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Abstract We study the general problem of equidistribution of expanding
translates of an analytic curve by an algebraic diagonal flow on the homoge-
neous space G/� of a semisimple algebraic group G. We define two families
of algebraic subvarieties of the associated partial flag varietyG/P , which give
the obstructions to non-divergence and equidistribution.We apply this to prove
that for Lebesgue almost every point on an analytic curve in the space ofm×n
realmatriceswhose image is not contained in any subvariety coming from these
two families, Dirichlet’s theorem on simultaneous Diophantine approximation
cannot be improved. The proof combines geometric invariant theory, Ratner’s
theorem on measure rigidity for unipotent flows, and linearization technique.
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1 Introduction

1.1 Background

Manyproblems in number theory canbe recast in the languageof homogeneous
dynamics. LetG be a Lie group and� be a lattice inG, i.e. a discrete subgroup
of finite covolume. Take a sequence {gi } in G and a probability measure μ

on G/� which is supported on a smooth submanifold of G/�. The following
question was raised by Margulis [20]:

Basic Question (Margulis) What is the distribution of giμ in G/� when gi
tends to infinity in G?

Duke et al. [7] studied the case where μ is a finite invariant measure sup-
ported on a symmetric subgroup orbit, and applied it to obtain asymptotic
estimates for the number of integral points of bounded norm on affine sym-
metric varieties. At the same time, Eskin and McMullen [10] gave a simpler
proof using the mixing property of geodesic flows. It was later generalized by
Eskin et al. [11] to the case whereμ is a finite invariant measure supported on a
reductive group orbit, and applied to count integral matrices of bounded norm
with a given characteristic polynomial. Later Gorodnik and Oh [13] worked
in the Adelic setting, and gave an asymptotic formula for the number rational
points of bounded height on homogeneous varieties.

In another direction, the dynamical behavior of translates of a submanifold
of expanding horospherical subgroups in SLn(R)/SLn(Z) is closely related
to metric Diophantine approximation. Kleinbock and Margulis [17] proved
extremality of a non-degenerate submanifold in R

n , and their proof was based
on quantitative non-divergence of translates of the submanifold by semisimple
elements. Their work was later extended from R

n to the space Mm×n(R) of
m × n real matrices (see e.g. [1,3,18]).

While quantitative non-divergence results are useful in the study of
extremality, equidistribution results can be applied to study the improvability of
Dirichlet’s theorem. Kleinbock and Weiss [19] first explored improvability in
the language of homogeneous dynamics, based on earlier observations byDani
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Equidistribution of expanding translates 911

[5] aswell asKleinbock andMargulis [17]. Later Shah [29] obtained a strength-
ened result for analytic curves inR

n by showing equidistribution of expanding
translates of curves in SLn+1(R)/SLn+1(Z) by singular diagonal elements
a(t) = diag(tn, t−1, . . . , t−1). This work has also been generalized to m × n
matrices in a recent preprint [34] by Shah and Lei Yang, where they consid-
ered the case G = SLm+n(R) and a(t) = diag(tn, . . . , tn, t−m, . . . , t−m). We
shall discuss this subject in more details in Sect. 1.4.

It is also worth considering the case G = SO(n, 1), as there are interest-
ing applications to hyperbolic geometry. See Shah’s works [28,30] and later
generalizations byLeiYang [36,37].We shall providemore details in Sect. 1.3.

Motivated by the previous works, we are interested in the following equidis-
tribution problem, which was proposed by Shah in ICM 2010 [31]. Let
G = G(R) be a semisimple connected real algebraic group of non-compact
type, and let L be a real algebraic group containing G. Let � be a lattice in L .
Let {a(t)}t∈R× be a multiplicative one-parameter subgroup of G, i.e. we have
a homomorphism of real algebraic group a : Gm → G. Suppose we have a
bounded piece of an analytic curve onG given by φ : I = [a, b] → G, and we
fix a point x0 on L/� such that Gx0 is dense in L/�. Let λφ denote the mea-
sure on L/� which is the parametric measure supported on the orbit φ(I )x0,
that is, λφ is the pushforward of the Lebesgue measure. When does a(t)λφ

converge to the Haar measure on L/� with respect to the weak-* topology, as
t tends to infinity?

In [31], Shah found natural algebraic obstructions to equidistribution, and
asked if those are the only obstructions. In this article, we give an affirmative
answer to Shah’s question. This generalizes previous results on G = SO(n, 1)
[30,36], G = SO(n, 1)k [37], as well as G = SLn(R) and a(t) being singular
[29,34].We also apply the equidistribution result to show that for almost every
point on a “non-degenerate” analytic curve in the space ofm×n real matrices,
Dirichlet’s theorem cannot be improved. This sharpens a result of Shah and
Yang [34].

We remark that our method also applies to analytic submanifolds. For con-
venience, we restrict our discussions to curves.

1.2 Non-escape of mass to infinity

LetG = G(R) be a semisimple connected real algebraic group of non-compact
type, and let L be a real algebraic group containing G. Let � be a lattice in
L . Let {a(t)}t∈R× be a multiplicative one-parameter subgroup of G with non-
trivial projection on each simple factor of G. There is a parabolic subgroup
P = P(a) of G associated with a(t):

P := {g ∈ G : lim
t→∞ a(t)ga(t)−1 exists in G}. (1.1)
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912 P. Yang

Suppose we have a bounded piece of an analytic curve on G given by φ :
I = [a, b] → G, and we fix a point x0 on L/� such that the orbit Gx0 is
dense in L/�. Let λφ denote the parametric measure on L/�. If we expect
the translated measures to get equidistributed, it is necessary that there is no
escape of mass to infinity.

Let us first consider the special case G = L = SLm+n(R), � = SLm+n(Z)

and a(t) = diag(tn, . . . , tn, t−m, . . . , t−m). In [1], Aka et al. defined a family
of algebraic sets called constraining pencils (see [1,Definition 1.1]), and used it
to describe the obstruction to quantitative non-divergence. They remarked that
constraining pencils give rise to certain Schubert varieties in Grassmannians.

Inspired by their work, we define the notion of unstable Schubert varieties1

(see Definition 2.1) with respect to a(t) for a general partial flag variety G/P ,
which naturally generalizes the notion of constraining pencils. This enables
us to describe obstructions to non-divergence in the general case.

Now we project our curve φ onto G/P . Consider

˜φ : [a, b] −→ G/P

s �−→ φ(s)−1P. (1.2)

We are taking inverse here simply because we would like to quotient P on the
right, as is usually done in other papers on the subject.

We are ready to state our first main theorem on non-escape of mass.

Theorem 1.1 (Non-escape of mass) Let φ : I = [a, b] → G be an analytic
curve such that the image of˜φ is not contained in any unstable Schubert variety
of G/P with respect to a(t). Then for any ε > 0, there exists a compact subset
K of L/� such that for any t > 1, we have

1

b − a
|{s ∈ [a, b] : a(t)φ(s)x0 ∈ K }| > 1 − ε. (1.3)

To prove Theorem 1.1, we consider a certain finite-dimensional represen-
tation V of G (see Definition 3.2), and show that the corresponding curve
in V cannot be uniformly contracted to the origin. The key ingredient is the
following theorem, which is the main technical contribution of this article.

Theorem 1.2 (Linear stability)Letρ : G → GL(V )be any finite-dimensional
linear representation of G, with a norm ‖·‖ on V . Suppose that the image of ˜φ
is not contained in any unstable Schubert variety of G/P with respect to a(t).
Then there exists a constant C > 0 such that for any t > 1 and any v ∈ V ,
one has

1 The name comes from the notion of stability in geometric invariant theory, and should not be
confused with unstable manifolds for a diffeomorphism.
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Equidistribution of expanding translates 913

sup
s∈[a,b]

‖a(t)φ(s)v‖ ≥ C‖v‖. (1.4)

Theorem 1.2 is of independent interest, as it is also applicable to obtain
quantitative non-divergence results (see e.g. [33]). Compared to the previous
works on special cases of the theorem, the novel part of our proof is that we use
a result in geometric invariant theory, which is Kempf’s numerical criterion
[14, Theorem 4.2].

Geometric invariant theory was first developed by Mumford to construct
quotient varieties in algebraic geometry; its connections to dynamics have
been found in recent years. Kapovich et al. [16, Section 7.4] explored the
relation with geometric invariant theory for groups of type An

1. In a recent
preprint [15], Khayutin utilized geometric invariant theory to study the double
quotient of a reductive group by a torus. In [26, Section 6], Richard and Shah
applied [14, Lemma 1.1(b)] to deal with focusing, which also came from the
study of geometric invariant theory.

Theorem 1.2 is proved in Sect. 2, and Theorem 1.1 is proved in Sect. 3.

1.3 Equidistribution of translated measures

Let the notation be as in Sect. 1.2, and suppose that the image of ˜φ : s �→
φ(s)−1P is not contained in any unstable Schubert variety ofG/P with respect
to a(t) (see Definition 2.1). Due to Theorem 1.1, for any sequence ti → ∞,
the sequence of translated measures a(t)λφ is tight, i.e. any weak-* limit is a
probability measure on L/�. If one can further show that any limit measure
is the Haar measure on L/�, then the translated measure a(t)λφ gets equidis-
tributed as t → ∞. In order to achieve this, one needs to exclude a larger
family of obstructions.

In a sequence of papers [28–30], Shah initiated the study of the curve
equidistribution problem with several important special cases. For example,
when G = SLn+1(R) and a(t) = diag(tn, t−1, . . . , t−1), the obstructions to
equidistribution come from linear subspaces of RP

n , which are exactly the
unstable Schubert varieties with respect to a(t).

Another interesting case is when G = SO(n, 1) and {a(t)} is the geodesic
flow on the unit tangent bundle T 1(Hn) of the hyperbolic space H

n ∼=
SO(n, 1)/SO(n). The visual boundary of H

n has the identification

∂H
n ∼= S

n−1 ∼= G/P. (1.5)

Shah found that the obstructions to equidistribution comes from proper sub-
spheres S

m−1 of S
n−1 (m < n). However, since the real rank of G is one,

the proper Schubert varieties of G/P are just single points. Therefore, these
obstructions are not given by Schubert varieties. Nonetheless, the subspheres
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914 P. Yang

are still natural geometric objects, as they are closed orbits of the subgroups
SO(m, 1) ⊂ SO(n, 1), which correspond to totally geodesic submanifolds
H

m ⊂ H
n .

Motivated by these results, Shah [31] found the following algebraic obstruc-
tion to equidistribution in the general setting. Suppose that F is a proper
subgroup of L containing {a(t)}, and g ∈ G is an element such that the
orbit Fgx0 is closed and carries a finite F-invariant measure. Suppose that
φ(I ) ⊂ P(F ∩ G)g. Then for any sequence ti → ∞, it follows that any
weak-* limit of probability measures a(ti )λφ is a direct integral of measures
which are supported on closed sets of the form bFgx0, where b ∈ P . Such lim-
iting measures are concentrated on strictly lower dimensional submanifolds
of L/�. Shah also asked if these are the only obstructions.

We now state our main theorem on equidistribution, which answers Shah’s
question affirmatively. Recall that x0 is an element in L/� such that Gx0 is
dense in L/�. Let ˜φ be as in (1.2). For the definition of unstable Schubert
variety, see Definition 2.1.

Theorem 1.3 Let φ : I = [a, b] → G be an analytic curve such that the
following two conditions hold:

(a) The image of ˜φ is not contained in any unstable Schubert variety of G/P
with respect to a(t);

(b) For any g ∈ G and any proper algebraic subgroup F of L containing
{a(t)} such that Fgx0 is closed and admits a finite F-invariant measure,
the image of φ is not contained in P(F ∩ G)g.

Then for any f ∈ Cc(L/�), we have

lim
t→∞

1

b − a

∫ b

a
f (a(t)φ(s)x0) ds =

∫

L/�

f dμL/�, (1.6)

where μL/� is the L-invariant probability measure on L/�.

Remark 1.4 In Theorem 1.3, if we assume (a) holds, then by the above dis-
cussion we know that (1.6) holds if and only if (b) holds. In this sense, our
result is sharp.

One can even require F ∩ G to be reductive if we replace the family of
unstable Schubert varieties with the slightly larger family of weakly unstable
Schubert varieties (see Definition 2.1).

Theorem 1.5 Let φ : I = [a, b] → G be an analytic curve such that the
following two conditions hold:

(A) The image of ˜φ is not contained in any weakly unstable Schubert variety
of G/P with respect to a(t);
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Equidistribution of expanding translates 915

(B) For any g ∈ G and any proper algebraic subgroup F of L containing
{a(t)} such that Fgx0 is closed and admits a finite F-invariant measure
and that F∩G is reductive, the image of φ is not contained in P(F∩G)g.

Then for any f ∈ Cc(L/�), we have

lim
t→∞

1

b − a

∫ b

a
f (a(t)φ(s)x0) ds =

∫

L/�

f dμL/�, (1.7)

where μL/� is the L-invariant probability measure on L/�.

If a reductive subgroup H contains {a(t)}, then PH = P ∩ H is a parabolic
subgroup of H associated with a(t), and HP/P is homeomorphic to H/PH .
Hence we give the following definition.

Definition 1.6 (Partial flag subvariety) A partial flag subvariety of G/P with
respect to a(t) is a subvariety of the form gH P/P , where g is an element in
G, and H is a reductive subgroup of G containing {a(t)}.

In view of Definition 1.6, Theorem 1.5 shows that the obstructions consist
of two families of geometric objects: weakly unstable Schubert varieties and
partial flag subvarieties.

Theorem 1.3 and Theorem 1.5 are proved in Sect. 5.

1.4 Grassmannians and Dirichlet’s approximation theorem on matrices

In this section, we give an application of our equidistribution result to simul-
taneous Diophantine approximation.

In 1842, Dirichlet proved a theorem on simultaneous approximation of a
matrix of real numbers (DT): Given any two positive integers m and n, a
matrix 	 ∈ Mm×n(R), and N > 0, there exist integral vectors p ∈ Z

n\{0}
and q ∈ Z

m such that

‖p‖ ≤ Nm and ‖	p − q‖ ≤ N−n, (1.8)

where ‖·‖ denotes the supremum norm, that is, ‖x‖ = max1≤i≤k |xi | for any
x = (x1, x2, . . . , xk) ∈ R

k .

Let 0 < μ < 1. After Davenport and Schmidt [8], we say that 	 ∈
Mm×n(R) is DTμ-improvable if for all sufficiently large N > 0, there exists
nonzero integer vectors p ∈ Z

n and q ∈ Z
m such that

‖p‖ ≤ μNm and ‖	p − q‖ ≤ μN−n. (1.9)

We say that 	 is not DT-improvable, if for any 0 < μ < 1, 	 is not DTμ-
improvable.
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916 P. Yang

In [8], it was proved that Dirichlet’s theorem cannot be improved for
Lebesgue almost every m × n real matrix. In [9], they also proved that Dirich-
let’s theorem cannot be (1/4)-improved for almost every point on the curve
φ(s) = (s, s2) in R

2. This result was generalized by Baker [2] for almost all
points on smooth curves in R

2, and by Bugeaud [4] for almost every point on
the curve φ(s) = (s, s2, . . . , sk) in R

k ; in each case the result holds for some
small value 0 < μ ≤ ε, where ε depends on the curve.

Kleinbock and Weiss [19] recast the problem in the language of homo-
geneous dynamics, and obtained ε-improvable results for general measures.
Later Shah [29] studied the case m = 1, and showed that if an analytic curve
in R

n is not contained in any proper affine subspace, then almost every point
on the curve is not DT-improvable. Lei Yang [35] studied the casem = n, and
proved an analogous result for square matrices. These results have been gener-
alized to supergeneric curves inMm×n(R) in the recent preprint [34], where an
inductive algorithmwas introduced to define generic and supergeneric curves.

In the meantime, Aka et al. [1] worked on extremality of an analytic sub-
manifold of Mm×n(R), and found a sharp condition for extremality in terms of
a certain family of algebraic sets called constraining pencils (see [1, Definition
1.1]).

Based on [34], and combined with ideas from [1,30], we replace super-
generic condition by a natural geometric condition, and obtain a sharper result.

We first make some preparations. Let Gr(m,m + n) denote the real Grass-
mannian variety of m-dimensional linear subspaces of R

m+n .

Definition 1.7 (pencil; c.f. [1] Definition 1.1) Given a real vector space W �

R
m+n , and an integer r ≤ m, we define the pencil PW,r to be the set

{V ∈ Gr(m,m + n) : dim(V ∩ W ) ≥ r}. (1.10)

We call PW,r a constraining pencil if

dimW

r
<

m + n

m
; (1.11)

we call PW,r a weakly constraining pencil if

dimW

r
≤ m + n

m
. (1.12)

We say that the pencilPW,r is rational if W is rational, i.e. W admits a basis
in Q

m+n .

Remark 1.8 (1) If m and n are coprime, then m+n
m is an irreducible fraction,

and it follows that (1.12) and (1.11) are equivalent. Therefore weakly
constraining pencils coincide with constraining pencils in this case.
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Equidistribution of expanding translates 917

(2) If m = 1, then (weakly) constraining pencils are proper linear subspaces
of RP

n .

To avoid confusions, we explain the relationship between our pencils and
the pencils in [1]. Given W � R

m+n and 0 < r < m, in [1] a pencil PW,r is
defined to be an algebraic subset of Mm×(m+n)(R). More precisely,

PW,r = {

x ∈ Mm×(m+n)(R) : dim(xW ) ≤ r
}

. (1.13)

And a pencil PW,r is called constraining if

dimW

r
>

m + n

m
. (1.14)

Let x be a full rankm × (m + n) real matrix. For any subspace E ⊂ R
m+n , let

E∨ ⊂ (Rm+n)∗ denote the set of linear functionals on R
m+n which vanish on

E . Then dim(xW ) ≤ r if and only if dim
(

(ker x)∨ ∩ W∨) ≥ m − r . Hence

x ∈ PW,r ⇐⇒ (ker x)∨ ∈ PW∨,m−r . (1.15)

Moreover, since dimW∨ = m + n − dimW , we have

dimW

r
>

m + n

m
⇐⇒ dimW∨

m − r
<

m + n

m
. (1.16)

As explained in [1, Section 4], we don’t lose any essential information when
passing to kernels. Therefore, our constraining pencils are dual to the con-
straining pencils in [1]. We modified the definition to fit into our framework
of Schubert varieties. See Definition 2.1 and Theorem 6.6 for more details.

To any 	 ∈ Mm×n(R), we attach an m-dimensional subspace V	 ⊂ R
m+n

which is spanned by the row vectors of the full rank m × (m + n) matrix

[

Im×m |	]

. (1.17)

Let ϕ : [a, b] → Mm×n(R) be an analytic curve. It induces a curve on
Gr(m,m + n) by

� : [a, b] −→ Gr(m,m + n)

s �−→ Vϕ(s).

We identify Gr(m,m+n)withG/P , whereG = SLm+n(R) and P = P(a)

is the parabolic subgroup associated with a(t) = diag(tn, . . . , tn, t−m,

. . . , t−m). Hence it makes sense to talk about partial flag subvarieties of
Gr(m,m + n). (See Definition 1.6.)

Now we are ready for our main theorem on DT-improvability.
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918 P. Yang

Theorem 1.9 (DT-improvability) Let ϕ : [a, b] → Mm×n(R) be an analytic
curve. Suppose that both of the following hold:

(A) The image of � is not contained in any weakly constraining pencil;
(B) The image of � is not contained in any proper partial flag subvariety of

the Grassmannian variety Gr(m,m + n) with respect to a(t).

Then for Lebesgue almost every s ∈ [a, b], ϕ(s) is not DT-improvable.

Theorem 1.9 follows from Theorem 1.5 and Theorem 6.6 via Dani’s cor-
respondence, as explained in [19,29,34,35]. The proof also shows that for
Lebesgue almost every s ∈ [a, b], ϕ(s) is not DT-improvable along N (see
[32]), where N is any infinite set of positive integers.

1.5 Organization of the paper

In Sect. 2, we review the concept of Kempf’s one-parameter subgroup, and
use Kempf’s numerical criterion to prove linear stability.

In Sect. 3, we review the (C, α)-good property defined by Kleinbock and
Margulis, and apply linearization technique combined with linear stability to
prove non-divergence of translated measures.

In Sect. 4, we apply the idea of twisting due to Shah, and prove a general
result on unipotent invariance.

In Sect. 5, we use Ratner’s theorem on unipotent flows and Dani-Margulis
linearization technique to study the dynamical behavior of trajectories near
singular sets, and obtain equidistribution results.

In Sect. 6, we study the special case of Grassmannians, and use Young
diagrams to give a combinatorial description of constraining and weakly con-
straining pencils.

2 Linear stability and Kempf’s one-parameter subgroups

LetG = G(R) be a semisimple connected real algebraic group. If δ : Gm → G
is a homomorphism of real algebraic groups, we call δ a multiplicative one-
parameter subgroup of G. We associate a parabolic subgroup with δ as:

P(δ) := {g ∈ G : lim
t→∞ δ(t)gδ(t)−1 exists in G}, (2.1)

Let �(G) be the set of the multiplicative one-parameter subgroups of G.
Following Kempf [14], we define the Killing length of a multiplicative one-
parameter subgroup δ by the equation

2‖δ‖2 = Trace[(ad(δ∗d/dt))2], (2.2)
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Equidistribution of expanding translates 919

and it follows from the invariance of the Killing form that the Killing length
is G-invariant.

Now fix a multiplicative one-parameter subgroup a of G. We choose and
fix a maximal R-split torus T of G containing {a(t)}. Let �(T ) be the set
of the multiplicative one-parameter subgroups of T , and X (T ) be the set of
characters of T . We define a pairing as following: if χ ∈ X (T ) and δ ∈ �(T ),
〈χ, δ〉 is the integer which occurs in the formula χ(δ(t)) = t 〈χ,δ〉. Let (·, ·)
denote the positive definite bilinear form on �(T ) such that (δ, δ) = ‖δ‖2.

By a suitable choice of positive roots R+, we may assume that a is a dom-
inant cocharacter of in T . Recall that the set �+(T ) of dominant cocharacters
of T is defined by:

�+(T ) = {δ ∈ �(T ) : 〈δ, α〉 ≥ 0, ∀α ∈ R+}. (2.3)

Let B be the corresponding minimal parabolic subgroup of G whose Lie
algebra consists of all the non-positive root spaces.

Let P = P(a) be the parabolic subgroup associated with a. LetWP denote
the set of minimal length coset representatives of the quotient W/WP , where
W = NG(T )/ZG(T ) andWP = NP(T )/ZP(T ) areWeyl groups ofG and P .
ThenW acts on �(T ) by conjugation:w ·δ = wδw−1. Denote δw = w ·δ. We
take the Bruhat order onWP such that w′ ≤ w if and only if the closure of the
Schubert cell BwP contains Bw′P . We note that the Bruhat order coincides
with the folding order defined in [16] (see [16, Remark 3.8]).

Definition 2.1 (Schubert variety) Given an element w ∈ W P , the standard
Schubert variety Xw is the Zariski closure of the Schubert cell BwP . A Schu-
bert variety is a subvariety of G/P of the form gXw, where g ∈ G and
w ∈ WP .

We say that a Schubert variety gXw is unstable with respect to a(t) if
there exists δ ∈ �+(T ) such that (δ, aw) > 0. We say that gXw is weakly
unstable with respect to a(t) if there exists a non-trivial δ ∈ �+(T ) such that
(δ, aw) ≥ 0.

For short, we will just say unstable or weakly unstable Schubert variety if
a(t) is clear in the context.

Remark 2.2 In this article, when we project from G to G/P , we always take
the following map

πP : G −→ G/P

g �−→ g−1P. (2.4)

When we write BwP , we treat it as a subvariety of G/P; while Pw−1B is
treated as a subset of G.
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For δ ∈ �+(T ), define the subset W+(δ, a) of WP as

W+(δ, a) = {w ∈ WP : (δ, aw) > 0}, (2.5)

and we define W−(δ, a),W 0+(δ, a) and W 0−(δ, a) similarly, with <, ≥ and
≤ in place of > in (2.5) respectively. We note that W+(δ, a) is a “metric
thickening” as defined in [16, Section 3.4].

Lemma 2.3 (a) Let w′ ≤ w be elements in W P, and δ ∈ �+(T ). Then one
has (δ, aw′

) ≥ (δ, aw).
(b)

⊔

w∈W+(δ,a) BwP is a finite union of unstable Schubert subvarieties of
G/P.

(c)
⊔

w∈W 0+(δ,a) BwP is a finite union of weakly unstable Schubert subva-
rieties of G/P.

Proof (a) Let U denote the unipotent radical of P , and u the Lie algebra of
U . Consider the exterior product V = ∧dim u g, and G acts linearly on V
induced by the adjoint representation.We take the vector pu = ∧dim uu in
V , and identifyG/P with theG-orbit through [pu] inP(V ). Thenw′ ≤ w

implies that the B-orbit through w′[pu] is contained in the closure of the
B-orbit through w[pu].
Let∨ denote the identification betweenweights and coweights via Killing
form. Since pu lies in theweight space attached to theweight a∨, we know
that wpu and w′ pu lie in the weight spaces attached to the weights (aw)∨
and (aw′

)∨ respectively. Hence the inclusion Bw[pu] ⊃ Bw′[pu] implies
that (aw′

)∨ − (aw)∨ lies in the cone spanned by the positive roots of G,
and the inequality follows.

(b) By (a) we know that if w ∈ W+(δ, a) and w′ ≤ w, then w′ ∈ W+(δ, a).
We take the Schubert varieties attached to the maximal elements in
W+(δ, a), and by definition they are all unstable.

(c) Same as the proof of (b).
��

Let ρ : G → GL(V ) be any finite-dimensional linear representation of
G. Let us recall some notions from geometric invariant theory (see e.g. [21]
for more details). A nonzero vector v is called unstable if the closure of the
G-orbit Gv contains the origin. v is called semistable if it is not unstable. For
any v ∈ V \{0} and δ ∈ �(G), by [14, Lemma 1.2] we can write v = ∑

vi
where δ(t)vi = t ivi . Define the numerical functionm(v, δ) to be themaximal1

i such that vi �= 0.

1 It is “minimal” in Kempf’s original definition. Since we are taking limit as t tends to ∞
instead of 0, our numerical function is actually opposite to Kempf’s.
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By a theorem of Kempf (see [14, Theorem 4.2]), the function m(v, δ)/‖δ‖
has a negative minimum value Bv on the set of non-trivial multiplicative one-
parameter subgroups δ. Let�(v) denote the set of primitivemultiplicative one-
parameter subgroup δ such thatm(v, δ) = Bv · ‖δ‖. Kempf [14, Theorem 4.2]
shows that the parabolic subgroup P(δ) does not depend on the choice of δ ∈
�(v), which is denoted by P(x). Moreover, �(v) is a principal homogeneous
space under conjugation by the unipotent radical of P(x). In particular, for
any δ in �(v) and b in P(x), we know that bδb−1 is also contained in �(v).

For v ∈ V \{0}, define

G(v, V−(a)) = {g ∈ G : gv ∈ V−(a)}, (2.6)

where

V−(a) = {v ∈ V : lim
t→∞ a(t)v = 0}. (2.7)

As noted in [15, Section 3.3], though the limits in [14] are defined algebraically,
they coincide with limits in the Hausdorff topology induced from the usual
topology on R, by [14, Lemma 1.2].

Now we proceed to the main result of this section.

Proposition 2.4 For any v ∈ V \{0}, there exits δ0 ∈ �+(T ) and g0 ∈ G such
that

G(v, V−(a)) ⊂
⊔

w∈W+(δ0,a)

Pw−1Bg−1
0 . (2.8)

Proof Bydefinitionwehave the following identities becauseofG-equivariance:

G(gv, V−(a)) = G(v, V−(a))g−1, ∀g ∈ G; (2.9)

�(gv) = g�(v)g−1, ∀g ∈ G. (2.10)

If v is semistable, then G(v, V−(a)) is empty, and the conclusion trivially
holds. From now on we assume that v is unstable, and thus �(v) is non-
empty. Take δ1 ∈ �(v), then there exists g0 ∈ G and δ0 ∈ �+(T ) such that
g−1
0 δ1g0 = δ0. It follows from (2.10) that δ0 ∈ �(g−1

0 v).
We argue by contradiction. Suppose that (2.8) does not hold. Considering

the Bruhat decomposition

G =
⊔

w∈W P

Pw−1B, (2.11)
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we can take g ∈ G(g−1
0 v, V−(a)) such that it can be written as

g = pw−1b, where p ∈ P, w ∈ W 0−(δ0, a), b ∈ B. (2.12)

Write v′ = bg−1
0 v. In view of (2.10), by [14, Theorem 4.2(3)] we have

�(g−1
0 v) = �(v′). Hence δ0 is an element in �(v′).

We also have v′ ∈ V−(aw). Indeed, gg−1
0 v ∈ V−(a) implies that pw−1v′ ∈

V−(a). Since V−(a) is P-invariant, we know that w−1v′ ∈ V−(a). Hence
v′ ∈ V−(aw).

Take a large integer N , we define δN = Nδ0 + aw. We claim that for a
sufficiently large N , one has

m(v′, δN )

‖δN‖ <
m(v′, δ0)

‖δ0‖ , (2.13)

and this will contradict the fact that δ0 ∈ �(v′).
To prove the claim, consider the weight space decomposition V = ⊕

Vχ ,
where T acts on Vχ by multiplication via the character χ of T . It suffices to
prove that for any χ such that the projection of v′ on Vχ is nonzero, one has

〈χ, δN 〉
‖δN‖ <

〈χ, δ0〉
‖δ0‖ . (2.14)

To prove (2.14), we define an auxiliary function:

f (s) = 〈χ, δ0 + s · aw〉2
‖δ0 + s · aw‖2

= 〈χ, δ0〉2 + 2s〈χ, δ0〉〈χ, aw〉 + s2〈χ, aw〉2
(δ0, δ0) + 2s(δ0, aw) + s2(aw, aw)

(2.15)

Compute its derivative at 0:

f ′(0) = 2〈χ, δ0〉〈χ, aw〉(δ0, δ0) − 2(δ0, aw)〈χ, δ0〉2
(δ0, δ0)2

(2.16)

Since v′ ∈ V−(aw), we know that 〈χ, aw〉 < 0. Since δ0 ∈ �(v′), we
know that 〈χ, δ0〉 < 0. Also by the choice of w we know that (δ0, aw) ≤ 0.
Combining the above one gets f ′(0) > 0. Hence for N large we have

f (1/N ) > f (0), (2.17)

and (2.14) follows because each side of (2.17) is the square of each side of
(2.14). Therefore (2.13) holds, contradicting the fact that δ0 ∈ �(v′). ��
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Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2 We prove by contradiction. Suppose that for all C > 0,
there exist t and v such that (1.4) does not hold. We take a sequence Ci → 0.
Then after passing to a subsequence we can find ti → ∞ and a sequence
(vi )i∈N in V such that

sup
s∈[a,b]

‖a(ti )φ(s)vi‖ < Ci‖vi‖. (2.18)

Without loss of generality we may assume that ‖vi‖ = 1. Then after passing
to a subsequence, we may assume that vi → v0. Hence we have

sup
s∈[a,b]

‖a(ti )φ(s)v0‖ ti→∞−→ 0. (2.19)

Therefore φ(s)v0 is contained in V−(a) for all s ∈ [a, b], and it follows that
the image of φ is contained in G(v0, V−(a)). (See (2.6).) By Lemma 2.3(b)
and Proposition 2.4, the image of G(v0, V−(a)) under πP in G/P is a finite
union of unstable Schubert varieties. But φ is analytic, which implies that the
image of˜φ is contained in one single unstable Schubert variety. This contradict
our assumption on φ. ��

Proposition 2.4 and Theorem 1.2 will play a central role in proving the
non-divergence of translated measures. To handle non-focusing, one needs a
slightly generalized version, motivated by the work of Richard and Shah [26,
Section 6]. We need the following result due to Kempf.

Lemma 2.5 ([14] Lemma 1.1(b)) Let G be a connected reductive algebraic
group over a field k, and X be any affine G-scheme. If S is a closed G-
subscheme of X, then there exists a G-equivariant morphism f : X → W,
where W is a representation of G, such that S is the scheme-theoretic inverse
image f −1(0) of the reduced closed subscheme of W supported by zero.

In view of Kempf’s Lemma 2.5, the following is a corollary of Proposi-
tion 2.4.

Corollary 2.6 Let the notation be as in the beginning of this section. Let S be
the real points of any G-subscheme of V . For any v ∈ V , define the following
subset of G:

G(v, S, a) = {g ∈ G : lim
t→∞ a(t)gv ∈ S}. (2.20)

Then for any v ∈ V \S, there exists δ0 ∈ �+(T ) and g0 ∈ G such that

G(v, S, a) ⊂
⊔

w∈W+(δ0,a)

Pw−1Bg−1
0 . (2.21)
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Proof By Lemma 2.5, there exists a G-equivariant morphism f : V → W
where f −1(0) = S. Hence it follows from the definition that

G(v, S, a) ⊂ G( f (v),W−(a)). (2.22)

Now it remains to apply Proposition 2.4 for W and f (v). ��
Now we present the following variant of Proposition 2.4.

Proposition 2.7 Let v ∈ V such that the G-orbit Gv is not closed. Define

G(v, V 0−(a)) = {g ∈ G : gv ∈ V 0−(a)}, (2.23)

where

V 0−(a) = {v ∈ V : lim
t→∞ a(t)v exists}. (2.24)

Then there exists δ0 ∈ �+(T ) and g0 ∈ G such that

G(v, V 0−(a)) ⊂
⊔

w∈W 0+(δ0,a)

Pw−1Bg−1
0 . (2.25)

Proof Let S = ∂(Gv). Since any G-orbit is open in its closure, we know
that S is closed and G-invariant. By Lemma 2.5, there exists a G-equivariant
morphism f : V → W where f −1(0) = S. Notice that f (v) is unstable in
W . We claim that

G( f (v),W 0−(a)) ⊂
⊔

w∈W 0+(δ0,a)

Pw−1Bg−1
0 . (2.26)

To prove the claim, we argue with W and f (v) in exactly the same way as
in the proof of Proposition 2.4. The only difference is the following. When
showing f ′(0) > 0, one needs 〈χ, aw〉 < 0 and (δ0, aw) ≤ 0 there; but here
one has 〈χ, aw〉 ≤ 0 and (δ0, aw) < 0, which also implies that f ′(0) > 0.
Hence (2.26) holds.

Finally, since f is G-equivariant, we have f (V 0−) ⊂ W 0−. Hence

G(v, V 0−(a)) ⊂ G( f (v),W 0−(a)). (2.27)

Therefore (2.25) holds. ��
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3 Non-divergence of the limiting distribution

Let G = G(R) be a connected semisimple real algebraic group, and L be
a real algebraic group containing G. Let {a(t)}t∈R× be a multiplicative one-
parameter subgroup of G with non-trivial projection on each simple factor of
G. Let P = P(a) be the parabolic subgroup of G whose real points consists
of the elements g ∈ G such that the limit limt→∞ a(t)ga(t)−1 exists. Let
φ : I = [a, b] → G be an analytic map, and let πP : G → G/P be the
projection which maps g to g−1P . Then ˜φ = πP ◦ φ is an analytic curve on
G/P . In this section we assume that the image of ˜φ is not contained in any
unstable Schubert variety of G/P with respect to a(t).

Let x0 = l� ∈ L/�. We will assume that the orbit of x0 under G is dense
in L/�; that is Gx0 = L/�. Let ti → ∞ be any sequence in R>0. Let μi be
the parametric measure supported on a(ti )φ(I )x0, that is, for any compactly
supported function f ∈ Cc(L/�) one has

∫

L/�

f dμi = 1

|I |
∫

I
f (a(ti )φ(s)x0) ds. (3.1)

Theorem 3.1 Given ε > 0 there exists a compact set F ⊂ L/� such that
μi (F) ≥ 1 − ε for all large i ∈ N.

This theorem will be proved via linearization technique combined with
Theorem 1.2. We follow [29, Section 3] closely, as most of the arguments
there work not only for G = SLn(R) but also for general G.

Definition 3.2 Let l denote the Lie algebra of L , and denote d = dim L . We
define

V =
d

⊕

i=1

∧i
l,

and let L act on V via
⊕d

i=1
∧i Ad(L). This defines a linear representation of

L (and of G by restriction):

L → GL(V ).

The following theorem due to Kleinbock and Margulis is the basic tool to
prove that there is no escape of mass to infinity:

Theorem 3.3 (see [5,17,30]) Fix a norm ‖·‖ on V . There exist finitely many
vectors v1, v2, . . . , vr ∈ V such that for each i = 1, 2, . . . , r , the orbit �vi is
discrete, and moreover, the following holds: for any ε > 0 and R > 0, there
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exists a compact set F ⊂ L/� such that for any t > 0 and any subinterval
J ⊂ I , one of the following holds:

(I) There exist γ ∈ � and j ∈ {1, . . . , r} such that
sup
s∈J

‖a(t)φ(s)lγ v j‖ < R;

(II)

|{s ∈ J : a(t)φ(s)x0 ∈ K }| ≥ (1 − ε)|J |.
The key ingredient of the proof, as explained in [29, Section 3.2] and [30,

Section 2.1], is the following growth property called the (C, α)-good property,
which is due to [17, Proposition 3.4]. Following Kleinbock and Margulis, we
say that a function f : I → R is (C, α)-good if for any subinterval J ⊂ I and
any ε > 0, the following holds:

|{s ∈ J : | f (s)| < ε}| ≤ C

(

ε

sups∈J | f (s)|
)α

|J |.

Now we are ready to prove the main result of this section.

Proof of Theorem 3.1 Take any ε > 0. Take a sequence Rk → 0 as k → ∞.
For each k ∈ N, letFk ⊂ L/� be a compact set as determined by Theorem 3.3
for these ε and Rk . If the theorem fails to hold, then for each k ∈ N we have
μi (Fk) < 1 − ε for infinitely many i ∈ N. Therefore after passing to a
subsequence of {μi }, we may assume that μi (Fi ) < 1 − ε for all i . Then by
Theorem 3.3, after passing to a subsequence, we may assume that there exists
v0 and γi ∈ � such that

sup
s∈I

‖a(ti )φ(s)lγiv0‖ ≤ Ri
i→∞−→ 0.

Since � · v0 is discrete, there exists r0 > 0 such that ‖lγiv0‖ ≥ r0 for each i.
We put vi = lγiv0/‖lγiv0‖. Then vi → v ∈ V and ‖v‖ = 1. Therefore

sup
s∈I

‖a(ti )φ(s)vi‖ ≤ Ri/r0
i→∞−→ 0. (3.2)

Then it follows that

sup
s∈I

‖a(ti )φ(s)v‖ i→∞−→ 0. (3.3)

This contradicts Theorem 1.2. ��
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As a consequence of Theorem 3.1, we deduce the following:

Corollary 3.4 After passing to a subsequence, μi → μ in the space of prob-
ability measures on L/� with respect to the weak-* topology.

We note that Theorem 1.1 follows from Theorem 3.1.

4 Invariance under a unipotent flow

LetG = G(R) be a connected semisimple real algebraic group, and {a(t)}t∈R×
be a multiplicative one-parameter subgroup of G with non-trivial projection
on each simple factor of G. Define

P = {g ∈ G : lim
t→∞ a(t)ga(t)−1 exists}. (4.1)

Let X be a locally compact second countable Hausdorff topological space,
with a continuous G-action. Let φ : I = [a, b] → G be an analytic curve,
whose projection under g �→ g−1P on G/P is non-trivial. Let g denote the
Lie algebra of G.

Since the exponential map exp : g → G is a local homeomorphism, we can
take a sufficiently small η > 0 such that for any s ∈ I and 0 < ξ < η, there
exists 	(s, ξ) in g such that

φ(s + ξ)φ(s)−1 = exp	(s, ξ). (4.2)

Moreover, 	 is an analytic map in both s and ξ .

Lemma 4.1 There exists m > 0 and an analytic map s �→ Ys such that Ys is
a nilpotent element in g for each s, and that for all but finitely many s ∈ I ,

Ad a(t) 	(s, t−m) → Ys, t → ∞. (4.3)

Moreover, the convergence is uniform in s.

Proof Since 	 is an analytic map in both s and ξ , we can write

	(s, ξ) =
∞
∑

i=1

ξ iψi (s), (4.4)

where ψi : I → g is analytic for each i .
Notice that Ad a(t) is semisimple and acts on the finite-dimensional vector

space g, so for each i there exists mi ∈ Z such that

Ad a(t)ψi (s) =
∑

j≤mi

t jψi, j (s), (4.5)
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whereψi, j (s) is analytic in s, andψi,mi (s) �= 0 for all but finitely many s ∈ I .
Since the projection of φ onG/P is non-trivial, there exists i such thatmi > 0.

Combining (4.4)(4.5), we get

Ad a(t) 	(s, ξ) =
∞
∑

i=0

∑

j≤mi

t jξ iψi, j (s). (4.6)

Now set m = maxi≥1{mi/ i}. Since mi are all eigenvalues of Ad a(t), they
are uniformly bounded from above. Hence we know that m exists and m > 0.
Denote I = {i ≥ 1 : mi/ i = m}, and we see that I is a finite set. We set

Ys =
∑

i∈I
ψi,mi (s). (4.7)

Since the eigenvalues of Ad a(t) acting on Ys are all positive, Ys is nilpotent.
In view of (4.6),

Ad a(t) 	(s, t−m) = Ys +
∑

j−im<0

t j−imψi, j (s), (4.8)

and (4.3) follows. ��
We could then twist Ys into one direction due to the following lemma.

Lemma 4.2 There are only finitely many G-conjugacy classes of the nilpotent
elements in the Lie algebra g of G.

Proof This result has been proved for groups over the complex numbersC (see
[25]). Let X be any non-zero nilpotent element in g. Now it remains to show
that there are only finitely many G(R)-orbits in the real points of G(C) · X .
Let H be the stabilizer of X in G. Then H is an algebraic group defined over
R. It is well known that theG(R)-orbits in (G/H)(R) are parametrized by the
Galois cohomology H1(Gal(C/R),H(C)). Then the statement of the lemma
follows from the finiteness of H1(Gal(C/R),H(C)), which is guaranteed by
[23, Theorem 6.14]. ��

Since there are only finitely many conjugacy classes of nilpotent elements
in g, up to at most finitely many points we may assume that all the Ys are in
the same conjugacy class. Hence there exists w0 in g, and δ(s) in G which is
also analytic in s, such that for all but finitely many s ∈ I one has

Ad(δ(s)) · Ys = w0. (4.9)
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Define the unipotent one-parameter subgroup of G as

W = {exp(tw0) : t ∈ R}. (4.10)

Let (ti )i∈N be a sequence in R such that ti → ∞ as i → ∞. Let xi → x a
convergent sequence in X. For each i ∈ N, let λi be the probability measure
on X such that

∫

X
f dλi = 1

|I |
∫

s∈I
f (δ(s)a(ti )φ(s)xi ) ds, ∀ f ∈ Cc(X). (4.11)

The following theorem is the main result of this section. The new idea here
due to Nimish Shah is that we can actually twist the curve after translating by
a(t).

Theorem 4.3 Suppose that λi → λ in the space of finite measures on X with
respect to the weak-* topology, then λ is invariant under W.

Proof Given f ∈ Cc(X) and ε > 0. Since f is uniformly continuous, there
exists a neighborhood � of the neutral element in G such that

| f (ωy) − f (y)| < ε, ∀ω ∈ �, ∀y ∈ X. (4.12)

Define

�′ =
⋂

s∈I
δ(s)−1�δ(s), (4.13)

and �′ is non-empty and open because {δ(s)}s∈I is compact.
By Lemma 4.1, there exists T > 0 such that for all t > T and for all but

finitely many s ∈ I , there exists ωt,s ∈ �′ such that

a(t) exp	(s, t−m)a(t)−1 = ωt,s exp Ys . (4.14)

Take ξi = t−m
i . In view of (4.2), for i large enough we have

φ(s + ξi ) = exp	(s, ξi )φ(s). (4.15)

Hence there exists i0 ∈ N such that for all i > i0,

δ(s)a(ti )φ(s + ξi ) = δ(s)a(ti ) exp	(s, ξi )φ(s)

= δ(s)ωti ,s exp Ysa(ti )φ(s)

= (

δ(s)ωti ,sδ(s)
−1) δ(s) expYsa(ti )φ(s)

= (

δ(s)ωti ,sδ(s)
−1) (expw0)δ(s)a(ti )φ(s)

∈ �(expw0)δ(s)a(ti )φ(s).

(4.16)
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By (4.12) we know that for all but finitely many s ∈ I ,

| f ((expw0)δ(s)a(ti )φ(s)xi ) − f (δ(s)a(ti )φ(s + ξi )xi )| < ε. (4.17)

It follows that for all i > i0,
∣

∣

∣

∣

1

|I |
∫

I
f ((expw0)δ(s)a(ti )φ(s)xi ) ds − 1

|I |
∫

I
f (δ(s)a(ti )φ(s + ξi )xi ) ds

∣

∣

∣

∣

< ε.

(4.18)

On the other hand, since f is bounded on X, there exists i1 ∈ N such that for
all i > i1,

∣

∣

∣

∣

1

|I |
∫

I
f (δ(s)a(ti )φ(s + ξi )xi ) ds − 1

|I |
∫

I
f (δ(s)a(ti )φ(s)xi ) ds

∣

∣

∣

∣

< ε.

(4.19)

Combining the above two equations we get
∣

∣

∣

∣

1

|I |
∫

I
f ((expw0)δ(s)a(ti )φ(s)xi ) ds − 1

|I |
∫

I
f (δ(s)a(ti )φ(s)xi ) ds

∣

∣

∣

∣

< 2ε. (4.20)

Therefore, for i large enough we have

∣

∣

∣

∣

∫

X
f ((expw0) · x) dλi −

∫

X
f (x) dλi

∣

∣

∣

∣

< 2ε. (4.21)

Taking i → ∞,

∣

∣

∣

∣

∫

X
f ((expw0) · x) dλ −

∫

X
f (x) dλ

∣

∣

∣

∣

≤ 2ε. (4.22)

Since ε is arbitrary, we conclude that λ is expw0-invariant.
If we replace w0 with any scalar multiple of w0, the above arguments still

work. Hence λ is invariant under W = {exp(tw0) : t ∈ R}. ��

5 Dynamical behavior of translated trajectories near singular sets

Let notation be as in Sect. 3. Recall that the image of ˜φ is not contained in any
unstable Schubert variety of G/P with respect to a(t). Let {λi : i ∈ N} be the
sequence of probability measures on L/� as defined in (4.11), where we take
X = L/� and xi = x0. Due to Theorem 3.1, by passing to a subsequence we
assume that λi → λ as i → ∞, where λ is a probability measure on L/�.
By Theorem 4.3, λ is invariant under a unipotent subgroup W . We would
like to describe the limit measure λ using the description of ergodic invariant
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measures for unipotent flows on homogeneous spaces due to Ratner [24]. We
follow the treatment in [30, Section 4].

5.1 Ratner’s theorem and linearization technique

Letπ : L → L/� denote the natural quotientmap. LetH denote the collection
of closed connected subgroups H of L such that H ∩ � is a lattice in H , and
suppose that a unique unipotent one-parameter subgroup of H acts ergodically
with respect to the H -invariant probability measure on H/H ∩ �. ThenH is
a countable collection (see [24]).

For a closed connected subgroup H of L , define

N (H,W ) = {g ∈ L : g−1Wg ⊂ H}. (5.1)

Now, suppose that H ∈ H. We define the associated singular set

S(H,W ) =
⋃

F∈H
F�H

N (F,W ). (5.2)

Note that N (H,W )NL(H) = N (H,W ). By [22, Proposition 2.1, Lemma
2.4],

N (H,W ) ∩ N (H,W )γ ⊂ S(H,W ), ∀γ ∈ �\NL(H). (5.3)

By Ratner’s theorem [24, Theorem 1], as explained in [22, Theorem 2.2], we
have the following.

Theorem 5.1 (Ratner) Given a W-invariant probability measure λ on L/�,
there exists H ∈ H such that

λ(π(N (H,W ))) > 0 and λ(π(S(H,W ))) = 0. (5.4)

Moreover, almost every W-ergodic component of λ on π(N (H,W )) is a mea-
sure of the form gμH , where g ∈ N (H,W )\S(H,W ) and μH is a finite
H-invariant measure on π(H) ∼= H/H ∩ �. In particular if H is a normal
subgroup of L then λ is H-invariant.

Let V be as in Sect. 3. Let d = dim H , and fix pH ∈ ∧d h\{0}. Due to [6,
Theorem 3.4], the orbit �pH is a discrete subset of V . We note that for any
g ∈ NL(H), gpH = det(Ad g|h)pH . Hence the stabilizer of pH in L equals

N 1
L(H) := {g ∈ NL(H) : det(Ad g|h) = 1}. (5.5)
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Recall that Lie(W ) = Rw0. Let

A = {v ∈ V : v ∧ w0 = 0}, (5.6)

where V is defined in Definition 3.2. Then A is a linear subspace of V . We
observe that

N (H,W ) = {g ∈ L : g · pH ∈ A}. (5.7)

Recall that x0 = l� ∈ L/�. Using the fact that φ is analytic, we obtain the
following consequenceof the linearization technique and (C, α)-goodproperty
(see [29,30,32]).

Proposition 5.2 Let C be a compact subset of N (H,W )\S(H,W ). Given
ε > 0, there exists a compact setD ⊂ A such that, given a relatively compact
neighborhood � of D in V , there exists a neighborhood O of π(C) in L/�

such that for any t ∈ R and subinterval J ⊂ I , one of the following statements
holds:

(I) |{s ∈ J : δ(s)a(t)φ(s)x0 ∈ O}| ≤ ε|J |.
(II) There exists γ ∈ � such that δ(s)a(t)φ(s)lγ pH ∈ � for all s ∈ J .

5.2 Algebraic consequences of positive limit measure on singular sets

Recall the definition of λi in (4.11), where we take X = L/� and xi = x0.
After passing to a subsequence, λi → λ in the space of probability measures
on L/�, and by Theorem 3.1 and Theorem 4.3, we know that there exists
H ∈ H such that

λ(π(N (H,W )\S(H,W )) > 0. (5.8)

In this section, we use Proposition 5.2 and Theorem 1.2 to obtain the following
algebraic consequence, which is an analogue of [30, Proposition 4.8].

Proposition 5.3 Let l ∈ L such that x0 = l�. Suppose λi → λ, then there
exists γ ∈ � such that

φ(s)lγ pH ∈ V 0−(a), ∀s ∈ I. (5.9)

Proof By (5.4) there exists a compact subset C ⊂ N (H,W )\S(H,W ) and
a constant c0 > 0 such that λ(π(C)) > c0. We fix 0 < ε < c0, and apply
Proposition 5.2 to obtain D. We choose any relatively compact neighborhood
� of D, and obtain an O such that either (I) or (II) holds.
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Since λi → λ, there exists i0 ∈ N such that for all i > i0, (I) does not hold.
Therefore (II) holds for all i > i0. In other words, there exists a sequence {γi }
in � and a subinterval J ⊂ I such that

δ(s)a(ti )φ(s)lγi pH ∈ �, ∀i > i0, ∀s ∈ J. (5.10)

By Theorem 1.2, we know that {γi pH } is bounded. Hence after passing to a
subsequence, we may assume that there exists γ ∈ � such that γi pH = γ pH
holds for all i . It follows that a(ti )φ(s)lγ pH remains bounded in V . This
concludes the proof. ��

Next we are able to obtainmore algebraic information from Proposition 5.3.
First we show that the limiting process actually happens inside the G-orbit
G · lγ pH .
Proposition 5.4 Let the notation be as in Proposition 5.3. Then for all but
finitely many s ∈ I = [a, b], there exists ξ(s) ∈ P such that

lim
t→∞ a(t)φ(s)lγ pH = ξ(s)φ(s)lγ pH . (5.11)

Proof Denote v = lγ pH . According to Proposition 5.3, the limit on the left-
hand side of (5.11) exists. We claim that the limit actually lies in the G-orbit
Gv for all but finitely many s ∈ I .

Consider the boundary S = ∂(Gv) = Gv\Gv. If S is empty then the claim
holds automatically. Now suppose that S is non-empty, and that there exist
infinitely many s ∈ I such that limt→∞ a(t)φ(s)v is contained in S. Since φ

is analytic, we have that for any s ∈ I , limt→∞ a(t)φ(s)v is contained in S.
Hence in view of (2.20),

φ(s) ∈ G(v, S, a), ∀s ∈ J. (5.12)

Moreover, by Corollary 2.6 there exists δ0 ∈ �+(T ) and g0 ∈ G such that

G(v, S, a) ⊂
⊔

w∈W+(δ0,a)

Pw−1Bg−1
0 . (5.13)

By (5.12), (5.13) and Lemma 2.3(b), the image of˜φ is contained in an unstable
Schubert variety with respect to a(t), which contradicts our assumption.

Hence for all but finitely many s ∈ I , there exists η(s) ∈ G such that

lim
t→∞ a(t)φ(s)v = η(s)φ(s)v. (5.14)
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Now fix any s such that (5.14) holds. Take t0 > 0, and set w = a(t0)φ(s)v.
Then

lim
t→∞ a(t)w = η(s)a(t0)

−1w. (5.15)

By taking t0 large enough, we may assume that η(s)a(t0)−1 is contained in a
small neighborhood of the neutral element in G. Let F denote the stabilizer of
η(s)a(t0)−1w = η(s)φ(s)v in G, and let f be the Lie algebra of F . It is easy
to see that F contains {a(t)}.

Now the Lie algebra f of F is Ad a(t)-invariant, and thus we have the
following decomposition as a consequence of a(t) being semisimple:

g = f⊥ ⊕ f, (5.16)

where f⊥ is an Ad a(t)-invariant subspace of g.
On the other hand, according to the eigenvalues of Ad a(t), we can decom-

pose g into

g = g− ⊕ g0 ⊕ g+. (5.17)

Combining the above two decompositions (5.16)(5.17), we get

g = g− ⊕ g0 ⊕ (g+ ∩ f⊥) ⊕ (g+ ∩ f). (5.18)

Hence there exist X0−
s ∈ g0 ⊕ g− and X+

s ∈ g+ ∩ f⊥ such that

a(t0)η(s)−1 ∈ exp X0−
s exp X+

s F. (5.19)

By (5.15), we have that X+
s = 0. Hence

a(t0)η(s)−1 ∈ exp X0−
s F. (5.20)

Set ξ(s) = exp(−X0−
s )a(t0), and one can verify that (5.11) holds. ��

If we consider the slightly larger family of weakly unstable Schubert vari-
eties, and further assume that the image of ˜φ is not contained in any weakly
unstable Schubert variety, then we can obtain the following refinement of
Proposition 5.4.

Proposition 5.5 In the situation of Proposition 5.3, further assume that the
image of ˜φ is not contained in any weakly unstable Schubert variety of G/P
with respect to a(t). Then the orbit G · lγ pH is closed, and the stabilizer of
lγ pH in G is reductive.
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Proof Write v = lγ pH . Suppose that Gv is not closed, then the boundary
S = ∂(Gv) is non-empty. By Proposition 2.7 there exists δ0 ∈ �+(T ) and
g0 ∈ G such that

G(v, V 0−(a)) ⊂
⊔

w∈W 0+(δ0,a)

Pw−1Bg−1
0 . (5.21)

Also by (5.9) we know

φ(s) ∈ G(v, V 0−(a)), ∀s ∈ I. (5.22)

By (5.21), (5.22) and Lemma 2.3(c), the image of ˜φ is contained in a weakly
unstable Schubert variety, which contradicts our assumption on φ.

Therefore Gv is closed, i.e. G · lγ pH is closed. By Matsushima’s criterion,
the stabilizer of lγ pH in G is reductive. ��

The following proposition describes the obstructions to equidistribution.
(C.f. [34, Theorem 6.1].)

Proposition 5.6 Suppose that the image of ˜φ is not contained in any unstable
Schubert variety of G/P with respect of a(t), and that λi → λ. Then there
exists g ∈ G and an algebraic subgroup F of L containing {a(t)} such that
Fgl� is closed and admits a finite F-invariant measure, and that

φ(s) ∈ P(F ∩ G)g, ∀s ∈ I. (5.23)

Furthermore, if the image of˜φ is not contained in anyweakly unstable Schubert
variety, then we can choose F such that F ∩ G is reductive.

Proof Let ξ(s) be defined as in Proposition 5.4. Fix any s0 ∈ I . Let g =
ξ(s0)φ(s0) and v = lγ pH . We set F = StabL(gv) = glγ N 1

L(H)γ −1l−1g−1.
By Proposition 5.4 we have {a(t)} ⊂ F . Since � · pH is discrete, N 1

L(H) · �
is closed. Hence Fgl� is also closed.

Now the Lie algebra f of F is Ad a(t)-invariant, and thus we have the
following decomposition as a consequence of a(t) being semisimple:

g = f⊥ ⊕ f, (5.24)

where f⊥ is an Ad a(t)-invariant subspace of g.
On the other hand, according to the eigenvalues of Ad a(t), we can decom-

pose g into

g = g− ⊕ g0 ⊕ g+. (5.25)
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Combining the above two decompositions (5.24) and (5.25), we get

g = g− ⊕ g0 ⊕ (g+ ∩ f⊥) ⊕ (g+ ∩ f). (5.26)

Hence for all s near s0, there exist X0−
s ∈ g0 ⊕ g− and X+

s ∈ g+ ∩ f⊥ such
that

ξ(s0)φ(s)g−1 ∈ exp X0−
s exp X+

s F. (5.27)

Since a(ti )φ(s)v converges in V as i → ∞, by Proposition 5.4 we know that
a(ti )φ(s)g−1F converges in G/F as i → ∞. It follows that

X+
s = 0, ∀s ∈ I. (5.28)

Since X0−
s ∈ g0 ⊕ g−, we have

exp X0−
s ∈ P. (5.29)

Combining (5.27)–(5.29) we get

φ(s) ∈ PFg, (5.30)

for all s ∈ I . This implies (5.23). Moreover, by [27, Theorem 2.3], there exists
a subgroup F1 of F containing all Ad-unipotent one-parameter subgroups of
L contained in F such that F1gl� admits a finite F1-invariant measure. We
fix a Levi subgroup of F containing {a(t)}, and let Z denote its center. Then
we have F = ZF1. On the other hand, by definition P contains Z . Hence
PFg = PZF1g = PF1g, and we may replace F by F1.
If we further assume that the image of ˜φ is not contained in any weakly

unstable Schubert variety, then by Proposition 5.5 we know that the stabilizer
of lγ pH in G is reductive, i.e. g−1Fg ∩ G is reductive. Hence F ∩ G is also
reductive. ��

5.3 Lifting of obstructions and proof of equidistribution results

In this section, we show that the conditions in Theorem 1.5 are preserved under
projections. This enables us to use induction to prove the equidistribution
results.

Lemma 5.7 Let G be a connected semisimple real algebraic group, and
p : G → G be a surjective homomorphism. Let a(t) be a multiplicative one-
parameter subgroup of G, and a(t) be its image in G. Suppose that a(t) is
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non-trivial. Define (weakly) unstable Schubert varieties and partial flag sub-
varieties of G/P with respect to a(t), T and B. Then the preimage of any
unstable (resp. weakly unstable) Schubert subvariety of G/P with respect to
a(t) is an unstable (resp. weakly unstable) Schubert subvariety of G/P with
respect to a(t).

Proof Let Xw be an unstable Schubert subvariety of G/P , where w ∈ WP

is such that (δ, aw) ≥ 0 for some δ ∈ �+(T ). Let G1 denote the kernel
of p, and we have WG = WG1 × WG . Let w0 denote the unique maximal
element inWP1 . Then the preimage of Xw is X(w0,w). Now it remains to check
instability.We note that the Killing form on g is the sum of theKilling forms on
g1 and g. Hence we consider the lifted multiplicative one-parameter subgroup
(e, δ) ∈ �+(T ), and use it to check that X(w0,w) is unstable.

The same proof also works for weakly unstable Schubert varieties. ��
We now proceed to the equidistribution results. Recall that l ∈ L such that

x0 = l�, and λi are probability measures on L/� as defined in (4.11).

Proposition 5.8 Let φ be an analytic curve on G such that the following two
conditions hold:

(a) the image of ˜φ is not contained in any unstable Schubert variety of G/P
with respect to a(t);

(b) For any g ∈ G and any proper algebraic subgroup F of L containing
{a(t)} such that Fgx0 is closed and admits a finite F-invariant measure,
the image of φ is not contained in P(F ∩ G)g.

Suppose that λi → λ in the weak-* topology, then λ is the unique L-invariant
probability measure on L/�.

Proof By Proposition 5.6, there exists an algebraic subgroup F of L such that
(5.23) holds. Then condition (b) implies that F ⊃ G, and thus G fixes lγ pH .
Arguing as in the proof of [29, Theorem 5.6], we know that L = N 1

L(H), i.e.
H is normal in L .
Nowwe can prove the theorem by induction on the number of simple factors

in L . If L is simple, then we have H = L , and λ is H = L-invariant. For the
inductive step, we consider the natural quotient map p : L → L/H . For any
subset E ⊂ L , let E denote its image under the quotient map. By Lemma 5.7,
φ(I ) is not contained in any unstable Schubert variety with respect to a(t).
Hence φ still satisfies condition (a). One can also verify that φ still satis-
fies condition (b). Indeed, if the image of φ is contained in P(F0 ∩ G)g for
some F0 � L such that F0gx0 is closed, then the image of φ is contained in
P(p−1(F0) ∩ G)g and p−1(F0)gx0 is also closed.
Now both conditions still hold for the projected curve φ. By inductive

hypothesis we know that the projected measure λ is the L/H -invariant mea-
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sure on L/H�. In addition, we already know that λ is H -invariant. Therefore
λ is L-invariant. ��
Corollary 5.9 Let φ be an analytic curve satisfying (a) and (b) in Propo-
sition 5.8. Let μi be the probability measure on L/� as defined in (3.1).
Suppose that μi → μ with respect to the weak-* topology, then μ is the
unique L-invariant probability measure on L/�.

Proof The deduction of Corollary 5.9 from Proposition 5.8 is analogous to the
proof of [29, Corollary 5.7]. ��

Parallel to Proposition 5.8 and Corollary 5.9, the following results could be
proved with the same arguments.

Proposition 5.10 Let φ be an analytic curve on G such that the following two
conditions hold:

(A) the image of ˜φ is not contained in any weakly unstable Schubert variety
of G/P with respect to a(t);

(B) For any g ∈ G and any proper algebraic subgroup F of L containing
{a(t)} such that Fgx0 is closed and admits a finite F-invariant measure
and that F∩G is reductive, the image of φ is not contained in P(F∩G)g.

Suppose that λi → λ in the weak-* topology, then λ is the unique L-invariant
probability measure on L/�.

Corollary 5.11 Let φ be an analytic curve satisfying (A) and (B) in Propo-
sition 5.10. Let μi be the probability measure on L/� as defined in (3.1).
Suppose that μi → μ with respect to the weak-* topology, then μ is the
unique L-invariant probability measure on L/�.

Now we are ready to prove the main theorems in Sect. 1.3.

Proof of Theorem 1.3 If (1.6) fails to hold, then there exist ε > 0 and a
sequence ti → ∞ such that for each i ,

∣

∣

∣

∣

1

b − a

∫ b

a
f (a(ti )φ(s)x0) ds −

∫

L/�

f dμL/�

∣

∣

∣

∣

≥ ε. (5.31)

In view of (3.1) and Corollary 3.4, this statement contradicts Corollary 5.9. ��
Proof of Theorem 1.5 If (1.7) fails to hold, then there exist ε > 0 and a
sequence ti → ∞ such that for each i ,

∣

∣

∣

∣

1

b − a

∫ b

a
f (a(ti )φ(s)x0) ds −

∫

L/�

f dμL/�

∣

∣

∣

∣

≥ ε. (5.32)

In view of (3.1) and Corollary 3.4, this statement contradicts Corollary 5.11.
��
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6 Grassmannians and Schubert varieties

In this section we consider the special case where G = L = SLm+n(R), and
� = SLm+n(Z). Define

a(t) =
[

tn Im
t−m In

]

.

Then {a(t)} is a multiplicative one-parameter subgroup of G. In this section,
all the unstable and weakly unstable Schubert varieties are with respect to this
a(t). Let P be the parabolic subgroup associated with {a(t)}. We have

P =
{[

A 0
C D

]

∈ SLm+n(R) : A ∈ Mm×m(R), C ∈ Mn×m(R), D ∈ Mn×n(R)

}

. (6.1)

Hence the partial flag variety G/P coincide with Gr(m,m + n), the Grass-
mannian of m-dimensional subspaces of R

m+n . It is an irreducible projective
variety of dimension mn.

6.1 Schubert cells and Schubert varieties

Let B be the Borel subgroup of lower triangular matrices in G, and T the
group of diagonal matrices in G. The Weyl group W = NG(T )/ZG(T ) is
isomorphic to Sm+n , the permutation group onm+n elements. TheWeyl group
WP of P is isomorphic to Sm × Sn , and the set WP of minimal length coset
representatives of W/WP consists of the permutations w = (w1, . . . , wm+n)

such that w1 < · · · < wm and wm+1 < · · · < wm+n . We identify w in WP

with the subset Iw = {w1, . . . , wm} of {1, 2, . . . ,m + n}. The cosets wP are
exactly the T -fixed points ofG/P . The Schubert cellCw is by definition BwP ,
and the Schubert variety Xw is defined to be BwP , the closure of Cw in G/P .
For w, w′ ∈ WP , w′ ∈ Xw if and only if w′ ≤ w in the Bruhat order. We note
that the Bruhat order here is the order on the tuples (w1, . . . , wm) given by

(wi ) ≤ (vi ) ⇐⇒ wi ≤ vi , ∀1 ≤ i ≤ m.

The dimension of Xw is given by l(w), which equals
∑m

k=1(wk − k).
The definitions above coincide with the classical definitions. For 1 ≤ k ≤

m + n, let Fk be the standard k-dimensional subspace of R
m+n spanned by

{e1, . . . , ek}. We have the complete flag of subspaces

0 = F0 ⊂ F1 ⊂ F2 · · · ⊂ Fm+n−1 ⊂ Fm+n = R
m+n. (6.2)
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For an m-dimensional subspace V ∈ Gr(m,m + n) of R
m+n , consider the

intersections of the subspace with the flag:

0 ⊂ (F1 ∩ V ) ⊂ (F2 ∩ V ) · · · ⊂ (Fm+n−1 ∩ V ) ⊂ W. (6.3)

For w ∈ WP , we have a tuple (w1, . . . , wm), and the Schubert cell Cw has the
following description:

Cw = {

V ∈ Gr(m,m + n) : dim(V ∩ Fwk ) = k; dim(V ∩ Fl ) < k, ∀l < wk
}

. (6.4)

In other words, the tuple (w1, . . . , wm) gives the indices where the dimension
jumps.

Similarly, the Schubert variety Xw has the following description:

Xw = {

V ∈ Gr(m,m + n) : dim(V ∩ Fwk ) ≥ k, 1 ≤ k ≤ m
}

. (6.5)

Now it is easy to see that

Xw =
⊔

w′≤w

Cw′ . (6.6)

Hence the Schubert cells give a stratification of the Grassmannian variety.

Example 6.1 (1) Form = 1, the Grassmannian Gr(1, n) is just the projective
space RP

n , and the Schubert varieties form a flag of linear subspaces
X0 ⊂ X1 ⊂ · · · ⊂ Xn , where X j

∼= RP
j .

(2) For m = n = 2 one gets the following poset of Schubert varieties in
Gr(2, 4):

X34

X24

X14 X23

X13

X12

(6.7)

where X12 is one single point, and X34 is Gr(2, 4).
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6.2 Pencils

The main goal of this section is to show that maximal (weakly) constraining
pencils coincide with maximal (weakly) unstable Schubert varieties in the
Grassmannian case, and hence the latter is a natural generalization to all partial
flag varieties.

Given a real vector spaceW � R
m+n , and an integer r ≤ m, we recall from

Definition 1.7 that the pencilPW,r is the set

{V ∈ Gr(m,m + n) : dim(V ∩ W ) ≥ r}.
Denote d = dimW . Let w ∈ WP be the element such that (w1, . . . , wm) is
the tuple

(d − r + 1, . . . , d, n + r + 1, . . . , n + m).

One can verify that the pencilPW,r is the Schubert variety gXw, where g is an
element in SLm+n(R) such that W = g · Fd . The pencil is called constraining
(resp. weakly constraining) if the inequality (1.11) (resp. (1.12)) holds.

On the other hand, we recall that the Schubert variety Xw is unstable (resp.
weakly unstable) if there exists a non-trivial multiplicative one-parameter sub-
group δ in �+(T ) such that (δ, aw) > 0 (resp. ≥ 0). Let � be the element in
the Lie algebra t of T such that δ(t) = exp(log t ·�). Then� could be written
as diag(t1, t2, . . . , tm+n), where t1 ≥ t2 ≥ · · · ≥ tm+n and

∑

ti = 0. Hence
in the case of a Grassmannian we have the following criterion of stability.

Lemma 6.2 Let w be an element in W P, then the corresponding Schubert
variety Xw is unstable (resp. weakly unstable) if and only if the following
system is soluble:

t1 ≥ · · · ≥ tk > 0 ≥ tk+1 ≥ · · · ≥ tm+n (6.8)
m+n
∑

i=1

ti = 0 (6.9)

m
∑

j=1

tw j > 0 (resp.
m

∑

j=1

tw j ≥ 0) (6.10)

Example 6.3 (m = n = 2) We continue with Example 6.1(2). If w = (14),
then we can take t1 = 3, t2 = t3 = t4 = −1, which gives t1 + t4 > 0. Hence
by Lemma 6.2 we have X14 is unstable. Similarly we can show that X23 is
unstable by taking t1 = t2 = t3 = 1, t4 = −3.

When w = (24), t2 + t4 ≥ 0 is soluble as we can take t1 = t2 = 1, t3 =
t4 = −1. However, t2 + t4 > 0 is insoluble. Indeed, suppose t2 + t4 > 0, then
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t1+ t3 ≥ t2+ t4 > 0, and it follows that t1+ t2+ t3+ t4 > 0, which contradicts
(6.9). Therefore we conclude that X24 is weakly unstable but not unstable.

Now we are ready for the main results of this section.

Proposition 6.4 Every constraining (resp. weakly constraining) pencil is an
unstable (resp. weakly unstable) Schubert variety of Gr(m,m + n).

Proof Let PW,r be a constraining pencil, and thus by definition we have

d

r
<

m + n

m
, (6.11)

where d = dimW . ThenPW,r = gXw, where g ∈ G and w ∈ WP such that

(w1, . . . , wm) = (d − r + 1, . . . , d, n + r + 1, . . . ,m + n). (6.12)

Now set t1 = · · · = td = m + n − d and td+1 = · · · = tm+n = −d. It is clear
that (6.8) and (6.9) are satisfied. Moreover,

m
∑

j=1

tw j = r(m + n − d) − (m − r)d

= r(m + n) − md

= mr

(

m + n

m
− d

r

)

> 0.

(6.13)

Hence (6.10) also holds. Therefore, by Lemma 6.2we conclude thatPW,r is an
unstable Schubert variety. The same proof also works for weakly constraining
pencils. ��
Proposition 6.5 Every unstable (resp. weakly unstable) Schubert variety of
Gr(m,m+n) is contained in a constraining (resp. weakly constraining) pencil.

Proof Let Xw be an unstable Schubert variety and consider the set Iw =
{w1, . . . , wm}. Notice that for any wk ∈ Iw, if we set W = Fwk and r = k,
then Xw is contained in the pencil PW,r . To show that the pencil is unstable,
we need

wk

k
<

m + n

m
. (6.14)

Hence it suffices to prove the following claim. ��
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Claim There exists 1 ≤ k ≤ m such that (6.14) holds.

We prove the claim by contradiction. Suppose that for any 1 ≤ k ≤ m we
have

wk

k
≥ m + n

m
. (6.15)

For 1 ≤ j ≤ m + n, consider the auxiliary function

g( j) =
{

−m j /∈ Iw;
n j ∈ Iw.

(6.16)

Fix 1 ≤ i < m + n, and let wk be the largest element in Iw such that wk ≤ i
(and set wk = 0 if i < w1). As a consequence of (6.15), we have

i
∑

j=1

g( j) ≤
wk
∑

j=1

g( j)

= −m(wk − k) + nk

= (m + n)k − mwk

≤ 0, by (6.15).

(6.17)

It is also clear that

m+n
∑

j=1

g( j) = 0. (6.18)

Since Xw is unstable, we may find t1, . . . , tm+n satisfying (6.8)–(6.10).
Denote

A =
∑

i∈Iw
ti ; (6.19)

B =
∑

i /∈Iw
ti . (6.20)

Then A > 0 and A+B = 0 by (6.9) and (6.10). Hence B < 0, and nA−mB >

0.
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On the other hand, summation by parts leads to

nA − mB = n
∑

i∈Iw
ti − m

∑

i /∈Iw
ti

=
m+n
∑

i=1

g(i)ti

=
m+n−1
∑

i=1

⎡

⎣(ti − ti+1)

i
∑

j=1

g( j)

⎤

⎦ + tm+n

m+n
∑

j=1

g( j)

=
m+n−1
∑

i=1

⎡

⎣(ti − ti+1)

i
∑

j=1

g( j)

⎤

⎦

≤ 0.

(6.21)

This is a contradiction.
Therefore we have proved the claim, and thusPW,r is a constraining pencil

containing the Schubert variety Xw. The same proofworks forweakly unstable
Schubert varieties. ��

Combining Propositions 6.4 and 6.5, we conclude the following.

Theorem 6.6 Let E be any subset of Gr(m,m + n) ∼= G/P. Then E is con-
tained in an unstable (resp. weakly unstable) Schubert variety with respect to
a(t) if and only if E is contained in a constraining (resp. weakly constraining)
pencil.

6.3 Young diagrams

In this section,wewill give a combinatorial description of pencils and (weakly)
constraining pencils, using Young diagrams. This will enable us to quickly
see whether a Schubert variety is a pencil, and whether a pencil is (weakly)
constraining. The readers are referred to Fulton’s book [12] for more details.

A partition is a sequence of integers λ = (λ1, . . . , λm) such that λ1 ≥
· · · ≥ λm ≥ 0. Let�m,n denote the set of partitions such that λ1 ≤ n. A Young
diagram is a set of boxes arranged in a left justified array, such that the row
lengths weakly decrease from top to bottom. To any partition λ we associate
the Young diagram Dλ whose i-th row contains λi boxes. An outside corner
of the Young diagram Dλ is a box in Dλ such that removing the box we still
get a Young diagram.
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Example 6.7 Let m = 3, n = 5, and λ = (4, 3, 1) ∈ �m,n . The Young
diagram Dλ fits inside an m × n rectangle.

•
•

•
There are three outside corners, which are marked with a dot in the diagram.

Given λ ∈ �m,n , the associated Schubert variety Xλ ⊂ Gr(m,m + n) is
defined by the conditions

dim(V ∩ Fn+i−λi ) ≥ i, 1 ≤ i ≤ m. (6.22)

Actually we only need outside corners to define Xλ; the pairs (i, λi )which are
not outside corners are redundant. (See [12, Exercise 9.4.18].) Therefore, we
have the following lemma.

Lemma 6.8 Given λ ∈ �m,n, the Schubert variety Xλ is a pencil if and only
if the Young diagram Dλ has only one outside corner.

The Schubert variety given by Example 6.7 is not a pencil, as the Young
diagram has three outside corners. However, every Schubert variety can be
written as an intersection of pencils.

One can also recognize constraining and weakly constraining pencils with
the help of Young diagrams.

For an m × n rectangle, we draw the diagonal connecting the northeast and
the southwest of the rectangle. A node is a vertex of a box. We call a node
unstable if it is lying below the diagonal, and weakly unstable if it is lying on
or below the diagonal. See Fig. 1 for an example.

Now we can reformulate the definition of constraining and weakly con-
straining pencils.

Lemma 6.9 A pencil Xλ is constraining (resp. weakly constraining) if and
only if the bottom-right vertex of the outside corner of Dλ is an unstable (resp.
weakly unstable) node.

Example 6.10 Let m = 2 and n = 3. By Lemma 6.9 there are 5 constrain-
ing pencils: X12, X15, X23, X25 and X34. Among those X25 and X34 are the
maximal ones, and they give the obstruction to non-divergence.

•
•
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Fig. 1 Unstable and weakly
unstable nodes in a 3 × 3
rectangle. The black nodes
are unstable, while the white
nodes are weakly unstable
but not unstable

As noted in Remark 1.8, the weakly constraining pencils coincide with the
constraining pencils in the case that m and n are coprime. This also follows
from the simple observation that there are no nodes lying on the diagonal of
Dλ.
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