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Abstract
In this paper we prove that any immersed stable capillary hypersurfaces in a ball
in space forms are totally umbilical. Our result also provides a proof of a conjecture
proposed by Sternberg and Zumbrun (J Reine AngewMath 503:63–85, 1998).We also
prove a Heintze–Karcher–Ros type inequality for hypersurfaces with free boundary
in a ball, which, together with the new Minkowski formula, yields a new proof of
Alexandrov’s Theorem for embeddedCMChypersurfaces in a ball with free boundary.
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1 Introduction

Let (M̄n+1, ḡ) be an oriented (n + 1)-dimensional Riemannian manifold and B be a
smooth compact domain in M̄ with non-emptyboundary ∂B.Weare interested in capil-
lary hypersurfaces, namely minimal or constant mean curvature (CMC) hypersurfaces
in B with boundary on ∂B and intersecting ∂B at a constant angle θ ∈ (0, π). Mini-
mal or CMC hypersurfaces with free boundary, namely, intersecting ∂B orthogonally,
are special and important examples of capillary hypersufaces. Capillary hypersurfaces
are critical points of some geometric variational functional under certain volume con-
straint. It has a very long history. It was Young who first considered capillary surfaces
mathematically in 1805 and introduced the mathematical concept of mean curvature
of a surface [66]. His work was followed by Laplace and later by Gauss. For the reader
who are interested in the history of capillary surfaces, we refer to an article of Finn
et al. [19]. See also Finn’s book [18] for a survey about the mathematical theory of
capillary surfaces.

The stability of minimal or CMC hypersurfaces plays an important role in differ-
ential geometry. For closed hypersurfaces (i.e. compact without boundary), there is a
classical uniqueness result proved by Barbosa and do Carmo [5] and Barbosa et al.
[6]: any stable closed CMC hypersurfaces in space forms are geodesic spheres. In this
paper we are concerned with stable capillary hypersurfaces in a ball in space forms.
It is known that totally geodesic balls and spherical caps are stable and even area-
minimizing. In fact, these are only isoperimetric hypersurfaces in a ball which was
first proved by Burago and Maz’ya1 [13] and later also by Bokowsky and Sperner [7]
and Almgren [2]. Ros and Souam [53] showed that totally geodesic balls and spher-
ical caps are capillary stable. Conversely, the uniqueness problem was first studied
by Ros and Vergasta [54] for minimal or CMC hypersurfaces in free boundary case,
i.e., θ = π

2 and later Ros and Souam [53] for general capillary ones. Their works
have been followed by many mathematicians. Comparing to the uniqueness result for
stable closed hypersurfaces [5,6], there is a natural and long standing open problem
on the uniqueness of stable capillary hypersurfaces since the work of Ros–Vergasta
and Ros–Souam:

Are any immersed stable capillary hypersurfaces in a ball in space forms totally
umbilical?

The main objective of this paper is to give a complete answer to this open problem.
For convenience, we discuss in the introduction mainly on the case of hypersurfaces in
a Euclidean ball with free boundary and give a brief discussion about general capillary
hypersurfaces in a ball in any space forms later. It is surprising that this problem leaves
quite open except in the following special cases.

(1) When n ≥ 2, H = 0 and θ = π
2 , i.e., in the case of minimal hypersurfaces with

free boundary, Ros and Vergasta gave an affirmative answer in [54] (1995).
(2) When n = 2, H = const . and θ = π

2 , i.e., in the case of 2-dimensional CMC
surfaces with free boundary, Ros and Vergata [54] and Nunes [45] (2017) gave
an affirmative answer. See also the work of Barbosa [4].

1 The authors would like to thank Professor Frank Morgan for this information.
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Uniqueness of stable capillary hypersurfaces in a ball 1847

The stability for CMC hypersurfaces is defined by using variations with a volume
constraint. For minimal ones we also use this stability, which is also called the weak
stability. A general way to utilize the stability condition is to find admissible test
functions. For a volume constraint problem, such an admissible function ϕ should
satisfy

∫
M ϕd A = 0, i.e., its average is zero. In the work of Barbosa and do Carmo [5]

for closed hypersurfaces, the test function is defined by using the classical Minkowski
formula, that is, for a closed immersion x : M → R

n+1,

∫

M
H〈x, ν〉d A = n

∫

M
dA, (1.1)

where H is the mean curvature and ν is the outward unit normal of M . In fact, in this
case the test function is ψ = n − H〈x, ν〉. The Minkowski formula (1.1) implies that
this is an admissible function. For a hypersurface M in a ball with free boundary, Ros
and Vergasta [54] obtained the following Minkowski formula

|∂M | = n|M | −
∫

M
H〈x, ν〉d A. (1.2)

Unlike (1.1), the Minkowski formula (1.2) provides a relationship among three geo-
metric quantities, the area of the boundary ∂M , the area of M and an integral involving
the mean curvature. It is this complication that makes free boundary problems more
difficult than problems for closed hypersurfaces. In the minimal case, the Minkowski
formula (1.2) relates only two geometric quantities, since the term involving the mean
curvature vanishes. The proof of Result (1) relies on this fact.

There is another way to find admissible test functions, which is called a Hersch type
balancing argument. This argument is extremely useful, especially in two-dimensional
problems, see for example the work of Li and Yau [36] and Montiel and Ros [43].
Using such an argument, together with theMinkowski formula (1.2), Ros andVergasta
proved in [54] the following partial result.

If M ⊂ B̄
3 is an immersed compact stable CMC surface with free boundary, then

∂M is embedded and the only possibilities are

(i) M is a totally geodesic disk;
(ii) M is a spherical cap;
(iii) M has genus 1 with at most two boundary components.

Case (iii) was excluded very recently by Nunes [45] by using a new stability criterion
and a modified Hersch type balancing argument. See also the work of Barbosa [4]
without using the modified Hersch type balancing argument. Therefore, when n = 2
this open problem was solved. This is result (2).

There are several partial results on the uniqueness of stable CMC hypersurfaces in
a Euclidean ball with free boundary, see e.g., [4,31,40,54].

We remark that there are many embedded or non-embedded non-spherical exam-
ples. In fact, for any constant H > 0 there is a piece of an unduloid of mean curvature
H in the Euclidean unit ball Bn+1 with free boundary, which is however unstable. In
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1848 G. Wang, C. Xia

fact, Ros [52] proved that neither catenoid nor unduloid pieces, which intersect ∂Bn+1

orthogonally, are stable. The following uniqueness result classifies all stable immersed
CMC hypersurfaces with free boundary in a Euclidean ball.

Theorem 1.1 Any stable immersed CMC hypersurface with free boundary in a
Euclidean ball is either a totally geodesic ball or a spherical cap.

One of crucial ingredients to prove this result is a newMinkowski type formula. For
an immersion x : M → B̄

n+1 with free boundary, we establish a weightedMinkowski
formula

n
∫

M
Vad A =

∫

M
H〈Xa, ν〉d A, (1.3)

which is one of a family of Minkowski’s formulae proved in Sect. 3. Here a ∈ R
n+1

is any constant vector field, Va and Xa are defined by

Va := 〈x, a〉, Xa := 〈x, a〉x − 1

2
(1 + |x |2)a.

The key feature of Xa is its conformal Killing property. For the details about Va and
Xa see Sect. 3 below.

Different to (1.2), this new Minkowski formula (1.3) gives a relation between two
(weighted) geometric quantities. More important is that there is no boundary integral
in this newMinkowski formula. It is clear to see from (1.3) that nVa − H〈Xa, ν〉 is an
admissible test function for the stability for any a ∈ R

n+1. These admissible functions
play an essential role in the proof of Theorem 1.1.

It is interesting that our proof works for stable CMC hypersurfaces with free bound-
ary in B̄n+1 with a singular set of sufficiently low Hausdorff dimension and therefore
gives a proof of a conjecture proposed by Sternberg and Zumbrun ([58] p. 77). As
an application of their stability formula (Theorem 2.2 in [58]), which they called
Poincaré inequality for stable hypersurfaceswith a singular setwithHausdorffmeasure
Hn−2 = 0, they proved in [58] (Theorem 3.5) that any local minimizer of perimeter
under the volume constraint in B̄n+1 is either a totally geodesic ball or a regular graph
over ∂Bn+1, provided that H = 0 or

∫

M
〈x, ν〉dHn < 0. (1.4)

Condition (1.4) is equivalent to nHn(M) < Hn−1(M ∩ ∂Bn+1). This condition is
almost the same as that in one of results of Ros and Vergasta (Theorem 8 in [54]).
They conjectured that (1.4) holds always for stable hypersurfaceswith boundary and all
local minimizers in B̄n+1 are regular. Here we provemore, namely all local minimizers
in B̄n+1 are totally geodesic balls or spherical caps.
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Uniqueness of stable capillary hypersurfaces in a ball 1849

Theorem 1.2 2 Let� be a local minimizer of perimeter with respect to fixed volume in
B̄
n+1. Then M = ∂� ∩ Bn+1 is the intersection of B̄n+1 with either a plane through

the origin or a sphere.

We remark that, Barbosa [4] also gave a proof of the conjecture proposed by Stern-
berg and Zumbrun [58] about the regularity of the local minimizers in B̄n+1.

The minimal or CMC hypersurfaces with free boundary attract much attention
of many mathematicians. In 1980s there are many existence results obtained from
geometric variational methods, see for example, [14,26,29,61,64]. The corresponding
regularity problem has been studied by Grüter and Jost [27]. Recently one of inspiring
work is a series of papers of Fraser and Schoen [22–24] about minimal hypersurfaces
with free boundary in a ball and the first Steklov eigenvalue. See also [3,11,15,20,25,
35,63]. Our research on the stability on CMC hypersurfaces are motivated by these
results.

There are many interesting properties of closed surfaces in a space form that are
valid also for surfaces with free boundary. However, in many cases the proof for the
case of surfaces with free boundary is quite different and becomesmore difficult, while
in other cases the counterpart for surfaces with free boundary is still open. It means
that the free boundary problems for surfaces are in general more difficult. Here we just
mention several good examples. Comparing to the result of Montiel and Ros [43]: Any
minimal torus immersed in S

3 by the first eigenfunctions is the Clifford torus, Fraser
and Schoen [23] took much more effort to obtain: any minimal annulus with free
boundary, which is immersed by the first Steklov eigenvalue, is the critical catenoid.
While the Lawson conjecture about uniqueness of embedded torus in S

3 was solved
recently by Brendle [9] with a clever use of the maximum principle on a two-point
function, the free boundary version of the Lawson conjecture is still open. See [21]
and also [46], where it was claimed without providing a proof. Even if any minimal
surfaces with free boundary with index 4 is the critical catenoid is also open.

Let us turn to the general case, the capillary hypersurfaces in a ball (in space
forms). There are only partial results. See for example the work of Ros and Souam
[53]mentioned already above, and also [31,40,57].Our approach to proveTheorem1.1
is powerful enough to work for immersed capillary hypersurfaces in a ball in any space
forms after establishing appropriate weighted Minkowski formulae, see Propositions
3.2 and 4.4. In other words, we can give a complete affirmative answer to the open
problem mentioned above.

Theorem 1.3 Any stable immersed capillary hypersurface in a ball in space forms is
totally umbilical.

For this theorem, though the ideas of proof are essentially the same as the one for
Theorem 1.1, the proof becomes more involving.

By going through the proof, we see that our approach also works for closed hyper-
surfaces. Namely, we provide a new proof of the uniqueness results of Barbosa and do

2 In view of this result Sternberg and Zumbrun asked in their new paper [60], whether volume-constrained
local minimizers in a convex domain remain regular in arbitrary dimension n and not just for n ≤ 7. For a
further discussion, see [60].
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1850 G. Wang, C. Xia

Carmo and Barbosa et al. mentioned above, see Remark 3.2 and Remark 3.3 below.
Furthermore, our approach works for the corresponding exterior problem. To be pre-
cise, we are able to prove the following

Theorem 1.4 Any compact stable immersed capillary hypersurface outside a ball in
space forms is totally umbilical.

Remark 1.1 From the proof we can easily see that we do not need the immersed
hypersurface is contained in or outside a ball, but only need the assumption x(∂M) ⊂
∂B.

There are many interesting uniqueness results on stable capillary hypersurfaces
within other types of domains, e.g.,

a wedge, a slab, a cone, a cylinder or a half space, see e.g. [1,16,32,38,39,41,44,
47,50,55,62].

There are other important uniqueness results concerning capillary hypersurfaces.
One is Hopf type theorem which says any CMC 2-sphere in R

3 is a round sphere.
Nitsche [46] proved that any disk type capillary surface inB3 is either a totally geodesic
disk or a spherical cap by using Hopf type argument, see also Fraser and Schoen [24]
for recent development. Another is Alexandrov type theorem which says that any
embedded CMC closed hypersurface is a round sphere. For capillary hypersurfaces,
if it is embedded with its boundary ∂M lying in a half sphere, then Ros and Souam
[53] (Proposition 1.2) showed that it is either a totally geodesic ball or a spherical cap
by Alexandrov’s reflection method.

In the last section we will give a new proof of the Alexandrov type theorem [53]
for CMC hypersurface with free boundary by using integral method in the spirit as
Reilly [49] and Ros [51]. The key ingredients are the newMinkowski formula as well
as a Heintze–Karcher–Ros type inequality we will establish. This is another objective
of this paper. For such an inequality we also use the weight function Va .

The Heintze–Karcher–Ros inequality for an embedded closed hypersurface 	 of
positive mean curvature in Rn+1 is

∫

	

1

H
dA ≥ n + 1

n

∫

�

d�, (1.5)

where � is the enclosed body by 	. Equality in (1.5) holds if and only if 	 is a round
sphere. (1.5) is a sharp inequality for hypersurfaces of positivemean curvature inspired
by a classical inequality of Heintze and Karcher [28]. In 1987, Ros [51] provided a
proof of the above inequality by using a remarkable Reilly formula (see [49]), and
applied it to show Alexandrov’s rigidity theorem for high order mean curvatures.
Recently, Brendle [12] established such an inequality in a large class ofwarped product
spaces, including the space forms and the (Anti-de Sitter-)Schwarzschild manifold. A
geometric flowmethod, which is quite different fromRos’ proof, was used by Brendle.
Motivated by Brendle’s work, new Reilly type formulae have been established by the
second named author and his collaborators in [33,34,48]. These formulae will be used
to establish the following Heintze–Karcher–Ros inequality:
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Uniqueness of stable capillary hypersurfaces in a ball 1851

for an embedded hypersurface 	 lying in a half ball B+ in any space forms with
its boundary ∂	 ⊂ ∂B+, there holds

∫

	

Va
H

dA ≥ n + 1

n

∫

�

Vad�, (1.6)

where � is the enclosed body by 	 and ∂B+. Equality in (1.6) holds if and only if 	
is totally umbilical and intersects ∂B+ orthogonally.
See Theorem 5.2 below. The Alexandrov rigidity theorem for embedded CMC hyper-
surfaces with free boundary follows from this inequality and the Minkowski formula
(1.3). We believe that there is a sharp version of Heintze–Karcher–Ros type inequality
for hypersurfaces in a ball, whose equality case is achieved by capillary hypersurfaces
with a fixed contact angle θ ∈ (0, π).

The remaining part of this paper is organized as follows. In Sect. 2 we review the
definition and basic properties of capillary hypersurfaces. Since we are concernedwith
the immersions, a suitable notion of volume and the so-called wetting area functional
is needed to study capillary hypersurfaces. In Sect. 3 we give a proof of Theorem 1.3
for capillary hypersurfaces in a ball inRn+1 after establishing the Minkowski formula
(3.4). Theorem 1.1 is a special case of Theorem 1.3. The same proof works for singular
hypersurfaces, hence we have Theorem 1.2. In Sect. 4 we provide a detailed proof of
Theorem 1.3 for capillary hypersurfaces in a ball in H

n+1 and sketch a proof for
capillary hypersurfaces in a ball in S

n+1. For the corresponding exterior problem,
we sketch its proof at the end of Sect. 4. In Sect. 5, we prove the Heintze–Karcher–
Ros type inequality and the Alexandrov theorem for hypersurfaces in a ball with free
boundary.

2 Preliminaries on capillary hypersurfaces

Let (M̄n+1, ḡ) be an oriented (n + 1)-dimensional Riemannian manifold and B be
a smooth compact domain in M̄ that is diffeomorphic to a Euclidean ball. Let x :
(Mn, g) → B be an isometric immersion of an orientable n-dimensional compact
manifold M with boundary ∂M into B that maps intM into intB and ∂M into ∂B.

We denote by ∇̄, 
̄ and ∇̄2 the gradient, the Laplacian and the Hessian on M̄
respectively, while by ∇, 
 and ∇2 the gradient, the Laplacian and the Hessian on
M respectively. We will use the following terminology for four normal vector fields.
We choose one of the unit normal vector field along x and denote it by ν. We denote
by N̄ the unit outward normal to ∂B in B and μ be the unit outward normal to ∂M
in M . Let ν̄ be the unit normal to ∂M in ∂B such that the bases {ν, μ} and {ν̄, N̄ }
have the same orientation in the normal bundle of ∂M ⊂ M̄ . See Fig. 1. Denote by
h and H the second fundamental form and the mean curvature of the immersion x
respectively. Precisely, h(X ,Y ) = ḡ(∇̄Xν,Y ) and H = trg(h). For constant mean
curvature hypersurfaces which are our main concern, we always choose ν to be one
of the unit normal vector fields so that H ≥ 0.

Since in this paper we consider immersions, we need to introduce generalized defi-
nitions of area, volume and a wetting area for an isometric immersion. For embedded
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Fig. 1 	 = x(M) and ∂	 = x(∂M)

hypersurfaces, these generalized definitions are certainly equivalent to the usual defi-
nitions (see [53,54]).

By an admissible variation of x we mean a differentiable map x : (−ε, ε) × M →
B ⊂ M̄ such that x(t, ·) : M → B is an immersion satisfying x(t, intM) ⊂ intB
and x(t, ∂M) ⊂ ∂B for every t ∈ (−ε, ε) and x(0, ·) = x . For this variation, the area
functional A : (−ε, ε) → R and the volume functional V : (−ε, ε) → R are defined
by

A(t) =
∫

M
dAt ,

V (t) =
∫

[0,t]×M
x∗dVM̄ ,

where d At is the area element of M with respect to the metric induced by x(t, ·)
and dVM̄ is the volume element of M̄ . A variation is said to be volume-preserving
if V (t) = V (0) = 0 for each t ∈ (−ε, ε). Another area functional, which is called
wetting area functional, W (t) : (−ε, ε) → R is defined by

W (t) =
∫

[0,t]×∂M
x∗d A∂B,

where d A∂B is the area element of ∂B.
Fix a real number θ ∈ (0, π). The energy functional E(t) : (−ε, ε) → R is defined

by

E(t) = A(t) − cos θ W (t).
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Uniqueness of stable capillary hypersurfaces in a ball 1853

The first variation formulae of V (t) and E(t) for an admissible variation with a vari-
ation vector field Y = ∂

∂t x(t, ·)|t=0 are given by

V ′(0) =
∫

M
ḡ(Y , ν)d A,

E ′(0) =
∫

M
Hḡ(Y , ν)d A +

∫

∂M
ḡ(Y , μ − cos θ ν̄)ds,

where d A and ds are the area element of M and ∂M respectively, see e.g. [53].
An immersion x : M → B is said to be capillary if it is a critical point of the

energy function E for any volume-preserving variation of x . It follows from the above
first variation formulae that x is capillary if and only if x has constant mean curvature
and ∂M intersects ∂B at the constant angle θ . We make a convention on the choice of
ν to be the opposite direction of mean curvature vector so that the mean curvature of
a spherical cap is positive. Under this convention, along ∂M , the angle between −ν

and N̄ or equivalently between μ and ν̄ is everywhere equal to θ (see Figure 1). To be
more precise, in the normal bundle of ∂M , we have the following relations:

μ = sin θ N̄ + cos θ ν̄, (2.1)

ν = − cos θ N̄ + sin θ ν̄. (2.2)

For each smooth function ϕ on M with
∫
M ϕd AM = 0, there exists an admissible

volume-preserving variation of x with the variation vector field having ϕν as normal
part (see [53], page 348).When x is a capillary hypersurface, for an admissible volume-
preserving variation with respect to ϕ, the second variational formula of E is given
by

E ′′(0) =
∫

M
−ϕ(
ϕ + (|h|2 + Ric(ν, ν))ϕ)d A +

∫

∂M
ϕ(∇μϕ − qϕ)ds. (2.3)

Here

q = 1

sin θ
h∂B(ν̄, ν̄) + cot θ h(μ,μ),

Ric is the Ricci curvature tensor of M̄ , and h∂B is the second fundamental form of ∂B
in M̄ given by h∂B(X ,Y ) = ḡ(∇̄X N̄ ,Y ), see e.g. [53].

A capillary hypersurface is called stable if E ′′(0) ≥ 0 for all volume-preserving
variations, that is,

E ′′(0) ≥ 0, ∀ϕ ∈ F :=
{

ϕ ∈ C∞(M)|
∫

M
ϕd A = 0

}

.

The following proposition is awell-known and fundamental fact for capillary hyper-
surfaces when ∂B is umbilical in M̄ .
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Proposition 2.1 Assume ∂B is umbilical in M̄. Let x : M → B be an immersionwhose
boundary ∂M intersects ∂B at a constant angle θ . Then μ is a principal direction of
∂M in M. Namely, h(e, μ) = 0 for any e ∈ T (∂M). In turn,

∇̄μν = h(μ,μ)μ.

Proof For e ∈ T (∂M), by using (2.1) and (2.2), we have

h(e, μ) = ḡ(∇̄eν, μ) = ḡ(∇̄e(− cos θ N̄ + sin θ ν̄), sin θ N̄ + cos θ ν̄)

= −ḡ(∇̄e N̄ , ν̄) = −h∂B(e, ν̄) = 0.

��

3 Capillary hypersurfaces in a euclidean ball

In this section, we consider the case (M̄, ḡ) = (Rn+1, δ) and B = B̄
n+1 is the

Euclidean unit ball (in our notation, Bn+1 is the Euclidean unit open ball). In this case,
Ric ≡ 0, h∂B = g∂B and N̄ (x) = x . Abuse of notation, we use x to denote the position
vector in Rn+1. We use 〈·, ·〉 to denote the Euclidean inner product.

3.1 A newMinkowski type formula inRn+1

In this subsectionwe establish a newMinkowski type formula, which is very power-
ful for hypersurfaces inBn+1 with free boundary or intersecting ∂Bn+1 with a constant
angle.

We first consider a conformal Killing vector field. For each constant vector field
a ∈ R

n+1, define a corresponding smooth vector field Xa in Rn+1 by

Xa = 〈x, a〉x − 1

2
(|x |2 + 1)a. (3.1)

Define f : Rn+1\(0,−1) → R
n+1 by

f (u, v) = 2(u, 0) + (|u|2 + v2 − 1)en+1

|u|2 + (1 + v)2
,

where (u, v) ∈ R
n+1 = R

n × R and en+1 = (0, 1). One can check that f maps
R
n+1+ → B

n+1 and ∂Rn+1+ → S
n . Moreover f is conformal. In fact

f ∗(δBn+1) = 4

(|u|2 + (1 + v)2)2
δ
R
n+1+

.

If one transfers the free boundary problem in B
n+1 to the free boundary problem

in R
n+1+ with the pull back metric f ∗(δBn+1), one obtains an equivalent problem.
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Uniqueness of stable capillary hypersurfaces in a ball 1855

The vector field Xa with a = en+1 is the push-forward of the radial vector field (or
the position vector field) (u, v) with respect to the origin in R

n+1+ , which is usually
important in such problems. This is the way we found that this vector field should be
useful in the capillary problems. From this observation, it is clear that Xa is conformal
Killing and tangential to ∂Bn+1. Namely, we have the following two simple but crucial
properties of Xa .

Proposition 3.1 Xa is a conformal Killing vector field and its restriction on ∂Bn+1 is
a tangential vector field on ∂Bn+1, i.e.,

(i) Xa is a conformal Killing vector field in Rn+1 with LXa ḡ = 〈x, a〉ḡ, namely,

1

2

[∇̄i (Xa) j + ∇̄ j (Xa)i
] = 〈x, a〉δi j . (3.2)

(ii) Xa |∂B is a tangential vector field on ∂B. I.e.,

〈Xa, x〉|∂B = 0. (3.3)

Proof It is a well-known fact and one can check by a direct computation. ��
Remark 3.1 The conformal Killing property of Xa is well-known in conformal geome-
try. For eacha ∈ R

n+1, Xa generates a 1-parameter family of conformal automorphism
of Bn+1 onto itself, see [36], page 274. The restriction of Xa to Sn gives a conformal
Killing vector field on S

n generating an associated 1-parameter family of conformal
automorphism of Sn , which has been widely used in differential geometry and confor-
mal geometry, see e.g. [10,17,42,43]. This vector field was used by Fraser and Schoen
in their study of free boundary to show the result mentioned in the Introduction about
the first Steklov eigenvalue [56]. We also realized that this vector field has already
been used in the capillary problems implicitly by Ros and Vergasta [53] and explicitly
by Marinov [40] in 2-dimension and Li and Xiong [31] in any dimensions.

Utilizing the conformal Killing vector field Xa , we show the following Minkowski
type formula.

Proposition 3.2 Let x : M → B̄
n+1 be an isometric immersion into the Euclidean

unit ball, whose boundary ∂M intersects ∂Bn+1 at a constant angle θ ∈ (0, π). Let
a ∈ R

n+1 be a constant vector field and Xa be defined by (3.1). Then

∫

M
n〈x + cos θ ν, a〉d A =

∫

M
H〈Xa, ν〉d A. (3.4)

Proof Denote by XT
a the tangential projection of Xa onM . Let {eα}nα=1 be an orthonor-

mal frame on M . We claim that

1

2

[
∇α(XT

a )β + ∇β(XT
a )α

]
= 〈x, a〉gαβ − hαβ〈Xa, ν〉. (3.5)
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Here ∇α(XT
a )β := 〈∇eα X

T
a , eβ〉. In fact,

∇α(XT
a )β = 〈∇̄eα X

T
a , eβ〉

= 〈∇̄eα Xa, eβ〉 − 〈∇̄eα (〈Xa, ν〉ν), eβ〉
= ∇̄α(Xa)β − 〈Xa, ν〉〈∇̄eα ν, eβ〉
= ∇̄α(Xa)β − hαβ〈Xa, ν〉.

By using (3.2), we get the claim.
Taking trace of (3.5) with respect to the induced metric g and integrating over M ,

we have

∫

M
n〈x, a〉 − H〈Xa, ν〉d A =

∫

M
divM (XT

a )d A =
∫

∂M
〈XT

a , μ〉ds. (3.6)

Note that on ∂M , N̄ = x and Xa = 〈x, a〉x − a. By using (2.1), (2.2) and (3.3), we
deduce

〈XT
a , μ〉 = 〈Xa, μ〉 = 〈Xa, sin θ N̄ + cos θ ν̄〉 = cos θ 〈Xa, ν̄〉

= cos θ (〈x, a〉〈x, ν̄〉 − 〈a, ν̄〉) = − cos θ 〈a, ν̄〉.

It follows from (3.6)

∫

M
n〈x, a〉 − H〈Xa, ν〉d A = − cos θ

∫

∂M
〈ν̄, a〉ds. (3.7)

When θ = π
2 , i.e., if we are in the free boundary case, the Minkowski formula (3.4)

follows already from (3.7). For the general case, we claim

n
∫

M
〈ν, a〉d A =

∫

∂M
〈ν̄, a〉ds. (3.8)

It is easy to see that the Minikowski formula (3.4) follows from the claim and (3.7).
It remains to show this claim. It has been shown in [1] that

n
∫

M
〈ν, a〉d A =

∫

∂M
〈x, μ〉〈ν, a〉 − 〈x, ν〉〈μ, a〉ds. (3.9)

For the convenience of reader, we give a proof of (3.9). Set Za = 〈ν, a〉x − 〈x, ν〉a.
Then

divM [(Za)
T ] = [h(aT , xT ) + 〈ν, a〉(n − 〈x, ν〉H)] − [h(xT , aT ) − 〈x, ν〉〈ν, a〉H ]

= n〈ν, a〉.

Then (3.9) follows by integration by parts. From (2.1) and (2.2), we deduce
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Uniqueness of stable capillary hypersurfaces in a ball 1857

〈x, μ〉〈ν, a〉 − 〈x, ν〉〈μ, a〉
= sin θ〈− cos θ N̄ + sin θ ν̄, a〉 + cos θ〈sin θ N̄ + cos θ ν̄, a〉
= 〈ν̄, a〉.

Therefore, we get the claim (3.8) and the proof is completed. ��
Remark 3.2 For the free boundary problem, i.e., θ = π/2, we obtain the Minkowski
formula discussed in the Introduction:

n
∫

M
〈x, a〉d A =

∫

M
H〈Xa, ν〉d A. (3.10)

We remark that (3.10) holds also for any compact hypersurfaces without boundary in
R
n+1 with the same proof, just ignoring the boundary integral. To our best knowledge

it is also new for any compact hypersurfaces without boundary and we believe that it
has its own interest.

Minkowski formula (3.4) plays a crucial role in the proof of uniqueness of stable
capillary hypersurfaces in a Euclidean ball in the next subsection. Its further interesting
applications will be presented in Sect. 5.

3.2 Uniqueness of stable capillary hypersurfaces in a Euclidean ball

Proposition 3.3 Let x : M → B̄
n+1 be an isometric immersion into the Euclidean

unit ball, whose boundary ∂M intersects ∂Bn+1 at a constant angle θ ∈ (0, π). Let
a ∈ R

n+1 be a constant vector field. Then along ∂M,

∇̄μ〈x + cos θ ν, a〉 = q〈x + cos θ ν, a〉, (3.11)

∇̄μ〈Xa, ν〉 = q〈Xa, ν〉, (3.12)

where

q = 1

sin θ
+ cot θ h(μ,μ). (3.13)

Proof Using Proposition 2.1,

∇̄μ〈x + cos θ ν, a〉 = 〈μ + cos θ h(μ,μ)μ, a〉 = q sin θ〈μ, a〉.

On the other hand, using (2.1) and (2.2),

〈x + cos θ ν, a〉 = 〈x + cos θ(− cos θ N̄ + sin θν̄), a〉
= sin θ〈sin θ N̄ + cos θν̄, a〉 = sin θ〈μ, a〉.

Thus we get (3.11).
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Using the definition (3.1) of Xa and again Proposition 2.1,

∇̄μ〈Xa, ν〉 = 〈∇̄μXa, ν〉 + 〈Xa, ∇̄μν〉
=
〈

∇̄μ

(

〈x, a〉x − 1

2
(|x |2 + 1)a

)

, ν

〉

+ h(μ,μ)〈Xa, μ〉
= 〈〈μ, a〉x + 〈x, a〉μ − 〈x, μ〉a, ν〉 + h(μ,μ)〈〈x, a〉x − a, μ〉
= − cos θ〈μ, a〉 − sin θ〈ν, a〉 + h(μ,μ)(sin θ〈x, a〉 − 〈μ, a〉).

Note that x = N̄ = sin θ μ − cos θ ν and in turn μ = 1
sin θ

x + cot θ ν, we deduce
further

∇̄μ〈Xa, ν〉 = − cot θ(1 + h(μ,μ) cos θ)〈x, a〉 − 1

sin θ
(1 + h(μ,μ) cos θ)〈ν, a〉

= −q(cos θ〈x, a〉 + 〈ν, a〉).

On the other hand,

〈Xa, ν〉|∂M = 〈x, a〉〈x, ν〉 − 〈a, ν〉 = −(cos θ〈x, a〉 + 〈ν, a〉).

(3.12) follows. ��

Proposition 3.4 Let x : M → R
n+1 be an isometric immersion into the Euclidean

space. Let a ∈ R
n+1 be a constant vector field. The following identities hold along

M:


x = −Hν, (3.14)



1

2
|x |2 = n − H〈x, ν〉, (3.15)


ν = ∇H − |h|2ν, (3.16)


〈x, ν〉 = 〈x,∇H〉 + H − |h|2〈x, ν〉, (3.17)


〈Xa, ν〉 = 〈Xa,∇H〉 + 〈x, a〉H − |h|2〈Xa, ν〉 − n〈ν, a〉. (3.18)

Proof Equations (3.14)–(3.17) are well-known. We now prove (3.18). First,


〈Xa, ν〉 = 〈
Xa, ν〉 + 2〈∇Xa,∇ν〉 + 〈Xa,
ν〉.

Using the definition (3.1) of Xa , (3.14) and (3.15), we see

〈
Xa, ν〉 =
〈




(

〈x, a〉x − 1

2
(|x |2 + 1)a

)

, ν

〉

= 〈− H〈ν, a〉x − 〈x, a〉Hν − (n − H〈x, ν〉)a, ν
〉

= −H〈x, a〉 − n〈ν, a〉.
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Uniqueness of stable capillary hypersurfaces in a ball 1859

Also,

〈∇Xa,∇ν〉 =
〈

∇
(

〈x, a〉x − 1

2
(|x |2 + 1)a

)

,∇ν

〉

= 〈eα, a〉h(eα, xT ) + 〈x, a〉H − 〈x, eα〉h(eα, aT )

= H〈x, a〉.

Using (3.16),

〈Xa,
ν〉 = 〈Xa,∇H〉 − |h|2〈Xa, ν〉.

Combining above, we get (3.18). ��
Proposition 3.5 Let x : M → B̄

n+1 be an isometric immersion into the Euclidean
unit ball, whose boundary ∂M intersects ∂Bn+1 at a constant angle θ ∈ (0, π). For
each constant vector field a ∈ R

n+1 define

ϕa = n〈x + cos θ ν, a〉 − H〈Xa, ν〉

along M. Then ϕa satisfies

∫

M
ϕad A = 0, (3.19)

∇μϕa − qϕa = 0. (3.20)

If, in addition, that M has constant mean curvature, then ϕa satisfies also


ϕa + |h|2ϕa = (n|h|2 − H2)〈x, a〉. (3.21)

Proof (3.19) and (3.20) follow from Propositions 3.2 and 3.3 respectively. If H is
constant, Proposition 3.4 implies

(
 + |h|2)〈x, a〉 = |h|2〈x, a〉 − H〈ν, a〉,
(
 + |h|2)〈Xa, ν〉 = H〈x, a〉 − n〈ν, a〉,

(
 + |h|2)〈ν, a〉 = 0.

Then (3.21) follows. ��
Nowwe prove the uniqueness for stable capillary hypersurfaces in a Euclidean ball.

Theorem 3.1 Assume x : M → B̄
n+1 is an immersed stable capillary hypersurface

in the Euclidean unit ball Bn+1 with constant mean curvature H ≥ 0 and constant
contact angle θ ∈ (0, π). Then x is either a totally geodesic ball or a spherical cap.
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Proof The stability condition states as

−
∫

M
ϕ(
ϕ + |h|2ϕ)d A +

∫

∂M
ϕ(∇μϕ − qϕ)ds ≥ 0 (3.22)

for all function ϕ ∈ F , where q is given by (3.13).
For each constant vector field a ∈ R

n+1, we consider ϕa , which is defined in
Proposition 3.5. Proposition 3.5 implies that ϕa ∈ F and is an admissible function for
testing stability. Inserting (3.19) and (3.21) into the stability condition (3.22), we get

∫

M
(n〈x + cos θ ν, a〉 − H〈Xa, ν〉) 〈x, a〉(n|h|2 − H2) d A ≤ 0 for any a ∈ R

n+1.

(3.23)

We take a to be the n + 1 coordinate vectors {Ei }n+1
i=1 in R

n+1, and add (3.23) for all
a to get

∫

M

(

n|x |2 + n cos θ〈x, ν〉 − 1

2
(|x |2 − 1)H〈x, ν〉

)

(n|h|2 − H2) d A ≤ 0.

(3.24)

Here we have used

n+1∑

i=1

〈x, Ei 〉XEi = 1

2
(|x |2 − 1)x .

Now, if H = 0 and θ = π
2 , (3.24) gives

∫
M |x |2|h|2d A ≤ 0, which implies that

h ≡ 0, i.e., x : M → B̄
n+1 is totally geodesic. This gives a new proof of a result of

Ros and Vergasta [54].
When H �= 0 or θ �= π

2 , the proof does not follow from (3.24) directly. In fact the
term

γ := n|x |2 + n cos θ〈x, ν〉 − 1

2
(|x |2 − 1)H〈x, ν〉 (3.25)

may have no definite sign. In order to handle this problem, we introduce the following
function

� = 1

2
(|x |2 − 1)H − n(〈x, ν〉 + cos θ).

Using (3.15) and (3.17), one can check that � satisfies


� = (n|h|2 − H2)〈x, ν〉. (3.26)

Since |x |2 = 1 and 〈x, ν〉 = − cos θ on ∂M , we have � = 0 on ∂M . Consequently,

∫

M


1

2
�2 =

∫

∂M
�∇μ� d A = 0. (3.27)
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Uniqueness of stable capillary hypersurfaces in a ball 1861

Adding (3.27) to (3.24) and using (3.26), we obtain

0 ≥
∫

M

(

n(|x |2 + cos θ〈x, ν〉) − 1

2
(|x |2 − 1)H〈x, ν〉

)

(n|h|2 − H2) + 

1

2
�2 d A

=
∫

M

(

n(|x |2 + cos θ〈x, ν〉) − 1

2
(|x |2 − 1)H〈x, ν〉

)

(n|h|2 − H2)

+�
� + |∇�|2 d A
=
∫

M
n|xT |2(n|h|2 − H2) + |∇�|2 d A

≥ 0,

where xT is the tangential part of x . The last inequality holds since n|h|2 ≥ H2 which
follows from Cauchy’s inequality. It follows that |xT |2(n|h|2 − H2) = 0 on M and
∇� = 0. The latter implies that� is a constant. This fact, together with (3.26), implies
that 〈x, ν〉(n|h|2 − H2) = 0 on M . Together with |xT |2(n|h|2 − H2) = 0, it implies
that |x |2(n|h|2 − H2) = 0 on M . Hence we have n|h|2 − H2 = 0 on M , which means
that M is umbilical and is a spherical cap. The proof is completed. ��

Remark 3.3 In the case of free boundary, i.e., cos θ = 0, Barbosa [4] proved that
〈x, ν〉 has a fixed sign, namely, 〈x, ν〉 ≤ 0 in M in our notation. By our convention
of the choice of ν, we have H > 0. It is not clear whether γ has a sign from these
information. However, one can show the non-negativity of γ with the help of � used
in the proof as follows. In this case, by (3.26) we have 
� ≤ 0 in M and � = 0 on
∂M , which implies that � ≥ 0 by the maximum principle, and hence −〈x, ν〉� ≥ 0
in M . It follows that

γ ≥ n〈x, ν〉2 − 1

2
(|x |2 − 1)H〈x, ν〉 = −〈x, ν〉� ≥ 0.

Therefore, in the case of free boundary, with the help of the non-negativity of γ , we
can get n|h|2 − H2 = 0 from (3.24).

Remark 3.4 Since the new Minkowski formula holds also for closed hypersurfaces
in R

n+1, (Remark 3.2), the above proof for the stability of capillary surfaces works
without any changes for closed hypersurfaces. This means that we give a new proof of
the result of Barbosa and do Carmo [5] mentioned above. This works also for closed
hypersurfaces in space forms. See the next section.

4 Capillary hypersurfaces in a ball in space forms

In this section we handle the case when M̄ is a space form H
n+1 or Sn+1 and B is a

ball in M̄ . Since these two cases are quite similar, we will prove the hyperbolic case
and indicate the minor modifications for the spherical case in Sect. 4.3 below.
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4.1 A newMinkowski type formula inHn+1

Let Hn+1 be the simply connected hyperbolic space with curvature −1. We use here
the Poincaré ball model, which is given by

H
n+1 =

(
B
n+1, ḡ = e2uδ

)
, e2u = 4

(1 − |x |2)2 . (4.1)

One can also use other models. The advantage to use the Poincaré ball model for us
is that for this model it is relatively easy to find the corresponding conformal Killing
vector field Xa .

In this section we use δ or 〈·, ·〉 to denote the Euclidean metric and the Cartesian
coordinate in B

n+1 ⊂ R
n+1. Sometimes we also represent the hyperbolic metric, in

terms of the polar coordinate with respect to the origin, as

ḡ = dr2 + sinh2 rgSn .

We use r = r(x) to denote the hyperbolic distance from the origin and denote V0 =
cosh r . It is easy to verify that

V0 = cosh r = 1 + |x |2
1 − |x |2 , sinh r = 2|x |

1 − |x |2 . (4.2)

The position function x , in terms of polar coordinate, can be represented by

x = sinh r∂r . (4.3)

It is well-known that x is a conformal Killing vector field with

∇̄x = V0 ḡ. (4.4)

Let BH

R be a ball in H
n+1 with hyperbolic radius R ∈ (0,∞). By an isometry of

H
n+1, we may assume BH

R is centered at the origin. BH

R , when viewed as a set in

B
n+1 ⊂ R

n+1, is the Euclidean ball with radius RR :=
√

1−arccosh R
1+arccosh R ∈ (0, 1). The

principal curvatures of ∂BH

R are coth R. The unit normal N̄ to ∂BH

R with respect to ḡ
is given by

N̄ = 1

sinh R
x .

As in the Euclidean case, for each constant vector field a ∈ R
n+1, define a corre-

sponding smooth vector field Xa in Hn+1 by

Xa = 2

1 − R2
R

[

〈x, a〉x − 1

2
(|x |2 + R2

R
)a

]

. (4.5)

123



Uniqueness of stable capillary hypersurfaces in a ball 1863

Moreover, we define another smooth vector field Ya in Hn+1 by

Ya = 1

2
(|x |2 + 1)a − 〈x, a〉x . (4.6)

Proposition 4.1 (i) Xa is a conformal Killing vector field in Hn+1 with

1

2
(∇̄i (Xa) j + ∇̄ j (Xa)i ) = Vaḡi j , where Va = 2〈x, a〉

1 − |x |2 . (4.7)

(ii) Xa |∂BH

R
is a tangential vector field on ∂BH

R . In particular,

ḡ(Xa, N̄ ) = 0.

(iii) Ya is a Killing vector field in Hn+1, i.e.,

1

2
(∇̄i (Ya) j + ∇̄ j (Ya)i ) = 0. (4.8)

Remark 4.1 Ya = limRR→1(RR−1)Xa . Though Xa and Ya look very similar, they are
quite different. Ya is the Killing vector field induced by the isometry of “translation”
in H

n+1, while Xa is a special conformal vector field added by a translation as in the
Euclidean case. For our purpose, Ya in H

n+1 plays a similar role as a constant vector
field a in Rn+1.

Proof These are known facts. For the convenience of reader we give a proof.

(i) Recall that Xa is a conformal Killing vector field in the Euclidean unit ball Bn+1

with respect to the Euclideanmetric (Proposition 3.1). Awell known fact is that a
conformal Killing vector field is still a conformal one with respect to a conformal
metric, see e.g. [8]. To be precise,

1

2
(∇̄i (Xa) j + ∇̄ j (Xa)i ) = 1

n + 1
divḡ(Xa)ḡi j ,

where

divḡ(Xa) = divδ(Xa) + (n + 1)du(Xa)

= 2

1 − R2
R

(n + 1)〈x, a〉

+(n + 1)

〈
2x

1 − |x |2 ,
2

1 − R2
R

[

〈x, a〉x − 1

2
(|x |2 + R2

R
)a

]〉

= (n + 1)
2〈x, a〉
1 − |x |2 .
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(ii) This is because 〈Xa, x〉|∂Bn+1
RR

= 0 in the Euclidean metric and the fact that a

conformal transformation preserves the angle.
(iii) As in (i), we know that Ya is a conformal Killing vector field inBn+1 with respect

to the Euclidean metric. Thus Ya is again a conformal Killing one with respect
to the conformal metric ḡ with

1

2
(∇̄i (Ya) j + ∇̄ j (Ya)i ) = 1

n + 1
divḡ(Ya)ḡi j ,

where

divḡ(Ya) = divδ(Ya) + (n + 1)du(Ya)

= −(n + 1)〈x, a〉 − (n + 1)

〈
2x

1 − |x |2 , 〈x, a〉x − 1

2
(|x |2 + 1)a

〉

= 0.

��
Proposition 4.2 The functions V0 and Va satisfy

∇̄2V0 = V0 ḡ, (4.9)

∇̄2Va = Vaḡ. (4.10)

Proof Identity (4.9) is clear because V0 = cosh r . We verify next (4.10). Using the
conformal transformation law of the Laplacian, one can compute directly that


̄Va = e−2u(
δVa + (n − 1)du(Va)) = (n + 1)Va . (4.11)

Using (4.7) and the commutation formula

R̄i jkl = ḡ(R̄(∂i , ∂ j )∂k, ∂l) = ḡ(∇̄i ∇̄ j∂k − ∇̄ j ∇̄i∂k, ∂l)

and

R̄i jkl = −(gil g jk − gikg jl),

we compute

(n + 1)∇̄i ∇̄ j Va = ∇̄i ∇̄ j ∇̄k(Xa)
k

= ∇̄i (∇̄k∇̄ j (Xa)
k + (Xa)

l R̄ k
jkl )

= ∇̄i ∇̄k(2Vaδ
k
j − ∇̄k(Xa) j ) + n∇̄i (Xa) j

= 2∇̄i ∇̄ j Va − ∇̄i ∇̄k∇̄k(Xa) j + n∇̄i (Xa) j .
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Further,

∇̄i ∇̄k∇̄k(Xa) j = ∇̄k∇̄i ∇̄k(Xa) j − ∇̄k(Xa)l R̄
l

ik j + ∇̄l(Xa) j R̄
k

ikl

= ∇̄k(∇̄k∇̄i (Xa) j + (Xa)l R̄
kl
i j ) + ∇̄k(Xa)l R̄

l
ik j + ∇̄l(Xa) j R̄

k
ikl

= 
̄∇̄i (Xa) j − 2∇̄k(Xa)l(ḡi jδ
l
k − δli ḡk j ) + ∇̄l(Xa) j nḡli

= 
̄∇̄i (Xa) j − 2 ¯div(Xa)ḡi j + 2∇̄ j (Xa)i + n∇̄i (Xa) j

and

(n − 1)∇̄i ∇̄ j Va = −
̄∇̄i (Xa) j + 2 ¯div(Xa)ḡi j − 2∇̄ j (Xa)i . (4.12)

Commutating the indices i and j in (4.12), summing up, and using (4.11) we obtain

2(n − 1)∇̄i ∇̄ j Va = −
̄(∇̄i (Xa) j + ∇̄ j (Xa)i ) + 4 ¯div(Xa)ḡi j − 2(∇̄i (Xa) j + ∇̄ j (Xa)i )

= −2
̄Va ḡi j + 4(n + 1)Va ḡi j − 4Va ḡi j
= 2(n − 1)Va ḡi j .

Identity (4.10) follows. ��
Remark 4.2 We remark that inHn+1, the vector space {V ∈ C2(Hn+1) : ∇̄2V = V ḡ}
is spanned by V0 and Va, a ∈ R

n+1. Thus it has dimension n + 2.

Note that the vector field a is not a constant (or parallel) with respect to the hyper-
bolic metric. In the following we derive formulae of covariant derivatives of several
functions and vector fields associated with a. We will frequently use (4.1) and (4.2).

Proposition 4.3 For any tangential vector field Z on H
n+1,

∇̄Za = e−u [ḡ(x, Z)a + ḡ(x, a)Z − ḡ(Z , a)x] , (4.13)

∇̄Z (e−ua) = e−u [ḡ(x, e−ua)Z − ḡ(Z , e−ua)x
]
. (4.14)

∇̄Z V0 = ḡ(x, Z), (4.15)

∇̄Z Va = ḡ(Z , e−ua) + e−u ḡ(x, e−ua)ḡ(Z , x), (4.16)

∇̄ZYa = e−u ḡ(x, Z)a − e−u ḡ(Z , a)x . (4.17)

∇̄Z Xa = − cosh R[e−u ḡ(x, Z)a − e−u ḡ(Z , a)x] + e−u ḡ(x, a)Z . (4.18)

Proof Let {Ei }n+1
i=1 be the coordinate unit vector inRn+1. Let Z = Zi Ei and a = ai Ei .

Under the conformal transformation,

∇̄Ei E j = Ei (u)E j + E j (u)Ei − 〈Ek(u), Ek〉δi j
= 2

1 − |x |2 (xi E j + x j Ei − xδi j ).

It follows that
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∇̄Za = Zia j ∇̄Ei E j

= Zia j 2

1 − |x |2 (xi E j + x j Ei − xδi j )

= e−u [ḡ(x, Z)a + ḡ(x, a)Z − ḡ(Z , a)x] ,

where we have used e−u = 1−|x |2
2 and ḡ = e2u〈·, ·〉. It is easy to check

∇̄Z (e−u) = −e−u Z(u) = −e−2u ḡ(x, Z). (4.19)

Equation (4.14) follows then from (4.13) and (4.19). Equation (4.15) follow easily
from V0 = cosh r and x = sinh r∂r .

We rewrite Va as

Va = 2〈x, a〉
1 − |x |2 = ḡ(x, e−ua). (4.20)

We compute Va using (4.20). Using (4.4) and (4.14), we get

∇̄Z Va = ḡ(∇̄Z x, e
−ua) + ḡ(x, ∇̄Z (e−ua))

= V0e
−u ḡ(Z , a) + e−2u [ḡ(x, a)ḡ(x, Z) − ḡ(Z , a)ḡ(x, x)]

= e−u ḡ(Z , a) + e−2u ḡ(x, a)ḡ(Z , x).

This is (4.16). In the last equality, we have used
V0 − e−u ḡ(x, x) = cosh r − 1

1+cosh r sinh
2 r = 1.

Recall Ya = 1
2 (|x |2 + 1)a − 〈x, a〉x . Using (4.13) and (4.4), we have

∇̄ZYa = 〈x, Z〉a + 1

2
(|x |2 + 1)∇̄Za − 〈Z , a〉x − 〈x, a〉∇̄Z x

= e−2u ḡ(x, Z)a + 1

2
(|x |2 + 1)e−u [ḡ(x, Z)a + ḡ(x, a)Z − ḡ(Z , a)x]

−e−2u ḡ(Z , a)x − e−2u ḡ(x, a)V0Z

= e−u ḡ(x, Z)a − e−u ḡ(Z , a)x .

The proof of equation (4.18) is similar to that of (4.17). ��
Let x : M → BH

R be an isometrically immersed hypersurface which intersects ∂BH

R
at a constant angle θ . As in the Euclidean space, by using properties of Xa and Ya
in Proposition 4.1 and the fact that ∂BH

R is umbilical in H
n+1, we have the following

Minkowski type formula.

Proposition 4.4 (Minkowski formula) Let x : M → BH

R be an isometric immersion
into the hyperbolic ball BH

R , whose boundary ∂M intersects ∂BH

R at a constant angle
θ ∈ (0, π). Let a ∈ R

n+1 be a constant vector field and Xa, Ya are defined by (4.5)
and (4.6). Then
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∫

M
n(Va + sinh R cos θ ḡ(Ya, ν))d A =

∫

M
Hḡ(Xa, ν)d A. (4.21)

Proof Similarly as in the proof of Proposition 3.2, by using the two properties of Xa

in Proposition 4.1, we get

∫

M
nVa − Hḡ(Xa, ν)d A =

∫

M
divM (XT

a )d A

=
∫

∂M
ḡ(XT

a , μ)ds = − 2R2
R

1 − R2
R

cos θ

∫

∂M
ḡ(a, ν̄)ds. (4.22)

Set

Za = ḡ(ν, e−ua)x − ḡ(x, ν)(e−ua).

We claim that

divM Za = nḡ(Ya, ν). (4.23)

Indeed, by a direct computation we have

divM [ḡ(ν, e−ua)x] = h(aT , xT ) − e−u ḡ(xT , e−ua)ḡ(x, ν)

+ḡ(ν, e−ua)(nV0 − Hḡ(x, ν)),

and

divM [ḡ(x, ν)(e−ua)] = h(xT , aT ) + ḡ(x, ν)[e−u(nḡ(x, e−ua)

−ḡ(xT , e−ua)) − Hḡ(ν, e−ua)].

It follows that

divM Za = nV0 ḡ(ν, e−ua) − ne−u ḡ(x, e−ua)ḡ(x, ν)

= nḡ(ν,
1

2
(|x |2 + 1)a − 〈x, a〉x)

= nḡ(Ya, ν),

where we have used V0 = 1+|x |2
1−|x |2 , e

−u = 1−|x |2
2 and ḡ = e2u〈·, ·〉. Thus we proved the

claim.
Integrating (4.23) over M and using integration by parts, we have

∫

M
nḡ(Ya, ν)d A =

∫

∂M
ḡ(Za, μ)ds. (4.24)

Using (2.1) and (2.2), It is easy to check that

ḡ(Za, μ)|∂M = RRḡ(ν̄, a). (4.25)
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The Minwokski formual (4.21) follows from (4.22), (4.24) and (4.25). ��
Proposition 4.5 Along ∂M, we have

∇̄μ(Va + sinh R cos θ ḡ(Ya, ν)) = q(Va + sinh R cos θ ḡ(Ya, ν)), (4.26)

∇̄μḡ(Xa, ν) = q ḡ(Xa, ν), (4.27)

where

q = 1

sin θ
coth R + cot θ h(μ,μ). (4.28)

Proof In this proof we always take value along ∂M and use (2.1) and (2.2). First, note
that

ḡ(Ya, x) = e2u〈Ya, x〉 = e2u
1

2
(|x |2 − 1)〈x, a〉 = e−u ḡ(x, a) = Va .

Thus we have

Va + sinh R cos θ ḡ(Ya, ν) = ḡ(Ya, x + sinh R cos θ ν)

= ḡ(Ya, sinh R N̄ + sinh R cos θ (− cos θ N̄ + sin θν̄))

= sinh R sin θ ḡ(Ya, μ). (4.29)

By (4.16) and (4.17), we compute

∇̄μ(Va + sinh R cos θ ḡ(Ya, ν))

= e−u ḡ(μ, a) + e−2u ḡ(x, a)ḡ(μ, x)

+ sinh R cos θ ḡ(Ya, h(μ,μ)μ) + sinh R cos θ e−u[ḡ(x, μ)ḡ(ν, a)

−ḡ(μ, a)ḡ(x, ν)].

Using ν = − 1
cos θ

N̄ + tan θ μ and x = sinh R N̄ , we obtain

sinh R cos θ e−u[ḡ(x, μ)ḡ(ν, a) − ḡ(μ, a)ḡ(x, ν)]
= sinh2 R e−u ḡ(μ, a) − e−u ḡ(x, μ) ḡ(x, a).

Therefore, we have

∇̄μ(Va + sinh R cos θ ḡ(Ya, ν))

= e−u cosh2 R ḡ(μ, a) + (e−2u − e−u)ḡ(x, a)ḡ(x, μ)

+ sinh R cos θ ḡ(Ya, h(μ,μ)μ)

= cosh R ḡ

(
1

2
(|x |2 + 1)a − 〈x, a〉x, μ

)

+ sinh R cos θ ḡ(Ya, h(μ,μ)μ)

= (cosh R + sinh R cos θ h(μ,μ))ḡ(Ya, μ). (4.30)
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The first formula (4.26) follows from (4.29) and (4.30).
Next, using N̄ = sin θ μ − cos θ ν, we get

ḡ(Xa, ν) = 2

1 − R2
R

[

e−2u ḡ(x, a)ḡ(x, ν) − 1

2
(|x |2 + R2

R
)ḡ(a, ν)

]

= 2

1 − R2
R

[
− cos θ R2

R
ḡ(sin θ μ − cos θ ν, a) + R2

R
ḡ(a, ν)

]

= − 2R2
R

1 − R2
R

sin θ ḡ(cos θ μ + sin θ ν, a). (4.31)

Since ν = − 1
cos θ

N̄ + tan θ μ and Xa ⊥ N̄ , we have

ḡ(Xa, ν) = tan θ ḡ(Xa, μ). (4.32)

In view of (4.18) and Proposition 2.1, we have

∇̄μḡ(Xa, ν) = − cosh R[e−u ḡ(x, μ)ḡ(a, ν) − e−u ḡ(μ, a)ḡ(x, ν)]
+e−u ḡ(x, a)ḡ(μ, ν) + ḡ(Xa, h(μ,μ)μ)

= − cosh R RR[sin θ ḡ(a, ν) + cos θ ḡ(μ, a)] + h(μ,μ)ḡ(Xa, μ)

= − coth R
2R2

R

1 − R2
R

ḡ(cos θ μ + sin θ ν, a) + h(μ,μ)ḡ(Xa, μ)

= 1

sin θ
coth R ḡ(Xa, ν) + h(μ,μ)ḡ(Xa, μ), (4.33)

where in the last equality, we have used (4.31). The second assertion (4.27) follows.
The proof is completed. ��
Proposition 4.6 Let x : M → (Bn+1, ḡ)bean isometric immersion into thehyperbolic
Poincaré ball. Let a be a constant vector field in R

n+1. The following identities hold
along M:


V0 = nV0 − Hḡ(x, ν), (4.34)


Va = nVa − H ∇̄νVa, (4.35)


ḡ(x, ν) = HV0 + ḡ(x,∇H) − |h|2ḡ(x, ν), (4.36)


ḡ(Xa, ν) = HVa + ḡ(Xa,∇H) − |h|2ḡ(Xa, ν) − n∇̄νVa + nḡ(ν, Xa),

(4.37)


ḡ(Ya, ν) = −|h|2ḡ(Ya, ν) + ḡ(Ya,∇H) + nḡ(Ya, ν). (4.38)

Proof (4.34) and (4.35) follow from (4.9) and (4.10) respectively and the Weingarten
formula.

We prove next (4.37). Choose an local normal frame {eα}nα=1 at a given point p, i.e.,∇eαeβ |p = 0. Denote by W : T M → T M the Weingarten map. We will frequently
use the conformal property (4.7) of Xa . We compute at p,
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eα ḡ(Xa, ν) = ḡ(Xa,W(eα)) + ḡ(∇̄eα Xa, ν)

= ḡ(Xa,W(eα)) − ḡ(∇̄νXa, eα),

and


ḡ(Xa, ν) = eαeα ḡ(Xa, ν)

= ḡ(∇̄eα Xa,W(eα)) + ḡ(Xa, ∇̄eα (W(eα)))

−ḡ(∇̄eα (∇̄νXa), eα) − ḡ(∇̄νXa,−Hν)

= hαβ ḡ(∇̄eα Xa, eβ) + ḡ(Xa, (∇eαW)(eα) − h(eα,W(eα))ν)

−ḡ(∇̄eα ∇̄νXa, eα) + HVa
= HVa + ḡ(Xa,∇H) − |h|2ḡ(Xa, ν) − ḡ(∇̄eα ∇̄νXa, eα).

Using the definition of Riemannian curvature tensor and the fact that the ambient space
has curvature −1, we get

−ḡ(∇̄eα ∇̄νXa, eα)

= −ḡ(∇̄ν∇̄eα Xa, eα) + ḡ(∇̄[ν,eα]Xa, eα) + ḡ(R̄(ν, eα)Xa, eα)

= −∇̄ν ḡ(∇̄eα Xa, eα) + ḡ(∇̄eα Xa, ∇̄νeα) + ḡ(∇̄[ν,eα]Xa, eα) + nḡ(ν, Xa)

= −n∇̄νVa + ḡ(∇̄eα Xa, ∇̄eα ν + [ν, eα]) + ḡ(∇̄[ν,eα]Xa, eα) + nḡ(ν, Xa)

= −n∇̄νVa + HVa + ḡ([ν, eα], eα)Va + nḡ(ν, Xa).

Furthermore the Koszul formula gives

2ḡ(∇̄eα ν, eα) = −ḡ([ν, eα], eα) − ḡ([eα, eα], ν) + ḡ([eα, ν], eα),

which implies

ḡ([ν, eα], eα) = −H .

Combining the above, we get (4.37).
By taking account of the fact that x has the conformal Killing property (4.4) and

Ya has the Killing property (4.8), (4.36) and (4.38) follow similarly as (4.37). ��

4.2 Uniqueness of stable capillary hypersurfaces in a hyperbolic ball

Theorem 4.1 Assume x : M → BH

R ⊂ (Bn+1, ḡ) is an immersed stable capillary
in the ball BH

R with constant mean curvature H ≥ 0 and constant contact angle
θ ∈ (0, π). Then x is totally umbilical.

Proof The stability inequality (2.3) reduces to

−
∫

M
ϕ(
ϕ + |h|2ϕ − nϕ) −

∫

∂M
(∇μϕ − q ϕ)ϕ ≥ 0 (4.39)
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for all function ϕ ∈ F , where q is given by (4.28) since ∂BH

R has constant principal
curvature coth R.

For each constant vector field a ∈ R
n+1, we consider a test function

ϕa = n(Va + sinh R cos θ ḡ(Ya, ν)) − Hḡ(Xa, ν)

along M . The Minkowski type formula (4.21) tells us that
∫
M ϕad A = 0. Therefore,

ϕa ∈ F and is an admissible function for testing stability. Using (4.35), (4.37) and
(4.38), noting that H is a constant, we easily see that


ϕa + |h|2ϕa − nϕa = (n|h|2 − H2)Va . (4.40)

From (4.26) and (4.27), we know

∇μϕa − qϕa = 0. (4.41)

Inserting (4.40) and (4.41) into the stability condition (4.39), we get for any a ∈
R
n+1,

∫

M
[n(Va + sinh R cos θ ḡ(Ya, ν)) − Hḡ(Xa, ν)] Va(n|h|2 − H2) d A ≤ 0.

(4.42)

We takea to be then+1coordinate vectors {Ei }n+1
i=1 inR

n+1.Noticing thatVa = 2〈x,a〉
1−|x |2 ,

Xa = 2
1−R2

R

(〈x, a〉x − 1
2 (|x |2 + R2

R
)a
)
and Ya = 1

2 (|x |2 + 1)a − 〈x, a〉x , we have

n+1∑

a=1

V 2
a = 4|x |2

(1 − |x |2)2 = ḡ(x, x),

n+1∑

a=1

VaXa = 2

1 − R2
R

|x |2 − R2
R

1 − |x |2 x = (V0 − cosh R)x,

n+1∑

a=1

VaYa = x .

Therefore, by summing (4.42) for all a, we get

∫

	

[n(ḡ(x, x)+ sinh R cos θ ḡ(x, ν)) − (V0 − cosh R)Hḡ(x, ν)] (n|h|2 − H2)≤ 0.

(4.43)

As in the Euclidean case, we introduce an auxiliary function

� = (V0 − cosh R) H − n(ḡ(x, ν) + cos θ sinh R).

123



1872 G. Wang, C. Xia

From (4.34) and (4.36), we get


� = (n|h|2 − H2)ḡ(x, ν). (4.44)

Note that �|∂M = 0. Thus we have

∫

M


1

2
�2d A =

∫

∂M
�∇μ�ds = 0.

Adding this to (4.43), using (4.44), we have

0 ≥
∫

M
(nḡ(x, x) − (cosh r − cosh R) Hḡ(x, ν)) (n|h|2 − H2) + 


1

2
�2

=
∫

M
nḡ(xT , xT )(n|h|2 − H2) + |∇�|2

≥ 0.

The same argument as before yields the umbilicy of the immersion x . This implies
x : M → BH

R is either part of a totally geodesic hypersurface or part of a geodesic
ball. The proof is completed. ��

4.3 The case Sn+1

In this subsection, we sketch the necessary modifications in the case that the ambient
space is the spherical space form S

n+1. We use the model

(Rn+1, ḡS = e2uδ) with u(x) = 4

(1 + |x |2)2 ,

to represent Sn+1\{S}, the unit sphere without the south pole. Let BS

R be a ball in
S
n+1 with radius R ∈ (0, π) centered at the north pole. The corresponding RR =√
1−cos R
1+cos R ∈ (0,∞). The crucial conformal Killing vector field Xa and the Killing

vector field Ya in this case are

Xa = 2

1 + R2
R

[

〈x, a〉x − 1

2
(|x |2 + R2

R
)a

]

, (4.45)

Ya = 1

2
(1 − |x |2)a + 〈x, a〉x . (4.46)

The crucial functions V0 and Va in this case are

V0 = cos r = 1 − |x |2
1 + |x |2 , Va = 2〈x, a〉

1 + |x |2 .
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Similarly as the hyperbolic case, these (n + 2) functions span the vector space

{V ∈ C2(Sn+1\{S}) : ∇̄2V = −V ḡ}.

Using Xa , Ya , V0 and Va , the proof goes through parallel to the hyperbolic case. The
method works for balls with any radius R ∈ (0, π). Compare to the hyperbolic case, in
this case V0 = cos r can be negativewhen R ∈ (π

2 , π). Nevertheless, by going through
the proof, we see this does not affect the issue on stability. We leave the details to the
interested reader. ��

4.4 Exterior problem

To end this section, we give a sketch of proof for the exterior problem, Theorem 1.4.
We take the hyperbolic case as an example.

Theorem 4.2 Assume x : M → H
n+1\BH

R is a compact immersed stable capillary
hypersurface outside the hyperbolic ball BH

R with constant mean curvature H ≥ 0
and constant contact angle θ ∈ (0, π). Then x is totally umbilical.

Proof In this case, the differences occur that x = − sinh R N̄ and the term q in the
stability inequality (2.3) is given by

q = − 1

sin θ
coth R + cot θ h(μ,μ).

By checking the proof of Proposition 4.4, we see the Minkowski formula is

∫

M
n(Va − sinh R cos θ ḡ(Ya, ν))d A =

∫

M
Hḡ(Xa, ν)d A.

We take the test function to be

ϕa = n(Va − sinh R cos θ ḡ(Ya, ν)) − Hḡ(Xa, ν). (4.47)

Then
∫
M ϕad A = 0. Also, by checking the proof of Proposition 4.5, we see that

∇̄μϕa = qϕa along ∂M . From Proposition 4.6, ϕa in (4.47) still satisfies (4.40). Then
the proof is exactly the same as the interior problem, Theorem 4.1. ��

5 Heintze–Karcher–Ros type inequality and Alexandrov theorem

Let K = 0 or ± 1. Denote by M̄
n+1(K ) the space form with sectional curvature K .

As in previous section, we use the Poincaré ball model (Bn+1, ḡH) for M̄n+1(−1) and
the model (Rn+1, ḡS) for M̄n+1(1).

In this section we consider an isometric embedding x : M → M̄
n+1(K ) into a

ball B in a space form with free boundary, ı.e., θ = π/2. To unify the notation, we
use B to mean the unit ball Bn+1 in the Euclidean case, the ball BH

R with radius R
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(R ∈ (0,∞)) in the hyperbolic case and the ball BS

R with radius R (R ∈ (0, π)) in the
spherical case. We denote	 = x(M). Let B be decomposed by	 into two connected
components. We choose one and denote it by �. Denote by T the part of ∂� lying on
∂B. Thus, ∂� = 	 ∪ T .

We also unify the following notations:

V0 =
⎧
⎨

⎩

1, K = 0,
cosh r , K = −1,
cos r , K = 1,

and

Va =

⎧
⎪⎨

⎪⎩

〈x, a〉, K = 0,
2〈x,a〉
1−|x |2 , K = −1,
2〈x,a〉
1+|x |2 , K = 1.

and Xa is conformal vector field in (3.1), (4.5) and (4.45) in each case respectively.
We first prove other Minkowski type formulae.

Proposition 5.1 Let x : M → M̄
n+1(K ) be an embedded smooth hypersurface into

B which meets B orthogonally. Let σk, k = 1, . . . , n be the k-th mean curvatures, i.e.,
the elementary symmetric functions acting on the principal curvatures. Then

∫

�

Vad� = 1

n + 1

∫

	

ḡ(Xa, ν)d A. (5.1)
∫

	

Vaσk−1d A = k

n + 1 − k

∫

	

σk ḡ(Xa, ν)d A, ∀k = 1, . . . , n. (5.2)

Remark 5.1 Formula (5.2) is still true if x is only an immersion.

Proof Due to the perpendicularity condition, μ = N̄ . Since Xa ⊥ N̄ along ∂B, we
see Xa ⊥ μ along ∂	. From the conformal property, we have

divḡ Xa = (n + 1)Va .

Integrating it over � and using Stokes’ theorem, we have

(n + 1)
∫

�

Vad� =
∫

�

divḡ Xad� =
∫

	

ḡ(Xa, ν)d A +
∫

T
ḡ(Xa, N̄ )d A

=
∫

	

ḡ(Xa, ν)d A.

This is (5.1). Denote by XT
a the tangential projection of Xa on 	. From above we

know that XT
a ⊥ μ along ∂	. Let {eα}nα=1 be an orthonormal frame on 	. From the

conformal property, we have that

1

2

[
∇α(XT

a )β + ∇β(XT
a )α

]
= Vagαβ − hαβ ḡ(Xa, ν). (5.3)
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(cf. (3.5)). Denote Tk−1(h) = ∂σk
∂h the Newton transformation. Multiplying T αβ

k−1(h)

to (5.3) and integrating by parts on 	, we get

∫

	

(n + 1 − k)Vaσk−1(h) − kσk(h)ḡ(Xa, ν)d A

=
∫

	

T αβ
k−1(h)∇α(XT

a )βd A =
∫

∂	

T αβ
k−1(h)ḡ(XT

a , eβ)ḡ(μ, eα)ds

=
∫

∂	

Tk−1(X
T
a , μ)ds = 0.

In the last equality, we have used Proposition 2.1 and the fact that XT
a ⊥ μ along ∂	.

In fact, sinceμ is a principal direction of h, it is also a principal direction of theNewton
tensor Tk−1 of h, which implies that Tk−1(XT

a , μ) = 0. The proof is completed. ��
Next we prove a Heintze–Karcher–Ros type inequality. In order to prove the

Heintze–Karcher–Ros type inequality, we need a generalized Reilly formula, which
has been proved by Qiu and Xia [48], Li and Xia [33,34].

Theorem 5.1 [33,48] Let � be a bounded domain in a Riemannian manifold (M̄, ḡ)
with piecewise smooth boundary ∂�. Assume that ∂� is decomposed into two smooth
pieces ∂1� and ∂2� with a common boundary �. Let V be a non-negative smooth

function on �̄ such that ∇̄2V
V is continuous up to ∂�. Then for any function f ∈

C∞(�̄\�), we have

∫

�

V

((


̄ f − 
̄V

V
f

)2

−
∣
∣
∣
∣∇̄2 f − ∇̄2V

V
f

∣
∣
∣
∣

2)

d�

=
∫

�

(

̄V ḡ − ∇̄2V + VRic

)(

∇̄ f − ∇̄V

V
f , ∇̄ f − ∇̄V

V
f

)

d�

+
∫

∂�

V

(

fν − Vν

V
f

)(


 f − 
V

V
f

)

d A

−
∫

∂�

Vg

(

∇
(

fν − Vν

V
f

)

,∇ f − ∇V

V
f

)

d A

+
∫

∂�

V H

(

fν − Vν

V
f

)2

+
(

h − Vν

V
g

)(

∇ f − ∇V

V
f ,∇ f − ∇V

V
f

)

d A.

(5.4)

Remark 5.2 The formula (5.4) here is a bit different with that in [33]. We do not do
integration by parts on ∂� in the last step of the proof as [33,48].

Theorem 5.2 Let x : M → M̄
n+1(K ) be an embedded smooth hypersurface into B

with ∂	 ⊂ ∂B. Assume 	 lies in a half ball

Ba+ = {Va ≥ 0} = {〈x, a〉 ≥ 0}.

123



1876 G. Wang, C. Xia

If 	 has positive mean curvature, then

∫

	

Va
H

dA ≥ n + 1

n

∫

�

Vad�. (5.5)

Moreover, equality in (5.5) holds if and only if 	 is a spherical cap which meets ∂B
orthogonally.

Proof Recall ∂� = 	 ∪ T , where T is the boundary part lying in ∂B. See Figure 1.
Let f be a solution of the mixed boundary value problem

⎧
⎨

⎩


̄ f + K (n + 1) f = 1 in �,

f = 0 on 	,

Va fN̄ − f (Va)N̄ = 0 on T .

(5.6)

Since the existence of (5.6) has its own interest, we give a proof in Appendix A. From
the Appendix we have f ∈ W 1,2(�) satisfying (5.6) in the weak sense, i.e., f = 0 on
	 and

∫

�

[ḡ(∇̄ f , ∇̄ϕ) − K (n + 1) f ϕ + ϕ] d� =
∫

T
f ϕd A, (5.7)

for all ϕ ∈ W 1,2(�) with ϕ = 0 on 	. Moreover the regularity of f , f ∈ C∞(�̄\�)

follows from standard linear elliptic PDE theory.
From the fact ∇̄2Va = −KVaḡ, we see


̄Va + K (n + 1)Va = 0, 
̄Vaḡ − ∇̄2Va + VaRic = 0. (5.8)

By using Green’s formula, (5.6) and (5.8), we have

∫

�

Vad� =
∫

�

Va(
̄ f + K (n + 1) f ) − (
̄Va + K (n + 1)Va) f d�

=
∫

∂�

Va fν − (Va)ν f d A

=
∫

	

Va fνd A +
∫

T
Va fN̄ − f (Va)N̄ d A

=
∫

	

Va fνd A. (5.9)

Using Hölder’s inequality for the RHS of (5.9), we have

(∫

�

Vad�

)2

≤
∫

	

VaH f 2ν d A
∫

	

Va
H

dA. (5.10)
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Next, we use formula (5.4) in our situation with V = Va . Because of (5.8) and
(5.6), formula (5.4) gives

n

n + 1

∫

�

Vad� =
∫

�

Va(
̄ f + K (n + 1) f )2d�

− 1

n + 1

∫

�

Va(
̄ f + K (n + 1) f )2d�

≥
∫

�

Va
(
(
̄ f + K (n + 1) f )2 − |∇̄2 f + K (n + 1) f ḡ|2

)
d�

=
∫

	

VaH f 2ν d A

+
∫

T

(

h∂B − (Va)N̄
Va

g∂B
)(

∇ f − ∇Va
Va

f ,∇ f − ∇Va
Va

f

)

d A

= I + II. (5.11)

We claim that

h∂B − (Va)N̄
Va

g∂B = 0, on T ⊂ ∂B, (5.12)

which implies that term II vanishes. We take the hyperbolic case for instance. First,

∂B is umbilical in H
n+1 with all principal curvatures coth R = 1+R2

R

2RR
. Second, since

N̄ = 1−R2
R

2
x
RR

and Va = 2〈x,a〉
1−|x |2 , a direct computation gives

(Va)N̄
Va

∣
∣
∣
∣|x |=RR

=
〈

∇̄R log

(
2〈x, a〉
1 − |x |2

)

,
1 − R2

R

2

x

RR

〉 ∣
∣
∣
∣|x |=RR

= 1 + R2
R

2RR

.

Thus (5.12) follows for the hyperbolic case. For other two cases (5.12) follows simi-
larly.

Taking account of the above information in (5.11), we obtain

n

n + 1

∫

�

Vad� ≥
∫

	

VaH f 2ν d A. (5.13)

Combining (5.10) and (5.13), we conclude (5.5).
We are remained to consider the equality case. If 	 a spherical cap which meets

∂B orthogonally, the Minkowski formula (5.1) implies that equality in (5.5) holds, for
	 has constant mean curvature. Conversely, if equality in (5.5) holds, then equality in
(5.11) holds, which implies that ∇̄2 f +K f ḡ = 0 holds in�. Restricting this equation
on 	, in view of f = 0 on 	 we know that 	 must be umbilical. Thus it is a spherical
cap and� is the intersection of two geodesic balls. It is easy to show the contact angle
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must be π
2 . Indeed, we have an explicit form for f :

f (x) =

⎧
⎪⎨

⎪⎩

1
2(n+1)dp(x)

2 + A, K = 0,
A cosh dp(x) − 1

n+1 , K = −1,
A cos dp(x) + 1

n+1 , K = 1,

where p ∈ M̄n+1(K ), A ∈ R and dp is the distance function from p. From the
boundary condition, we see ḡ(∇̄ f , N̄ ) = 0 on � = 	 ∩ T , and then ḡ(∇̄dp, N̄ ) = 0.
This implies that these two intersecting geodesic balls are perpendicular. The proof is
completed. ��

As an application we give an integral geometric proof of the Alexandrov Theorem,
which was obtained by Ros and Souam in [53] by using the method of moving plane.
Our proof has the same flavor of Reilly [49] and Ros [51], see also [33,48].

Theorem 5.3 Let x : M → M̄
n+1(K ) be an embedded smooth CMC hypersurface

into B which meets B orthogonally. Assume 	 lies in a half ball. Then 	 is either a
spherical cap or part of totally geodesic hyperplane.

Remark 5.3 The condition that 	 lies in a half ball cannot be removed because there
are other embedded CMC hypersurfaces, like the Denaulay hypersurfaces in a ball
which meets ∂B orthogonally which does not lie in a half ball.

Proof We take the hyperbolic case for instance.
We claim first that the constant mean curvature H is non-negative. To prove this

claim, let the totally geodesic hyperplane {〈x, a〉 = 0}move upward along a direction
along the totally geodesic foliation ofHn+1, until it touches	 at some point p at a first
time. It is clear that H = H(p) ≥ 0. If H = 0, then the boundary point lemma or the
interior maximum principle implies that 	 must be some totally geodesic hyperplane.

Next we assume H > 0. In this case the two Minkowski formulae (5.1) and (5.2)
yield

(n + 1)
∫

�

Vad A =
∫

	

ḡ(Xa, ν)d A = 1

H

∫

	

Hḡ(Xa, ν)d A

= n

H

∫

	

Vad A = n
∫

	

Va
H

dA.

The above equation means, for the constant mean curvature hypersurface 	, the
Heintze–Karcher–Ros inequality is indeed an equality. By the classification of equal-
ity case in (5.5), we conclude that 	 must be a spherical cap. The proof is completed.

��
Using the higher order Minkowski formulae (5.2) and the Heintze–Karcher–Ros

inequality (5.5), we can also prove the rigidity when	 has constant higher order mean
curvatures or mean curvature quotients as Ros [51] and Koh and Lee [30].

Theorem 5.4 Let x : M → M̄
n+1(K ) be an isometric immersion into a ball with free

boundary. Assume that 	 lies in a half ball.
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(i) Assume x is an embedding and has nonzero constant higher order mean curva-
tures σk , 1 ≤ k ≤ n. Then 	 is a spherical cap.

(ii) Assume x has nonzero constant curvature quotient, i.e.,

σk

σl
= const ., σl > 0, 1 ≤ l < k ≤ n.

Then 	 is a spherical cap.

Note that in Theorem5.4(ii), we do not need assume the embeddedness of x , since in
the proof we need only use the higher order Minkowski formulae (5.2) (without use of
the Heintze–Karcher–Ros inequality), which is true for immersions, see Remark 5.1.
On the other hand, the condition of embeddedness may not be removed in Theorem
5.4(i) in view of Wente’s counterexample. The proof is similar, we leave it to the
interested reader.

Appendix A. Existence of weak solution of (5.6)

In this Appendix we discuss the existence of weak solution of (5.6), namely

⎧
⎨

⎩


̄ f + K (n + 1) f = 1 in �,

f = 0 on 	,

Va fN̄ − f (Va)N̄ = 0 on T
(A.1)

in the weak sense (5.7). Since our Robin boundary condition has a different sign, i.e.
(Va)N̄
Va

< 0, we can not apply known results about the existence for mixed boundary
problem, for example, [37]. Here we use the Fredholm alternative theorem. In order
to use it, we have to show that

⎧
⎨

⎩


̄φ + K (n + 1)φ = 0 in �,

φ = 0 on 	,

VaφN̄ − φ(Va)N̄ = 0 on T
(A.2)

has only the trivial solution φ = 0 in W 1,2(�). For a general domain � we do not
know how to prove it. Nevertheless, we can prove it for domains under the conditions
given in Theorem 5.2.

Proposition A.1 Let x : M → M̄
n+1(K ) be an embedded smooth hypersurface into

B with ∂	 ⊂ ∂B. Assume 	 lies in a half ball Ba+ = {Va ≥ 0} = {〈x, a〉 ≥ 0}. If 	
has positive mean curvature, then (A.2) has only the trivial solution φ = 0.

Proof Let φ ∈ W 1,2(�) be a weak solution of (A.2), i.e., φ = 0 on 	 and

∫

�

[ḡ(∇̄φ, ∇̄ϕ) − K (n + 1)φϕ] d� =
∫

T
φϕd A,
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for all ϕ ∈ W 1,2(�) with ϕ = 0 on 	. The classical elliptic PDE theory gives the
regularity φ ∈ C∞(�̄\�). Now we can use the Reilly type formula, (5.4), as in the
proof of Theorem 5.2. Replacing f by φ in (5.4), using (5.12), we get

−
∫

�

Va |∇̄2φ + Kφḡ|2d� =
∫

	

VaH(φν)
2d A.

Since Va and H is positive, it follows that

∇̄2φ + Kφḡ = 0 in � (A.3)

and φν = 0 on 	. From (A.3) and Remark 4.2, we see φ must be of form

φ =
n+1∑

i=0

bi Vi ,

for bi ∈ R, i = 0, 1, . . . n+1. By checking the boundary condition VaφN̄ −φ(Va)N̄ =
0 on T , we see b0 = 0. Moreover, since φ = 0 on 	, 	 must be the totally geodesic
hyperplane through the origin if one of bi �= 0, which is a contraction to 	 having
positive mean curvature. We get the assertion. ��

With this Proposition one can use the Fredholm alternative to get a unique weak
solution of (A.1).
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