.
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By the Gauss-Bonnet formula for C1,α surfaces with piecewise smooth
boundary components, we have that∫

Σ
KΣdH2 +

∫
∂Σ
kgdH1 +

n∑
j=1

(π − αj) = 2πχ(Σ) ≤ 2π, (3.5)

here kg is the geodesic curvature of ∂Σ ⊂ Σ, and αj are the interior angles
of Σ at the corners. By Lemma 3.2, αj < α′j , where α′j is the correspond-
ing interior angle of the base face of the Euclidean polyhedron P . Since∑k

j=1(π − α′j) = 2π, we conclude
∑k

j=1(π − αj) > 2π. As a result, we have
that

−
∫

Σ
KΣdH2 >

∫
∂Σ
kgdH1. (3.6)

Combining (3.3), (3.4) and (3.6) we conclude that∫
Σ

1

2

(
R+ |A|2

)
dH2

+

n∑
j=1

∫
∂Σ∩Fj

[
1

sin γj
II(ν, ν) + cot γjA(ν, ν) + kg

]
dH1 < 0. (3.7)

To finish the proof, let us analyze the last integrand in (3.7). Fix one j
and consider ∂Σ ∩ Fj . For convenience let γ = γj . We make the following

Claim.

II(ν, ν) + cos γA(ν, ν) + sin γkg = H, (3.8)

where H is the mean curvature of ∂M in M .

Let T be the unit tangential vector of ∂Σ. Since Σ is minimal, A(ν, ν) =
−A(T, T ). Therefore

cos γA(ν, ν) + sin γkg = − cos γA(T, T ) + sin γkg

= −〈∇TT, cos γN + sin γν〉
= −〈∇TT,X〉
= II(T, T ).

Since T and ν form an orthonormal basis of ∂M , we have

II(ν, ν) + cos γA(ν, ν) + sin γkg = II(T, T ) + II(ν, ν) = H.

The claim is proved.
To finish the proof, we note that (3.7) implies that∫

Σ

1

2

(
R+ |A|2

)
dH2 +

n∑
j=1

∫
∂Σ∩Fj

1

sin γj
HdH1 < 0, (3.9)

contradicting the fact that the scalar curvature R of M and the surface
mean curvature H of ∂M ⊂M are nonnegative. �
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4. Rigidity

In this section we prove Theorem 1.5. Rigidity properties of minimal
and area-minimizing surfaces have attracted lots of interests in recent years.
Following the Schoen-Yau proof of the positive mass theorem, Cai-Galloway
[CG00] studied the rigidity of area-minimizing tori in three-manifolds in non-
negative scalar curvature. The case of area-minimizing spheres was carried
out by Bray-Brendle-Neves [BBN10]. Their idea is to study constant mean
curvature (CMC) foliation around an infinitesimally rigid area-minimizing
surface, and obtain a local splitting result for the manifold. It is very robust
and applies to a wide variety of rigidity analysis: in the case of negative
[Nun13] scalar curvature, and for area-minimizing surfaces with boundary
[Amb15] (see also [MM15]). We adapt their idea for our rigidity analysis,
and perform a dynamical analysis for foliations with constant mean curva-
ture capillary surfaces. The new challenge here is that, when M is of cube
type, the energy minimizer of (1.4) may be empty. In this case the tan-
gent cone TpM coincides with that of the Euclidean model P , and I = 0.
Our strategy, motivated by the earlier work of Ye [Ye91], is to construct
a constant mean curvature foliation near the vertex p, such that the mean
curvature on each leaf converges to zero when approaching p.

4.1. Infinitesimally rigid minimal capillary surfaces. Assume the en-
ergy minimizer Σ = ∂E ∩ M̊ exists for (1.4). Tracing equality in the proof
in Section 3, we conclude that

χ(Σ) = 0, RM = 0, |A| = 0 on Σ

H = 0 on ∂Σ, αj = α′j at the corners of Σ.
(4.1)

Moreover, by the second variation formula (2.2),

Q(f, f) = −
∫

Σ
(f∆f + (|A|2 + Ric(N,N))f2)dHn−1

+

k∑
j=1

∫
∂Σ∩Fj

f

(
∂f

∂ν
−Qf

)
dHn−2 ≥ 0,

with Q(1, 1) = 0. We then conclude that for any C2 function f compactly
supported away from the vertices of Σ, Q(1, f) = 0. By choosing appropriate
g, we further conclude that

Ric(N,N) = 0 on Σ,
1

sin γj
II(ν, ν) + cot γjA(ν, ν) = 0 on ∂Σ ∩ Fj .

Combining with (3.4) and (3.8), we conclude that

KΣ = 0 on Σ, kg = 0 on ∂Σ. (4.2)

Call a surface Σ satisfying (4.1) and (4.2) infinitesimally rigid. Notice
that such a surface is isometric to an flat k-polygon in R2.
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Next, we construct a local foliation by CMC capillary surfaces Σt. Take
a vector field Y defined in a neighborhood of Σ, such that Y is tangential
when restricted to ∂M . Let φ(x, t) be the flow of Y . Precisely, we have:

Proposition 4.1. Let Σ2 be a properly embedded, two-sided, minimal capil-
lary surface in M3. If Σ is infinitesimally rigid, then there exists ε > 0 and
a function w : Σ× (−ε, ε)→ R such that, for every t ∈ (−ε, ε), the set

Σt = {φ(x,w(x, t) : x ∈ Σ)}

is a capillary surface with constant mean curvature H(t) that meets Fj at
constant angle γj. Moreover, for every x ∈ Σ and every t ∈ (−ε, ε),

w(x, 0) = 0,

∫
Σ

(w(x, t)− t)dH2 = 0 and
∂

∂t
w(x, t)

∣∣∣∣
t=0

= 1.

Thus, by possibly choosing a smaller ε, {Σt}t∈(−ε,ε) is a foliation of a neigh-
borhood of Σ0 = Σ in M .

Our proof goes by an argument involving the inverse function theorem,
and is essentially taken from [BBN10] and [Amb15]. We do, however, need
an elliptic theory on cornered domains. This is done by Lieberman [Lie89].
The following Schauder estimate is what we need:

Theorem 4.2 (Lieberman,[Lie89]). Let Σ2 ⊂ R3 be an open polygon with
interior angles less than π. Let L1, · · · , Lk be the edges of Σ. Then there
exists some α > 0 depending only on the interior angles of Σ, such that if
f ∈ C0,α(Σ), g|Lj ∈ C

0,α(Lj), then the Neumann boundary problem{
∆u = f in Σ
∂u
∂ν = g on ∂Σ

(4.3)

has a solution u with
∫

Σ u = 0, and u ∈ C2,α(Σ) ∩ C1,α(Σ). Moreover, the
Schauder estimate holds:

|u|2,α,Σ + |u|1,α,Σ ≤ C(|f |0,α,Σ +
k∑
j=1

|g|0,α,Lj ).

We now prove Proposition 4.1.

Proof. For a function u ∈ C2,α(Σ) ∩ C1,α(Σ), consider the surface Σu =
{φ(x, u(x)) : x ∈ Σ}, which is properly embedded if |u|0 is small enough. We
use the subscript u to denote the quantities associated to Σu. For instance,
Hu denotes the mean curvature of Σu, Nu denotes the unit normal vector
field of Σu, and Xu denotes the restriction of X onto Σu. Then Σ0 = Σ,
H0 = 0, and 〈Nu, Xu〉 = cos γj along ∂Σ ∩ Fj .
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Consider the Banach spaces

F =

{
u ∈ C2,α(Σ) ∩ C1,α(Σ) :

∫
Σ
u = 0

}
,

G =

{
u ∈ C0,α(Σ) :

∫
Σ
u = 0

}
, H =

{
u ∈ L∞(∂Σ) : u|Lj ∈ C

0,α(Lj)
}
.

Given small δ > 0 and ε > 0, define the map Ψ : (−ε, ε) × (B0(δ) ⊂ F ) →
G×H given by

Ψ(t, u) =

(
Ht+u −

1

|Σ|

∫
Σ
Ht+u, 〈Nt+u, Xt+u〉 − cos γ

)
,

where γ = γj on ∂Σ ∩ F̊j .
In order to apply the inverse function theorem, we need to prove that

DuΨ|(0,0) is an isomorphism when restricted to {0} × F . In fact, for any
v ∈ F ,

DuΨ|(0,0)(0, v) =
d

ds

∣∣∣∣
s=0

ψ(0, sv) =

(
∆v − 1

|Σ|

∫
∂Σ

∂v

∂ν
,−∂v

∂ν

)
.

The calculation is given in Lemma A.2 and Lemma A.3 in the appendix.
Now the fact that DuΨ|(0,0) is an isomorphism follows from Theorem 4.2.
The rest of the proof is the same as Proposition 10 in [Amb15], which we
will omit here. �

4.2. CMC capillary foliation near the vertex. When (M3, g) is of cone
type with vertex p, we have proved that I is realized by a minimizer ∂E 6= ∅
when I < 0. Now it is obvious from the definition that I ≤ 0. However,
in the case that I = 0, it is a priori possible that the minimizer E = ∅.
Assume I = 0. We investigate this case with a different approach.

Notice that, as a consequence of Lemma 3.1, I = 0 implies that

](Fj , Fj+1)|p = ](F ′j , F
′
j+1),

where F ′j is the corresponding face of the Euclidean model P . Recall that in

the Euclidean model P ′, its base face B′ intersects F ′j at angle γj . Thus P is

foliated by a family of planes parallel to B′, where each leaf is minimal, and
meets F ′j at constant angle γj . We generalize this observation to arbitrary
Riemannian polyhedra, and obtain:

Theorem 4.3. Let (M3, g) be a cone type Riemannian polyhedron with ver-
tex p. Let P ⊂ R3 be a polyhedron with vertex p′, such that the tangent
cones (TpM, gp) and (Tp′P, gEuclid) are isometric. Denote γ1, · · · , γk the an-
gles between the base face and the side faces of P . Then there exists a small
neighborhood U of p in M , such that U is foliated by surfaces {Σρ}ρ∈(0,ε)

with the properties that:

(1) for each ρ ∈ (0, ε), Σρ meet the side face Fj at constant angle γj;
(2) each Σρ has constant mean curvature λρ, and λρ → 0 as ρ→ 0.
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Remark 4.4. Before proceeding to the proof, let us remark that the local
foliation structure of Riemannian manifolds has been a thematic program
in geometric analysis, and has deep applications to mathematical general
relativity. See: Ye [Ye91] for spherical foliations around a point; Huisken-
Yau [HY96] for foliations in asymptotically flat spaces; Mahmoudi-Mazzeo-
Pacard [MP05][MMP06] for foliations around general minimal submanifolds.

Remark 4.5. As a technical remark, let us recall that in all of the afore-
mentioned foliation results, some extra conditions are necessary (e.g. Ye’s
result required the center point to be a non-degenerate critical point of scalar
curvature; Mahmoudi-Mazzeo-Pacard needed the minimal submanifold to be
non-degenerate critical point for the volume functional). However, in our
result, no extra condition is needed. Geometrically, this is because in the
tangent cone TpM ⊂ R3, the desired foliation is unique.

Proof. Let U be a small neighborhood of p in M . Take a local diffeomor-
phism ϕ : P → U , such that the pull back metric ϕ∗g and gEuclid are C1

close. Place the vertex p′ of P at the origin of R3. In local coordinates on
R3, the above requirement is then equivalent to

gij(0) = gij,k = 0, gij(x) = o(|x|), gij,k(x) = o(1) for |x| < ρ0.

ϕ may be constructed, for instance, via geodesic normal coordinates.
Denote M ⊂ R3 the tangent cone of M at p. By assumption, the dihedral

angles ](Fi, Fj)|p = ](F ′i , F
′
j). Let π be the plane in R3 such that in

Euclidean metric, π and Fj meet at constant angle γj . For ρ ∈ (0, 1], let
πρ be the plane that is parallel to π and has distance ρ to 0. Let Σρ be
the intersection of πρ with the interior of the cone TpM . Denote X the

outward pointing unit normal vector field on ∂M , Nρ the unit vector field

of Σρ ⊂ M pointing towards 0. Denote Y the vector field such that for
each x ∈ Σρ, Y (x) is parallel to ~x. Moreover, we require that the flow of

Y parallel translates {Σρ}, and Y (x) is tangent to ∂M when x ∈ ∂M . Let

φ(x, t) be the flow of Y . For a function u ∈ C2,α(Σ1) ∩ C1,α(Σ1) (Σ1 is
parallel to π, and of distance 1 to the origin), define the perturbed surface

Σρ,u = {φ(ρx, u(ρx)) : x ∈ Σ1}.

Since Σρ = ρΣ1, the surface Σρ,u is a small perturbation of Σρ, and is
properly embedded, if |u|0 is sufficiently small.

We use the subscript ρ to denote geometric quantities related to Σρ, and
the subscript (ρ, u) to denote geometric quantities related to the perturbed
surfaces Σρ,u, both in the metric ϕ∗g. In particular, Hρ,u denotes the mean
curvature of Σρ,u, and Nρ,u denotes the unit normal vector field of Σρ,u

pointing towards 0. It follows from Lemma A.1 and Lemma A.2 that we
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have the following Taylor expansion of geometric quantities.

Hρ,u = Hρ +
1

ρ2
∆ρu+ (Ric(Nρ, Nρ) + |Aρ|2)u+ L1u+Q1(u)

〈Xρ,u, Nρ,u〉 = 〈Xρ, uρ〉 −
sin γj
ρ

∂u

∂νρ

+ (cos γjA(νρ, νρ) + II(νρ, νρ))u+ L2u+Q2(u).
(4.4)

Let us explain (4.4) a bit more. Q1, Q2 are terms that are at least qua-
dratic in u. The functions L1, L2 exhibit how the mean curvature Hρ and
the contact angle γj deviate from being constant. In particular, they are
bounded in the following manner:

L1 ≤ C|∇ρHρ||Y | ≤ C|g|C2 < C, L2 ≤ C|∇ρ 〈Xρ, Nρ〉 ||Y | < C|g|C1 < C.

The operator ∆ρ is the Laplace operator on Σρ. At x ∈ Σρ,

∆ρ =
1√

det(g)
∂i

(√
det(g)gij∂j

)
.

In particular, ∆ρ converges to the Laplace operator on R2 as ρ → 0. In
local coordinates, it is not hard to see that

|Hρ| ≤ C|g|C1 = o(1), | 〈Xρ, Nρ〉 − cos γj | ≤ |g|C0 = o(ρ).

Denote Dρ = 〈Xρ, Nρ〉−cos γj . Letting Hρ,u ≡ λ, we deduce from (4.4) that
we need to solve for u from{

∆ρu+ ρ2L1u+ ρ2Q1(u) = ρ2(λ−Hρ) in Σ1,
∂u
∂νρ

= ρDρ + ρL2u+ ρQ2(u) on ∂Σ1.
(4.5)

We use inverse function theorem as in the proof of Proposition 4.1. Pre-
cisely, denote the operator{

Lρ(u) = ∆ρu− ρ2L1u− ρ2Q1(u) + ρ2Hρ,

Bρ(u) = ∂u
∂νρ
− ρDρ − ρL2u− ρQ2(u),

and consider the Banach spaces

F =

{
u ∈ C2,α(Σ1) ∩ C1,α(Σ1) :

∫
Σ1

u = 0

}
,

G =

{
u ∈ C0,α(Σ1) :

∫
Σ1

u = 0

}
, H =

{
u ∈ L∞(∂Σ1) : u|Lj ∈ C

0,α(Lj)
}
.

Again we use L1, · · · , Lj to denote the edges of Σ1.
For a small δ > 0, let Ψ : (−ε, ε)× (Bδ(0) ⊂ F )→ G×H given by

Ψ(ρ, u) =

(
Lρ(u)− 1

|Σ1|

∫
Σ1

Lρ(u)dH2,Bρ(u)

)
.
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By the asymptotic behavior as ρ → 0 discussed above, the linearized oper-
ator DuΨ|(0,0), when restrited to {0} × F , is given by

DuΨ|(0,0)(0, v) =
d

ds

∣∣∣∣
s=0

Ψ(0, sv) =

(
∆v −

∫
Σ1

∆v,
∂v

∂ν

)
.

By Theorem 4.2, for some α ∈ (0, 1), DuΨ|(0,0) is an isomorphism when
restricted to {0} × F . We therefore apply the inverse function theorem
and conclude that, for small ε > 0, there exists a C1 map between Banach
spaces ρ ∈ (−ε, ε) 7→ u(ρ) ∈ Bδ(0) ⊂ F for every ρ ∈ (−ε, ε), such that
Ψ(ρ, u(ρ)) = (0, 0). Thus the surface Σρ,u(ρ) is minimal, and meets Fj at
constant angle γj .

By definition, u(0) is the zero function. Denote v = ∂u(ρ)
∂ρ . Differentiating

(4.5) with respect to ρ and evaluating at ρ = 0, we deduce{
∆v = 0 in Σ1,
∂v
∂ν = 0 on ∂Σ1.

(4.6)

Therefore v is also the zero function. Thus we conclude that

|u|1,α,Σ1
= o(ρ),

for |ρ| < ρ0.
Therefore the surfaces Σρ,u(ρ) is a foliation of a small neighborhood of

p. Moreover, integrating (4.5) over Σ1, we find that the constant mean
curvature of Σρ,u(ρ) satisfies

λρ =
1

ρ2

∫
Σ1

∆u+

∫
Σ1

(L1u+Q1(u) +Hρ)

=
1

ρ2

∫
∂Σ1

∂u

∂ν
+

∫
Σ1

(L1u+Q1(u) +Hρ) + o(1)

=
1

ρ

∫
∂Σ1

(Dρ + L2u+Q2(u)) +

∫
Σ1

(L1u+Q1(u) +Hρ) + o(1).

(4.7)

Since

Dρ = o(ρ), |u|1,α,Σ1
= o(ρ), Hρ = o(1),

we conclude that λρ → 0, as ρ→ 0. �

4.3. Local splitting. We analyze the CMC capillary foliations developed
above to prove a local splitting theorem, thus prove Theorem 1.5. We need
the extra assumption (1.2) that

γj ≤ π/2, j = 1, · · · , k or γj ≥ π/2, j = 1, · · · , k.

First notice that, if P ⊂ R3 is a cone, then (1.2) is possible only when
γj ≤ π/2, j = 1, · · · , k; if P is a prism and γj > π/2, then instead of (1.4),
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we consider, for E1 = M \ E,

F(E1) = H2(∂E1 ∩ M̊)−
k∑
j=1

(cos γj)H2(∂E1 ∩ Fj), (4.8)

and reduce the problem to the case where γj ≤ π/2. Thus we always assume
γj ≤ π/2, j = 1, · · · , k.

Under the same conventions as before, assume we have a local CMC
capillary foliation {Σρ}ρ∈I , where as ρ increase, Σρ moves in the direction of
Nρ. We will take I to be (−ε, ε), (−ε, 0) or (0, ε), according to the location
of the foliation. We prove the following differential inequality for the mean
curvature H(ρ).

Proposition 4.6. There exists a nonnegative continuous function C(ρ) ≥ 0
such that

H ′(ρ) ≥ C(ρ)H(ρ).

Proof. Let ψ : Σ× I →M parametrizes the foliation. Denote Y = ∂ψ
∂t . Let

vρ = 〈Y,Nρ〉 be the lapse function. Then by Lemma A.1 and Lemma A.2,
we have

d

dρ
H(ρ) = ∆ρvρ + (Ric(Nρ, Nρ) + |Aρ|2)vρ in Σρ, (4.9)

∂vρ
∂νρ

=

[
(cot γj)Aρ(νρ, νρ) +

1

sin γj
II(νρ, νρ)

]
vρ on ∂Σρ ∩ Fj . (4.10)

By shrinking the interval I if possible, we may assume vρ > 0 for ρ ∈ I.
Multiplying 1

vρ
on both sides of (4.9) and integrating on Σρ, we deduce that

H ′(ρ)

∫
Σρ

1

vρ
=

∫
Σρ

|∇vρ|2
v2
ρ

dH2 +
1

2

∫
Σρ

(R+ |A|2 +H2)dH2 −
∫

Σρ

KΣρdH2

+

k∑
j=1

∫
∂Σρ∩Fj

[
cot γjAρ(νρ, νρ) +

1

sin γj
II(νρ, νρ)

]
dH1

≥ −
∫

Σρ

KΣρdH2 +
k∑
j=1

∫
∂Σρ∩Fj

[
cot γjAρ(νρ, νρ) +

1

sin γj
II(νρ, νρ)

]
dH1.

(4.11)

Using the Gauss-Bonnet formula and Lemma 3.2,

−
∫

Σρ

KΣρdH2 ≥
∫
∂Σρ

kgdH1. (4.12)

As in (3.8), we also have

kg + cot γjA(νρ, νρ) +
1

sin γj
II(νρ, νρ) = (cot γj)H(ρ) +

1

sin γj
H, (4.13)

on ∂Σρ ∩ Fj . Combining these, we deduce
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H ′(ρ)

∫
Σρ

1

vρ
≥

k∑
j=1

∫
∂Σρ∩Fj

[
(cot γj)H(ρ) +

1

sin γj
H

]
dH1

≥

 k∑
j=1

(cot γj)H1(∂Σρ ∩ Fj)

H(ρ).

(4.14)

Take C(ρ) =
∑k

j=1(cot γj)H1(∂Σρ ∩ Fj). The proposition is proved.
�

We are now ready to prove Theorem 1.5.

Proof. If (M3, g) is of prism type, or if (M3, g) is of cone type with I < 0,
then the variational problem (1.4) has a nontrivial solution E with a C1,α

boundary Σ. Therefore Σ is infinitesimally rigid minimal capillary, and there
is a CMC capillary foliation {Σρ}I around Σ, where I = (−ε, ε) if Σ ⊂ M̊ ,
I = [0, ε) if Σ = B1, and I = (−ε, 0] if Σ = B2. By Proposition 4.6, the
mean curvature H(ρ) of Σρ satisfies{

H(0) = 0

H ′(ρ) ≥ C(ρ)H(ρ),

where C(ρ) ≥ 0. By standard ordinary differential equation theory,

H(ρ) ≥ 0 when ρ ≥ 0, H(ρ) ≤ 0 when ρ ≤ 0.

Denote Eρ the corresponding open domain in M . Since each Σρ meets Fj
at constant angle γj , the first variation formula (2.1) implies that

F (ρ1)− F (ρ2) = −
∫ ρ1

ρ2

dρ

∫
Σρ

H(ρ)vρdH2.

We then conclude that for δ > 0,

F (δ) ≤ F (0), F (−δ) ≤ F (0).

However, Σ0 = Σ minimizes the functional (1.4). Therefore in a neighbor-
hood of Σ, F (ρ) = F (0), H(ρ) ≡ 0. Tracing back the equality conditions,
we find that

vρ ≡ constant, each Σρ is infinitesimally rigid.

It is then straightforward to check that the normal vector fields of Σρ

is parallel (see [BBN10] or [MM15]). In particular, its flow is a flow by
isometries and therefore provides the local splitting. Since M is connected,
this splitting is also global, and we conclude that (M3, g) is isometric to a
flat polyhedron in R3.
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If (M3, g) is of cone type with I = 0, then by Theorem 4.3, there is a
CMC capillary foliation {Σρ}ρ∈(−ε,0) near the vertex, with H(ρ) → 0 as
ρ→ 0. By Proposition 4.6, the mean curvature H(ρ) satisfies{

H ′(ρ) ≥ C(ρ)H(ρ) ρ ∈ (−ε, 0)

H(ρ)→ 0 ρ→ 0.

Since C(ρ) ≥ 0, we conclude that H(ρ) ≤ 0, ρ ∈ (−ε, 0). Let Eρ be the
open subset bounded by Σρ. Take 0 < η < δ, then

F (−η)− F (−δ) = −
∫ −η
−δ

dρ

∫
Σρ

HvρdH2 ≥ 0 ⇒ F (−δ) ≤ F (−η).

Letting η → 0, we have

F (−δ) ≤ 0.

As before, we conclude that F (ρ) ≡ 0 for ρ ∈ (−ε, 0), and that each leaf
Σρ is infinitesimally rigid. Thus (M3, g) admits a global splitting of flat
k-polygon in R2, and hence is isometric to a flat polyhedron in R3. �

Appendix A.

We provide some general calculation for infinitesimal variations of geo-
metric quantities of properly immersed hypersurfaces under variations of
the ambient manifold (Mn+1, g) that leave the boundary of the hypersur-
face inside ∂M . We also refer the readers to the thorough treatment in
[RS97] and [Amb15] (warning: the choice of orientation for the unit normal
vector field N in [Amb15] is the opposite to ours).

We keep the notations used in Section 2.1 and for each t ∈ (−ε, ε), we

use the subscript t for the terms related to Σt. Recall that Y = ∂Ψ(t,·)
∂t is

the deformation vector field. Denote Y0 the tangent part of Y on Σ, Y0

the tangent part of Y on ∂Σ. Let v = 〈Y,N〉. For q ∈ Σ, let e1, · · · , en
be an orthonormal basis of TqΣ, and let ei(t) = dΨt(ei). Let S0, S1 be the
shape operators of Σ ⊂ M and ∂M ⊂ M . Precisely, S0(Z1) = −∇Z1N ,
S1(Z2) = ∇Z2X. We have:

Lemma A.1 (Lemma 4.1(1) of [RS97], Proposition 15 of [Amb15]).

∇YN = −∇Σv − S0(Y0). (A.1)

We use Lemma A.1 to calculate the evolution of the contact angle along
the boundary.

Lemma A.2. Let γ denote the contact angle between Σ and Fj. Then

d

dt

∣∣∣∣
t=0

〈Nt, Xt〉 = − sin γ
∂v

∂ν
+ (cos γ)A(ν, ν)v + II(ν, ν)v +

〈
L,∇∂Σγj

〉
v,

(A.2)
where L is a bounded vector field on ∂Σ.
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In particular, if each Σt meets Fj at constant angle γj, then on Fj,

∂vt
∂νt

=

[
(cot γj)At(νt, νt) +

1

sin γj
II(νt, νt)

]
vt.

Proof. Let us fix one boundary face Fj and denote γj by γ. By Lemma A.1,

d

dt

∣∣∣∣
t=0

〈Nt, Xt〉 = 〈∇YN,X〉+ 〈N,∇YX〉

= −
〈
∇Σv,X

〉
− 〈S0(Y0), X〉+ 〈N,∇YX〉 .

On ∂M , Y decomposes into Y = Y1− v
sin γ ν. Notice that since X = cos γN+

sin γN ,

〈S0(Y0), X〉 = 〈S0(Y0), cos γN + sin γν〉 = sin γA(Y0, ν).

We also have the vector decomposition on ∂M with respect to the or-
thonormal basis ν,X:

N = cos γX − sin γν, ν = cos γν + sin γX. (A.3)

Since 〈X,X〉 = 1 along ∂M , we have 〈X,∇ZX〉 = 0 for any vector Z on
∂M . We have

d

dt

∣∣∣∣
t=0

〈Nt, Xt〉 = − sin γ
∂v

∂ν
− 〈S0(Y0), X〉

+
〈

cos γX − sin γν,∇Y1− v
sin γ

νX
〉

= − sin γ
∂v

∂ν
− sin γA(Y0, ν)− sin γ 〈ν,∇Y1X〉+ 〈ν,∇νX〉 v.

Now we deal with the second and the third terms above. Notice that on
∂Σ ∩ Fj ,

Y0 = Y1 − (cot γ)vν.

Thus A(Y0, ν) = A(Y1, ν)− (cot γ)vA(ν, ν) = −〈∇Y1N, ν〉− (cot γ)A(ν, ν)v.
On the other hand, using the vector decomposition (A.3), we find

〈∇Y1N, ν〉 = 〈∇Y1(cos γX − sin γν), cos γν + sin γX〉

= cos2 γ 〈∇Y1X, ν〉 − sin2 γ 〈∇Y1ν,X〉+
〈
L,∇∂Σγ

〉
.

= 〈∇Y1X, ν〉+
〈
L,∇∂Σγ

〉
.

Here L is a vector field along ∂Σ, and |L| ≤ C = C(Y,X, ν). Thus we
conclude that

d

dt

∣∣∣∣
t=0

〈Nt, Xt〉 = − sin γ
∂v

∂ν
+ (cos γ)A(ν, ν)v + II(ν, ν)v +

〈
L,∇∂Σγ

〉
,

as desired.
�
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The evolution equation of the mean curvature has been studied in many
circumstances. We refer the readers to the thorough calculation in Proposi-
tion 16, [Amb15]:

Lemma A.3 (Proposition 16 of [Amb15]). Let Ht be the mean curvature of
Σt. Then

d

dt

∣∣∣∣
t=0

Ht = ∆Σv + (Ric(N,N) + |A|2)v − 〈∇ΣH,Y0〉 .

In particular, if each Σt has constant mean curvature, then

d

dt
Ht = ∆Σtvt + (Ric(Nt, Nt) + |At|2)vt.
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