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Abstract. We study an asymptotic estimate on the number of negative eigenvalues of the Schrödinger
operators on unbounded fractal spaces which admit a cellular decomposition. We first give some
sufficient conditions for Weyl-type asymptotic formula to hold. Second, we verify these conditions
for the infinite blowup of Sierpiński gasket and unbounded generalized Sierpiński carpets. Final,
we demonstrate how the result can be applied to the infinite blowup of certain fractals associated
with iterated function systems with overlaps, including those defining the classical infinite Bernoulli
convolution with golden ratio.
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1. Introduction

Non-relativistic quantum mechanics may be viewed as the study of the Schrödinger operator

−∆ + V on Euclidean space Rd, where ∆ is the Laplacian on Rd and V is a potential. Negative

eigenvalues of the Schrödinger operator are referred to by physicists as bound state energies. Let

N−(V ) be the number of negative eigenvalues, counted with multiplicities, of the Schrödinger

operator −∆ + V . As a rule, one considers the quantity N−(V ) not for an “individual” potential

V , but rather for the family βV , where β > 0 is a large parameter (coupling constant). Here one

is interested in the behavior of the function N−(βV ) as β → ∞. It is well-known (see, e.g., [36])

Date: January 26, 2022.
2010 Mathematics Subject Classification. Primary: 28A80, 35J10; Secondary: 35P20, 35J05.
Key words and phrases. Fractal; Schrödinger operator; Laplacian; self-similar measure with overlaps.
The first author is supported by the NNSF of China ( Grants No. 11901187 and 11771136). The second author is

supported by the NNSF of China ( Grant No. 12001183), the Hunan Provincial NSF ( Grant No. 2020JJ5097), and
the SRF of Hunan Provincial Education Department (Grant No. 19B117).
*Corresponding author.

1



2 W. TANG AND Z.Y. WANG

that the Weyl-type (or semi-classical) asymptotic formula

N−(βV ) =
ωd

(2π)d

(∫
D−d (V )

(
− V (x)

)d/2
dx
)
βd/2(1 + o(1)), as β →∞, (1.1)

is satisfied, under some appropriate assumptions on the potential V , where D−d (V ) := {x ∈ Rd :

V (x) ≤ 0} and ωd is the volume of the unit ball in Rd. The conditions on the potential V ,

guaranteeing the validity of (1.1), depend on the dimension d. For d ≥ 3, Rozenblum [38], Lieb [30]

and Cwikel [11] proved the following Cwikel-Lieb-Rozenblum (CLR) inequality independently:

N−(V ) ≤ C(d)

∫
D−d (V )

(−V )d/2dx, for all V ∈ Ld/2(Rd), (1.2)

where C(d) is a positive constant. Afterwards, other proof of (1.2) were given by Li and Yau [29],

and by Conlon [10]. The proof of Li and Yau is the most remarkable, because it relies only upon a

few basic facts, such as the “gobal Sobolev inequality” for functions u ∈ C∞0 (Rd) and the positivity

of the heat kernel. Using (1.2), Rozenblum [38] showed that the Weyl-type asymptotic formula

(1.1) holds for all potentials V ∈ Ld/2(Rd). For d = 1, 2, the situation is different. In particular,

for d = 1 an estimate similar to (1.2) is impossible, since V ∈ L1
loc(R) necessary for the Schrödinger

operator −∆ + V to be well-defined. The necessary and sufficient conditions for the validity of

(1.2) for d = 1 can be easily derived from [31, Theorem D], and they are much stronger than

V ∈ L1/2(R). The CLR inequality for d = 2 fails. Instead, the opposite inequality

N−(V ) ≥ c
∫
R2

V dx

is established by Grigor’yan, Netrusov and Yau in [15], where V ≥ 0. On the other hand, for d = 2

the recent results by Grigor’yan and Nadirashvili [14] and Shargorodsky [39] give the desirable

(though not simple) estimate.

On any fractal space where a Laplacian may be defined, it makes sense mathematically to

consider the analog of Schrödinger operator. Strichartz [42] studied the counting function for the

negative eigenvalues of the Schrödinger operator −∆+V on the product of two copies of an infinite

blowup of the Sierpiński gasket, where ∆ is the Laplacian on the product and V is a Coulomb

potential. He showed that the number of eigenvalues that are less than −ε is of the order ε−δ as

ε → 0+, where δ = (ln(25/9) ln 9)/(ln(9/5) ln 5). Under suitable conditions, Chen et al. [9] proved

the Bohr’s formula for eigenvalue counting function of Schrödinger operators with some unbounded

potentials on several types of unbounded fractal spaces supporting a measure and having a well-

defined Laplacian. Moreover, these conditions are verified for fractafolds and fractal fields based

on nested fractals. Recently, Ngai and first author [33] obtained an analog of (1.1) for Schrödinger

operators defined on domains by a class of self-similar measures with overlaps, and proved the Bohr’s

formula for Schrödinger operators on blowups of fractals associated with iterated function systems

with overlaps. A main goal of this paper is to obtain a crude analogue of Weyl-type asymptotic

formula (1.1) for Schrödinger operators on unbounded fractal spaces (see Theorem 1.3), which

admit a cellular decomposition.
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LetK be a compact set in Rd with a positive finite Borel measure µ and a “well-defined boundary”

∂K which has µ-measure zero. Note that ∂K might not coincide with the boundary of K in the

topological sense. We now consider an unbounded set K∞, which admits a cellular decomposition

into copies of K. Formally, let K∞ :=
⋃
i∈I Ki, where

(C1) I is a countably infinite index set containing 0;

(C2) for each i ∈ I, there corresponds a similitude τi : K → Ki of the form τi(x) = x+ bi, with

bi ∈ Rd such that τ0 is the identity map on Rd and τi(K) = Ki;

(C3) for any distinct i, j ∈ I, Ki ∩Kj = ∂Ki ∩ ∂Kj .

Condition (C3) implies that for any distinct i, j ∈ I, the interiors of Ki and Kj are disjoint. For

each i ∈ I, let µi := µ ◦ τ−1
i be the push forward measure of µ on Ki. We remark that µ0 = µ, and

each µi and µ have the same measure structure. In a natural way, we can define a glued measure

µ∞ on K∞ by

µ∞(E) :=
∑
i∈I

µi(E ∩Ki) for all Borel subsets E ⊆ K∞. (1.3)

In this case, we call µ∞ the natural extension measure on K∞ of µ. Note that µ∞(Ki ∩Kj) = 0

for any distinct i, j ∈ I.

We shall assume that there exists a well-defined non-negative self-adjoint Laplacian −∆K∞ in

L2(K∞, µ∞). In this paper, we present an asymptotic behavior for the number of negative eigenval-

ues of −∆K∞ + βV as β →∞. The main technique we used is the Dirichlet-Neumann bracketing

technique [18, 22, 36], which is a basic and useful technique for deriving various asymptotic for-

mulas of Schrödinger operators. Using the idea of Dirichlet-Neumann bracketing, one can bound

the Laplacian by the Dirichlet and Neumann Laplacians with conditions on the gluing boundary⋃
i∈I ∂Ki (see, e.g., [36, Section XIII.15]). Condition (C3) above allows us to decouple the Dirichlet

(or Neumann) Laplacian in L2(K∞, µ∞) into the direct sum of the Dirichlet (or Neumann) Lapla-

cians on the individual components. In order to state the precise results, we will impose some mild

conditions on the measure space (K,µ).

We first introduce some definitions, notation and assumptions that will be used. We call a µ-

measurable compact subset B of K a cell (in K) if µ(B) > 0 and B has a well-defined boundary

∂B with µ(∂B) = 0. Clearly, K itself is a cell. We call a finite family P of interior disjoint cells a

partition of K if K =
⋃
B∈PB. In particular, {K} is a partition of K.

Definition 1.1. We say a partition P of K satisfies condition (DN) if for each B ∈ P,

(1) there exists a well-defined non-negative self-adjoint Laplacian operator −∆D
B (resp. −∆N

B )

in L2(B,µ|B) satisfying the Dirichlet (resp. Neumann) condition on ∂B;

(2) for any B ∈ P, −∆D
B and −∆N

B have compact resolvent.
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Let A be a self-adjoint operator in a Hilbert space H that is semi-bounded below. If A has com-

pact resolvent, then the number of negative eigenvalues, counting multiplicity, is finite; moreover,

each eigenspace is finite dimensional. We define the eigenvalue counting function as

N(λ,A) := #{n : λn(A) < λ},

where λn(A) is the n-th eigenvalue of A counted according to their multiplicities, and #F denotes

the cardinality of a finite set F . Condition (2) implies that −∆D
B and −∆N

B have pure point

spectrum, and then N(λ,−∆b
B) is well-defined for all λ > 0 and b ∈ {D,N}.

Let (Pk)k≥0 be a sequence of partitions of K, and let ν be a positive finite Borel measure on K.

We say that (Pk)k≥0 is refining with respect to ν if (1) P0 = {K}; (2) for any B ∈ Pk and any

B′ ∈ Pk+1, either B′ ⊆ B or B′ ∩B = ∂B ∩ ∂B′; (3) limk→∞max{ν(B) : B ∈ Pk} = 0. Condition

(2) means that each member of Pk+1 is a subset of some member of Pk.

Assumption 1.2. There exist a sequence of partitions (Pk)k≥0 of K and a positive finite Borel

measure ν on K satisfying the following conditions:

(A1) (Pk)k≥0 is refining with respect to ν and each Pk satisfies condition (DN).

(A2) there exist positive constants α, c1, and c2 such that

c1ν(B)λα/2
(
1 + o(1)

)
≤ N(λ,−∆b

B) ≤ c2ν(B)λα/2
(
1 + o(1)

)
as λ→∞, (1.4)

for all b ∈ {D,N}, k ≥ 0 and B ∈ Pk.

We refer the reader to Section 2 for the definition of the notation
⊕

. Condition (A1) implies

that for each k ≥ 0, the Laplacians −
⊕

B∈Pk ∆D
B and −

⊕
B∈Pk ∆N

B in L2(K,µ) with the Dirichlet

and Neumann conditions on
⋃
B∈Pk ∂B, respectively, are well-defined. In particular, the Dirichlet

(resp. Neumann) Laplacian −∆D
K (resp. −∆N

K) in L2(K,µ) with boundary condition on ∂K is

well-defined. Thus −∆D
Ki

and −∆N
Ki

also are well-defined for all i ∈ I, and −∆D
K∞

:= −
⊕

i∈I ∆D
Ki

and −∆N
K∞

:= −
⊕

i∈I ∆N
Ki

are the Dirichlet and Neumann Laplacians in L2(K∞, µ∞) with the

boundary
⋃
i∈I ∂Ki. Consequently, condition (A1) gives the structure of Dirichlet-Neumann brack-

eting technique. One uses the monotonicity under addition of Dirichlet or Neumann boundaries and

their decoupling properties to reduce a problem to one about cells which is then solved by condition

(A2). We remark that condition (A2) (or (1.4)) is a generalized Weyl law, and the parameter α is

often called the spectral dimension of the Laplacians (or K). We remark that, in general, α ≤ d.

If each B ∈
⋃
k≥0 Pk is a domain in Rd with a nice boundary, and µ is the Lebesgue measure, then

condition (A2) holds with α = d, ν = µ, and c1 = c2 = ωdµ(B)/(2π)d. In this case, condition (A2)

is the Weyl law [45], which gives a relationship between the analytic and geometric properties of

a domain, which has popular applications for deriving various asymptotic formulas of Schrödinger

operators (see, e.g., [36]).
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In order to state the precise results, we introduce the following associated Weyl’s asymptotic

function: for any X ⊆ Rd, positive Borel measure ν on X, α > 0, and f ∈ Lα/2(X, ν), define

W (X, ν, f, α) :=

∫
D−(f)

(−f)α/2 dν, (1.5)

where D−(f) := {x ∈ X : f(x) ≤ 0}.

Theorem 1.3. Let K, µ, K∞, µ∞ be given as above. Assume that there exists a non-negative self-

adjoint Laplacian −∆K∞ in L2(K∞, µ∞), and Assumption 1.2 holds with a sequence of partitions

(Pk)k≥0 of K and a positive finite Borel measure ν on K.

(a) Let V be a continuous function on K∞ that has compact support. Then as β →∞,

c1W (K∞, ν∞, V, α)βα/2(1 +o(1)) ≤ N(0,−∆K∞ +βV ) ≤ c2W (K∞, ν∞, V, α)βα/2(1 +o(1)), (1.6)

where W (·, ·, ·, ·) is defined as in (1.5), constants α, c1 and c2 come from (1.4), and ν∞ is

the natural extension measure on K∞ of ν.

(b) Let (E , dom E) be the closed quadratic form in L2(K∞, µ∞) associated with −∆K∞. Assume

that α > 2 and there exists constant C > 0 such that

‖u‖Lp(K∞,µ∞) ≤ CE1/2(u, u) for all u ∈ dom E , (1.7)

where p := 2α/(α− 2). If V ∈ Lα/2(K∞, µ∞) ∩ Lα/2(K∞, ν∞), then the Weyl-type asymp-

totic formula (1.6) also holds.

The main ingredients in the proof of Theorem 1.3(a) are the Dirichlet-Neumann bracketing and

the generalized Weyl law (1.4). We remark that the method used to prove Theorem 1.3(a) does

not extend to V ’s that are not at least locally bounded. However, Theorem 1.3(b) tells us that one

can extend (1.6) by approximating non-smooth V ’s by V ’s in C∞0 (K∞) provided by the Sobolev

inequality (1.7). In fact, (1.7) implies the existence of an upper bound for N(0,−∆K∞ + V ) that

have the right coupling constant behavior, which is the critical element in this approximation

argument. The assumption V ∈ Lα/2(K∞, ν∞) guarantees that W (K∞, ν∞, V, α) <∞.

We are interested in unbounded fractal spaces. Let {Si}mi=0, m ≥ 1, be an iterated function

system (IFS) on Rd. For k ≥ 0 and ω = w1 . . . wk ∈ {0, . . . ,m}k, where {0, . . . ,m}0 := {∅}, we use

the standard notation

Sω := Sw1 ◦ · · · ◦ Swk

with S∅ := id, where id is the identity map on Rd. We say IFS {Si}mi=0 satisfy the open set

condition (OSC) if there exists a nonempty bounded open set U ⊂ Rd such that
⋃m
i=0 Si(U) ⊆ U

and Si(U) ∩ Sj(U) = ∅ if i 6= j. OSC is an separation condition. An IFS that does not satisfy

OSC is said to have overlaps; in this case, we also say that an associated self-similar measure has

overlaps. Another important separation condition is post-critically finite (PCF) condition, which

is introduced first in [21]. The PCF condtion and the OSC are key conditions in studying the
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analysis and geometry of fractals. Since 1980s, the Laplacian operators and energy on fractals

defined by IFS’s satisfy these conditions, such as Sierpiński gasket and Sierpiński carpet, have been

constructed and studied extensively (see, e.g., [1, 3, 7, 17, 20–22, 41] and the references therein). In

particular, the Weyl law for the Laplacians on Sierpiński gasket and Sierpiński carpet have been

obtained (see e.g., [17, 20–22]). Based on these results, we can apply Theorem 1.3 to the infinite

blowup of Sierpiński gasket and unbounded generalized Sierpiński carpet (see Corollaries 1.4 and

1.5 below).

Let K denote the Sierpiński gasket, the unique nonempty compact set in the plane satisfying

K =
⋃2
i=0 Si(K) where Si(x) = (x+ qi)/2 and (q0, q1, q2) are the vertices of an equilateral triangle.

For each infinite word ω = w1w2 · · · with wi ∈ {0, 1, 2}, define

Kω
∞ :=

∞⋃
m=1

(
S−1
w1
◦ S−1

w2
◦ · · ·S−1

wm

)
(K) (1.8)

to be the infinite blowup of K associated with the word ω. We will assume that the blowup word

ω is not eventually constant. This means Kω
∞ is non-compact and has no boundary. Here we point

out that by construction, Kω
∞ admits a cellular decomposition into copies of K which intersect on

the boundary only. Let µ be the self-similar measure defined by the IFS {Si}2i=0 and probability

weights {1/3, 1/3, 1/3}. Thus we can extend µ to an infinite measure µω∞ on Kω
∞ as in (1.3). The

theory of Kigami [21] allows us to define the standard Laplacian −∆K in L2(K,µ) with either

Dirichlet or Neumann condition on the boundary ∂K = {q0, q1, q2}. Moreover, the definition of the

Laplacian can be transferred from K to Kω
∞, which we denote by −∆Kω∞ (see, e.g., [40, 42]).

Corollary 1.4. Let K, µ, ω, Kω
∞, µω∞ and −∆ω

K∞
be given as above, where word ω is not eventually

constant. Assume that V is a continuous function on Kω
∞ that has compact support. Then there

exist positive constants c1, c2 such that as β →∞

c1W (Kω
∞, µ

ω
∞, V, ds)β

ds/2(1 + o(1)) ≤ N(0,−∆Kω∞ + βV ) ≤ c2W (Kω
∞, µ

ω
∞, V, ds)β

ds/2(1 + o(1)),

where W (·, ·, ·, ·) is defined as in (1.5) and ds = log 9/ log 5.

The two main ingredients used in the proof of Corollary 1.4 is the self-similarity property and

Weyl law of the Laplacian on Sierpiński gasket, which also hold for the Laplacians on PCF fractals

with regular harmonic structure (see e.g., [21,22]). Thus Theorem 1.3(a) also can be applied to the

infinite blowup of PCF fractals with regular harmonic structure.

Let K ⊂ Rd (d ≥ 2) be a generalized Sierpiński carpet (GSC) in the sense of [6, 7]. The defini-

tions of the associated unbounded generalized Sierpiński carpets K∞, as well as the corresponding

Laplacians −∆K∞ , are given in Section 3.3. It is known that the spectral dimension ds and the

Hausdorff dimension df of K satisfy ds ≤ df < d (see, e.g., [6]). Generalized Sierpiński carpets

with ds > 2 can be found in [6, 23].
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Corollary 1.5. Let K be a GSC, K∞ and µ be the associated unbounded GSC and self-similar

measure with equal probability weights. Let −∆K∞ be the Laplacian in L2(K∞, µ∞) as given in [4,6],

where µ∞ is the natural extension measure on K∞ of µ. Then the following two results hold.

(a) If V is a continuous function on K∞ that has compact support, then the Weyl-type asymp-

totic formula (1.6) holds with α = ds and ν∞ = µ∞, where ds is the spectral dimension of

K.

(b) If ds > 2 and V ∈ Lds/2(K∞, µ∞), then the conclusion of part (a) also holds.

A main motivation of this work is to present an asymptotic behavior for Schrödinger operators on

the infinite blowup of certain fractals defined by IFSs with overlaps together with the associated self-

similar measures. The structure of the IFSs with overlaps and the associated self-similar measures

are in general complicated and intractable. Despite difficulties due to overlaps, many interesting

IFSs with overlaps have been studied for a long time. Next, we illustrate Theorem 1.3 by the

infinite blowup of fractals defined by two classes of IFSs with overlaps, including those defining the

classical infinite Bernoulli convolutions with golden ratio. These IFSs and the associated Laplacians

have been studied very extensively (see, e.g., [12,16,25–27,32,33,35,44] and the references therein).

They define Laplacians that exhibit many behaviors analogous to Laplacians on PCF fractals, such

as non-integer spectral dimension [32], sub-Gaussian heat kernel estimates [16] and infinite wave

propagation speed [35].

Let µ be a continuous, positive, finite Borel measure on R with supp(µ) ⊆ [0, a] =: K. Define

the standard bilinear form in L2((0, a), µ) by

E(u, v) :=

∫ a

0
u′(x)v′(x) dx

with domain dom E equal to the Sobolev space H1
0 (0, a) (Dirichlet boundary condition) or H1(0, a)

(Neumann boundary condition). It is well-known that one can define a Dirichlet (resp. Neumann)

Laplacian −∆D
µ|K (resp. −∆N

µ|K ) in L2(K,µ) with boundary ∂K = {0, a}. Throughout this paper,

we call −∆D
µ|K (resp. −∆N

µ|K ) the Dirichlet (resp. Neumann) Laplacian with respect to µ. We

remark that −∆D
µ|K and −∆N

µ|K have compact resolvents (see, e.g., [8, 19]). For each i ∈ N, define

τi(x) := x+ ia, and then let

K∞ :=

∞⋃
i=0

τi(K).

It is easy to check that conditions (C1)–(C3) above hold. Note that K∞ = [0,+∞) =: R+. Let

µ∞ be the natural extension measure on R+ of µ. Consider the non-negative bilinear form Ẽ(·, ·)
in L2(R+, µ∞) given by

Ẽ(u, v) :=

∫ ∞
0

u′v′ dx (1.9)
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with domain dom Ẽ =
{
u ∈ H1

loc(R+) :
∫∞

0 |u
′|2dx <∞, u(0) = 0

}
. It is well-known that (Ẽ , dom Ẽ)

is a closed quadratic form in L2(R+, µ∞), since µ∞(F ) <∞ for any compact F ⊆ R+. Hence, there

exists a unique non-negative self-adjoint operator −∆µ∞ in L2(R+, µ∞) associated with (Ẽ , dom Ẽ).

The first IFS with overlaps we study is defined by

S1(x) = ρx, S2(x) = ρx+ (1− ρ), ρ = (
√

5− 1)/2. (1.10)

This IFS defines the infinite Bernoulli convolution associated with the golden ratio. The corre-

sponding self-similar identity is

µ =
1

2
µ ◦ S−1

1 +
1

2
µ ◦ S−1

2 , (1.11)

with supp(µ) = [0, 1]. Strichartz et al. [43] showed that µ satisfies a family of second-order identities

with respect to the following auxiliary IFS:

T0(x) := ρ2x, T1(x) := ρ3x+ ρ2, T2(x) := ρ2x+ ρ. (1.12)

We remark that {Ti}2i=0 satisfies the OSC. Let Pk :=
{
Tω[0, 1] : ω ∈ {0, 1, 2}k

}
for all k ≥ 0. Then

(Pk)k≥0 is a sequence of partitions of [0, 1]. We will introduce a measure ν on [0, 1] in Section 4

such that Assumption 1.2 holds with (Pk)k≥0 and ν.

Theorem 1.6. Let µ be defined as in (1.11) and let −∆D
µ|B denote the Dirichlet Laplacian with

respect to µ|B for any cell B in [0, 1]. Let ν be defined by (4.7).

(a) Then for all k ≥ 0 and ω = w1 · · ·wk ∈ {0, 1, 2}k, we have

N(λ,−∆D
µ|Tω [0,1]

) = ν(Tω[0, 1])λds/2(1 + o(1)), as λ→∞,

where {Ti}2i=0 and ds are defined in (1.12) and (4.2) respectively.

(b) Let µ∞ and ν∞ be the natural extension measures on R+ of µ and ν, respectively. Let

−∆µ∞ be the non-negative self-adjoint operator in L2(R+, µ∞) associated with (Ẽ ,dom Ẽ)

given in (1.9). If V is a continuous function on R+ that has compact support, then

N(0,−∆µ∞ + βV ) = W (R+, ν∞, V, ds)β
ds/2(1 + o(1)) as β →∞,

where W (·, ·, ·, ·) is defined as in (1.5).

The second classes of IFSs with overlaps we study are defined by

Si(x) =
1

m
x+

m− 1

m
i, i = 0, 1, . . . ,m. (1.13)

Let µm be the self-similar measure defined by the IFS {Si}mi=0 together with probability weights

pi :=
(
m
i

)
/2m, i = 0, 1, . . . ,m, that is,

µm =

m∑
i=0

piµm ◦ S−1
i . (1.14)
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Then µm is the m-fold convolution of the Cantor-type measure (see [26,32]). We will assume that

m is an odd integer and m ≥ 3. Note that supp(µm) = [0,m]. It is shown in [26] that µm satisfies

a family of second-order identities with respect to the auxiliary IFS:

Ti(x) =
1

m
x+ i, i = 0, 1, . . . ,m− 1. (1.15)

We remark that {Ti}m−1
i=0 also satisfies the OSC. Similarly, we will introduce a measure ν on [0,m]

in Section 5 such that Assumption 1.2 holds with (Pk)k≥0 and ν, where Pk :=
{
Tω[0, 1] : ω ∈

{0, 1, · · · ,m− 1}k
}

for all k ≥ 0.

Theorem 1.7. For any odd integer m ≥ 3, let µ := µm be defined by (1.14), and let −∆D
µ|B denote

the Dirichlet Laplacian with respect to µ|B for any cell B in [0,m]. Let ν be defined by (5.10).

(a) Then for all k ≥ 0 and ω = w1 · · ·wk ∈ {0, 1, · · · ,m− 1}k, we have

N(λ,−∆D
µ|Tω [0,m]

) = ν(Tω[0,m])λds/2(1 + o(1)) as λ→∞,

where {Ti}m−1
i=0 and ds are defined by (1.15) and (5.5), respectively.

(b) Let µ∞ and ν∞ be the natural extension measures on R+ of µ and ν, respectively. Let

−∆µ∞ be the non-negative self-adjoint operator in L2(R+, µ∞) associated with (Ẽ ,dom Ẽ)

defined in (1.9). Assume that V is continuous on R+ with compact support. Then

N(0,−∆µ∞ + βV ) = W (R+, ν∞, V, ds)β
ds/2(1 + o(1)) as β →∞,

where W (·, ·, ·, ·) is defined as in (1.5).

For the measures µ in Theorems 1.6 and 1.7, the spectral dimension of −∆D
µ|K are computed

in [32], where K := supp(µ). One of our main efforts is in constructing the measures ν on K for

the two classes of IFSs with overlaps above and proving the generalized Weyl law (1.4), which is

crucial in obtaining the Weyl-type asymptotic formula for Schrodinger operators −∆µ∞ + βV .

We outline the proof of Theorems 1.6 and 1.7 here. First, we use second-order identities and

spectral dimension formulas to construct the above-mentioned measure ν on K (see (4.7) and

(5.10)). Second, using the definition of ν and the known Weyl asymptotic of the Laplacians on

some cells in P1 (see (4.3) and (5.6)), we obtain a generalized Weyl law on these cells (see Lemmas

4.2 and 5.3). Third, applying the variational formula to show the non-arithmetic (or non-lattice)

case holds on other cells in P1 (see Lemmas 4.3 and 5.5), and then prove a generalized Weyl law on

these cells (see Lemmas 4.4 and 5.7). Final, we prove Theorems 1.6 and 1.7 by combining obtained

generalized Weyl law, Remark 2.4, and Theorem 1.3(a).

The rest of this paper is organized as follows. Section 2 summarizes some of the definitions,

notation and results that will be needed throughout the paper. In Section 3, we prove Theorem

1.3, and apply it to the infinite blowup of Sierpiński gasket and unbounded generalized Sierpiński

carpets. Section 4 is devoted to the proof of Theorem 1.6. Finally, we prove Theorem 1.7 in

Section 5.
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2. Preliminaries

In this section, we summarize some notation, definitions and preliminary results that will be used

throughout the rest of this paper. Let H be a (real or complex) Hilbert space with inner product

(·, ·) and norm ‖ · ‖. A self-adjoint operator (A,domA) in H is said to be semi-bounded below if

there exists some constant C ≥ 0 such that (Au, u) ≥ −C‖u‖2 for all u ∈ domA. It is well known

that for each semi-bounded below self-adjoint operator A, there exists a unique closed quadratic

from (E ,dom E) such that domA ⊆ dom E , and

E(u, v) = (Au, v) for all u ∈ domA and v ∈ dom E

(see e.g., [13, Section 1.3]).

Definition 2.1. For i = 1, 2, let Ai be a self-adjoint operator in a Hilbert space Hi that is semi-

bounded below, and (Ei, dom Ei) be the associated closed quadratic form. We say A1 4 A2 (in the

sense of quadratic forms) if H2 ⊆ H1, dom E2 ⊆ dom E1, and E1(u, u) ≤ E2(u, u) for all u ∈ dom E2.

We state a simple proposition, which will be used repeatedly. A proof can be found in [36, Section

XIII].

Proposition 2.2. (a) For i = 1, 2, let Ai be a self-adjoint operator in a Hilbert space Hi that is

semi-bounded below. Assume A1 4 A2. If A1 has compact resolvent, then so does A2; moreover,

N(λ,A1) ≥ N(λ,A2) for all λ ∈ R.

(b) For i = 1, 2, let Ai be a self-adjoint operator in a Hilbert space H that is semi-bounded below,

and (Ei, dom Ei) be the associated closed quadratic form. If A1 and A2 have compact resolvent, and

dom E1∩dom E2 is dense in H, then N(0, A1 +A2) ≤ N(0, A1)+N(0, A2), where A1 +A2 is defined

as a sum of quadratic forms.

Let (Hi)i∈I be a finite or countably infinite family of Hilbert spaces. Define a Hilbert space

H =
⊕
i∈I
Hi :=

{
u = (ui)i∈I : ui ∈ Hi for all i ∈ I and ‖u‖2H :=

∑
i∈I
‖ui‖2Hi <∞

}
.

Assume that each Ai is a self-adjoint operator in Hi. We write A :=
⊕

i∈I Ai if Au := (Aiui)i∈I

with domain domA := {u = (ui)i∈I ∈ H : ui ∈ domAi for all i ∈ I and Au ∈ H} (see [37]). We

remark that (A,domA) is a self-adjoint operator in H.

Let (H1, ‖ · ‖1) and (H2, ‖ · ‖2) be Hilbert spaces. Let A1, A2 be linear operators in H1 and H2,

respectively. A1 and A2 are said to be unitarily equivalent, denoted A1 ≈ A2, if there exists a

unitary operator ϕ : H1 → H2 such that

ϕ(domA1) = domA2 and ϕ(A1(u)) = A2(ϕ(u)) for all u ∈ domA1.

Note that u is a λ-eigenvector of A1 if and only if ϕ(u) is a λ-eigenvector of A2. In particular,

unitarily equivalent operators have the same set of eigenvalues.
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For the convenience of the reader, we state a slightly modified version of [32, Proposition 2.2(b)]

below, which will be used later in this paper.

Proposition 2.3. ( [32, Proposition 2.2]) Let S : R→ R be a similitude with Lipschitz constant r

and ν be a continuous positive finite Borel measure on R with supp(ν) ⊆ [0, a]. Let B ⊆ [0, a] be a

closed interval. Assume that B′ := S(B) ⊆ [0, a] and ν|B′ = wν ◦S−1 on B′ for some w > 0. Then

−∆D
ν|B′
≈ (rw)−1 ·

(
−∆D

ν|B

)
, where −∆D

ν|B and −∆D
ν|B′

be the Dirichlet Laplacians with respect to

ν|B and ν|B′ respectively. Moreover, N(λ,−∆D
ν|B′

) = N
(
rwλ,−∆D

ν|B

)
for all λ > 0.

Let µ be a continuous positive finite Borel measure on R with supp(µ) ⊆ [0, a] =: K. For

each cell B in K, let −∆D
µ|B and −∆N

µ|B be the Dirichlet and Neumann Laplacians with respect

to µ|B respectively. We remark that if a cell B ⊆ [0, a] is a closed interval, then N(λ,−∆D
µ|B ) ≤

N(λ,−∆N
µ|B ) ≤ N(λ,−∆D

µ|B )+2 for all λ ≥ 0 (see, e.g., [32]). Thus N(λ,−∆D
µ|B ) and N(λ,−∆N

µ|B )

have the same asymptotic behavior as λ→∞. Consequently, we have the following result holds.

Remark 2.4. Let µ, K, and −∆D
µ|B be given as above, where B is a cell in K. Assume that there

exist a sequence of partitions (Pk)k≥0 of K and a positive finite Borel measure ν on K satisfying

the following conditions:

(1) (Pk)k≥0 is refining with respect to ν and each Pk consists of closed intervals.

(2) there exist positive constants α, c1, and c2 such that

c1λ
α/2ν(B)

(
1 + o(1)

)
≤ N(λ,−∆D

µ|B ) ≤ c2λ
α/2ν(B)

(
1 + o(1)

)
as λ→∞,

for all B ∈ Pk and k ≥ 0.

Then Assumption 1.2 holds with (Pk)k≥0 and ν.

Proof. Since each Pk consists of closed intervals, Pk satisfies condition (DN). Thus condition (A1)

in Assumption 1.2 holds. Condition (A2) in Assumption 1.2 follows by combining the assumption

(2) and the fact N(λ,−∆D
µ|B ) and N(λ,−∆N

µ|B ) have the same asymptotic behavior as λ → ∞.

Hence, Assumption 1.2 holds. �

The following proposition follows from [34, Proposition 4.1] and the variational formula (see,

e.g., [21, Theorem 4.1.7 or Corollary 4.1.18]), which will be used repeatedly. We omit the proof.

Proposition 2.5. Let µ, K, and −∆D
µ|B be given as above, where B is a cell in K. If P = {Bi}ni=1

is a partition of K and each Bi is a closed interval, then for each λ ≥ 0, there exists some positive

constant ε(P, λ) ≤ 2(n− 1) such that

N(λ,−∆D
µ|K ) =

n∑
i=1

N(λ,−∆D
µ|Bi

) + ε(P, λ).
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3. Fractal analog of Weyl-type asymptotic formula for the number of negative

eigenvalues

In this section, we prove Theorem 1.3, and apply it to the infinite blowup of Sierpiński gasket

and unbounded generalized Sierpiński carpets.

3.1. Proof of Theorem 1.3. Let K be a compact set in Rd with a positive finite Borel measure µ

and a ”well-defined boundary” ∂K which has µ-measure zero. Let K∞ :=
⋃
i∈I Ki satisfy conditions

(C1)–(C3) in Section 1. Then for each i ∈ I, there exists a similitude τi : K → Ki of the form

τi(x) = x+ bi, with bi ∈ Rd such that τ0 is the identity map on Rd and τi(K) = Ki. Let µ∞ be the

natural extension measure on K∞ of µ.

In the rest of this subsection, we assume that there exists a non-negative self-adjoint Laplacian

−∆K∞ in L2(K∞, µ∞), and Assumption 1.2 holds with a sequence of partitions (Pk)k≥0 of K and a

positive finite Borel measure ν on K. Then P0 = {K} satisfies condition (DN). Thus we can denote

−∆D
Ki

(resp. −∆N
Ki

) by the Laplacian in L2(Ki, µi) with Dirichlet (resp. Neumann) boundary on

∂Ki for all i ∈ I, where µi := µ ◦ τ−1
i on Ki. We remark that −∆D

K∞
:= −

⊕
i∈I ∆D

Ki
and

−∆N
K∞

:= −
⊕

i∈I ∆N
Ki

are the Dirichlet and Neumann Laplacians in L2(K∞, µ∞) with boundary

condition on
⋃
i∈I ∂Ki respectively. Let V be a continuous function on K∞ with compact support.

Since −∆N
K∞
4 −∆K∞ 4 −∆D

K∞
, we have −∆N

K∞
+ βV 4 −∆K∞ + βV 4 −∆D

K∞
+ βV for all

β ≥ 0. It follows from Proposition 2.2 that∑
i∈I

N(0,−∆D
Ki + βVi) = N(0,−∆D

K∞ + βV ) ≤ N(0,−∆K∞ + βV )

≤ N(0,−∆N
K∞ + βV ) =

∑
i∈I

N(0,−∆N
Ki + βVi),

(3.1)

where Vi := V |Ki for all i ∈ I.

We now prove Theorem 1.3 (b) by modifying a method in [36, Theorem XIII 80 ].

Proof of Theorem 1.3. (a) Use the notation above. We first claim that as β →∞,

N(0,−∆D
K + βV0) ≥ c1β

α/2W (K, ν, V0, α)
(
1 + o(1)

)
. (3.2)

Fix any ` ≥ 0. We denote V ∧0,` (resp. V ∨0,`) by the piecewise constant function over each cell

B ∈ P` with the value max{V (x) : x ∈ B} (resp. min{V (x) : x ∈ B}). Since Assumption 1.2

holds, P` satisfies condition (DN). Let −∆D
B and −∆N

B be the Dirichlet and Neumann Lapalcians

in L2(B,µ|B) for all B ∈ P`, respectively. Define ∆`,b
K :=

⊕
B∈P` ∆b

B and b ∈ {D,N}. Then

−∆`,D
K (resp. −∆`,N

K ) is the Laplacian in L2(K,µ) with Dirichlet (resp. Neumann) boundary

on
⋃
B∈P` ∂B. Since −∆`,N

K 4 −∆D
K 4 −∆`,D

K and V ∨0,` ≤ V ≤ V ∧0,`, we get −∆`,N
K + βV ∨0,` 4
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−∆D
K + βV0 4 −∆`,D

K + βV ∧0,` for all β ≥ 0. It follows from Proposition 2.2 that for all β > 0,

N(0,−∆D
K + βV0) ≥ N(0,−∆`,D

K + βV ∧0,`) =
∑
B∈P`

N(0,−∆D
B + βV ∧0,`|B)

=
∑
B∈P`

N(−βV ∧0,`|B,−∆D
B ) =

∑
{B∈P`:V ∧0,`|B≤0}

N(−βV ∧0,`|B,−∆D
B ).

(3.3)

Substituting (1.4) into (3.3), we deduce as β →∞,

N(0,−∆D
K + βV0) ≥ c1β

α/2

 ∑
{B∈P`:V ∧0,`|B≤0}

(
− V ∧0,`|B

)α/2
ν(B)

 (1 + o(1)). (3.4)

The definition of refining implies that limk→∞max{ν(B) : B ∈ Pk} = 0. Moreover, it follows from

the continuity of V that for b ∈ {∨,∧},

lim
`→∞

∑
{B∈P`:V b0,`|B≤0}

(
− V b

0,`|B
)α/2

ν(B) = W (K, ν, V0, α),

which, together with (3.4), yields the claim holds. Since each measure space (Ki, µi) and (K,µ)

have same structure, we can deduce from (3.2) that

N(0,−∆D
Ki + βVi) ≥ c1β

α/2W (Ki, νi, Vi, α)
(
1 + o(1)

)
, (3.5)

for all i ∈ I, where νi := ν ◦ τ−1
i on Ki.

Similarly, we can check that as β →∞,

N(0,−∆N
K + βV0) ≤

∑
{B∈P`:V ∨0,`|B≤0}

N(−βV ∨0,`|B,−∆N
B )

≤ c2β
α/2

 ∑
{B∈P`:V ∨0,`|B≤0}

(
− V ∨0,`|B

)α/2
ν(B)

 (1 + o(1)),

and then obtain as β →∞,

N(0,−∆N
Ki + βVi) ≤ c2β

α/2W (Ki, νi, Vi, α)
(
1 + o(1)

)
for all i ∈ I. (3.6)

Hence, the desired inequality (1.6) follows by combining (3.1), (3.5) and (3.6), which completes the

proof.

(b) Fix any ε > 0, small. Choose Vk ∈ C∞0 (K∞) so that Vk → V in Lα/2(K∞, µ∞) and

Lα/2(K∞, ν∞). Combining the Sobolev inequality (1.7) and [28, Theorem 1.2], we have the following

general CLR inequality holds:

N
(
0,−∆K∞ + σ(V − Vk)

)
≤ Cσα/2W (K∞, µ∞, V − Vk, α) for all σ > 0, (3.7)

where C is a positive constant. We remark that

−∆K∞ + βV =
(
− (1− ε)∆K∞ + βVk

)
+
(
ε(−∆K∞) + β(V − Vk)

)
.
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It follows from Proposition 2.3(b), part (a) and (3.7) that

N(0,−∆K∞ + βV ) ≤ N
(
0,−(1− ε)∆K∞ + βVk

)
+N

(
0, ε(−∆K∞) + β(V − Vk)

)
= N

(
0,−∆K∞ + (1− ε)−1βVk

)
+N

(
0,−∆K∞ + ε−1β(V − Vk)

)
≤ c2(1− ε)−α/2βα/2W (K∞, ν∞, Vk, α)(1 + o(1))

+ Cε−α/2βα/2W (K∞, µ∞, V − Vk, α), as β →∞,

where the fact N(0,−c∆K∞ + V ) = N(0,−∆K∞ + c−1V ) is used in the first equality. Taking

k →∞ and then ε→ 0, we find that

N(0,−∆K∞ + βV ) ≤ c2W (K∞, ν∞, V, α)βα/2(1 + o(1)) as β →∞. (3.8)

On the other hand, we have −∆ + βVk =
(
− (1 − ε)∆ + βV

)
+
(
− ε∆ + β(Vk − V )

)
. So using

Proposition 2.3(b), part(a) and (3.7) as above, we get as β →∞

c1β
α/2W (K∞, ν∞, Vk, α)(1 + o(1)) ≤ N(0,−∆K∞ + βVk)

≤ N(0,−(1− ε)∆K∞ + βV ) +N(0,−ε∆K∞ + β(Vk − V ))

= N
(
0,−∆K∞ + (1− ε)−1βV

)
+N

(
0,−∆K∞ + ε−1β(Vk − V )

)
≤ N

(
0,−∆K∞ + (1− ε)−1βV

)
+ Cε−α/2βα/2W (K∞, µ∞, V − Vk, α).

Again taking k →∞ and then ε→ 0, we obtain

N(0,−∆K∞ + βV ) ≥ c1W (K∞, ν∞, V, α)βα/2(1 + o(1)). (3.9)

Hence, (3.8) and (3.9) imply the desired result. �

3.2. Infinite blowup of Sierpiński gasket. In this subsection, we illustrate Theorem 1.3 by the

infinite blowup of Sierpiński gasket.

Proof of Corollary 1.4. For k ≥ 0, let Mk := {0, 1, 2}k and Pk := {Kω := Sω(K) : ω ∈ Mk}.
It is easy to check that (Pk)k≥0 is a sequence partitions of K that is refining with respect to µ.

Let −∆K be the standard Laplacian constructed by Kigami [21] in L2(K,µ) and (E ,F) be the

associated Dirichlet form in L2(K,µ). It is known that (E ,F) has the self-similarity property in

the following sense: for any u ∈ F , u ◦ Si ∈ F for all i ∈ {0, 1, 2} and

E(u, v) =
5

3

2∑
i=0

E(u ◦ Si, v ◦ Si) fro all v ∈ F . (3.10)

Fix any i ∈Mk, where k ≥ 0. Define Di := {u ∈ F : u|K\Ki ≡ 0}. Let Fi be the closure of Di with

respect to the inner product E∗(u, v) = E(u, v) + (u, v)L2(K,µ), and let Ei = E|Fi×Fi . It is easy to

check that (Ei,Fi) is a Dirichlet form in L2(Ki, µ|Ki). Using the self-similarity property of (E ,F)

and iteration, we can deduce that if u ∈ dom (−∆Ki), then u ◦ Si ∈ dom (−∆K), and

−∆K(u ◦ Si) = 5−k
(
−∆Kiu

)
◦ Si, (3.11)
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where −∆Ki is the Laplacian in L2(Ki, µ|Ki) associated with (Ei,Fi). By the theory of Kigami

in [21], we have P0 = {K} satisfies condition (DN). Combining (3.11) and the method in [21], we

can check that Pk satisfies condition (DN) for all k ≥ 0. Hence, condition (A1) in Assumption 1.2

holds.

Let −∆D
K and −∆N

K be the Dirichlet and Neumann Laplacians in L2(K,µ) associated with (E ,F),

respectively. Kigami and Lapidus [22] proved that the eigenvalue counting function N(λ,−∆b
K)

satisfies the following asymptotic formula:

C1λ
ds/2(1 + o(1)) ≤ N(λ,−∆b

K) ≤ C2λ
ds/2(1 + o(1)) as λ→∞, (3.12)

where b ∈ {D,N}, ds = log 9/ log 5, C1 and C2 are positive constants. Let −∆D
Ki

and −∆N
Ki

be the

Dirichlet and Neumann Laplacians in L2(Ki, µ|Ki) associated with (Ei,Fi), respectively. W can

verify that (3.11) also holds replacing −∆Ki and −∆K by −∆b
Ki

and −∆b
K , respectively, for all

b ∈ {D,N}. It follows that

N(λ,−∆b
Ki

) = N(5−kλ,−∆b
K) for λ > 0, (3.13)

where b ∈ {D,N}. We remark that µ(Ki) = 3−k. Combining it with (3.12) and (3.13), we have

C1µ(Ki)λ
ds/2(1 + o(1)) ≤ N(λ,−∆b

Ki
) ≤ C2µ(Ki)λ

ds/2(1 + o(1)) as λ→∞, (3.14)

where b ∈ {D,N}. Since i is arbitrary, (3.14) implies condition (A2) in Assumption 1.2 holds.

Consequently, Assumption 1.2 holds with (Pk)k≥0 and µ.

By the definition of Kω
∞ (see (1.8)), there exists a sequence of similitudes (τi)i≥0 such that

Kω
∞ =

⋃
i≥0 τi(K) satisfies conditions (C1)–(C3) in Section 1. The existence of non-negative self-

adjoint Laplacian −∆Kω∞ in L2(Kω
∞, µ

ω
∞) have been obtained in [40, 42]. Final, the desired result

follows from Theorem 1.3 (a). �

3.3. Unbounded generalized Sierpiński carpets. In this subsection, we illustrate Theorem 1.3

by using a class of unbounded generalized Sierpiński carpets. The following definition is given

in [6, 7].

Let d ≥ 2, K0 = [0, 1]d, and let `K ∈ N with `K ≥ 3 being fixed. For n ∈ Z, let Qn be the

collection of closed cubes with side length `−nK and with vertices at `−nF Zd. For E ⊆ Rd, let

Qn(E) := {Q ∈ Qn : int(Q) ∩ E 6= ∅}. (3.15)

For Q ∈ Qn, let ΨQ be the orientation preserving affine map (i.e., similitude with no rotation part)

which maps K0 onto Q. Define a decreasing sequence {Kn} of closed subsets of K0. Let mK be

an integer satisfying 1 ≤ mK ≤ `dK , and K1 be the union of mK distinct elements of Q1(K0). We

impose the following conditions on K1.

(H1) (Symmetry) K1 is preserved by all the isometries of the unit cube K0.

(H2) (Connectedness) int(K1) is connected.
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(H3) (Non-diagonality) Let m ≥ 1 and B ⊆ K0 be a cube of side length 2`−mK , which is the union

of 2d distinct elements of Qm. Then if int(K1 ∩B) is non-empty, it is connected.

(H4) (Border included) K1 contains the line segment {x : 0 ≤ x1 ≤ 1, x2 = · · · = xn = 0}.

One may think of K1 as being derived from K0 by removing the interiors of `dK −mK cubes in

Q1(K0). Iterating this, we obtain a sequence {Kn}, where Kn is the union of mn
K cubes in Qn(K0).

Formally, we define

Kn+1 =
⋃

Q∈Qn(Kn)

ΨQ(K1) =
⋃

Q∈Q1(K1)

ΨQ(Kn), n ≥ 1. (3.16)

We call K :=
⋂∞
n=0Kn a generalized Sierpiński carpet (GSC) and K∞ :=

⋃∞
n=0 `

n
KK an unbounded

generalized Sierpiński carpet, where rA := {rx : x ∈ A} for all A ⊆ Rd. Let ∂K := [0, 1]d \ (0, 1)d,

which should be regarded as the boundary of K. It is easy to check that for each GSC K, there

exists an IFS {Fi}mKi=1 such that K =
⋃mK
i=1 Fi(K), and we can rewrite the unbounded generalized

Sierpiński carpet K∞ =
⋃∞
i=0 τi(K) satisfying conditions (C1)–(C3) in Section 1.

Example 3.1. (Standard Sierpiński carpet) Let q1 = 0, q2 = 1/2, q3 = 1, q4 = 1 +
√
−1/2,

q5 = 1 +
√
−1, q6 = 1/2 +

√
−1, q7 =

√
−1 and q8 =

√
−1/2. Define Si : C → C as Fi(z) =

(z − qi)/3 + qi for i ∈ {1, . . . , 8}. Then there exists a unique nonempty compact subset K, which

satisfies K =
⋃8
i=1 Fi(K). K is called the standard Sierpiński carpet.

The standard Sierpiński carpet in the above Example is a GSC with n = 2, lF = 3, mF = 8 and

with F1 being obtained from F0 by removing the middle cube.

In the rest of this subsection, we fix a GSC K associated an IFS {Fi}mKi=1 . Let µ be the self-similar

measure defined by the IFS {Fi}mKi=1 together with probability weights (1/mK , · · · , 1/mK). Barlow

and Bass [1–6] have constructed a diffusion process on K and studied it extensively. For example,

they extended the diffusion process on K to K∞ and proved Sobolev inequality. Unfortunately,

the Dirichlet form on L2(K,µ) associated with their diffusion process is not necessarily self-similar.

On the other hand, Kusuoka and Zhou [23] have given a different construction of a self-similar

Dirichlet form on a GSC. Recently, Barlow et al. [7] showed that, up to scalar multiples of the

time parameter, there exists only one such Dirichlet form on a GSC. Consequently, there exists a

regular Dirichlet form (E ,F) in L2(K,µ), which has the self-similarity in the following sense: for

any u ∈ F , u ◦ Fi ∈ F for all i ∈ {1, . . . ,mK},and

E(u, v) = ρK

mK∑
i=1

E(u ◦ Fi, v ◦ Fi) (3.17)

for all u ∈ F , where ρK is a constant that is determined by the scaling in the resistance of the

Sierpiński carpet. We remark that tK := ρKmK ≥ `2K > 1. Barlow et al. [7] showed that, up

to scalar multiples of the time parameter, there exists only one such Brownian motion on a GSC.

Hambly [17] and Kajino [20] showed the Dirichlet Laplacian −∆D
K and Neumann Laplacian −∆N

K

in L2(K,µ) with the boundary condition on ∂K are well-defined and have compact resolvents.

In other words, {K} satisfies condition (DN). Moreover, their results imply that the eigenvalue
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counting function satisfies the asymptotics

c1λ
ds/2(1 + o(1)) ≤ N(λ,−∆b

K) ≤ c2λ
ds/2(1 + o(1)) as λ→∞, (3.18)

where b ∈ {D,N}, ds = 2 logmK/ log tK is called the spectral dimension of K, c1 and c2 are

positive constants.

Proof of Corollary 1.5. (a) The proof of part (a) is similar to that of Corollary 1.4; we use (3.17)

and (3.18) instead of (3.10) and (3.12), respectively.

(b) follows by combining Theorem 1.3(b) and Sobolev inequality [6, Theorem 7.2]. �

4. Infinite Bernoulli convolution associated with the golden ratio

Let K := [0, 1] and µ be given by (1.10) and (1.11). Let {Ti}2i=0 be the auxiliary IFS defined as in

(1.12) (see Figure 1). In this section, we introduce a new measure ν on K, and prove Theorem 1.6.

We remark that the contraction ratios of T0, T1, T2 are ρ2, ρ3, ρ2, respectively.

Figure 1. (a) The IFS {S0, S1} in (1.10) has overlaps. (b) The auxiliary IFS
{T0, T1, T2} does not have overlaps.

For convenience, we introduce some notation. Let T := {0, 1, 2} and T0 := {0, 2}. For each

n ∈ N, define

T n := {0, 1, 2}n, T n
0 := {0, 2}n, T ∗ :=

∞⋃
n=0

T n, T ∗0 :=

∞⋃
n=0

T n
0 ,

where T 0 and T 0
0 are defined to be the singleton {∅} of the empty word ∅. For any ω =

w1w2 · · ·wn ∈ T n, let Kω := Tω(K) = Tw1 · · ·Twn(K) and |ω| := n be the length of ω. We

use the convention that

ω∅ = ∅ω = ω for any word ω ∈ T ∗.

If ω = w · · ·w ∈ T n, then we denote ω = wn. In [26], they showed that µ satisfies the following

second-order identities: for each Borel subset A ⊆ K and j ∈ T ,µ(T0TjA)
µ(T1TjA)
µ(T2TjA)

 = Mj

µ(T0A)
µ(T1A)
µ(T2A)

 , (4.1)
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where

M0 =
1

8

2 0 0
1 2 0
0 4 0

 , M1 =
1

4

0 1 0
0 1 0
0 1 0

 , M2 =
1

8

0 4 0
0 2 1
0 0 2

 .
This can be used to compute the measure of Kω for all finite words ω ∈ T ∗. For any k ≥ 0 and

finite word J = j1j2 . . . jk ∈ T k
0 , let

cJ :=
1

4

[
0 1 0

]
MJ

1
1
1

,
where MJ := Mj1Mj2 · · ·Mjk . In the rest of this section, we denote

ρ∗ := ρ/2.

Let −∆D
µ|Kω

be the Dirichlet Laplacian with respect to µ|Kω for all finite words ω ∈ T ∗. Com-

bining Proposition 2.3 and second-order identities (4.1), we can obtain the following proposition,

which will be used repeatedly.

Proposition 4.1. Use the notation above. Let ω ∈ T ∗ be a finite word (possibly the empty word)

and λ > 0. Then

(a) for any finite word J ∈ T ∗0 , we have

N
(
λ,−∆D

µ|K1J1ω

)
= N

(
ρ2|J |+3cJλ,−∆D

µ|K1ω

)
.

(b) for any n ≥ 1, we have

N
(
λ,−∆D

µ|K0n1ω

)
= N

(
ρ2n
∗ λ,−∆D

µ|K1ω

)
and N

(
λ,−∆D

µ|K0n2ω

)
= N

(
ρ2n−1
∗ λ,−∆D

µ|K1ω

)
.

Proof. (a) Let J ∈ T ∗0 be a finite word. It is shown in [25, Proposition 2.1(i)] that for any Borel

subset A ⊆ K and finite word J ∈ T ∗0 ,

µ(T1J1A) = cJµ(T1A).

It follows that µ|K1J1ω
= cJµ ◦ T−1

1J on K1J1ω. Noting that the contraction ratio of T1J equals

ρ2|J |+3. Thus the desired result follows from Proposition 2.3.

(b) Fix any n ≥ 1. Use the second-order identities (4.1), we can check that

µ(T0n1A) = 2−2nµ(T1A) and µ(T0n2A) = 2−2n+1µ(T1A).

for all Borel subsets A ⊆ K. Then µ|K0n1ω
= 2−2nµ ◦ T−1

0n on K0n1ω and µ|K0n2ω
= 2−2n+1µ ◦(

T0n−1S1

)−1
on K0n2ω, where the fact T0n2 = T0n−1S1T1 is used in second equality. It follows from

Proposition 2.3 that the assertions holds. �

The spectral dimension of −∆D
µ|K is computed in [32]. Their approach is to use the second-order

identities (4.1) to derive a scalar-valued renewal equation for the eigenvalue counting function on
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K1. And then applying the vector-valued renewal theorem proved by Lau et al. [24], they showed

the spectral dimension ds of −∆D
µ|K is the unique positive solution of

∞∑
k=0

∑
J∈T k

0

(ρ2|J |+3cJ)ds/2 = 1, (4.2)

and there exist positive constants C1, C2 such that C1λ
ds/2 ≤ N(λ,−∆D

µ|K ) ≤ C2λ
ds/2 for suffi-

ciently large λ. Ngai and first author [33, Proposition 5.2] recently proved that the non-arithmetic

(or non-lattice) case holds for −∆D
µ|K1

: there exists constant C > 0 such that

N(λ,−∆D
µ|K1

) = Cλds/2
(
1 + o(1)

)
as λ→∞. (4.3)

Together with the scalar-valued renewal equation and the error estimates obtained in [32, section

5], it yields

N(λ,−∆D
µ|K1J

) = C
( ∞∑
n=0

∑
I∈T n

0

(ρ2|JI|+3cJI)
ds/2

)
λds/2(1 + o(1)) as λ→∞ (4.4)

for all finite words J ∈ T ∗0 (possibly the empty word).

We now introduce a measure ν on K by repeated subdivision as follows. First, define

ν(K1) = C, ν(K1J1ω) = (ρ2|J |+3cJ)ds/2ν(K1ω), and ν(K1J) =

∞∑
n=0

∑
I∈T n

0

ν(K1JI1) (4.5)

for all finite words J ∈ T ∗0 and ω ∈ T ∗, where C comes from (4.3). We remark that the value of

ν(K1ω) is well-defined for all finite words ω ∈ T ∗, since

T n = T n
0

⋃{
J1ω : J ∈ T i

0 ,ω ∈ T n−1−i, 0 ≤ i ≤ n− 1
}

for all n ≥ 1.

Let ϕ(x) = −x+ 1. For any finite word ω ∈ T ∗, there exists a unique ω∗ ∈ T |ω| such that

ϕ(K2ω) = K0ω∗ .

By symmetric of µ, we have µ|K2ω = µ◦ϕ−1 on K2ω, which, by combining Proposition 2.3, implies

N(λ,−∆D
µ|K2ω

) = N(λ,−∆D
µ|K0ω∗

) for all λ > 0.

Second, define

ν(K0n1ω) = ρnds∗ ν(K1ω), ν(K0n2ω) = ν(K2n0ω) = ρ
(n−1/2)ds
∗ ν(K1ω),

ν(K0n) :=

∞∑
k=0

(
ν(K0n+k1) + ν(K0n+k2)

)
, and

ν(K2ω) = ν(K0ω∗)

(4.6)

for all n ≥ 1 and finite words ω ∈ T ∗. Note that the value of ν(Kiω) is well-defined for all finite

words ω ∈ T ∗ and i ∈ T0, and
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ν(K0n) = ν(K2n) =

∞∑
k=0

(
ρ

(n+k)ds
∗ + ρ

(n+k−1/2)ds
∗

)
ν(K1) = Cρ

(n−1/2)ds
∗ (1− ρds/2∗ )−1.

Final, define

ν(K) = ν(K0) + ν(K1) + ν(K2).

Consequently, we can define

ν(A) = inf
{∑
ω∈Λ

ν(Kω) : A ⊆
⋃
ω∈Λ

Kω,Λ ⊆ T ∗
}

for all A ⊆ K. (4.7)

We remark that ν is a well-defined measure on K (see Proposition 4.6 below for details). Moreover,

µ and ν have the same symmetric.

In order to prove Theorem 1.6(a), we divide T ∗ into two parts, namely,{
1ω : ω ∈ T n, n ≥ 0

}
and

⋃
i∈T0

{
iω : ω ∈ T n, n ≥ 0

}
.

We begin with the first case.

Lemma 4.2. Use the notation above. Let ν be given as (4.7). Then

N(λ,−∆D
µ|K1ω

) = ν
(
K1ω

)
λds/2(1 + o(1)) as λ→∞,

for all finite words ω ∈ T ∗(possibly the empty word).

Proof. We use induction. In view of (4.3) and (4.5), we observe that

N(λ,−∆D
µ|K1

) = ν(K1)λds/2
(
1 + o(1)

)
as λ→∞.

Assume that

N(λ,−∆D
µ|K1ω

) = ν
(
K1ω

)
λds/2(1 + o(1)) as λ→∞, (4.8)

for all ω ∈
⋃n
i=0 T i, where n ≥ 0. Let ω ∈ T n+1. If ω ∈ T n+1

0 , then (4.4) and (4.5) imply

N(λ,−∆D
µ|K1ω

) = ν
(
K1ω

)
λds/2(1 + o(1)) as λ→∞. (4.9)

On the other hand, if ω ∈ T n+1 \T n+1
0 , then there exist J ∈ T ∗0 and τ ∈ T ∗ such that ω = J1τ .

It follows from Proposition 4.1 and the assumption (4.8) that as λ→∞,

N(λ,−∆D
µ|K1ω

) = N(λ,−∆D
µ|K1J1τ

) = N(ρ2|J |+3cJλ,−∆D
µ|K1τ

)

=
(
ρ2|J |+3cJ

)ds/2ν(K1τ

)
λds/2(1 + o(1)) = ν

(
K1J1τ

)
λds/2(1 + o(1))

= ν
(
K1ω

)
λds/2(1 + o(1)),

(4.10)

where fourth equality follows from (4.5). Combining (4.9) and (4.10), we have (4.8) also holds for

all ω ∈ T n+1. By induction, the desired result follows. �
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We now turn to consider the case:
⋃
i∈T0

{
iω : ω ∈ T n, n ≥ 0

}
. To end this, we first develop a

lemma, which shows an asymptotic behavior of eigenvalue counting function on K0 and K2.

Lemma 4.3. Use the notation above. Let ν be defined as in (4.7). Then

N(λ,−∆D
µ|Ki

) = ν(Ki)λ
ds/2

(
1 + o(1)

)
as λ→∞,

for all i ∈ T0.

Proof. By the symmetry of measures µ, ν, and {Ti}2i=0, it suffices to show that

N(λ,−∆D
µ|K0

) = ν(K0)λds/2
(
1 + o(1)

)
as λ→∞.

Using second-order identities (4.1) again, we can deduce that µ(T0n+1A) = 2−2nµ(T0A) for all

A ⊆ K and n ≥ 1. It follows from Proposition 2.3 that

N(λ,−∆D
µ|K

0n+1ω

) = N(ρ2n
∗ λ,−∆D

µ|K0ω
) for all λ > 0, ω ∈ T ∗ and n ≥ 1. (4.11)

Let Pn :=
{
K0i` : ` ∈ {1, 2}, 1 ≤ i ≤ n

}
∪ {K0n+1} for all n ≥ 1. We remark that (Pn)n≥1 is a

sequence of partitions of K0. Propositions 2.5, 4.1(b) and (4.11) imply

N(λ,−∆D
µ|K0

) =

n∑
i=1

(
N(λ,−∆D

µ|K
0i1

) +N(λ,−∆D
µ|K

0i2

)
)

+N(λ,−∆D
µ|K

0n+1
) + ε(Pn, λ)

=

∞∑
i=1

(
N(ρ2i

∗ λ,−∆D
µ|K1

) +N(ρ2i−1
∗ λ,−∆D

µ|K1
)
)

+N(ρ2n
∗ λ,−∆D

µ|K0
)

−
∞∑

i=n+1

(
N(ρ2i

∗ λ,−∆D
µ|K1

) +N(ρ2i−1
∗ λ,−∆D

µ|K1
)
)

+ ε(Pn, λ)

(4.12)

for all λ > 0, where 0 ≤ ε(Pn, λ) ≤ 4n. Since the first eigenvalue of −∆D
µ|K`

is positive for all

` ∈ {0, 1}, there exists λ0 > 0 such that N(λ,−∆D
µ|K`

) = 0 for all λ < λ0 and all ` ∈ {0, 1}. For

λ > 0, nλ is the smallest integer such that

ρ2nλ−1
∗ λ < λ0.

Letting n = nλ in (4.12). Then the second term and third summation in (4.12) vanish and thus we

get

N(λ,−∆D
µ|K0

) =

∞∑
i=1

(
N(ρ2i

∗ λ,−∆D
µ|K1

) +N(ρ2i−1
∗ λ,−∆D

µ|K1
)
)

+ ε(Pnλ , λ). (4.13)

It is easy to check that ε(Pnλ , λ) = o(λds/2) as λ→∞. Combining it with Lemma 4.2, (4.13) and

(4.6), we have as λ→∞,

N(λ,−∆D
µ|K0

) =
( ∞∑
i=1

(
ρids∗ ν(K1) + ρ

(i−1/2)ds
∗ ν(K1)

))
λds/2(1 + o(1))

=
( ∞∑
i=1

(
ν(K0i1) + ν(K0i2)

))
λds/2(1 + o(1)) = ν(K0)λds/2(1 + o(1)),



22 W. TANG AND Z.Y. WANG

which completes the proof. �

Lemma 4.4. Use the notation above. Let ν be defined as in (4.7). Then as λ→∞,

N(λ,−∆D
µ|Kiω

) = ν
(
Kiω

)
λds/2(1 + o(1))

for all i ∈ T0 and finite words (possibly empty word) ω ∈ T ∗.

Proof. Similarly, by symmetry, it suffices to show that as λ→∞,

N(λ,−∆D
µ|K0ω

) = ν
(
K0ω

)
λds/2(1 + o(1)) for all finite words ω ∈ T ∗. (4.14)

Lemma 4.3 tells us that (4.14) holds for all ω ∈ T 0. Assume that

N(λ,−∆D
µ|K0ω

) = ν
(
K0ω

)
λds/2(1 + o(1)) as λ→∞, (4.15)

for all ω ∈
⋃n
i=0 T i, where n ≥ 0. Let ω ∈ T n. It follows from Proposition 4.1 and Lemma 4.2

that

N(λ,−∆D
µ|K01ω

) = N(ρ2
∗λ,−∆D

µ|K1ω
) = ρds∗ ν

(
K1ω

)
λds/2(1 + o(1))

= ν
(
K01ω

)
λds/2(1 + o(1)) as λ→∞,

(4.16)

and

N(λ,−∆D
µ|K02ω

) = N(ρ∗λ,−∆D
µ|K1ω

) = ρ
ds/2
∗ ν

(
K1ω

)
λds/2(1 + o(1))

= ν
(
K02ω

)
λds/2(1 + o(1)) as λ→∞.

(4.17)

where the facts ν
(
K01ω

)
= ρds∗ ν(K1ω) and ν

(
K02ω

)
= ρ

ds/2
∗ ν(K1ω) are used in the last equality

of (4.16) and (4.17), respectively. On the other hand, using (4.11), (4.15) and the fact ν(K00ω) =

ρds∗ ν(K0ω), we can obtain

N(λ,−∆D
µ|K00ω

) = N(ρ2
∗λ,−∆D

µ|K0ω
) = ρds∗ ν

(
K0ω

)
λds/2(1 + o(1))

= ν
(
K00ω

)
λds/2(1 + o(1)) as λ→∞.

(4.18)

Hence, by combining (4.16), (4.17) and (4.18), we have (4.15) also holds for all ω ∈ T n+1. Conse-

quently, the assertion holds by reduction. �

The following lemma is a directly result from Proposition 2.5, Lemmas 4.2 and 4.4.

Lemma 4.5. Use the notation above. Let ν be defined as in (4.7). Then N(λ,−∆D
µ|K ) = ν(K)λds/2

(
1+

o(1)
)

as λ→∞.

Proof. We first remark that P := {K` : ` ∈ T } is a partition of K. Then Proposition 2.5, Lemmas

4.2 and 4.4 imply that

N(λ,−∆D
µ|K ) =

∑
`∈T

N(λ,−∆D
µ|K`

) + ε(P, λ) =
(∑
`∈T

ν(K`)
)
λds/2(1 + o(1))

= ν(K)λds/2(1 + o(1)) as λ→∞,
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where 0 ≤ ε(P, λ) ≤ 4. �

We now show that ν given in (4.7) is a well-defined measure on K.

Proposition 4.6. Use the notation above. Let ν be given by (4.7). Then

(a) ν(Kω) =
∑

`∈T ν(Kω`) for all finite word ω ∈ T ∗.

(b) max
{
ν(Kω) : ω ∈ T n

}
→ 0 as n→∞.

Consequently, ν is a well-defined measure on K.

Proof. (a) Let ω ∈ T ∗ be a finite word. Since P := {Kω` : ` ∈ T } is a partition of Kω,

Proposition 2.5 implies that

N(λ,−∆D
µ|Kω

) =
∑
`∈T

N(λ,−∆D
µ|Kω`

) + ε(P, λ)

for all λ > 0, where 0 ≤ ε(P, λ) ≤ 4. Letting λ → ∞. It follows from Lemmas 4.2 and 4.4 that

ν(Kω) =
∑

`∈T ν(Kω`), which completes the proof.

(b) Combining (4.5) and (4.6), it suffices to show that

max
{
ν(K1J) : J ∈ T n

0

}
→ 0 as n→∞. (4.19)

Using (4.5) again, we can deduce∑
J∈T n

0

ν(K1J) = C
∑
J∈T n

0

∞∑
k=0

∑
I∈T k

0

(ρ2|JI|+3cJI)
ds/2 = C

∞∑
k=n

∑
I∈T k

0

(ρ2|I|+3cI)
ds/2

for all n ≥ 0 and J ∈ T n
0 . It follows from (4.2) that

∑
J∈T n

0
ν(K1J) → 0 as n → ∞. Thus (4.19)

holds, which completes the proof. �

Now we prove Theorem 1.6.

Proof of Theorem 1.6. (a) Combine Lemmas 4.2, 4.4 and 4.5, and Proposition 4.6.

(b) Let Pk = {Kω : ω ∈ T k} for k ≥ 0 and ν be defined as in (4.7). Using Proposition 4.6(b)

and definition of ν, we deduce that a sequence of partitions (Pk)k≥0 of K is refining with respect

to ν. Combining it with part (a) and Remark 2.4, we have Assumption 1.2 holds. Thus the desired

result follows from Theorem 1.3(a). �

5. M-fold convolution of Cantor-type measures

Let {Si}mi=0 and µ := µm be defined as in (1.13) and (1.14) respectively, with m ≥ 3 being an odd

integer, and let K := [0,m]. Let {Ti}m−1
i=0 be the auxiliary IFS defined as in (1.15) (see Figure 2 for
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the case m = 3). In this section, we introduce a new measure ν on K, and then prove Theorem 1.7.

Figure 2. (a) The IFS {Si}3i=0 in (1.13) with m = 3 has overlaps. (b) The
auxiliary IFS {Ti}2i=0 does not have overlaps.

For convenience, we introduce some notation as before. Let

T := {0, 1, . . . ,m− 1}, T0 := {0,m− 1}, T1 := {1, . . . ,m− 2},

and for each n ∈ N, let

T n := {0, 1, . . . ,m− 1}n, T n
0 = {0,m− 1}n, T ∗ :=

∞⋃
n=0

T n, T ∗0 =
∞⋃
n=0

T n
0 ,

where T 0 and T 0
0 are defined to be the singleton {∅} of the empty word. For ω = ω1 · · ·ωn ∈ T n,

we use the notation Kω := Tω1 ◦ · · · ◦ Tωn(K) and |w| := n be the length of w. We use the

convention that

ω∅ = ∅ω = ω for all finite words ω ∈ T ∗.

If ω = ω · · ·ω ∈ T n, then we denote ω = ωn. For i, j, k ∈ T , we define

a
(i)
j,k =

{
p` if ∃ ` ∈ [0,m] such that i+mj − (m− 1)` = k,

0 otherwise,

where {p`}m`=0 is given as in (1.14). For 0 ≤ i ≤ m− 1, let Mi be the matrix

Mi :=
[
a

(i)
k−1,`−1

]m
k,`=1

.

In particular, if m = 3, then

M0 =

p0 0 0
0 p1 0
p3 0 p2

 , M1 =

 0 p0 0
p2 0 p1

0 p3 0

 , M2 =

p1 0 p0

0 p2 0
0 0 p3

 .
It is shown in [26] that µ satisfies the following second-order identities with respect to the IFS

{Ti}m−1
i=0 : for all Borel subsets A ⊆ K, µ(T0TiA)

...
µ(Tm−1TiA)

 = Mi

 µ(T0A)
...

µ(Tm−1A)

 . (5.1)
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For simplicity, we shall use the notation

i′ := m− i− 1 for all i ∈ T1,

throughout the rest of this section. We remark that i ∈ T1 if and only if i′ ∈ T1. For any integer

i ∈ T and word J = j1 · · · jk ∈ T k
0 , where k ≥ 0, define

ci,J :=
[
pi+1 pi

]
PJ

[
p0

pm

]
,

where PJ := Pj1 · · ·Pjk ,

P0 :=

[
p0 0
pm pm−1

]
, Pm−1 :=

[
p1 p0

0 pm

]
.

For any finite word ω ∈ T ∗, let −∆D
µ|Kω

be the Dirichlet Laplacian with respect to µ|Kω .

We first state two propositions, which will be used.

Proposition 5.1. Use the notation above. Let i ∈ T1, ω ∈ T ∗ be a finite word and λ > 0. Then

(a) for any j ∈ T \ {i′}, there exist some p(i, j) ∈ {pi, pi+1} and h(i, j) ∈ T1 such that

N
(
λ,−∆D

µ|Kijω

)
= N

(p(i, j)
m

λ,−∆D
µ|Kh(i,j)ω

)
.

(b) for any ` ∈ T1 and finite word J ∈ T ∗0 , we have

N
(
λ,−∆D

µ|Kii′J`ω

)
= N

( ci,J

m|J |+2
λ,−∆D

µ|K`ω

)
.

Proof. (a) [26, Proposition 4.3]) tells us that for any Borel subset A ⊆ K, we have

µ(TijA) =

{
piµ(Tj+iA) if 0 ≤ j < i′,

pi+1µ(Tj−i′A) if i′ < j ≤ m− 1.
(5.2)

We remark that j + i ∈ T1 if 0 ≤ j < i′; while j − i′ ∈ T1 if i′ < j ≤ m − 1. Combining it with

Proposition 2.3 and (5.2), the desired result holds with

p(i, j) =

{
pi if 0 ≤ j < i′,

pi+1 if i′ < j ≤ m− 1,
and h(i, j) =

{
j + i if 0 ≤ j < i′,

j − i′ if i′ < j ≤ m− 1.

(b) Let ` ∈ T1 and J ∈ T ∗0 be a finite word. Lau and Ngai [26, Proposition 4.4] proved that

µ(Tii′J`A) = ci,Jµ(T`A) (5.3)

for all Borel subsets A ⊆ K. Thus the assertion follows from Proposition 2.3 and (5.3). �

Proposition 5.2. Use the notation above. Let ω ∈ T ∗ be a finite word, n ≥ 1 and λ > 0. Then

N
(
λ,−∆D

µ|K0n`ω

)
= N

((p0

m

)n
λ,−∆D

µ|K`ω

)
for all 0 ≤ ` ≤ m− 1, and
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N
(
λ,−∆D

µ|K0n(m−1)J`ω

)
= N

( pn−1
0 c0,J

m|J |+n+1
λ,−∆D

µ|K`ω

)
for all J ∈ T ∗0 and ` ∈ T1.

Proof. Using [26, Proposition 4.2], we can deduce that

µ(T0n`A) = pn0µ(T`A) (5.4)

for all Borel subsets A ⊆ K, ` ∈ T1 and J ∈ T ∗0 . Thus the desired results hold by combining

Proposition 2.3 and (5.4). Similarly, we get

µ(T0n(m−1)J`A) = pn−1
0 c0,Jµ(T`A)

for all Borel subsets A ⊆ K, J ∈ T ∗0 , and ` ∈ T1, and then the assertions hold. �

The spectral dimension of −∆D
µ|K also is computed in [32]. They proved that the spectral

dimension ds of −∆D
µ|K is the unique solution of

∑
i∈T1

(pi
m

)ds/2
+
∑
i∈T1

∞∑
k=0

∑
J∈T k

0

( ci,J
mk+2

)ds/2
= 1, (5.5)

and for all i ∈ T1, there exist positive constants c1, c2 such that c1λ
ds/2 ≤ N(λ,−∆D

µ|Ki
) ≤ c2λ

ds/2

for sufficiently large λ (see [32, section 6 ] for details). Furthermore, Ngai and first author in [33,

Proposition 5.4] proved that the non-arithmetic case holds for −∆D
µ|Ki

, i ∈ T1: there exist positive

constants (Ci)i∈T1 such that

N(λ,−∆D
µ|Ki

) = Ciλ
ds/2

(
1 + o(1)

)
as λ→∞. (5.6)

Together with the vector-valued renewal equations and the error estimates obtained in [32, Section

6], it yields

N(λ,−∆D
µ|Kii′J

) =
( ∑
`∈T1

∞∑
k=0

∑
I∈T k

0

C`

( ci,JI

m|JI|+2

)ds/2)
λds/2(1 + o(1)) as λ→∞ (5.7)

for all i ∈ T1 and finite words J ∈ T ∗0 , where, and throughout this section, (C`)`∈T1 come from

(5.6).

Based on the results above, we now define a measure ν on K by repeated subdivision as follows.

First, for any i ∈ T1 and finite word (possibly the empty word) ω ∈ T ∗, define

ν(Ki) := Ci;

ν(Kijω) :=
(p(i, j)

m

)ds/2
ν(Kh(i,j)ω) for all j ∈ T \ {i′};

ν(Kii′J`ω) :=
( ci,J

m|J |+2

)ds/2
ν(K`ω) for all finite words J ∈ T ∗0 and ` ∈ T1;

ν(Kii′J) :=
∑
`∈T1

∞∑
k=0

∑
I∈T k

0

ν(Kii′JI`) for all finite words J ∈ T ∗0 ,

(5.8)
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where p(i, j) and h(i, j) are given as in Proposition 5.1, and (Ci)i∈T1 come from (5.6). It is easy to

check that ν(Kiω) is well-defined for all i ∈ T1 and finite words ω ∈ T ∗, since

T n = T n
0

⋃{
J`ω : J ∈ T k

0 ,ω ∈ T n−1−k, 0 ≤ k ≤ n− 1
}

for n ≥ 1.

Second, for any n ≥ 1, finite words ω ∈ T ∗ and J ∈ T ∗0 , we can define

ν(K0n`ω) =
(p0

m

)nds/2
ν(K`ω) for all ` ∈ T1;

ν(K0n(m−1)J`ω) =
( pn−1

0 c0,J

m|J |+n+1

)ds/2
ν(K`ω) for all ` ∈ T1;

ν(K0n(m−1)J) =
∑
`∈T1

∞∑
k=0

∑
I∈T k

0

ν(K0n(m−1)JI`);

ν(K0n) =
∑
`∈T1

∞∑
k=n

ν(K0k`) +
∑
`∈T1

∞∑
k=n

k−1∑
i=0

∑
J∈T k−i−1

0

ν(K0i+1(m−1)J`);

(5.9)

Note that the value of ν(K0ω) is well-defined for all finite words ω ∈ T ∗. By symmetric of µ, for any

finite word ω ∈ T n, where n ≥ 0, there exists a unique ω∗ ∈ T n such that ϕ(K(m−1)ω) = K0ω∗ ,

where ϕ(x) = −x+m. Since µ|K(m−1)ω
= µ ◦ ϕ−1 on K(m−1)ω It follows from Proposition 2.3 that

N(λ,−∆D
µ|K(m−1)ω

) = N(λ,−∆D
µ|K0ω∗

) for all λ > 0 and finite words ω ∈ T ∗.

Third, we define

ν(K(m−1)ω) = ν(K1ω∗) for all finite words ω ∈ T ∗.

Final, define

ν(K) =
∑
i∈T

ν(Ki).

Consequently, we can define

ν(A) := inf
{∑
ω∈Λ

ν(Kω) : A ⊆
⋃
ω∈Λ

Kω,Λ ⊆ T ∗
}

(5.10)

for all Borel subsets A ⊆ K. We remark that ν is a well-defined measure on K (see Proposition

5.8 below for details). Moreover, µ and ν have the same symmetric.

Similarly, in order to prove Theorem 1.7(a), we divide T ∗ into two parts, namely,⋃
i∈T1

{
iω : ω ∈ T n, n ≥ 0

}
and

⋃
i∈T0

{
iω : 0ω ∈ T n, n ≥ 0

}
.

We begin with the first case.

Lemma 5.3. Use the notation as above. Let ν be defined as in (5.10). Then

N(λ,−∆D
µ|Kiω

) = ν(Kiω)λds/2(1 + o(1)), as λ→∞, (5.11)

for all i ∈ T1 and finite words ω ∈ T ∗.
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Proof. We use induction. Comparing (5.6) and (5.8), we can see that (5.11) holds for all i ∈ T1

and ω ∈ T 0. We assume that as λ→∞

N(λ,−∆D
µ|Kiω

) = ν(Kiω)λds/2(1 + o(1)) for all i ∈ T1 and ω ∈
n⋃
k=0

T k, (5.12)

where n ≥ 0. Let i ∈ T1 and ω ∈ T n. Using Proposition 5.1(a), (5.8) and (5.12), we have for all

j ∈ T \ {i′},

N(λ,−∆D
µ|Kijω

) = N
(p(i, j)

m
λ,−∆D

µ|Kh(i,j)ω

) (
by Proposition 5.1(a)

)
=
(p(i, j)

m

)ds/2
ν(Kh(i,j)ω)λds/2(1 + o(1))

(
by the fact h(i, j) ∈ T1 and (5.12)

)
= ν(Kijω)λds/2(1 + o(1)) as λ→∞,

(
by (5.8)

) (5.13)

where p(i, j) and h(i, j) are given as in Proposition 5.1. If ω ∈ T n
0 , then (5.7) and (5.8) imply

N(λ,−∆D
µ|Kii′ω

) = ν(Kii′ω)λds/2(1 + o(1)) as λ→∞. (5.14)

On the other hand, if ω ∈ T n \ T n
0 , then there exist finite words J ∈ T ∗0 , τ ∈ T ∗ and j ∈ T1

such that ω = Jjτ , and thus it follows from Proposition 5.1(b), (5.12) and (5.8) imply, as λ→∞

N(λ,−∆D
µ|Kii′ω

) = N(λ,−∆D
µ|Kii′J`τ

) = N
( ci,J

m|J |+2
λ,−∆D

µ|K`τ

)
=
( ci,J

m|J |+2

)ds/2
ν(K`τ )λds/2(1 + o(1))

= ν(Kii′J`τ )λds/2(1 + o(1)) = ν(Kii′ω)λds/2(1 + o(1)),

which, together with (5.13) and (5.14), yields N(λ,−∆D
µ|Kiω

) = ν(Kiω)λds/2(1 + o(1)) as λ → ∞
for all words ω ∈ T n+1. This proves the Lemma by induction. �

We now turn to consider the case:
⋃
i∈T0

{
iω : ω ∈ T n, n ≥ 0

}
. To end this, we first develop a

lemma, which shows an asymptotic behavior of eigenvalue counting function on K0 and Km−1.

Proposition 5.4. Use the notation as above. Let ` ∈ T1. Then for any n ≥ 1 and λ > 0,

n−1∑
k=0

∑
J∈T k

0

N(λ,−∆D
µ|K0J`

) =

n−1∑
k=0

N
((p0

m

)k+1
λ,−∆D

µ|K`

)

+
n−1∑
k=1

k−1∑
i=0

∑
J∈T k−i−1

0

N
(pi0c0,J

mk+1
λ,−∆D

µ|K`

)
.

Proof. Combine Proposition 5.2 and the fact T k
0 =

{
0i(m−1)J : 0 ≤ i ≤ k−1, J ∈ T k−i−1

0

}⋃{
0k
}

for all k ≥ 1. �

Lemma 5.5. Use the notation as above. Let ν be given by (5.10). Then as λ→∞,

N(λ,−∆D
µ|Ki

) = ν(Ki)λ
ds/2(1 + o(1)) for all i ∈ T0.
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Proof. By symmetry of the measures µ, ν and {Ti}m−1
i=0 , it suffices to show that

N(λ,−∆D
µ|K0

) = ν(K0)λds/2(1 + o(1)) as λ→∞.

For any n ≥ 1, we have

Pn :=
{
K0J` : J ∈ T k

0 , 0 ≤ k ≤ n− 1, ` ∈ T1

}⋃{
K0J : J ∈ T n

0

}
is a partition of K0. Thus Propositions 2.5 and 5.4 imply

N(λ,−∆D
µ|K0

)

=
∑
`∈T1

n−1∑
k=0

∑
J∈T k

0

N(λ,−∆D
µ|K0J`

) +
∑
J∈T n

0

N(λ,−∆D
µ|K0J

) + ε(Pn, λ)

=
∑
`∈T1

n−1∑
k=0

N
((p0

m

)k+1
λ,−∆D

µ|K`

)
+
∑
`∈T1

n−1∑
k=1

k−1∑
i=0

∑
J∈T k−i−1

0

N
(pi0c0,J

mk+1
λ,−∆D

µ|K`

)
+ z(n, λ)

=
∑
`∈T1

∞∑
k=0

N
((p0

m

)k+1
λ,−∆D

µ|K`

)
+
∑
`∈T1

∞∑
k=1

k−1∑
i=0

∑
J∈T k−i−1

0

N
(pi0c0,J

mk+1
λ,−∆D

µ|K`

)

−
∑
`∈T1

∞∑
k=n

N
((p0

m

)k+1
λ,−∆D

µ|K`

)
−
∑
`∈T1

∞∑
k=n

k−1∑
i=0

∑
J∈T k−i−1

0

N
(pi0c0,J

mk+1
λ,−∆D

µ|K`

)
+ z(n, λ)

(5.15)

for all n ≥ 1 and λ > 0, where 0 ≤ ε(Pn, λ) ≤ 2#Pn and

z(n, λ) :=
∑
J∈T n

0

N(λ,−∆D
µ|K0J

) + ε(Pn, λ).

Since the first eigenvalue of −∆D
µ|K`

is positive for all ` ∈ T1, there exists λ0 > 0 such that

N(λ,−∆D
µ|K`

) for all λ < λ0 and all ` ∈ T1. For λ > 0, nλ is the smallest integer such that

λ ·max
{ pi0c0,J

mnλ+1
: 0 ≤ i ≤ nλ − 1, J ∈ T nλ−i−1

0

}
< λ0.

Letting n = nλ in (5.15). Then the third and fourth summations in (5.15) vanish, and thus we get

N(λ,−∆D
µ|K ) =

∑
`∈T1

∞∑
k=0

N
((p0

m

)k+1
λ,−∆D

µ|K`

)

+
∑
`∈T1

∞∑
k=1

k−1∑
i=0

∑
J∈T k−i−1

0

N
(pi0c0,J

mk+1
λ,−∆D

µ|K`

)
+ z(nλ, λ).

(5.16)

Similar to that proof of [32, Section 6], we can check that z(nλ, λ) = o(λds/2) as λ→∞. Thus by

applying Lemma 5.3 and (5.16), we have as λ→∞,
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N(λ,−∆D
µ|K0

) =
∑
`∈T1

( ∞∑
k=0

(p0

m

)(k+1)ds/2
+
∞∑
k=1

k−1∑
i=0

∑
J∈T k−i−1

0

(pi0c0,J

mk+1

)ds/2)
ν(K`)λ

ds/2(1 + o(1))

=
∑
`∈T1

( ∞∑
k=0

ν(K0k+1`) +

∞∑
k=1

k−1∑
i=0

∑
J∈T k−i−1

0

ν(K0i+1(m−1)J`)
)
λds/2(1 + o(1))

= ν(K0)λds/2(1 + o(1)),

which completes the proof. �

Let J ∈ T ∗0 be a finite word. Similar to that proof of Lemma 5.5, we can show that

N(λ,−∆D
µ|K0(m−1)J

) =
∑
`∈T1

∞∑
k=0

∑
I∈T k

0

N
( c0,JI

m|JI|+2
λ,−∆D

µ|K`

)
+ o(λds/2)

=
∑
`∈T1

∞∑
k=0

∑
I∈T k

0

( c0,JI

m|JI|+2

)ds/2
ν(K`)λ

ds/2(1 + o(1))

=
∑
`∈T1

∞∑
k=0

∑
I∈T k

0

ν(K0(m−1)JI`)λ
ds/2(1 + o(1))

= ν(K0(m−1)J)λds/2(1 + o(1)) as λ→∞,

(5.17)

where equation (5.9) has been used in second and third equalities.

Lemma 5.6. Use the notation as above. Let ν be given by (5.10). Then

N(λ,−∆D
µ|K ) = ν(K)λds/2(1 + o(1)) as λ→∞.

Proof. Since P := {Ki : i ∈ T } is a partition of K, Propositions 2.5 implies

N(λ,−∆D
µ|K ) =

∑
`∈T

N(λ,−∆D
µ|K`

) + ε(P, λ),

where 0 ≤ ε(P, λ) ≤ 2m. Thus the assertion follows from Lemmas 5.3 and 5.5. �

Lemma 5.7. Use the notation as above. Let ν be given by (5.10). Then as λ→∞, we have

N(λ,−∆D
µ|Kiω

) = ν(Kiω)λds/2(1 + o(1)) for all i ∈ T0 and finite words ω ∈ T ∗.

Proof. Similarly, it suffices to show that as λ→∞,

N(λ,−∆D
µ|K0ω

) = ν(K0ω)λds/2(1 + o(1)) (5.18)

for all finite words ω ∈ T ∗. Lemma 5.5 tells us that (5.18) holds for all ω ∈ T 0. Assume that as

λ→∞, we have

N(λ,−∆D
µ|K0ω

) = ν(K0ω)λds/2(1 + o(1)) for all ω ∈
n⋃
k=0

T k, (5.19)
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where n ≥ 0. Let ω ∈ T n. Proposition 5.2, Lemma 5.3 and (5.19) give as λ→∞

N(λ,−∆D
µ|K0jω

) = N
(p0

m
λ,−∆D

µ|Kjω

)
=
(p0

m

)ds/2
ν(Kjω)λds/2(1 + o(1))

= ν(K0jω)λds/2(1 + o(1)) for all 0 ≤ j ≤ m− 2,

(5.20)

where equation (5.9) was used in the last equality. If ω ∈ T n
0 , then it follows from (5.17) that

N(λ,−∆D
µ|K0(m−1)ω

) = ν(K0(m−1)ω)λds/2(1 + o(1)) as λ→∞. (5.21)

On the other hand, if ω ∈ T n \ T n
0 , then there exist finite words J ∈ T ∗0 , τ ∈ T ∗ and j ∈ T1

such that ω = Jjτ . Thus Proposition 5.2 and Lemmas 5.3 imply that for any ω ∈ T n \T n
0 ,

N(λ,−∆D
µ|K0(m−1)ω

) = N
(
λ,−∆D

µ|K0(m−1)Jjτ

)
= N

( c0,J

m|J |+2
λ,−∆D

µ|Kjτ

)
=
( c0,J

m|J |+2

)ds/2
ν(Kjτ )λds/2(1 + o(1))

= ν(K0(m−1)ω)λds/2(1 + o(1)) as λ→∞,

(5.22)

where equation (5.9) was used in the last equality. In view of (5.20), (5.21) and (5.22), we have

(5.18) holds for all ω ∈ T n+1. By induction, the lemma holds. �

Using Proposition 2.5, Lemmas 5.3, 5.6 and 5.7, we can deduce that ν is additive (see Proposi-

tion 5.8(a) below).

Proposition 5.8. Use the notation as above. Let ν be given by (5.10). Then

(a) ν(Kω) =
∑

`∈T ν(Kω`) for all finite words ω ∈ T ∗.

(b) max
{
ν(Kω) : ω ∈ T n

}
→ 0 as n→∞.

Consequently, ν is a well-defined measure on K.

Proof. (a) Let ω ∈ T ∗ be a finite word. Since P := {Kω` : ` ∈ T } is a partition of Kω,

Proposition 2.5 implies

N(λ,−∆D
µ|Kω

) =
∑
`∈T

N(λ,−∆D
µ|Kω`

) + ε(P, λ)

for all λ ≥ 0, where 0 ≤ ε(P, λ) ≤ 2(m− 1). Letting λ→∞. Then Lemmas 5.3,5.6 and 5.7 imply

ν(Kω) =
∑

`∈T ν(Kω`), which completes the proof.

(b) By the definition of ν(Kω), it suffices to show that

max
{
ν(Kii′J) : i ∈ T1, J ∈ T n

0

}
→ 0, as n→∞. (5.23)

It follows from (5.5) that the series ∑
i∈T1

∞∑
k=0

∑
J∈T k

0

( ci,J

m|J |+2

)ds/2
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is convergent, which implies, using (5.8) again, that∑
i∈T1

∑
J∈T n

0

ν(Kii′J) =
∑
i∈T1

∑
J∈T n

0

( ∑
`∈T1

∞∑
k=0

∑
I∈T k

0

( ci,JI

m|JI|+2

)ds/2
ν(K`)

)

=
∑
i∈T1

∑
`∈T1

∞∑
k=n

∑
I∈T k

0

( ci,I

m|I|+2

)ds/2
ν(K`)

≤ C
∑
i∈T1

∞∑
k=n

∑
I∈T k

0

( ci,I

m|I|+2

)ds/2
→ 0 as n→∞,

where C = m ·max{Ci, i ∈ T1}, and (Ci)i∈T1 comes from (5.6). Hence, (5.23) holds. This proves

part (b). �

Now we prove Theorem 1.7.

Proof of Theorem 1.7. (a) Combine Lemmas 5.3, 5.6, 5.7 and Proposition 5.8.

(b) Let Pk = {Kω : ω ∈ T k} for k ≥ 0 and ν be defined as in (5.10). Using Proposition 5.8(b), we

can deduce that (Pk)k≥0 is refining with respect to ν. Combining it with part (a) and Remark 2.4,

we have Assumption 1.2 holds. Thus the assertion follows from Theorem 1.3(a). �
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