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0. Introduction

0.1. Let p be a prime and k = Fp be an algebraic closure of the field with p elements. 
Let G be a connected reductive algebraic group over k, which is defined over the finite 
field Fq ⊆ k, where q is a power of p. Let F : G → G be the corresponding Frobenius 
map, and GF = {g ∈ G | F (g) = g}. Fix an F -stable maximal torus T and an F -
stable Borel subgroup B containing T . Let Φ be the root system of G with respect to 
T , and Π ⊆ Φ be the set of simple roots determined by B. Let Φ+ (resp. Φ−) be the 
set of positive (resp. negative) roots with respect to Π. For each α ∈ Φ, there is an 
homomorphism xα : k+ → G, u �→ xα(u), which is an isomorphism onto its image, and 
satisfies txα(u)t−1 = xα(α(t)u) for all t ∈ T and u ∈ k. Set Uα = {xα(u) | u ∈ k+}. 
Then G = 〈T, Uα(α ∈ Φ)〉.

Let g be the Lie algebra of G. Let d0xα : g → g be the differential of xα, and 
gα = d0xα(g). Then there is a direct sum decomposition of g:

g = t⊕
⊕
α∈Φ

gα,

where t = Lie(T ) is the Cartan subalgebra of g.

0.2. When p is a good prime for G, Kawanaka defined a representation ΓC of GF , 
associated to each unipotent GF -conjugacy class C in GF , see [6–8]. If C consists of 
regular unipotent elements, then ΓC is a Gelfand-Graev representation, as defined in 
[11]. Thus ΓC is called a generalized Gelfand-Graev representation (GGGR for short) for 
an arbitrary conjugacy class C.

The original purpose for Kawanaka to define GGGRs was to prove Ennola’s con-
jecture. Far beyond this proof, GGGRs have been applied to many other areas of 
representation theory of finite groups of Lie type, see a survey given by Geck in [2, 
§1].

When p is a bad prime for G, one can not expect good definitions of GGGRs for all 
unipotent elements in GF according to some easy examples. However it seems reasonable 
to restrict oneself to those unipotent classes which “come form characteristic 0”. In the 
paper [2], Geck proposed a guideline to a good definition of GGGRs which we will explain 
briefly in the following.

0.3. Let Δ be the set of weighted Dynkin diagrams. Any Dynkin diagram d ∈ Δ is 
a map d : Φ → Z satisfying:
(a) d(−α) = −d(α) for all α ∈ Φ and d(α + β) = d(α) + d(β) for all α, β ∈ Φ such that 
α + β ∈ Φ.
(b) d(α) ∈ {0, 1, 2} for every simple root α ∈ Π.
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Let d ∈ Δ. For i ∈ Z, we set Φd,i := {α ∈ Φ | d(α) = i} and define

gd(i) :=
{⊕

α∈Φd,i
gα if i 	= 0,

t⊕
⊕

α∈Φd,0
gα if i = 0.

Furthermore we define Ud,i = 〈Uα | α ∈ Φd,j for all j ≥ i〉. Then put Pd = 〈T, Uα | α ∈
Φd,i for all i ≥ 0〉, which is a parabolic subgroup of G.

The coadjoint action of G on the dual vector space g∗ of g is denoted as g · ξ, and 
defined by (g · ξ)(y) = ξ(Ad(g−1)(y)) for g ∈ G, ξ ∈ g∗ and y ∈ g. Let † : g → g be an 
opposition Fq-automorphism, as defined in [5]. It will induce a map † : g∗ → g∗, defined 
by ξ†(y) = ξ(y†) for ξ ∈ g∗ and y ∈ g. Let Gξ = {g ∈ G | g · ξ = ξ} for ξ ∈ g∗.

For d ∈ Δ and given a homomorphism λ ∈ Homk(gd(2), k), we obtain an alternating 
form σλ : gd(1) × gd(1) → k. Following [2], we call λ ∈ Homk(gd(2), k) in sufficiently 
general position, if the following conditions (K1) and (K2) hold.
(K1) Gλ† ⊆ Pd, where λ is regarded as an element of g∗ whose restriction on gd(i) is 
zero for all i 	= 2.
(K2) If gd(1) 	= {0}, then the radical of σλ : gd(1) × gd(1) → k is zero.

For d ∈ Δ, if there exists λ ∈ Homk(gd(2), k) in sufficiently general position, then the 
GGGR Γd,λ can be defined through the process described in [2, §2.8]. Thus the existence 
of λ in sufficiently general position becomes the key point in defining a GGGR.

By the arguments in [2, Remarks 3.6-3.7], we have the following properties:
(A1) the set of λ ∈ Homk(gd(2), k) satisfying (K1) is open dense in Homk(gd(2), k);
(A2) the set of λ ∈ Homk(gd(2), k) satisfying (K2) is open in Homk(gd(2), k).
Consequently,
(A3) there exists λ ∈ Homk(gd(2), k) in sufficiently general position if and only if there 
exists λ ∈ Homk(gd(2), k) satisfying (K2).

On the existence of λ ∈ Homk(gd(2), k) satisfying (K2), Geck proposed several con-
jectures which we will prove in this paper.

0.4. Let C be the set of unipotent classes coming from characteristic 0, as defined 
in [2, §3.1]. Then C can be identified with Δ. Let Cspec be the set of special unipotent 
orbits, and Δspec be the subset of Δ which is identified with Cspec.

For any positive integer n, there exists a canonical map

Ψn : Irr(GFn

) → {Fn − stable unipotent classes},

sending an irreducible representation of GFn to its unipotent support, see [9, §13.4], [10]
and [2, §4.1]. By [4, Remark 3.9], the image of this map is contained in C. So the map 
Ψn induces a map

Ψ̃n : Irr(GFn

) → Δ.
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Let Δk =
⋃

n∈Z+

Im Ψ̃n.

Conjecture 0.5. [2, Conjecture 4.9] Let d ∈ Δ. Then d ∈ Δk if and only if either gd(1) =
{0}, or there exists λ ∈ Homk(gd(2), k) satisfying (K2).

When p is good for G, we have Δ = Δk, and there always exists λ ∈ Homk(gd(2), k)
in sufficiently general position (see [2, Remarks 3.5, 4.2(b)]). Thus Conjecture 0.5 holds. 
By [2, Corollary 5.11], Conjecture 0.5 holds for G of exceptional type G2, F4, E6, E7 or 
E8. Now we are going to prove Conjecture 0.5 for G of classical type Bn, Cn or Dn and 
p being bad for G.

0.6. Geck also formulated another conjecture [2, Conjecture 4.10] to determine the 
special weighted Dynkin diagram which can be regarded as an integral version of Con-
jecture 0.5.

Let G0 be a connected reductive algebraic group over C of the same type as G and 
let g0 be its Lie algebra. For d ∈ Δ and i = 1, 2, put

gZ,d(i) = 〈eα | d(α) = i〉Z ⊆ g0.

Given a homomorphism λ ∈ HomZ(gZ,d(2), Z), we obtain an alternating form σλ :
gZ,d(1) × gZ,d(1) → Z and then we may consider its Gram matrix

Gd,λ = (λ([eα, eβ ]))α,β∈Φd,1 .

If this matrix Gd,λ has determinant ±1, then we say that σλ is non-degenerate over Z. 
We often say λ is non-degenerate if there is no confusion.

Conjecture 0.7. [2, Conjecture 4.10] Let d ∈ Δ. Then d ∈ Δspec if and only if either 
gZ,d(1) = {0}, or there exists a homomorphism λ : gZ,d(2) → Z such that σλ is non-
degenerate over Z.

As explained before, we only have to prove Conjecture 0.5 under the assumption 
that G is of classical type Bn, Cn or Dn, and p is bad for G. Under this assumption, 
according to [2, Proposition 4.3], we have Δk = Δspec. We formulate the following 
theorem (Theorem 0.8) which implies Conjecture 0.5 and Conjecture 0.7 for G of classical 
type An, Bn, Cn or Dn. Note that type An for Conjecture 0.5 is already valid, but it is 
of independent interest for Conjecture 0.7.

Theorem 0.8. Assume that G is of classical type An, Bn, Cn or Dn. Let d ∈ Δ.

(1) If d ∈ Δspec, then gZ,d(1) = {0}, or there exists a non-degenerate λ ∈
HomZ(gZ,d(2), Z).
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(2) If d /∈ Δspec and chark = 2, then detGd,λ = 0 for any λ ∈ Homk(gd(2), k).

With Conjecture 0.5 proved, we complete Geck’s definition of GGGR in bad charac-
teristics.

0.9. This paper is organized as follows. Section 1 contains some preliminaries, as 
well as some reductions of Geck’s conjecture. Section 2 deals with the determinant of 
certain symmetric matrices over a field with even characteristic. In Section 3 we give 
the proof of Geck’s conjecture in the type A case. To deal with the type B, C, D cases, 
we introduce the notion of faithful maps and show that the proof can be reduced to 
considering the faithful maps. Then Sections 5 to 8 are devoted to the proof of Geck’s 
conjecture through case by case discussions. In the last section we give some remarks.

Notations: (1) Let a, b ∈ Z. We write a ≡ b if a − b ∈ 2Z.
(2) If a ≤ b, then we denote the set {i ∈ Z | a ≤ i ≤ b} as [a, b].
(3) Write β ∈ Φ as β =

∑
α∈Π kαα for kα ∈ Z, then kα is the multiplicity of α ∈ Π in β, 

denoted as [β : α].
(4) Let Pn be the set of partitions of n, for any positive integer n.
(5) For r ∈ R, we denote r� the maximal integer less than r.

1. Preliminaries

1.1. Root system

We always follow the notation and definitions given in [2]. As defined in Section 0, 
there is a direct sum decomposition of g:

g = t⊕
⊕
α∈Φ

gα,

where t = Lie(T ) is the Cartan subalgebra of g. For each simple Lie algebra we can fix 
a choice of simple roots Π and positive roots Φ+. In this paper we consider the simple 
Lie algebra of classical types An, Bn, Cn and Dn. So we list their root systems here for 
convenience.
(1) The fundamental system of type An is

� � �. . . . . . . . . . . . � �

ε1 − ε2 ε2 − ε3 εn−1 − εn εn − εn+1

Then the positive roots with the above fundamental system is

Φ+ = {εi − εj , 1 ≤ i < j ≤ n + 1}.

(2) The fundamental system of type Cn is
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� � �. . . . . . . . . . . . � �

ε1 − ε2 ε2 − ε3 εn−1 − εn 2εn
��

Then the positive roots with the above fundamental system is

Φ+ = {εi ± εj , 1 ≤ i < j ≤ n; 2εk, 1 ≤ k ≤ n}.

(3) The fundamental system of type Bn is

� � �. . . . . . . . . . . . � �

ε1 − ε2 ε2 − ε3 εn−1 − εn εn

��

Then the positive roots with the above fundamental system is

Φ+ = {εi ± εj , 1 ≤ i < j ≤ n; εk, 1 ≤ k ≤ n}.

(4) The fundamental system of type Dn is

� � �. . . . . . . . . . . . �

�

�

ε1 − ε2 ε2 − ε3 εn−2 − εn−1

εn−1 − εn

εn−1 + εn

�
��

�
��

Then the positive roots with the above fundamental system is

Φ+ = {εi ± εj , 1 ≤ i < j ≤ n}.

1.2. Weighted Dynkin diagram

Let G0 be a connected reductive algebraic group over C of the same type as G and let 
g0 be its Lie algebra. Then by the classical Dynkin-Kostant theory, the nilpotent Ad(G0)-
orbits in g0 are parameterized by weighted Dynkin diagrams. If G0 is a simple algebraic 
group, then the corresponding set Δ of weighted Dynkin diagrams is explicitly known in 
all cases. For convenience, we put here, the descriptions of the set Δ of weighted Dynkin 
diagrams of classical types, and the set Δspec of special weighted Dynkin diagrams of 
types Bn, Cn and Dn, which are given in [1, §13.1].

Type An: The weighted Dynkin diagrams are parametrized by Pn+1 when the group 
G0 is simple of type An. Let μ = (μ1, μ2, . . . , μk) ∈ Pn+1. For each elementary division 
μi, we take the set of integers μi − 1, μi − 3, . . . , 3 − μi, 1 − μi. We take the union 
of these sets for all elementary divisors and write this union as {ξ1, ξ2, . . . , ξn+1} with 
ξ1 ≥ ξ2 ≥ · · · ≥ ξn+1. Then the corresponding weighted Dynkin diagram is
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� � �. . . . . . . . . . . . � �

ξ1 − ξ2 ξ2 − ξ3 ξn−1 − ξn ξn − ξn+1

Type Cn: The weighted Dynkin diagrams are parametrized by the pairs of partitions 
(μ, ν) with |μ| + |ν| = n where ν has distinct parts. For such a partition (μ, ν), 
write μ = (μ1, μ2, · · · , μk), ν = (ν1, ν2, · · · , νl) and consider the elementary divisors 
μ1, μ1, μ2, μ2, . . . , μk, μk, together with 2ν1, 2ν2, . . . , 2νl. Arrange them as an ordered se-
quence d = (m1, m2, . . . ), where m1 ≤ m2 ≤ · · · . For each elementary divisor m in d, we 
take the set of integers m −1, m −3, . . . , 3 −m, 1 −m. We take the union of these sets for 
all elementary divisors and write this union as {ξ1, ξ2, . . . , ξ2n} with ξ1 ≥ ξ2 ≥ · · · ≥ ξ2n. 
Then the associated weighted Dynkin diagram is

� � �. . . . . . . . . . . . � �

ξ1 − ξ2 ξ2 − ξ3 ξn−1 − ξn 2ξn
��

Denote this weighted Dynkin diagram as d ∈ Δ. Then d is special if and only if the 
following condition is satisfied:
(♠C) Between any two consecutive odd elementary divisors 2i +1, 2j+1 in d with i < j, 
there is an even number of even divisors, and after the largest odd divisor there is an 
even number of even divisors.

Type Bn: The weighted Dynkin diagrams are parametrized by the pairs of partitions 
(μ, ν) with 2|μ| + |ν| = 2n + 1 where ν has distinct odd parts. For such a partition 
(μ, ν), write μ = (μ1, μ2, · · · , μk), ν = (ν1, ν2, · · · , νl) and consider the elementary di-
visors μ1, μ1, μ2, μ2, . . . , μk, μk, together with ν1, ν2, . . . , νl. Arrange them as an ordered 
sequence d = (m1, m2, . . . ), where m1 ≤ m2 ≤ · · · . For each elementary divisor m in 
d, we take the set of integers m − 1, m − 3, . . . , 3 − m, 1 − m. We take the union of 
these sets for all elementary divisors and write this union as {ξ1, ξ2, . . . , ξ2n+1} with 
ξ1 ≥ ξ2 ≥ · · · ≥ ξ2n+1. Then the associated weighted Dynkin diagram is

� � �. . . . . . . . . . . . � �

ξ1 − ξ2 ξ2 − ξ3 ξn−1 − ξn ξn

��

Denote this weighted Dynkin diagram as d ∈ Δ. Then d is special if and only if the 
following condition is satisfied:
(♠B) Between any two consecutive even elementary divisors of d there is an even number 
of odd divisors, and after the largest even divisors there is an odd number of odd divisors.

Type Dn: The weighted Dynkin diagrams are parametrized by the pairs of partitions 
(μ, ν) with 2|μ| + |ν| = 2n where ν has distinct odd parts. For such a partition (μ, ν), 
write μ = (μ1, μ2, · · · , μk), ν = (ν1, ν2, · · · , νl) and consider the elementary divisors 
μ1, μ1, μ2, μ2, . . . , μk, μk, together with ν1, ν2, . . . , νl. Arrange them as an ordered se-
quence d = (m1, m2, . . . ), where m1 ≤ m2 ≤ · · · . For each elementary divisor m in d, we 
take the set of integers m −1, m −3, . . . , 3 −m, 1 −m. We take the union of these sets for 
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all elementary divisors and write this union as {ξ1, ξ2, . . . , ξ2n} with ξ1 ≥ ξ2 ≥ · · · ≥ ξ2n. 
Then the associated weighted Dynkin diagram is

� � �. . . . . . . . . . . . �

�

�

ξ1 − ξ2 ξ2 − ξ3 ξn−2 − ξn−1

ξn−1 − ξn

ξn−1 + ξn

�
��

�
��

(1.2.1)

or

� � �. . . . . . . . . . . . �

�

�

ξ1 − ξ2 ξ2 − ξ3 ξn−2 − ξn−1

ξn−1 + ξn

ξn−1 − ξn

�
��

�
��

(1.2.2)

If there is some odd part in (μ, ν) then ξn = 0 and so the diagrams are the same. If ν
is empty and all parts of μ are even then ξn 	= 0 and we obtained two weighted Dynkin 
diagrams associate to the same (μ, ν).

Denote this weighted Dynkin diagram as d ∈ Δ. Then d is special if and only if the 
following condition is satisfied:
(♠D) Between any two consecutive even elementary divisors of d there is an even number 
of odd divisors, and after the largest even divisor there is an even number of odd divisors.

1.3. Gram matrix

Let d ∈ Δ and assume that gd(1) 	= {0}. (So gZ,d(1) 	= {0}.) Given a linear map λ :
gd(2) → k (resp. λ : gZ,d(2) → Z), we obtain an alternating form σλ : gd(1) × gd(1) → k
(resp. σλ : gZ,d(1) × gZ,d(1) → Z), and as in Section 0, we denote its Gram matrix as 
Gd,λ.

Write Φd,1 = {β1, β2, . . . , βk} and Φd,2 = {γ1, γ2, . . . , γm}. The entries of Gd,λ are 
given as follows. We set xl := λ(eγl

) for 1 ≤ l ≤ m. For 1 ≤ i, j ≤ k, we define an 
element νij ∈ k (resp. νij ∈ Z) as follows. If βi + βj /∈ Φ, then νij = 0. Otherwise, 
there is a unique l(i, j) ∈ {1, 2, . . . , m} and some νij ∈ k (resp. νij ∈ Z) such that 
[eβi

, eβj
] = νijeγl(i,j) . Then we have

(Gd,λ)ij = σλ(eβi
, eβj

) =
{
xl(i,j)νij if βi + βj ∈ Φ,

0 otherwise.
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For convenience of later computation, we can choose eα in gα for each α ∈ Φ, which 
satisfies:

[eα, eβ ] =
{

0 if α + β /∈ Φ,

±(r + 1)eα+β if α + β ∈ Φ,

where r is the greatest integer such that β − rα ∈ Φ. For the type A case, such integer 
r is always zero. For other classical cases (types B, C, D), such integer r ∈ {0, 1}.

1.4. Reduction of the main theorem

To prove Theorem 1.5, we do some reduction first. Put Δo = {d ∈ Δ | max
α∈Π

d(α) = 1}. 
The elements in Δo are called odd weighted Dynkin diagrams. We show that to prove 
Theorem 0.8, it is enough to consider the odd weighted Dynkin diagrams.

For a fixed simple root system Π of classical type and given a partition (type A) or a 
bipartition (type B, C, D) associated to a unipotent class, we have a corresponding set 
of elementary divisors d. Then we can construct a weighted Dynkin diagram d ∈ Δ from 
d. Now we assume that d ∈ Δ \ (Δo ∪ 0), i.e. d(α) = 2 for some α ∈ Π.

Suppose that d = (1m12m2 . . . rmr) with mr 	= 0. Since d ∈ Δ \ (Δo ∪ 0), the maximal 
integer s < r such that ms 	= 0 has to satisfy s < r− 1. Then we set t = r− 2 r−s

2 � and 
mt = mr. Now we consider a new set of elementary divisors d′ = (1m12m2 . . . smstmt). 
By its construction, it is not difficult to check that the set of elementary divisors d′ comes 
from an appropriate partition (or a bipartition). Thus d′ also gives a weighted Dynkin 
diagram d′ ∈ Δ′ of a simple root system whose rank is smaller than the original simple 
root system. Therefore to study the Gram matrix Gd,λ can be reduced to study the Gram 
matrix Gd′,λ′ where λ′ is the restriction of λ. Moreover d ∈ Δ is special if and only if 
d′ ∈ Δ′ is special. Such reduction process can go on until d becomes an odd weighted 
Dynkin diagram or d(Π) = {0}. When d(Π) = {0}, d is special and gd(1) = {0}. Thus 
Theorem 0.8 will be implied by the following Theorem.

Theorem 1.5. Assume that G is of classical type An, Bn, Cn or Dn. Let d ∈ Δo, which 
implies that gd(1) 	= {0}.

(1) If d ∈ Δspec, then there exists a non-degenerate λ ∈ HomZ(gZ,d(2), Z).
(2) If d /∈ Δspec and chark = 2, then detGd,λ = 0 for any λ ∈ Homk(gd(2), k).

In the following sections we will prove Theorem 1.5 through case by case discussions. 
For (1), we will construct a non-degenerate λ ∈ HomZ(gZ,d(2), Z) explicitly when d ∈
Δspec. For (2), we need to calculate the determinant of symmetric matrices over k when 
char k = 2; the properties of this type of matrices will be given in the next section.
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2. Matrices over a field of even characteristic

The only bad prime is 2 for classical groups of types B, C and D. So in this section we 
study the determinant of certain symmetric matrices over a field of even characteristic. 
Throughout this section, we assume that chark = 2.

For A ∈ Mm×n(k) and B ∈ Ml×n(k) with m ≤ l, we denote the rows of A by 
A1, A2, . . . Am and the rows of B by B1, B2, . . . , Bl. Denote A ≺ B if there exists an 
injective map τ : [1, m] → [1, l], satisfying Ai = Bτ(i) for i ∈ [1, m].

We give the following lemma, whose proof is easy, and thus omitted here.

Lemma 2.1. Let m ∈ 2N, and A ∈ Mm(k). Assume that A is symmetric with all diagonal 
elements zero and that detA = 0. Let X = {x ∈ km | Atx = 0}. Then dimX ≥ 2.

Proposition 2.2. Let n, N ∈ Z+ and Γ ∈ {2n, 2n + 1}. For r ∈ [1, N ], let kr ∈ Z+, 
mr ∈ [1, 2n], and Ar ∈ Mmr×Γ(k). Assume that mr < ms and Ar ≺ As for r < s in 
[1, N ]. Let Er,s

i,j ∈ MΓ(k), for r, s ∈ [1, N ], i ∈ [1, kr], j ∈ [1, ks], which is of the form

Er,s
i,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
0 er,si,j In

er,si,j In 0

)
if Γ = 2n,⎛⎝ 0 0 0

0 0 er,si,j In
0 er,si,j In 0

⎞⎠ if Γ = 2n + 1,

where er,si,j = es,rj,i ∈ k. Let

Si,i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Ai,1 0 0 · · · · · · 0 0
tAi,1 0 0 Ei,i

1,2 · · · · · · 0 Ei,i
1,ki

0 0 0 Ai,2 . . . . . . 0 0
0 Ei,i

2,1
tAi,2 0 · · · . . . 0 Ei,i

2,ki

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . . . . 0 Ai,ki

0 Ei,i
ki,1 0 Ei,i

ki,2 . . . . . . tAi,ki
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for i ∈ [1, N ],

Si,j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · · · · 0 0
0 Ei,j

1,1 0 Ei,j
1,2 · · · · · · 0 Ei,j

1,kj

0 0 0 0 . . . . . . 0 0
0 Ei,j

2,1 0 Ei,j
2,2 · · · . . . 0 Ei,j

2,kj

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . . . . 0 0
0 Ei,j 0 Ei,j . . . . . . 0 Ei,j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for i 	= j in [1, N ],
ki,1 ki,2 ki,kj
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where Ar,i = Ar for i ∈ [1, kr], and S be the blocked matrix (Si,j)i,j∈[1,N ]. Then detS = 0
if one of the following conditions is satisfied:

(1) Γ = 2n, mr is even for r ∈ [1, N ] and there exists σ ∈ [1, N ] with kσ odd and 
mσ < 2n;

(2) Γ = 2n, and there exits σ ∈ [1, N ] with mσ odd;
(3) Γ = 2n + 1, and mσ is even for some σ ∈ [1, N ].

Proof. Let Z be a row vector of proper size, satisfying StZ = 0. It is enough to show 
that Z can be taken nonzero.
(1) For r ∈ [1, N ] and i ∈ [1, kr], write Ari = (Xri, Yri), where Xri, Yri ∈ Mmr×n(k); as 
Ar,i = Ar, we can denote Xri, Yr,i as Xr, Yr respectively. Write Z = (Z1, · · · , ZN ), with

Zr = (Tr1, Ur1, Vr1, · · · , Tr,kr
, Ur,kr

, Vr,kr
),

where Tri ∈ kmr , Uri, Vri ∈ kn are row vectors, for r ∈ [1, N ] and i ∈ [1, kr]. It is clear 
that, StZ = 0 is equivalent to the following system of linear equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Xri
tUri + Yri

tVri = 0
tXri

tTri +
∑
s,j

er,si,j (
tVsj) = 0

tYri
tTri +

∑
s,j

er,si,j (
tUsj) = 0

(2.2.1)

for r ∈ [1, N ] and i ∈ [1, kr]. Without loss of generality, in the following we assume that 
σ is the minimal integer such that kσ is odd and mσ < 2n.

We let

E =

⎛⎝E1,1 · · · E1,σ

· · · · · · · · ·
Eσ,1 · · · Eσ,σ

⎞⎠ ,

where

Ei,j =

⎛⎝ ei,j1,1 · · · ei,j1,kj

· · · · · · · · ·
ei,jki,1 · · · ei,jki,kj

⎞⎠ ,

for i, j ∈ [1, σ] and ei,il,l = 0 for i ∈ [1, σ], l ∈ [1, ki]. Since mσ < 2n, there exist row 
vectors Uσ, Vσ ∈ kn, not both 0, such that Xσ

tUσ + Yσ
tVσ = 0. Since kσ is odd, E is a 

symmetric matrix of odd degree with diagonal elements zero. As chark = 2, there exists 
a nonzero row vector

W = (w11, · · · , w1,k1 , · · · , wσ,1, · · · , wσ,kσ
) ∈ kk1+···+kσ ,
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satisfying EtW = 0.
Now we set

Tr,i = 0 for r ∈ [1, N ], i ∈ [1, kr],
Ur,i = Vr,i = 0 for r ∈ [σ + 1, N ], i ∈ [1, kr],
Ur,i = wr,iUσ, Vr,i = wr,iVσ for r ∈ [1, σ], i ∈ [1, kr].

The vector Z thus obtained satisfies Z 	= 0 and StZ = 0.

(2) Completely as in (1), we get the equivalence between StZ = 0 and the system of 
linear equations (2.2.1). Since Xσ

tYσ+Yσ
tXσ is a symmetric matrix with diagonals zero, 

and its rank mσ is odd, there exists a nonzero row vector Hσ ∈ kmσ such that

(Xσ
tYσ + Yσ

tXσ)tHσ = 0.

We set

Uσ,i = Uσ = HσYσ and Vσ,i = Vσ = HσXσ for i ∈ [1, kσ].

If Uσ = Vσ = 0, then set

Tr,i = 0 for r ∈ [1, N ], r 	= σ, i ∈ [1, kr],
Tσ,i = Hσ for i ∈ [1, kσ],
Ur,i = Vr,i = 0 for r ∈ [1, N ], i ∈ [1, kr].

The matrix Z thus obtained is nonzero and satisfies StZ = 0.
If Uσ 	= 0 or Vσ 	= 0, then put

E =

⎛⎝ E1,1 · · · E1,σ

· · · · · · · · ·
Eσ−1,1 · · · Eσ−1,σ

⎞⎠ ,

where

Ei,j =

⎛⎝ ei,j1,1 · · · ei,j1,kj

· · · · · · · · ·
ei,jki,1 · · · ei,jki,kj

⎞⎠
for i ∈ [1, σ − 1] and j ∈ [1, σ]. Since E is not of full column rank, there exists

W = (w1,1, · · · , w1,k1 , · · · , wσ,1, · · · , wσ,kσ
) ∈ kk1+···+kσ

satisfying W 	= 0 and EtW = 0.
Let dr,i =

∑
s∈[1,σ],j∈[1,ks] e

r,s
i,jws,j for r ∈ [σ, N ] and i ∈ [1, kr]. For r ∈ [σ, N ], since 

Aσ ≺ Ar, through adding a certain number of 0’s in the end of Hσ, we can get a vector 
Hr ∈ kmr satisfying
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tXr
tHr = tXσ

tHσ,
tYr

tHr = tYσ
tHσ.

Set

Tr,i = 0 for r ∈ [1, σ − 1], i ∈ [1, kr],
Tr,i = dr,iHr for r ∈ [σ,N ], i ∈ [1, kr],
Ur,i = Vr,i = 0 for r ∈ [σ + 1, N ], i ∈ [1, kr],
Ur,i = wr,iUσ, Vr,i = wr,iVσ, for r ∈ [1, σ], i ∈ [1, kr].

The vector Z thus obtained satisfies Z 	= 0 and StZ = 0

(3) For r ∈ [1, N ] and i ∈ [1, kr], write Ari = (Pri, Xri, Yri), where Xri, Yri ∈ Mmr×n(k), 
Pri ∈ Mmr×1(k); as Ar,i = Ar, we can denote by Xr,i, Yr,i, Pr,i as Xr, Yr, Pr respectively. 
Write Z = (Z1, · · · , ZN ), with

Zr = (Tr1, χr1, Ur1, Vr1, · · · , Tr,kr
, χr,kr

, Ur,kr
, Vr,kr

),

where Tri ∈ kmr , Uri, Vri ∈ kn are row vectors, and χri ∈ k for r ∈ [1, N ] and i ∈ [1, kr]. 
It is clear that, StZ = 0 is equivalent to the following system of linear equations:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

χriPr,i + Xri
tUri + Yri

tVri = 0
tXri

tTri +
∑
s,j

er,si,j (
tVsj) = 0

tYri
tTri +

∑
s,j

er,si,j (
tUsj) = 0

tPri
tTri = 0

(2.2.2)

for r ∈ [1, N ] and i ∈ [1, kr].
If Xσ

tYσ + Yσ
tXσ is invertible, we set

ησ = (Xσ
tYσ + Yσ

tXσ)−1Pσ.

We let Uσ = tησYσ and Vσ = tησXσ. Since (Xσ
tYσ + Yσ

tXσ)−1 is a symmetric matrix 
with diagonal elements zero, it is easy to check that tPσησ = 0. As in the proof of (2), 
we put

E =

⎛⎝ E1,1 · · · E1,σ

· · · · · · · · ·
Eσ−1,1 · · · Eσ−1,σ

⎞⎠ ,

where

Ei,j =

⎛⎝ ei,j1,1 · · · ei,j1,kj

· · · · · · · · ·
ei,j · · · ei,j

⎞⎠

ki,1 ki,kj
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for i ∈ [1, σ − 1] and j ∈ [1, σ]. Since E is not of full column rank, there exists

W = (w1,1, · · · , w1,k1 , · · · , wσ,1, · · · , wσ,kσ
) ∈ kk1+···+kσ

satisfying W 	= 0 and EtW = 0. Let dr,i =
∑

s∈[1,σ],j∈[1,ks] e
r,s
i,jws,j for r ∈ [σ, N ] and 

i ∈ [1, kr]. For r ∈ [σ, N ], since Aσ ≺ Ar, through adding a certain number of 0’s in the 
end of ησ, we can get a column vector ηr ∈ kmr satisfying

tPrηr = 0, tXσησ = tXrηr,
tYσησ = tYrηr.

Set

χr,i = wr,i for r ∈ [1, σ], i ∈ [1, kr]
χr,i = 0 for r ∈ [σ + 1, N ], i ∈ [1, kr]
Ur,i = wr,iUσ, Vr,i = wr,iVσ for r ∈ [1, σ], i ∈ [1, kr],
Ur,i = Vr,i = 0 for r ∈ [σ + 1, N ], i ∈ [1, kr],
Tr,i = 0 for r ∈ [1, σ − 1], i ∈ [1, kr],
Tr,i = dr,i

tηr for r ∈ [σ,N ], i ∈ [1, kr].

The vector Z thus obtained satisfies Z 	= 0 and StZ = 0.
If Xσ

tYσ + Yσ
tXσ is not invertible, then the space

{ξ ∈ kmσ | (Xσ
tYσ + Yσ

tXσ)tξ = 0}

is of dimension ≥ 2 by Lemma 2.1, as mσ is even. Since char k = 2, we can find a nonzero 
row vector ξσ such that

(Xσ
tYσ + Yσ

tXσ)tξσ = 0 and tPσ
tξσ = 0.

We set each χri = 0, then the proof follows exactly as the proof of (2). Therefore the 
proposition is proved. �
3. Type A

3.1. Odd weighted Dynkin diagram

In this section we deal with the type A case. In this case all weighted Dynkin diagrams 
are special and thus it is enough to prove that gZ,d(1) = {0}, or there exists a non-
degenerate λ ∈ HomZ(gZ,d(2), Z) for each d ∈ Δ. Now assume that the simple Lie 
algebra g is of type An and all the simple roots are α1, α2, . . . , αn and thus all positive 
roots can be denoted by εi,j = αi + αi+1 + · · · + αj with 1 ≤ i ≤ j ≤ n.

We can identify the weighted Dynkin diagram d ∈ Δo with the sequence

(ir = 0, ir−1, ir−2, · · · , i1, i′1, · · · , i′r−2, i
′
r−1, i

′
r = n + 1)
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of integers, where {il, i′l | l ∈ [1, r− 1]} = {i ∈ [1, n] | d(αi) = 1}, satisfying the following 
conditions (1)-(3):

(1) 1 ≤ ir−1 < ir−2 < · · · < i1 < i′1 < · · · < i′r−2 < i′r−1 ≤ n,
(2) sl = s′l for l = 2, 3, · · · , r,
(3) sl+2 ≤ sl for 1 ≤ l ≤ r − 2,

where sl = il−1 − il, s′l = i′l − i′l−1 for l = 2, 3, · · · , r and s1 = i′1 − i1.
In fact, suppose that μ = (1m12m2 . . . rmr ) ∈ Pn+1, where mr ≥ 1, gives the weighted 

Dynkin diagram d ∈ Δ as above. According to the discussion in Section 1.4, it is easy to 
see that d ∈ Δo if and only if mr−1 ≥ 1 in the partition μ.

For this partition μ = (1m12m2 . . . rmr), we set

al =
{
ml + ml+2 + · · · + mr if r ≡ l,

ml + ml+2 + · · · + mr−1 if r − 1 ≡ l.

Then the sequence of integers

(ir = 0, ir−1, ir−2, · · · , i1, i′1, · · · , i′r−2, i
′
r−1, i

′
r = n + 1)

corresponding to the weighted Dynkin diagram d ∈ Δo associated to μ satisfies that 
sl = s′l = al for l = 2, 3, . . . , n and s1 = a1. Using this idea, we can also identify a 
weighted Dynkin diagram with certain sequence of integers when we consider the type 
B, C and D cases later.

3.2. Blocks of Gram matrix

In order to prove Theorem 1.5, we have to look for a non-degenerate λ ∈
HomZ(gZ,d(2), Z). Our idea is to divide the set Φd,1 into disjoint subsets and consider 
the submatrices of the Gram matrix corresponding to these subsets. For the construction 
of equivalence classes, we define maps between subsets of Φd,1.

Write (ir, ir−1, · · · , i1, i′1, · · · , i′r−1, i
′
r) as (j1, j2, · · · , jr, jr+1, · · · , j2r−1, j2r). For k ∈

[2, 2r − 2], we put

Xk = {a ∈ [1, n] | jk−1 < a ≤ jk and a > jk + jk+1 − jk+2},

and let ϕk(a) = jk + jk+1 − a for a ∈ Xk. We set

Xk = {εab|jk−1 < a ≤ jk ≤ b < jk+1, a ∈ Xk} ⊆ Φd,1,

and define the “right transformation”:

Rk : Xk → Φd,1, εab �→ εb+1,ϕk(a)
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for k ∈ [2, 2r − 2]. Put

X = �
k∈[2,2r−2]

Xk, X = �
k∈[2,2r−2]

Xk.

Thus we can define ϕ : X → [1, n] sending a ∈ Xk to ϕk(a) and a map R : X → Φd,1, 
sending εab ∈ Xk to Rk(εab) for k ∈ [2, 2r − 2].

Similarly, we put

Yk = {b ∈ [1, n] | jk < b ≤ jk+1 and b < jk + jk−1 − jk−2},

for k ∈ [2, 2r − 2], and let ψk(b) = jk + jk−1 − b for b ∈ Yk. We set

Yk = {εab|jk−1 < a ≤ jk ≤ b < jk+1, b ∈ Yk} ⊆ Φd,1

and define the “left transformation”:

Lk : Yk → Φd,1, εab �→ εψk(b),a−1,

for k ∈ [2, 2r − 2]. Put

Y = �
k∈[2,2r−2]

Yk, Y = �
k∈[2,2r−2]

Yk.

Thus we can define ψ : Y → [1, n] sending b ∈ Xk to ψk(b) and a map L : Y → Φd,1, 
sending εab ∈ Yk to Lk(εab).

For εab ∈ Φd,1, if b < i′1 = jr+1, then εab ∈ X. On the other hand for εab ∈ Φd,1, if 
a > i1 = jr, then εab ∈ Y . So we see that X∪Y = Φd,1. Let τ : [1, n] → [1, n], a �→ n +1 −a

be an involution on [1, n]. By symmetry, there exists a 1 − 1 correspondence between X
and Y , corresponding εab ∈ X to ετ(b)τ(a) ∈ Y .

Let εab ∈ X\Y and we define the R-orbit of εab

Xab = {εab,R(εab), · · · ,Rm−1(εab)},

where m ∈ N is maximal with Rm−1(εab) ∈ X. It can be written as

εa,b
R−→ εb+1,ϕ(a)

R−→ εϕ(a)+1,ϕ(b)−1
R−→ εϕ(b),ϕ2(a)−1

R−→ εϕ2(a),ϕ2(b)
R−→ . . .

Similarly for εab ∈ Y \X, we also define the L -orbit of εab

Yab = {εab,L (εab), · · · ,L l−1(εab)},

where l ∈ N is maximal with Rl−1(εab) ∈ Y . It can be written as
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εa,b
L−→ εψ(b),a−1

L−→ εψ(a)+1,ψ(b)−1
L−→ εψ2(b)+1,ψ(a)

L−→ εψ2(a),ψ2(b)
L−→ . . .

By symmetry we see that Xab = Yτ(b)τ(a) or Xab ∩ Yτ(b)τ(a) = ∅. For convenience, we 
set

Ω0 = {(a, b) ∈ [1, n] × [1, n] | εab ∈ X\Y, Xab = Yτ(b)τ(a)},
Ω1 = {(a, b) ∈ [1, n] × [1, n] | εab ∈ X\Y, Xab ∩ Yτ(b)τ(a) = ∅ and |Xab| is odd },
Ω2 = {(a, b) ∈ [1, n] × [1, n] | εab ∈ X\Y, Xab ∩ Yτ(b)τ(a) = ∅ and |Xab| is even }.

We put Mab = Xab∪Yτ(b)τ(a) and set Ω = Ω0 ∪Ω1 ∪Ω2. It is noticed that Φd,1 = X ∪Y . 
Then we can divide Φd,1 as

Φd,1 = �
(a,b)∈Ω

Mab

Lemma 3.3. Let (a, b) ∈ Ω1, which implies that |Xab| = m is odd. Then there exists a 
unique integer s such that

Rm−1(εab) + L s(ετ(b)τ(a)) ∈ Φd,2.

Moreover such integer s is even.

Proof. Denote εak,bk = Rk−1(εa,b) for k = 1, 2, . . . , m. By symmetry it is easy to see 
that

ετ(bk),τ(ak) = L k−1(ετ(b)τ(a)).

Note that there exists an integer l such that

i′l−1 < am < i′l ≤ bm < i′l+1.

So we have

jr+l−1 < am < jr+l ≤ bm < jr+l+1.

We will show that l is an odd integer. Now suppose that l is even, then τ(am) = ψx(am)
for some odd integer x. We consider the L -orbit of εam,bm which is

εam,bm
L−→ εψ(bm),am−1

L−→ εψ(am)+1,ψ(bm)−1
L−→ εψ2(bm)+1,ψ(am)

L−→ εψ2(am),ψ2(bm)
L−→ . . . .

Then εψx+1(bm)+1,ψx(am) must be in this orbit. Since εam,bm is not in X, am is not in 
Xr+l. So τ(am) = ψx(am) is not in Yl. Therefore we have
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εψx+1(bm)+1,ψx(am) = εa,b,

which implies that the cardinality of the R-orbit of εab is even. Thus we get a contra-
diction. So the integer l is odd and τ(bm) = ψy(bm) for some odd integer y. It is not 
difficult to see that

εϕy(τ(bm)),ϕy+1(τ(am))−1 = εbm,ϕy+1(τ(am))−1

is in the R-orbit of ετ(bm),τ(am). Note that the R-orbit of ετ(bm),τ(am) is the same as 
L -orbit of ετ(b),τ(a). Therefore there exists a unique integer s such that

L s(ετ(b)τ(a)) = εbm,ϕy+1(τ(am))−1.

So for such integer s we have

Rm−1(εab) + L s(ετ(b)τ(a)) ∈ Φd,2.

Moreover it is not difficult to see that m − 1 − s = 2y which is even. As m is odd, s must 
be even. �

For (a, b) ∈ Ω1, we denote

Rm−1(εab) + L s(ετ(b)τ(a)) ∈ Φd,2

in Lemma 3.3 as �ab. It is noticed that �ab and �a′b′ may be the same for (a, b) 	= (a′, b′)
in Ω1.

3.4. Proof of Theorem 1.5 for type A

Now we give the proof of our main theorem for type A. We put

Λab =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{Rk−1(εab) + Rk(εab)|k ∈ [1, |Xab| − 1]}
if (a, b) ∈ Ω0,

{Rk−1(εab) + Rk(εab),L k(ετ(b)τ(a)) + L k−1(ετ(b)τ(a))|k ∈ [1, |Xab| − 1]}
⋃
{�ab}

if (a, b) ∈ Ω1,

{Rk−1(εab) + Rk(εab),L k(ετ(b)τ(a)) + L k−1(ετ(b)τ(a))|k ∈ [1, |Xab| − 1]}
if (a, b) ∈ Ω2,

and define λ ∈ HomZ(gZ,d(2), Z) by
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λ(eα) =

⎧⎪⎪⎨⎪⎪⎩
1 if α ∈

⋃
(a,b)∈Ω

Λab,

0 if α ∈ Φd,2\
⋃

(a,b)∈Ω
Λab.

Then

detGd,λ = ±
∏

(a,b)∈Ω

detGab,

where Gab = (λ([eα, eβ ]))α,β∈Mab
for each (a, b) ∈ Ω.

When (a, b) ∈ Ω0, the cardinality |Xab| is even by symmetry. Then it is easy to 
notice that detGab ∈ {±1}. When (a, b) ∈ Ω1, we write down the matrix Gab and do 
cofactor expansion of the determinant detGab. Using the result of Lemma 3.3, it is 
checked that detGab ∈ {±1}. When (a, b) ∈ Ω2, there are two cases. In the first case, 
the only subdiagonal of the matrix Gab is ±1, then the form of this matric Gab is the 
same as Gcd for (c, d) ∈ Ω0. In the second case, the form of the matrix Gab is the same 
as Gcd for (c, d) ∈ Ω1. In both cases, we know that detGab ∈ {±1}. Therefore the map 
λ : gZ,d(2) → Z we consider here satisfies that σλ is non-degenerate over Z.

Therefore we have proved Theorem 1.5 (1). As every weighted Dynkin diagram is 
special in the type A case, Theorem 1.5 has been proved in this case.

4. Faithful map

4.1. Odd weights of types C, B and D

Let g be the simple Lie algebra of type Cn over k. The weighted Dynkin diagram 
associated to the pairs of partition (μ, ν) with |μ| + |ν| = n where ν has distinct parts 
are given in Section 1.2. We can identify Δo with the set of sequences (i1, i2, · · · , ik) of 
integers, satisfying the following conditions (1)-(4):

(1) 1 ≤ i1 < i2 < · · · < ik ≤ n − 1,
(2) sl ≤ sl+2 for l ∈ [1, k − 2],
(3) sl ≡ 0 for l ∈ [1, k] with l ≡ k − 1,
(4) sk−1 ≤ 2(n − ik),

where s1 = i1 and sl = il − il−1 for l ∈ [2, k], through identifying d ∈ Δo with 
(i1, i2, · · · , ik) where {il|l ∈ [1, k]} = {i ∈ [1, n]|d(αi) = 1}.

Let g be the simple Lie algebra of type Bn over k. The set Δ of weighted Dynkin 
diagrams is given in Section 1.2. It is clear that we can identify Δo with the set of 
sequences (i1, i2, · · · , ik) of integers, satisfying the following (1)-(4):
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(1) 1 ≤ i1 < i2 < · · · < ik ≤ n,
(2) sl ≤ sl+2 for l ∈ [1, k − 2],
(3) sl ≡ 0 for l ∈ [1, k] with l ≡ k,
(4) sk−1 ≤ 2(n − ik) + 1,

where s1 = i1 and sl = il − il−1 for l ∈ [2, k], through identifying d ∈ Δo with 
(i1, i2, · · · , ik) where {il|l ∈ [1, k]} = {i ∈ [1, n]|d(αi) = 1}.

Let g be the simple Lie algebra of type Dn over k. The set Δ of weighted Dynkin 
diagrams is given in Section 1.2. If d is a sequence of elementary divisors defining odd 
weighted Dynkin diagrams, then the two Dynkin diagrams in (1.2.1) and (1.2.2) coincide. 
Consequently, the weighted Dynkin diagrams of odd weights can be classified in the 
following two cases:

� � �. . . . . . . . . . . . �

�

�

ξ1 − ξ2 ξ2 − ξ3 ξn−2 − ξn−1

1

1

�
��

�
��

(4.1.1)

and

� � �. . . . . . . . . . . . �

�

�

ξ1 − ξ2 ξ2 − ξ3 ξn−2 − ξn−1

0

0

�
��

�
��

(4.1.2)

Thus we can write Δo = Δo
1 � Δo

2, where Δo
1 (resp. Δo

2) consists of weighted Dynkin 
diagrams of the form (4.1.1) (resp. (4.1.2)).

The weighted Dynkin diagram associated to the partition (22m12) is special, in this 
case it is not difficult to see that there exists a non-degenerate λ ∈ HomZ(gZ,d(2), Z). 
Thus we exclude this situation.

The set Δo
1 can be identified with the set of sequences (i1, i2, · · · , ik) of integers, 

satisfying the following conditions (1)-(4):

(1) 1 ≤ i1 < i2 < · · · < ik ≤ n − 3,
(2) sl ≤ sl+2 for l ∈ [1, k − 1],
(3) sl ≡ 0 for l ∈ [1, k + 1] with l ≡ k + 1,
(4) sl ≤ 2 for l ∈ [1, k] with l ≡ k,
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where s1 = i1 and sl = il − il−1 for l ∈ [2, k] and sk+1 = n − 1 − ik, through identifying 
d ∈ Δo

1 with (i1, i2, · · · , ik) where {il|l ∈ [1, k]} = {i ∈ [1, n]|d(αi) = 1}.

The set Δo
2 can be identified with the set of sequences (i1, i2, · · · , ik) of integers, 

satisfying the following conditions (1)-(4):

(1) 1 ≤ i1 < i2 < · · · < ik ≤ n − 2,
(2) sl ≤ sl+2 for l ∈ [1, k − 2],
(3) sl ≡ 0 for l ∈ [1, k] with l ≡ k,
(4) sk−1 ≤ 2(n − ik),

where s1 = i1 and sl = il − il−1 for l ∈ [2, k], through identifying d ∈ Δo with 
(i1, i2, · · · , ik) where {il|l ∈ [1, k]} = {i ∈ [1, n]|d(αi) = 1}.

4.2. Faithful maps

For a fixed simple root system and an odd weighted Dynkin diagram d =
(i1, i2, · · · , ik) ∈ Δo, put

Yd,l = {α ∈ Φd,1 | [α : αil ] = 1},

for l ∈ [1, k]. Then |Yd,l| ≤ |Yd,l+1| for l ∈ [1, k − 1]. In this subsection, we fix d =
(i1, i2, · · · , ik) ∈ Δo, where k ≥ 3, and λ ∈ Homk(gd(2), k), or λ ∈ HomZ(gZ,d(2), Z). 
Set s1 = i1, and sj = ij − ij−1 for j ∈ [2, k].

Now we set

Ωl = {εs − εt ∈ Φd,2 | t− s ≤ il+1 − (il−1 + 1)}, (4.2.1)

for l ∈ [1, k − 2]. If

{γ ∈ Φd,2|[γ : αil ] = [γ : αil+1 ] = 1, λ(eγ) 	= 0} ⊆ Ωl,

for l ∈ [1, k − 2], then λ is said to be faithful.
If λ is faithful, then put Q1 = Yd,1, and

Pl = {α ∈ Yd,l+1 | there exists β ∈ Ql, such that β + α ∈ Ωl},

Ql+1 = Yd,l+1\Pl,

Ml+1 = (λ([eα, eβ ]))α∈Ql,β∈Pl
,

for l ∈ [1, k − 2]. Put

Mk = (λ([eα, eβ ]))α,β∈Qk−1∪Yd,k
. (4.2.2)
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It is convenient to describe the sets Q1, P1, · · · , Qk−2, Pk−2, Qk−1 through diagrams. 
For example, the set Q1 = Yd,1 = {εs − εt | s ∈ [1, i1], t ∈ [i1, i2 − 1]} is denoted as

i1 i2 − 1
1

i1

Then Yd,2 = P1 �Q2 is denoted as follows,

i2 i2 + s1 − 1 i2 + s1 i3 − 1
i1 + 1

P1 Q2

i2

from which we can see that

P1 = {εs − εt | s ∈ [i1 + 1, i2], t ∈ [s2, i2 + s1 − 1]},
Q2 = {εs − εt | s ∈ [i1 + 1, i2], t ∈ [i2 + s1, i3 − 1]}.

In general, for l ∈ [2, k − 1], the partition of Yd,l into Pl−1 �Ql is

il il + s1 il + s3 · · · il + sl−3 il + sl−1 il+1 − 1
il−1 + 1

Ql

il−1 + s2 + 1

il−1 + s4 + 1
Pl−1· · ·

il−1 + sl−2 + 1

il

if l ≡ 0, or

il il + s2 il + s4 · · · il + sl−3 il + sl−1 il+1 − 1
il−1 + 1

Ql

il−1 + s1 + 1

il−1 + s3 + 1
Pl−1· · ·

il−1 + sl−2 + 1
il
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if l 	≡ 0. Thus it is noticed that

|Pl| = |Ql| =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
l/2∑
j=1

(s2j+1 − s2j−1)s2j if l ≡ 0,

(l+1)/2∑
j=1

(s2j − s2j−2)s2j−1 if l 	≡ 0,

for l ∈ [1, k − 2]. Consequently,

detGd,λ = ±(
k−1∏
l=2

detMl)2 detMk (4.2.3)

4.3. Isomorphisms

Let d = (i1, i2, · · · , ik) ∈ Δo, and λ, λ′ ∈ Homk(gd(2), k). For Ψ : g → g an isomor-
phism of Lie algebras, if Ψ(gd(1)) = gd(1), and

λ′([Ψ(v),Ψ(w)]) = λ(v, w),

for all v, w ∈ gd(1), then we call Ψ : (g, d, λ) → (g, d, λ′) an isomorphism of weighted Lie 
algebras.

There is a similar definition in the integral case. Let λ, λ′ ∈ HomZ(gZ,d(2), Z). For 
Ψ : g0 → g0 an isomorphism of Lie algebras, if Ψ(gZ,d(1)) = gZ,d(1), and

λ′([Ψ(v),Ψ(w)]) = λ(v, w),

for all v, w ∈ gZ,d(1), then we call Ψ : (g0, d, λ) → (g0, d, λ′) an isomorphism of weighted 
Lie algebras.

For λ, λ′ ∈ Homk(gd(2), k) (resp. λ, λ′ ∈ HomZ(gZ,d(2), Z)), it is clear that

detGd,λ = ± detGd,λ′ (4.3.4)

if there exists an isomorphism Ψ : (g, d, λ) → (g, d′, λ′) (resp. Ψ : (g0, d, λ) → (g0, d′, λ′)) 
of weighted Lie algebras.

Let d = (i1, i2, · · · , ik) ∈ Δo, where k ≥ 2. Let λ ∈ Homk(gd(2), k). For l ∈ [1, k − 1]
and s, t ∈ [il, il+1 − 1], there are natural isomorphisms as follows. In the following we 
denote es,t = eεs−εt for convenience.

(1) For γ ∈ k, define

�γs,t : (g, d, λ) → (g, d, λ′),

where
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�γs,t(ea,s) = ea,s + γea,t for all a ∈ [il−1 + 1, il],
�γs,t(et+1,b) = et+1,b − γes+1,b for all b ∈ [il+1, il+2 − 1] if l ≤ k − 2,

or for all b ∈ [ik, 2n− ik − 1] if l = k − 1,
�γs,t(eα) = eα for other α ∈ Φd,1,

and

λ′(ea′,s) = λ(ea′,s) − γλ(ea′,t) for all a′ ∈ [il−2 + 1, il−1] if l ≥ 2,
λ′(et+1,b′) = λ(et+1,b′) + γλ(es+1,b′) for all b′ ∈ [il+2, il+3 − 1] if l ≤ k − 3,

or for all b′ ∈ [ik, 2n− ik − 1] if l = k − 2,
λ′(eβ) = λ(eβ) for other β ∈ Φd,2.

Denote this λ′ as �γs,t(λ). When γ = 1, write �γs,t as �s,t.
(2) Define

ςs,t : (g, d, λ) → (g, d, λ′),

where

ςs,t(ea,s) = ea,t for all a ∈ [il−1 + 1, il],
ςs,t(et+1,b) = es+1,b for all b ∈ [il+1, il+2 − 1] if l ≤ k − 2,

or for all b ∈ [ik, 2n− ik − 1] if l = k − 1,
ςs,t(eα) = eα for other α ∈ Φd,1,

and

λ′(ea′,s) = λ(ea′,t) for all a′ ∈ [il−2 + 1, il−1] if l ≥ 2,
λ′(et+1,b′) = λ(es+1,b′) for all b′ ∈ [il+2, il+3 − 1] if l ≤ k − 3,

or for all b′ ∈ [ik, 2n− ik − 1] if l = k − 2,
λ′(eβ) = λ(eβ) for other β ∈ Φd,2.

Denote this λ′ as ςs,t(λ).

Similarly,

�s,t : (g0, d, λ) → (g0, d, �s,t(λ)),

ςs,t : (g0, d, λ) → (g0, d, ςs,t(λ)),

are defined for λ ∈ HomZ(gZ,d(2), Z).

Lemma 4.4. Let d = (i1, i2, · · · , ik) ∈ Δo, and l ∈ [2, k − 1]. Let t1, t2 ∈ [il, il+1 − 1], 
t1 	= t2, and s ∈ [il−2 + 1, il−1]. For λ ∈ HomZ(gZ,d(2), Z), if λ(es,t1) 	= 0, then we can 
find a sequence of maps
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�1, �2, · · · , �u

with �i ∈ {�±1
t1,t2 , ςt1,t2} for i ∈ [1, u], and �u · · ·�2�1(λ)(es,t1) = 0.

Proof. If λ(es,t2) = 0, then ςt1,t2(λ)(es,t1) = 0, and the lemma is proved. Now suppose 
λ(es,t2) 	= 0. We show the result using induction on |λ(es,t2)|.

If |λ(es,t2)| ≤ |λ(es,t1)|, then take �1 ∈ {�±1
t1,t2}, such that

|�1(λ)(es,t1)| = |λ(es,t1)| − |λ(es,t2)| < |λ(es,t1)|.

So the lemma follows by induction.
If |λ(es,t2)| > |λ(es,t1)|, then take m ∈ Z+, satisfying

m|λ(es,t1)| ≤ |λ(es,t2)| < (m + 1)|λ(es,t1)|.

Then we can take �1, · · · , �m ∈ {�±1
t1,t2}, such that

|�m · · ·�1ςt1,t2(λ)(es,t1)| = |λ(es,t2)| −m|λ(es,t1)| < |λ(es,t1)|.

The lemma follows by induction. �
Lemma 4.5. Let d = (i1, i2, · · · , ik) ∈ Δo, where k ≥ 3.

(1) Let λ ∈ Homk(gd(2), k). There exists a faithful map λ′ ∈ Homk(gd(2), k), and an 
isomorphism Ψ : (g, d, λ) → (g, d, λ′) of weighted Lie algebras.

(2) Let λ ∈ HomZ(gZ,d(2), Z). There exists a faithful map λ′ ∈ HomZ(gZ,d(2), Z), and 
an isomorphism Ψ : (g0, d, λ) → (g0, d, λ′) of weighted Lie algebras.

Proof. For λ ∈ Homk(gd(2), k), or λ ∈ HomZ(gZ,d(2), Z), put

Γl = {γ ∈ Φd,2 | [γ : αil ] = [γ : αil+1 ] = 1, λ(eγ) 	= 0}

for l ∈ [1, k − 2], then take s minimal with

εs − εt ∈
k−2⋃
l=1

(Γl\Ωl)

for some t. The result will be proved by induction on s.
Take l ∈ [1, k − 2] with εs − εt ∈ Γl\Ωl. Let t′ = s + il+1 − (il−1 + 1). Then t′ < t as 

εs − εt /∈ Ωl.

(1) Let λ ∈ Homk(gd(2), k). If λ(est′) = 0, then ςt,t′(λ)(est) = 0, and ςt,t′(λ)(es1t1) =
λ(es1t1) for any s1 ∈ [il−1 + 1, il] and t1 ∈ [il+1, il+2 − 1] with s1 < s.
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If λ(est′) 	= 0, then �γt,t′(λ)(est) = 0, where γ = λ(est)λ(est′)−1. Moreover, 
�γt,t′(λ)(es1,t1) = λ(es1,t1), for any s1 ∈ [il−1 + 1, il] and t1 ∈ [il+1, il+2 − 1] with 
s1 < s.
In each case, the result will be proved through induction with λ replaced by ςt,t′(λ)
or �γt,t′(λ).

(2) Let λ ∈ HomZ(gZ,d(2), Z). By Lemma 4.4, there exist �1, · · · , �u ∈ {�±1
t,t′ , ςt,t′}, 

satisfying �u · · ·�1(λ)(es,t) = 0. Moreover, for any s1 ∈ [il−1 + 1, il] and t1 ∈
[il+1, il+2 − 1] with s1 < s, �u · · ·�1(λ)(es1,t1) = λ(es1,t1).
Replace λ by �u · · ·�1(λ), then the induction hypothesis is applied and the result 
is true. �

In Theorem 1.5, for a given map λ : gd(2) → k (resp. λ : gZ,d(2) → Z), we try to figure 
out the properties of detGd,λ. The above arguments from Subsection 4.2 to Lemma 4.5
tell us that we can focus our attention to faithful λ. According to Subsection 4.2, when 
λ is faithful, we can construct the set Pl, Ql and thus

detGd,λ = ±(
k−1∏
l=2

detMl)2 detMk.

The determinant detMl, for l ∈ [2, k − 1], is easy to deal with. So we will pay more 
attention to detMk in the following proof of our main theorem.

5. Type C

5.1. Special odd weights of type C

Let g be the simple Lie algebra of type Cn over k. As mentioned before, we can 
identify Δo with the set of sequences (i1, i2, · · · , ik) of integers, satisfying the following 
conditions (1)-(4):

(1) 1 ≤ i1 < i2 < · · · < ik ≤ n − 1,
(2) sl ≤ sl+2 for l ∈ [1, k − 2],
(3) sl ≡ 0 for l ∈ [1, k] with l ≡ k − 1,
(4) sk−1 ≤ 2(n − ik),

where s1 = i1 and sl = il − il−1 for l ∈ [2, k], through identifying d ∈ Δo with 
(i1, i2, · · · , ik) where {il|l ∈ [1, k]} = {i ∈ [1, n]|d(αi) = 1}.

Let d = (i1, i2, · · · , ik) ∈ Δo. As before, we set s1 = i1 and sl = il − il−1 for l ∈ [2, k]. 
By the condition (♠C) in Section 1.2, it is not difficult to see that d is special if it satisfies 
the following conditions.
(a) s1 is even;
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(b) For any two integers u ≤ v in [1, k], if u ≡ v ≡ k − 1 and

su−2 < su = su+2 = · · · = sv−2 = sv < sv+2,

then sv+1 − su−1 is even.

Lemma 5.2. Let d = (r) ∈ Δo.

(1) If d ∈ Δspec, then there exists a non-degenerate λ ∈ HomZ(gZ,d(2), Z).
(2) If d /∈ Δspec and chark = 2, then detGd,λ = 0 for any λ ∈ Homk(gd(2), k).

Proof. When d = (r) ∈ Δo,

Φd,1 = {εi − εj , εi + εj | 1 ≤ i ≤ r, r < j ≤ n}.

Now we put

Aλ,k = (λ([eεi−εk , eεj+εk ])(i,j)∈[1,r]×[1,r]

for λ ∈ HomZ(gZ,d(2), Z), or λ ∈ Homk(gd(2), k), and k ∈ [r + 1, n]. Then the Gram 
matrix is

Gd,λ =
(

A
−tA

)
, (5.2.1)

where A = Diag(Aλ,r+1, · · · , Aλ,n).
(1) If d is special, then r is even. In this case, we take λ ∈ HomZ(gZ,d(2), Z) satisfying 

λ(eεi+εi+1) = 1 for i ∈ [1, r], i ≡ 1, and λ(eα) = 0 for other roots. Then it is easy to 
check that detGd,λ ∈ {±1} for this λ.

(2) If d is not special, then r is odd. Assume that char k = 2, therefore for each k ∈
[r+1, n], Aλ,k is an symmetric matrix of odd rank whose diagonal is zero. Consequently, 
detAλ,k = 0 for any λ ∈ Homk(gd(2), k). So detGd,λ = 0 for any λ ∈ Homk(gd(2), k). �
Lemma 5.3. Let d = (i1, i2, · · · , ik) ∈ Δo ∩ Δspec. Then there exists a non-degenerate 
λ ∈ HomZ(gZ,d(2), Z).

Proof. We look for a faithful map λ ∈ HomZ(gZ,d(2), Z) such that λ is non-degenerate. 
Without loss of generality, we can assume that k is even. The discussion for k odd is 
similar.

For l ∈ [1, k − 2], we put

Xl = {εs − εt ∈ Φd,2 | s ≤ il < il+1 < t and t− s = il+1 − il−1}.

We also let
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Xk−1 = {εj + εj+1 | j ∈ [ik−1 + 1, ik − 1] and j ≡ ik−1 + 1},
Xk = {εs + (−1)s−ik−2ε

ik+� s−ik−2+1
2 � | s ∈ [ik−2 + 1, ik−1]}.

Denote X = ∪k
l=1Xl ⊆ Φd,2.

Let λ : gZ,d(2) → Z be the homomorphism such that

λ(eα) =
{

1 if α ∈ X,

0 if α ∈ Φd,2\X.

Then λ is faithful. Recall the definitions of Ml+1 for l ∈ [1, k − 1] in Section 4.2. It is 
easy to check that detMl+1 ∈ {±1} for l ∈ [1, k − 2]. In the following we show that 
detMk ∈ {±1} which implies that det Gd,λ ∈ {±1}, by (4.2.3).

To compute detMk, we need to consider the set Qk−1, as defined in Section 4.2, which 
has the following form.

ik−1 ik−1 + s2 ik−1 + s4 · · · ik−1 + sk−4 ik−1 + sk−2 ik − 1
ik−2 + 1

Qk−1

ik−2 + s1 + 1

ik−2 + s3 + 1
Pk−2· · ·

ik−2 + sk−3 + 1

ik−1

For each j ∈ [ik−2 + 1, ik−1], there exist two odd integers u ≤ v in [1, k − 1] satisfying

su−2 < su = su+2 = · · · = sv−2 = sv < sv+2,

and j ∈ [ik−2 + su−2 + 1, ik−2 + sv]. Set

Θj = [ik−1 + su−1, ik − 1].

For such u, v, sv+1−su−1 is even, since d ∈ Δo is special and k is even by the assumption. 
It is easy to see that Θj = Θj+1 when j ≡ ik−2 + 1.

We denote λ(α) = λ(eα) for simplicity, for eα ∈ gZ,d(2). Let

xj = λ(εj + εj+1) and ys = λ(εs + (−1)s−ik−2ε
ik+� s−ik−2+1

2 �)

for j ∈ [ik−1 + 1, ik − 1], j ≡ ik−1 + 1 and s ∈ [ik−2 + 1, ik−1].
As in (4.2.2),

Mk = (λ([eα, eβ ]))α,β∈Qk−1∪Yd,k
.
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So we divide Qk−1∪Yd,k into subsets and consider the submatrices of Mk corresponding 
to these subsets.

(a) Suppose that sk is even. Then |Θs| is even for each s ∈ [ik−2 +1, ik−1]. We can divide 
Qk−1 ∪ Yd,k into the following subsets:

(a1) {εs−εj , εj +(−1)s−ik−2ε
ik+� s−ik−2+1

2 �, εj+1−(−1)s−ik−2ε
ik+� s−ik−2+1

2 �, εs+1−
εj+1}, for j, j + 1 ∈ Θs;

(a2) {εs−εj+1, εj+1+(−1)s−ik−2ε
ik+� s−ik−2+1

2 �, εj−(−1)s−ik−2ε
ik+� s−ik−2+1

2 �, εs+1−
εj} for j, j + 1 ∈ Θs;

(a3) the remaining roots can be partitioned into subsets of the form {εj − εl, εj+1 +
εl, εj + εl, εj+1 − εl}.

Let X be a subset of Qk−1 ∪ Yd,k of type (a1), (a2) or (a3). Then

(λ([eα, eβ ]))α,β∈X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝ 0 ys 0 0
−ys 0 xj 0
0 −xj 0 ys+1
0 0 −ys+1 0

⎞⎟⎠ if X is of type (a1) or (a2),

⎛⎜⎝ 0 yj 0 0
−yj 0 0 0
0 0 0 yj
0 0 −yj 0

⎞⎟⎠ if X is of type (a3).

(b) Suppose that sk is odd. Then sk−1 = 2(n − ik) and |Θs| is odd for each s ∈ [ik−2 +
1, ik−1]. Besides the subsets given as before, there is still one more type of roots, namely,

{εs − εik , εik + (−1)s−ik−2ε
ik+� s−ik−2+1

2 �, εs+1 − εik , εik − (−1)s−ik−2ε
ik+� s−ik−2+1

2 �}

for s ∈ [ik−2 + 1, ik−1] and s ≡ ik−2 + 1.
It is easy to see that Mk can be written as a blocked diagonal matrix with diagonal 

blocks of the form (λ([eα, eβ ]))α,β∈X for each subset X of type (a1), (a2), (a3) or (b), 
and each block is of determinant ±1. Thus we have proved Theorem 0.8 (1) for type 
C. �
Lemma 5.4. Let d = (i1, i2, · · · , ik) ∈ Δo\Δspec. If chark = 2, then detGd,λ = 0 for any 
λ ∈ Homk(gd(2), k).

Proof. Suppose that there exists λ ∈ Homk(gd(2), k) such that detGd,λ 	= 0. We can 
assume that λ is faithful by (4.3.4) and Lemma 4.5. So by (4.2.3), detGd,λ 	= 0 implies 
that detMk 	= 0, where Mk is defined as in (4.2.2). In the following we assume that k is 
even without loss of generality.

For each l ∈ [ik−1 + 1, ik], there exist two even integers u ≤ v in [0, k − 2], which 
satisfy

su−2 < su = su+2 = · · · = sv−2 = sv < sv+2,
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and ik−1 + su < l ≤ ik−1 + sv+2. We denote Ξl = [ik−2 + 1, ik−2 + sv+1]. Noting that k
and v are even, then |Ξl| = sv+1 is even for any l ∈ [ik−1 + 1, ik].

Since d is not special, there exist odd integers ζ < η in [1, k] which satisfy

sζ−2 < sζ = sζ+2 = · · · = sη < sη+2,

such that sη+1 − sζ−1 is odd and

Ξik−1+sζ−1+1 = Ξik−1+sζ−1+2 = · · · = Ξik−1+sη+1 .

For each fixed s ∈ [ik−1 + 1, ik], we set

Bs = λ([eεr−εs , eεs−εl ])r∈Ξs,l∈[ik+1,n] and Cs = λ([eεr−εs , eεs+εl ])r∈Ξs,l∈[ik+1,n].

Then we put As = (Bs, Cs). For any s, t ∈ [ik−1 +1, ik], let Es,t be the submatrix of Mk

corresponding to the set of roots

{εs − εl, εs + εl, εt − εl, εt + εl | l ∈ [ik + 1, n]}.

With a good ordering in Qk ∪ Yd,k the matrix Mk has the same form of S in Proposi-
tion 2.2(1). Since d is not special, all conditions in Proposition 2.2(1) are satisfied. Thus 
we have detMk = 0. We get a contradiction which completes the proof of the lemma. �

Combining Lemma 5.3 and Lemma 5.4, we have proved Theorem 1.5 in the type C
case.

6. Type B

6.1. Special odd weights of type B

Let g be the simple Lie algebra of type Bn over k. As before, we can identify Δo with 
the set of sequences (i1, i2, · · · , ik) of integers, satisfying the following (1)-(4):

(1) 1 ≤ i1 < i2 < · · · < ik ≤ n,
(2) sl ≤ sl+2 for l ∈ [1, k − 2],
(3) sl ≡ 0 for l ∈ [1, k] with l ≡ k,
(4) sk−1 ≤ 2(n − ik) + 1,

where s1 = i1 and sl = il − il−1 for l ∈ [2, k], through identifying d ∈ Δo with 
(i1, i2, · · · , ik) where {il|l ∈ [1, k]} = {i ∈ [1, n]|d(αi) = 1}.

Let d = (i1, i2, · · · , ik) ∈ Δo. As before, we set s1 = i1 and sl = il − il−1 for l ∈ [2, k]. 
By the condition (♠B) in Section 1.2, it is not difficult to see that d ∈ Δo is special if it 
satisfies following conditions.
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(a) k is even and s1 is odd;
(b) For any two even integers u ≤ v in [1, k − 2], if

su−2 < su = su+2 = · · · = sv−2 = sv < sv+2,

then sv+1 − su−1 is even.

Lemma 6.2. Let d = (r) ∈ Δo, which is not special. If chark = 2, then detGd,λ = 0 for 
any λ ∈ Hom(gd(2), k).

Proof. We have [eεi−εk , eεj+εk ] = ±eεi+εj and [eεi , eεj ] = ±2eεi+εj for i 	= j ∈ [1, n]. So 
for λ ∈ Hom(gd(2), k), we denote

Aλ,k = (λ([eεi−εk , eεj+εk ]))(i,j)∈[1,r]×[1,r]

for k ∈ [r + 1, n]. Set bij = λ([eεi , eεj ]) for i, j ∈ [1, r]. Thus the matrix Gd,λ is( 0 A 0
−tA 0 0

0 0 B

)
,

where A = Diag(Aλ,r+1, · · · , Aλ,n) and B = (bij). Thus detGd,λ = 0 as detB = 0. �
Lemma 6.3. Let d = (i1, i2, · · · , ik) ∈ Δo ∩ Δspec. Then there exists a non-degenerate 
λ ∈ HomZ(gZ,d(2), Z).

Proof. Since d is special we see that k is even. We look for the λ such that λ is faithful. 
For k ≥ 2, following the strategy in Section 4, we set

Ml+1 = (λ([eα, eβ ]))α∈Ql,β∈Pl
, for l ∈ [1, k − 2]

and Mk = (λ([eα, eβ ]))α,β∈Qk−1∪Yd,k
. Then by (4.2.3),

detGd,λ = ±(
k−1∏
l=2

detMl)2 detMk.

For l ∈ [1, k − 2], put

Xl = {εs − εt ∈ Φd,2 | s ≤ il < il+1 < t and t− s = il+1 − il−1},

and

Xk−1 = {εj + εj+1 ∈ Φd,2 | j ∈ [ik−1 + 1, ik − 1] and j ≡ ik−1 + 1}.

To compute detMk, we need to consider the set Qk−1 which has the following form
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ik−1 ik−1 + s2 ik−1 + s4 · · · ik−1 + sk−4 ik−1 + sk−2 ik − 1
ik−2 + 1

Qk−1

ik−2 + s1 + 1

ik−2 + s3 + 1
Pk−2· · ·

ik−2 + sk−3 + 1

ik−1

Since d ∈ Δo is special, if there exists two even integers u ≤ v in [0, k − 2] satisfying

su−2 < su = su+2 = · · · = sv−2 = sv < sv+2, (6.3.1)

then sv+1 − su−1 is even. For u ≤ v in [0, k − 2] satisfying (6.3.1), we denote

Ωu,v = [ik−2 + su−1 + 1, ik−2 + sv+1],

and set

Ω =
⋃

u≤v in [0,k−2] with (6.3.1)

Ωu,v ∪ [ik−2 + 2, ik−2 + s1].

The cardinality ω = |Ω| is even. We denote

Ω = {j1, j2, . . . , jω},

with jr < js for r < s and set

Xk = {εjs + (−1)sεik+� s+1
2 � | s ∈ [1, ω]}.

With these settings, we denote X = ∪k
l=1Xl ∪ {εik−2+1} which is a subset of Φd,2.

Let λ : gZ,d(2) → Z be the homomorphism such that

λ(eα) =
{

1 if α ∈ X,

0 if α ∈ Φd,2\X.

In the following we show that detGd,λ ∈ {±1}. Obviously, λ is faithful in the sense of 
Section 4.2, then by (4.2.3),

detGd,λ = ±(
k−1∏

detMl)2 detMk.

l=2
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It is easy to check that detMl ∈ {±1} for l ∈ [2, k − 1].
To compute detMk, we put

x = λ(εik−2+1),

yr = λ(εr + εr+1),

zs = λ(εjs + (−1)sεik+� s+1
2 �),

for r ∈ [ik−1 + 1, ik − 1] with r ≡ ik−1 + 1, and s ∈ [1, ω]. As

Mk = (λ([eα, eβ ]))α,β∈Qk−1∪Yd,k
,

we divide Qk−1 ∪ Yd,k into disjoint subsets and consider the submatrices of Mk corre-
sponding to these subsets.

(a) The first type of subsets is of the form

{εik−2+1 − εr, εr, εr+1, εik−2+1 − εr+1}

for r ∈ [ik−1 + 1, ik − 1] with r ≡ ik−1 + 1.

(b) The second type of subsets is of the form

{εjs − εl, εl + (−1)sεik+� s+1
2 �, εl+1 + (−1)s+1εik+� s

2 �+1, εjs+1 − εl+1},

or

{εjs − εl+1, εl+1 + (−1)sεik+� s+1
2 �, εl + (−1)s+1εik+� s

2 �+1, εjs+1 − εl},

where s ∈ [1, ω] and l ∈ [ik−1 + 1, ik − 1] satisfy s ≡ 1, l ≡ ik−1 + 1 and εjσ − ετ ∈ Qk−1

for σ ∈ [1, ω] and τ ∈ [ik−1 + 1, ik − 1].

(c) The set of the remaining roots in Qk−1 ∪Yd,k can be divided into subsets of the form

{εj − εl, εj+1 + εl, εj + εl, εj+1 − εl}.
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Let X be a subset of Qk−1 ∪ Yd,k of type (a), (b) or (c). Then

(λ([eα, eβ ]))α,β∈X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝ 0 x 0 0
−x 0 2yr 0
0 −2yr 0 x
0 0 −x 0

⎞⎟⎠ if X is of type (a),

⎛⎜⎝ 0 zs 0 0
−zs 0 yl 0
0 −yl 0 zs+1
0 0 −zs+1 0

⎞⎟⎠ if X is of type (b),

⎛⎜⎝ 0 yj 0 0
−yj 0 0 0
0 0 0 yj
0 0 −yj 0

⎞⎟⎠ if X is of type (c).

Then Mk can be written as a blocked diagonal matrix with diagonal blocks of the 
form (λ([eα, eβ ]))α,β∈X for each subset X of type (a), (b) or (c), and each block is of 
determinant ±1. We see that detMk ∈ {±1} which implies detGd,λ ∈ {±1}. Thus we 
have proved Theorem 0.8 (1) for type B. �
Lemma 6.4. Let d = (i1, i2, · · · , ik) ∈ Δo\Δspec. If chark = 2, then we have detGd,λ = 0
for any λ ∈ Hom(gd(2), k).

Proof. Suppose that there exists λ ∈ Hom(gd(2), k) such that detGd,λ 	= 0. Through the 
arguments as in Section 4, we can assume that λ is faithful. So by (4.2.3), detGd,λ 	= 0
implies that detMk 	= 0, where Mk is defined as in (4.2.2).

We can assume that k is even. When k is odd, the shape of Qk−1 is different, but the 
argument is similar. For each l ∈ [ik−1+1, ik], there exist two even integers u, v ∈ [2, k−2]
which satisfy u < v and

su−2 < su = su+2 = · · · = sv−2 = sv < sv+2,

with ik−1 + su < l ≤ ik−1 + sv+2. We denote Ξl = [ik−2 + 1, ik−2 + sv+1]. Since d is not 
special, there exists an integer l ∈ [ik−1 + 1, ik] such that |Ξl| is even.

For each fixed s ∈ [ik−1+1, ik], we set As the matrix whose entries are λ([eεr−εs , e�]), 
where r ∈ Ξs and � runs over the set {εs, εs − εl, εs + εl | l ∈ [ik + 1, n]}. For any 
s, t ∈ [ik−1 + 1, ik], let Es,t the block associate the set of roots

{εs − εl, εs + εl, εt − εl, εt + εl | l ∈ [ik + 1, n]}.

With a good ordering in Qk ∪ Yd,k the matrix Mk has the same form of S in the Propo-
sition 2.2(3). Since d is not special, there exists s ∈ [ik−1 + 1, ik] such that |Ξs| is even. 
Then all conditions in Proposition 2.2(3) are satisfied and we have detMk = 0. We get 
a contradiction which proves the lemma. �
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Combining Lemma 6.3 and Lemma 6.4, we have proved Theorem 1.5 in the type B
case.

7. The first case of type D

7.1. Odd weights of the first case

Let g be the simple Lie algebra of type Dn over k. As before, we can write Δo =
Δo

1 �Δo
2, where Δo

1 (resp. Δo
2) consists of weighted Dynkin diagrams of the form (4.1.1)

(resp. (4.1.2)). In this section and the next section, we consider Δo
1 and Δo

2 respectively.
The weighted Dynkin diagram associated to the partition (22m12) is special, in this 

case it is not difficult to see that there exists a non-degenerate λ ∈ HomZ(gZ,d(2), Z). 
Thus we exclude this situation in the following of this section.

The set Δo
1 can be identified with the set of sequences (i1, i2, · · · , ik) of integers, 

satisfying the following conditions (1)-(4):

(1) 1 ≤ i1 < i2 < · · · < ik ≤ n − 3,
(2) sl ≤ sl+2 for l ∈ [1, k − 1],
(3) sl ≡ 0 for l ∈ [1, k + 1] with l ≡ k + 1,
(4) sl ≤ 2 for l ∈ [1, k] with l ≡ k,

where s1 = i1 and sl = il − il−1 for l ∈ [2, k] and sk+1 = n − 1 − ik, through identifying 
d ∈ Δo

1 with (i1, i2, · · · , ik) where {il|l ∈ [1, k]} = {i ∈ [1, n]|d(αi) = 1}.
Let d = (i1, i2, · · · , ik) ∈ Δo

1. As before, we set s1 = i1, sl = il − il−1 for l ∈ [2, k] and 
sk+1 = n − 1 − ik. By the condition (♠D) in Section 1.2, it is not difficult to see that d
is special if and only if it satisfies following conditions:
(a) s1 is even;
(b) For any two integers u ≤ v ∈ [1, k] and u ≡ v ≡ k − 1, if

su−2 < su = su+2 = · · · = sv−2 = sv < sv+2,

then sv+1 − su−1 is even.

Lemma 7.2. Let d = (i1, i2, · · · , ik) ∈ Δo
1.

(1) If d ∈ Δspec, then there exists a non-degenerate λ ∈ HomZ(gZ,d(2), Z).
(2) If char k = 2 and d /∈ Δspec, then detGd,λ = 0 for any λ ∈ Hom(gd(2), k).

Proof. By the arguments as in Section 4, we can restrict our attention to faithful λ ∈
HomZ(gZ,d(2), Z) or Hom(gd(2), k). Without loss generality we can assume that k is 
even. The discussion for k odd is the same.

Let Yk+1 = {εj − εn, εj + εn | j ∈ [ik + 1, n − 1]}. We can also construct the sets 
Ql+1, Pl for l ∈ [1, k − 1] as before. We set
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Ml = (λ([eα, eβ ]))α∈Ql,β∈Pl
, for l ∈ [1, k − 1]

and Mk = (λ([eα, eβ ]))α,β∈Qk∪Yk+1 . Then

detGd,λ = ±(
k−1∏
l=1

detMl)2 detMk.

So it is enough to prove that:

(1) If d ∈ Δspec, then there exists λ ∈ HomZ(gZ,d(2), Z) such that detMk = ±1.
(2) If d /∈ Δspec and chark = 2, then detMk = 0 for any λ ∈ Hom(gd(2), k).

(a) If sk = 1 and d ∈ Δspec, then s1 = s3 = · · · = sk+1. Thus in this case Qk is empty. So 
it is very easy to construct the λ such that detMk = ±1. When d /∈ Δspec, the set Qk is 
{εik − εj | j ∈ [ik + su +1, n − 1]} for some even integer u. For s ∈ [ik + su +1, n − 1], let 
As be the submatrix of Mk corresponding to {εik −εs, εs−εn, εs +εn} ⊆ Qk ∪Yk+1. For 
t ∈ [ik + 1, ik + su], let At be the submatrix of Mk corresponding to {εt − εn, εt + εn} ⊆
Qk ∪ Yk+1. For each s, t ∈ [ik + 1, n − 1], let Es,t = antidiag(1, 1). It is easy to see that 
the matrix Mk has the form as given in Proposition 2.2(2), thus detMk = 0.

(b) If sk = 2, we set a = ik−1 + 1 and b = ik = a + 1. When d ∈ Δspec, the set Qk is

{εa − εj , εb − εj | j ∈ [ik + sv + 1, n− 1]}

for some integer v. Given λ ∈ HomZ(gZ,d(2), Z) such that

λ(εa − εn) = λ(εb + εn) = 1 and λ(εj + εj+1) = 1 for j ∈ [ik + 1, ik + sv].

Then it is not difficult to check that detMk = ±1 for this λ.
When d /∈ Δspec, the set Qk is

{εa − εj , εb − εl | j ∈ [ik + sc + 1, n− 1], l ∈ [ik + sd + 1, n− 1]}

for some integers c and d which satisfy 2 ≤ sc < sd. When s ∈ [ik + sc + 1, ik + sd], we 
consider the submatrix As of Mk corresponding to

{εa − εs, εs − εn, εs + εn} ⊆ Qk ∪ Yk+1.

When t ∈ [ik + sd + 1, n − 1], we consider the submatrix At of Mk corresponding to

{εa − εt, εb − εt, εt − εn, εt + εn} ⊆ Qk ∪ Yk+1.

For each s, t ∈ [ik + sc + 1, n − 1], set Es,t = antidiag(1, 1). It is easy to check that 
the matrix Mk satisfies the conditions in Proposition 2.2(2), thus detMk = 0 when 
char k = 2. �
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8. The second case of type D

8.1. Odd weights of the second case

The set Δo
2 can be identified with the set of sequences (i1, i2, · · · , ik) of integers, 

satisfying the following conditions (1)-(4):

(1) 1 ≤ i1 < i2 < · · · < ik ≤ n − 2,
(2) sl ≤ sl+2 for l ∈ [1, k − 2],
(3) sl ≡ 0 for l ∈ [1, k] with l ≡ k,
(4) sk−1 ≤ 2(n − ik),

where s1 = i1 and sl = il − il−1 for l ∈ [2, k], through identifying d ∈ Δo with 
(i1, i2, · · · , ik) where {il|l ∈ [1, k]} = {i ∈ [1, n]|d(αi) = 1}.

Let d = (i1, i2, · · · , ik) ∈ Δo
2. As before, we set s1 = i1 and sl = il − il−1 for l ∈ [2, k]. 

By the condition (♠D) in Section 1.2, it is not difficult to see that d is special if and only 
if it satisfies following conditions:
(a) s1 is even;
(b) For any two integers u ≤ v ∈ [1, k] and u ≡ v ≡ k, if

su−2 < su = su+2 = · · · = sv−2 = sv < sv+2,

then sv+1 − su−1 is even.

Lemma 8.2. Let d = (r) ∈ Δo, then r is even and d ∈ Δspec. There exists a non-
degenerate λ ∈ HomZ(gZ,d(2), Z).

Proof. For λ ∈ HomZ(gZ,d(2), Z), we denote

Aλ,l = (λ([eεi−εl , eεj+εl ])(i,j)∈[1,r]×[1,r]

for l ∈ [r + 1, n]. Then

Gd,λ =
(

A
−tA

)
,

where A = Diag(Aλ,r+1, · · · , Aλ,n).
Now we set λ(eεi+εi+1) = 1 for i ∈ [1, r], i ≡ 1 and λ(eα) = 0 for other roots. 

Since r is even, it is easy to check that detAλ,l ∈ {±1} for l ∈ [r + 1, n] which implies 
detGd,λ ∈ {±1} for this λ. �
Lemma 8.3. Let d = (i1, i2, · · · , ik) ∈ Δo ∩ Δspec. Then there exists a non-degenerate 
λ ∈ HomZ(gZ,d(2), Z).
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Proof. For k ≥ 2, as the same discussion in Section 4.2, we can assume that λ is faithful 
and, construct the sets Ql, Pl for l ∈ [1, k − 2]. We set

Ml+1 = (λ([eα, eβ ]))α∈Ql,β∈Pl
, for l ∈ [1, k − 2]

and Mk = (λ([eα, eβ ]))α,β∈Qk−1∪Yd,k
. Then

detGd,λ = ±(
k−1∏
l=2

detMl)2 detMk.

Without loss of generality, we assume that k is even, the discussion for k odd is the same.
To compute detMk, we need to consider the set Qk−1 which has the following form

ik−1 ik−1 + s2 ik−1 + s4 · · · ik−1 + sk−4 ik−1 + sk−2 ik − 1
ik−2 + 1

Qk−1

ik−2 + s1 + 1

ik−2 + s3 + 1
Pk−2· · ·

ik−2 + sk−3 + 1

ik−1

For l ∈ [1, k − 2], put

Xl = {εs − εt ∈ Φd,2 | s ≤ il < il+1 < t and t− s = il+1 − il−1},

and then put

Xk−1 = {εj + εj+1 ∈ Φd,2 | j ∈ [ik−1 + 1, ik − 1] and j ≡ ik−1 + 1}.

Since d ∈ Δo is special, if there exist two even integers u ≤ v in [2, k − 2] satisfying

su−2 < su = su+2 = · · · = sv−2 = sv < sv+2, (8.3.1)

then sv+1 − su−1 is even. For a pair of even integers u ≤ v in [2, k− 2] satisfying (8.3.1), 
we denote

Ωu,v = [ik−2 + su−1 + 1, ik−2 + sv+1].

Then we set

Ω =
⋃

Ωu,v.

u≤v in [2,k−2] with (8.3.1)
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The cardinality ω = |Ω| is even. We write Ω as

Ω = {j1, j2, . . . , jω},

and set

Xk = {εjs + (−1)sεik+� s+1
2 � | s ∈ [1, ω]}.

With these settings, we denote X = ∪k
l=1Xl which is a subset of Φd,2.

Let λ : gZ,d(2) → Z be the homomorphism such that

λ(eα) =
{

1 if α ∈ X,

0 if α ∈ Φd,2\X.

In the following we show that detGd,λ ∈ {±1}.
Obviously, λ is faithful in the sense of 4.2, then

detGd,λ = ±(
k−1∏
l=2

detMl)2 detMk.

It is easy to check that detMl ∈ {±1} for l ∈ [2, k − 1].
To compute detMk, we put

xr = λ(εr + εr+1) and ys = λ(εjs + (−1)sεik+� s+1
2 �)

for r ∈ [ik−1 + 1, ik − 1] with r ≡ ik−1 + 1, and s ∈ [1, ω].
Note that

Mk = (λ([eα, eβ ]))α,β∈Qk−1∪Yd,k
.

So we divide Qk−1∪Yd,k into subsets and consider the submatrices of Gd,λ corresponding 
to these subsets.

(a) One type of subsets is of the form

{εjs − εl, εl + (−1)sεik+� s+1
2 �, εl+1 + (−1)s+1εik+� s

2 �+1, εjs+1 − εl+1},

or

{εjs − εl+1, εl+1 + (−1)sεik+� s+1
2 �, εl + (−1)s+1εik+� s

2 �+1, εjs+1 − εl},

where s ∈ [1, ω] and l ∈ [ik−1 + 1, ik − 1] satisfy s ≡ 1, l ≡ ik−1 + 1 and εjσ − ετ ∈ Qk−1
for σ ∈ [1, ω], τ ∈ [ik−1 + 1, ik − 1].
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(b) The other type of subsets is of the form

{εj − εl, εj+1 + εl, εj + εl, εj+1 − εl},

and these subsets cover all the remaining roots in Qk−1 ∪ Yd,k.
Let X be a subset of Qk−1 ∪ Yd,k of type (a) or (b). Then

(λ([eα, eβ ]))α,β∈X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝ 0 ys 0 0
−ys 0 xl 0
0 −xl 0 ys+1
0 0 −ys+1 0

⎞⎟⎠ if X is of type (a),

⎛⎜⎝ 0 xj 0 0
−xj 0 0 0
0 0 0 xj

0 0 −xj 0

⎞⎟⎠ if X is of type (b).

It is easy to see that Mk can be written as a blocked diagonal matrix with diagonal 
blocks of the form (λ([eα, eβ ]))α,β∈X for each subset X of type (a) or (b), and each block 
is of determinant ±1. Thus detMk ∈ {±1}, which implies det Gd,λ ∈ {±1}. �
Lemma 8.4. Let d = (i1, i2, · · · , ik) ∈ Δo\Δspec. If chark = 2, then detGd,λ = 0 for any 
λ ∈ Hom(gd(2), k).

Proof. Suppose that there exists λ ∈ Hom(gd(2), k) such that det Gd,λ 	= 0. We can 
assume that λ is faithful by (4.3.4) and Lemma 4.5. So by (4.2.3), detGd,λ 	= 0 implies 
that detMk 	= 0, where Mk is defined as in (4.2.2). In the following we assume that k is 
even without loss of generality.

For each l ∈ [ik−1 + 1, ik], there exist two even integers u < v in [0, k − 2] satisfying

su−2 < su = su+2 = · · · = sv−2 = sv < sv+2,

and ik−1 + su < l ≤ ik−1 + sv+2. We denote Ξl = [ik−2 + 1, ik−2 + sv+1]. Since d is not 
special, there exists an integer l ∈ [ik−1 + 1, ik] such that |Ξl| is odd.

For each fixed s ∈ [ik−1+1, ik], we set As the matrix whose entries are λ([eεr−εs , e�]), 
where r ∈ Ξs and � runs over the set {εs − εl, εs + εl | l ∈ [ik + 1, n]}. For any 
s, t ∈ [ik−1 + 1, ik], denote Es,t the block associate the set of roots

{εs − εl, εs + εl, εt − εl, εt + εl | l ∈ [ik + 1, n]}.

With a good ordering in Qk ∪ Yd,k, the matrix Mk has the same form as the matrix S
in Proposition 2.2(2). Since d is not special, there exists s ∈ [ik−1 + 1, ik] such that |Ξs|
is odd. Then all conditions in Proposition 2.2(2) are satisfied and we have detMk = 0
when char k = 2. We get a contradiction which proves the lemma. �
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Combining Lemma 7.2, Lemma 8.3 and Lemma 8.4, we have proved Theorem 1.5 in 
the type D case. Therefore with the results we get in Sections 3 to 8, we have proved 
Theorem 1.5.

9. Final remarks

Theorem 0.8, combined with [2, Corollary 5.11], gives a new characterization of special 
unipotent classes. According to the discussion in Section 0 and Theorem 0.8, the GGGRs 
can be defined for certain unipotent orbits coming from characteristic zero.

In the good characteristic case, Kawanaka’s definition of GGGRs starts with a unipo-
tent element. This element will determine a weighted Dynkin diagram and subsequently 
a grading on the Lie algebra. This grading is crucial for the definition. Maybe that’s 
why Geck’s definition starts with a weighted Dynkin diagram, from which the required 
grading can be obtained. But in the bad characteristic case, not the set of unipotent 
orbits, but the set of unipotent orbits coming from characteristic zero, is parameterized 
by the set of weighted Dynkin diagram. Thus, there is no “Kawanaka’s conjecture” in 
this case, until we are able to define a GGGR for each unipotent orbit. For Kawanaka’s 
conjecture in good characteristic case, see [7, Conjecture 3.3.1], [8, Theorem 2.4.3] and 
[3, Theorem 4.5].

Assuming p, q to be large enough, Lusztig gave the block decomposition of the charac-
ters of GGGRs, and expressed each block component in terms of characteristic functions 
of intersection cohomology complexes in this block, see [10]. The assumption of Lusztig 
was reduced by Taylor in [12]. According to [13], there is only one block of intersection 
cohomology complexes, when G is of type Bn, Cn or Dn and p = 2. So there is no need 
for a block decomposition. But it may still be interesting to express the characters of 
GGGRs in terms of characteristic functions of intersection cohomology complexes.
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