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Introduction

0.1. Background

M-theory is an 11-dimensional theory that unifies string theories and is the best
candidate for a theory of quantum gravity [32,30]. The theory has very rich structures
both in physics and mathematics. In particular, the anomalies and their cancellations
in the theory are related to profound aspects in geometry and topology. In the recent
paper [11], Freed and Hopkins proved that there is no parity anomaly in M-theory on
pin™ manifolds (manifolds not necessarily orientable with the second Stiefel-Whitney
class we = 0) in the low-energy field theory approximation, which shows the consistency
of the time-reversal symmetric theory. More precisely, Freed and Hopkins proved that
the anomaly arising from the Rarita-Schwinger field and the anomaly arising from the
“Chern-Simons coupling” of the C-field cancel. Earlier, the anomaly cancellation for spin
manifolds case was discovered by Witten [33].

We first briefly recap the Freed-Hopkins’ anomaly cancellation in the pin™ case [11]
and Witten’s anomaly cancellation in the spin case [33]. Anomaly of an 11-dimensional
theory is an invertible 12-dimensional theory. Let W be a 12-dimensional pin™ manifold.
In [11], Freed and Hopkins computed the partition function of the Rarita-Schwinger
anomaly theory, which is equal to

n(TW - 2)

drs(W) = exp (27\/—_1 f) ;
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where n(TW — 2) is the difference of the n-invariant of the Rarita-Schwinger operator
and twice the n-invariant of the pure Dirac operator. They showed that this partition
function is a root of unity, independent of the metrics on W and a pint bordism invariant.
This consequently shows that the Rarita-Schwinger partition function factors through a
homomorphism

OAZRS : 7T12MTPiTl+ — (CX,

where MT Pin™ is the Thom spectra of pinT-manifolds and then determines an invertible
unitary topological field theory

aprs : MTPint — 2121C*

with IC* being the character dual to the sphere spectrum. On the other hand, to handle
the C-field, Freed and Hopkins introduced a new topological structure, namely the m,
structure, a pinT-structure together with a wi-twisted integer lift of the fourth Stiefel-
Whitney class wy. The anomaly of the C-field is

ac (W) = exp (2T ?’wa)) |

where p(TW) is a degree 4 canonical class of the pin't structure and ¢ is a w;-twisted
integer lift of w,(TW). They showed that this factors through a homomorphism

6[0 : 7r12Mmc — (CX,

where Mm, is the Thom spectra of m.-manifolds, and then determines an invertible
topological field theory

ac : Mm, — S21C*.
The following theorem shows that M-theory is anomaly free.
Theorem 0.1 (Freed-Hopkins, [11]). The total anomaly theory ars ® ac is trivializable.

Freed and Hopkins proved this theorem by determining the generators for the 12-
dimensional bordism group of m.-manifolds after 2-adic completion and verifying that
QRrs - &c = 1 on those generators.

The anomaly cancellation under the assumption that W is spin was proved by Witten
n [33]. When W is spin, the partition function of Rarita-Schwinger anomaly theory can
be expressed via characteristic numbers of W (Proposition 3.5 in [11])

aps(W) =exp <27T\/—_1 < A(TW)ChiTCW —2) , [W]>> :
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Let A = A(W) be the first spin class of TW in HY(W;Z) and x € H*(W;Z). Let
¢ = C(x) = A+ 2z. The anomaly of the C-field is

ac(W) = exp (27r\/—_1 <CS+8TW)C, [W]>) ,

where p(TW) be the second spin class of TW in H®(W;Z). The anomaly cancellation
ars(W)éac(W) = 1is equivalent to the integrality of the following characteristic number,

5 —p(TW 1.
¢ =pIWie L 4w yen(mew —2), (w1 ).
48 4
By the Atiyah-Hirzebruch divisibility, (A(TW),[W]) is even. Therefore the anomaly
cancellation is further equivalent to the integrality of

<c3 — p(TW)e

1.
. + JATW)ch(TeW — 4), [W]> :

Witten showed that x determines an Eg-bundle Ve (z) on W and the above characteristic
number is equal to minus half of the index of the Dirac operator Dy, on W coupled with
Ve (x) by proving the following amazing equality through computation

<c3 — p(TW)e

e + %A(TW)ch(VC (z)) + %A(TW)ch(TcW —4), [W]> =0. (0.1)

Then the desired integrality comes from the Atiyah-Hirzebruch divisibility on the even-
Ve (z)
ness of Ind(Dy7 ).
Motivated by the C-field anomaly, Freed and Hopkins developed an algebraic theory of
cubic forms in [11]. We also briefly review their theory here. Let L be a finitely generated
free abelian group. Let

() LXLXL—Z (0.2)

be a symmetric trilinear form on L. For convenience, write the trilinear form simply as
a product. a € L is called a characteristic element if the @ € L ® Z/2Z satisfies the
following identity

TY+Tyy (mod?2) (0.3)

Il
8|

azTy

for any T,y € L ® Z/27Z. Let Lcpay C L be the torsor of characteristic elements in L.
Let L* = Hom(L; Z).

Theorem 0.2 (Freed-Hopkins, Lemma 4.1 in [11]). Let a € Lepay and @ be the mod 24
reduction. There exists a unique b € L* @ Z /247 such that
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b(Z) = 42° + 642> + 36°F  (mod 24) (0.4)

forallz € L® Z/247Z.

Let h(z) be a degree 3 polynomial whose highest term is %xg. Then the following

algebraic identity shows that h is a cubic refinement of the trilinear form zyz:
xyz=hx+y+2z)—hlz+y)—h(x+z2)—hly+2)+hz)+h(y) +h(z) = h(0). (0.5)
Let a € L,b € L*. Consider the Witten-Freed-Hopkins polynomial on L:
fap(z) = (a +2)* — bla+ ). (0.6)
It is easy to see that

fa,b(Qx) - fa,b(o)
48

(0.7)

is a degree 3 polynomial whose highest term is é:z:S, and therefore a cubic refinement of

xyz; moreover when « is a characteristic element and b satisfies (0.4),

fa,b(2x) - fa,b(o)
48

€. (0.8)

Back to the anomaly cancellation in the spin case, L = H*(W;Z) with the symmetric
trilinear form of the intersection pairings gives a geometric model for the Freed-Hopkins’
algebraic theory of cubic forms. They showed that the spin class A(W) is a characteristic
element and the formula (0.1) tells us that the spin characteristic classes a = A(W),b =
p(W) solve the mod 24 equation (0.4). Moreover from (0.5), we can see that the trilinear
form of the cup product

(xUy Uz [W])

for z,y,2 € H*(W;Z) has an integral cubic refinement.

The first purpose of this paper is to show that the amazing equality (0.1) for spin
manifolds can be obtained by the modularity of a modular form, called twisted Witten
class, inspired by the theory of elliptic genus [27,22,31,23,18,24,14,19].

Moreover, this modular method can be generalized to spin® case and allows us to
obtain a spin® version of (0.1) with a new spin® cubic form. Consequently, using index
theorem for spin® Dirac operators, we can find spin® classes a = A;,b = p. on spin®
manifolds, that solve the weakened (mod 12) congruence equation (0.4) and see that on
12 dimensional spin® manifolds W,

2(x Uy Uz [W])
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has an integral cubic refinement. On the other hand, if we stick to the original spin
cubic form, then it loses analytic interpretations as indices of twisted Dirac operators on
W. Nevertheless, we find that the analytic interpretations can be rescued on spin® and
spin“? manifolds by applying Zhang’s Rokhlin congruence formulas via mod 2 indices
on 10 dimensional spin or pin~ manifolds.

If we further weaken the assumption from spin® to be general orientable manifolds,
the modular method still works. Actually we are able to obtain an orientable version of
(0.1) with an orientable cubic form. Consequently, using index theorem for twisted signa-
ture operators, we find characteristic classes a, b on orientable manifolds, that solve the
weakened (mod 3) congruence equation (0.4) and see that on 12 dimensional orientable
manifolds W,

8(xUy Uz, [W])

has an integral cubic refinement.

In all the cases, the Witten-Freed-Hopkins type formulas that we have obtained like
(0.1) from the modular method are local, i.e., they hold on the level of differential forms.
This allows us to use the Atiyah-Patodi-Singer index theorem to generalize them to
manifolds with boundaries.

In the following, let us give a more detailed account of the background and our work
in various cases.

0.2. Spin case

Let Z be a 12 dimensional smooth manifold. Denote the integral Pontrjagin classes
and the Stiefel-Whitney classes of Z by p;,w; respectively. Let v € H*(Z;Z). Following
Witten [33], z determines an isomorphism class of principal Eg bundles on Z. Let V(x)
denote the real adjoint vector bundle associated to the principal Eg bundle determined
by the class . Denote by Vg () the complexification of V(x). The Chern character of
Ve(z) is (cf. (4.25) in [11])

1.
ch(Ve () = 248 — 60z + 62% — gazd. (0.9)

So by the expression of the Chern character in terms of the Chern classes, it is easy to
see that

1
T = @CQ(V(C (2)). (0.10)
Suppose Z is closed and oriented. Let L = H*(Z;Z) and the trilinear form is the cup
product of three elements in L evaluated on the fundamental class [Z].
Further suppose Z is spin. There is a canonical degree 4 class A € H*(Z;Z) such that
2\ = py and A = w4 (mod 2) ([11]). The following theorem shows that A is a characteristic
element.
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Theorem 0.3 (Freed-Hopkins, Lemma 4.4 in [11]). The Stiefel-Whitney class A\ = wy of
a closed spin 12-manifold satisfies (0.3) and thus X\ is a characteristic element.

For a = A, Freed and Hopkins showed that there is a characteristic class p € H8(Z;Z)
such that 2p = py — A% and when b = p, (0.4) is satisfied. This is deduced from
the beautiful and important anomaly cancellation formula discovered by Witten-Freed-
Hopkins (Theorem 1.2), which is proved by a direct computation, as well as the famous
Atiyah-Hirzebruch divisibility on 8% +4 dimensional spin manifolds. Adopting the above
notations, one sees that on a closed spin smooth 12-manifold Z,

Sap(27)
: 0.11
15 (0.11)
is a half integer, which has analytic meaning as (quarter of) indices of certain twisted
Dirac operators on Z (Theorem 1.2).
On the other hand, let M be a 4m dimensional compact oriented smooth manifold.

Let
{27V —12;,1 < j < 2m}

denote the formal Chern roots of Tc M, the complexification of the tangent vector bundle
TM of M. The famous Witten genus of M can be written as

W<M>—< Toges ,[M1>e@nqn,

with 7 € H, the upper half-plane, and ¢ = e2™V=1I7 The Witten genus was first intro-
duced in [31] and can be viewed as the loop space analogue of the A-genus. It can be
expressed as a g-deformed A-genus as

W(M) = (ATM)ch (O (Te M), [M]),

where

O(TeM) = & Syn(TeM), with TeM = TeM — C*™,
n=1
is the Witten bundle introduced in [31]. When the manifold M is spin, according to
the Atiyah-Singer index theorem, the Witten genus can be expressed analytically as the
index of the twisted Dirac operator,

W(M) = Ind(D @ © (Tc M)) € Z[q]],

where D is the Atiyah-Singer spin Dirac operator on M. Moreover, if M is string, i.e.
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1
A= §p1(TM) =0,

or even weaker, if M is spin and the first rational Pontrjagin class of M vanishes, then
W (M) is a modular form of weight 2m over SL(2,7Z) with integral Fourier development
([34]). The homotopy theoretical refinement of the Witten genus on string manifolds
leads to the beautiful theory of tmf (topological modular form) developed by Hopkins
and Miller [19]. The string condition is the orientability condition for this generalized
cohomology theory.

If the string condition A = 0 does not hold, one constructs the cohomology class (cf.

[14]),
W(TM) = e3P 21TD A(TM)eh (O (Te M) € H* (M;Q)|[q]), (0.12)

where E5(7) is the Eisenstein series of weight 2 (cf. Chap 2.3 in [7]). We call W(T'M)
the Witten class of M.

Let P be a principal Eg bundle over M. In Section 4.2.1, we consider an associated ele-
ment V € K(M)[[g]] constructed from the basic representation of affine Eg. Let Py, P, be
two principal Eg bundles with the corresponding Vi, Vs. Let W1, W5 be the complexified
vector bundles associated to the adjoint representation of Eg. Denote

oo

o) =TI -a".

n=1

We construct the twisted Witten class (specified to the case when ¢ is trivial and ¢ =0
in (4.18) for the spin case here for simplicity)

QW1, V) 1= et () (o (x W tes Wy (T A p(7)1ch(Vy )eh(V2) € H™ (M;Q)|[g]],

(0.13)

and show that the degree 12 component is a modular form of weight 14 over SL(2,Z)

when M = Z is 12 dimensional. Using the fact that the space of modular forms of weight

14 over SL(2,Z) is 1-dimensional and spanned by E3(7)Eg(7), where Ey4(7) and Eg(7)

are the Eisenstein series of weight 4 and 6 respectively (cf. Chap 2.1 in [7]), we deduce a

factorization formula (4.33). This formula reduces to the Witten-Freed-Hopkins anomaly

cancellation formula (1.1) (when ¢ is trivial and ¢ = 0).

Back to the algebraic theory of cubic forms, consider the polynomial

fan(z) = 4(a+ )% — 6a(a+ z)? — (b — 3a?)(a + z) (0.14)

with understanding 3a? as an element in L* by abusing notations.
It is easy to check that

Fo(z) = L2222) 2+ fas(0).
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From (0.5), (0.7) and (0.15), we see that W is a cubic refinement of zyz, and

when a is a characteristic element and b modulo 24 satisfies (0.4), the following holds,

fap(@) = fas(0)

5 €Z. (0.16)
In view of (0.15) and the half integrality of f*%é?m) as well as its analytic meaning,

we see that on a closed 12 dimensional spin manifold Z, when a = A\, b = p,

JF)\,p(m)
24

(0.17)

is an integer, which has analytic meaning as (half of) the indices of certain twisted Dirac
operator on Z (Theorem 1.3).

In Section 4.2.2, we show that Theorem 1.3 can actually also be deduced from a fac-
torization formula (4.42) proved there by constructing the twisted Witten class (specified
to the case when £ is trivial and ¢ = 0 in (4.35) for the spin case here for simplicity)

R(V) = ezt sscsWIW(TZ)p(r)3ch(V) € H*(Z;Q)[[q]]- (0.18)

To consider ﬁp(x) defined via (0.15) might look redundant. However we include
it here because first it arises from the modular form R(V), different from Q(Vi, Vs);
secondly, we would like to point out that the relation (0.15) between the cubic form %4@)

and the cubic form %{gzm) corresponds exactly to the relation between the corresponding

modular forms:

R(V) =VQV.V) - W(T'Z) € H*(Z;Q)[[q]]. (0.19)

Remark 0.1. The method of constructing Q(V1,Vs), R(V) and using their modularities
to prove factorization formulas appeared in [16] for fiber bundles with 10 dimensional
fibers. In this paper, we apply this method to 12 dimensional manifolds.

In [11], Freed and Hopkins showed that for a pin™ 12-manifold Z with m, structure
there exists a characteristic class ¢ € H*(Z;Z)/torsion, which is a characteristic element
in

L = H*(Z;Z)/torsion
and a characteristic class p € H®(Z;Z) /torsion such that (0.4) is satisfied. Then

fe5(0)
48

(0.20)

is a half integer. Freed-Hopkins (Theorem 2.2, Theorem 6.2 in [11]) proved the following
anomaly cancellation
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50 ) T7 -2
exp <2m‘o f:S( >) - exp (2m : 77(4)) =1 (0.21)

We have not recovered this result via modularity yet.
0.3. Spin® and spin“? cases
Suppose Z is a closed 12 dimensional smooth manifold not necessarily spin. Then the

classes A and p in the previous subsection for the spin case do not necessarily exist. By
abusing notations we just denote %pl by A, and % (p - ip%) by p in H*(Z;Q). The

original cubic forms ! *‘fgac) and £ *’2"4(3:) now only take values in rationals rather than
integers and lose analytic interpretations as indices of twisted Dirac operators.

In Section 2.1, we will show that the analytic interpretations can be rescued on spin®
and spin“? manifolds by applying the Rokhlin congruence formulas established in [35,
36,38,39] via mod 2 indices on 10 dimensional spin or pin~ manifolds. Let us be more
precise in the following.

Let K be an 8k + 4 dimensional spin® manifold. Let £ be the complex line bundle of
the spin® structure. Let ¢ = ¢1(¢) € H?(K;Z). Let U be a characteristic submanifold
of the spin® structure, i.e. an orientable 8k + 2 dimensional submanifold of K such that
[U] € Hgpy2(K;Z) is dual to c. U carries a canonically induced spin structure up to spin
cobordism. Let Dy be the Atiyah-Singer spin Dirac operator on U.

The Rokhlin congruence formula (2.2) in Theorem 2.1 allows one to write the twisted
A\—genus on K in terms of mod 2 indices of twisted Dirac operators on U with a correction
term. Combining (2.2) with the Witten-Freed-Hopkins anomaly cancellation formula
(1.1) and the new formula (1.2), we obtain Theorem 2.2.

We call an 8k +4 dimensional closed smooth oriented manifold K a spin®? manifold if
there exists a rank 2 nonorientable real vector bundle £ such that wo(TK) = wa(£). For
such manifolds, the corresponding Rokhlin congruence formula has been studied in [36].
Let U be a characteristic submanifold of the spin“? structure, i.e. a nonorientable 8k + 2
dimensional submanifold of K such that [U] € Hsgy2(K;Z/27) is dual to we(TK) €
H?(K;Z/2Z). U carries a canonically induced pin~ structure up to pin~ cobordism.

The Rokhlin congruence formula (2.5) in Theorem 2.3 allows one to write the twisted
g—genus of K in terms of twisted mod 2 analytic indices on U with a correction term.
Combining (2.5) with the Witten-Freed-Hopkins anomaly cancellation formula (1.1) and
the new formula (1.2), we obtain Theorem 2.4. Details about spin“? structures and the
obstruction classes to them will be studied in Section 6.

Section 2.2 provides another way on spin® manifolds to restore the beautiful nature
of the Witten-Freed-Hopkins anomaly cancellation formula on spin manifolds. Generally
there are no characteristic elements on spin® manifolds like A\ for spin manifolds. In the
algebraic theory of cubic forms, suppose a € L is not necessarily a characteristic element,
then the Freed-Hopkins Theorem 0.2 is weakened to mod 12. More precisely, if @ is the
mod 12 reduction, then there exists a unique b € L* ® Z /127 such that
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b(F) = 42° + 642> + 3a°F  (mod 12) (0.22)

forallz € L ® Z/12Z.

Let Z be a 12 dimensional closed smooth spin® manifold. Let ¢ be the first Chern
class of the complex line bundle of the spin® structure. In Section 2.2, we will show that
on Z there exist characteristic classes a = \. € HY(Z;Z),b = p. € H®(Z;Z) such that
(0.22) holds. This is derived from Theorem 2.5 and Theorem 2.6, in which we show that

Frepe (22)

2
o1 (0.23)
is a half integer and
J?A pe ()
D (0.24)

is an integer, by demonstrating their analytic meanings using indices of twisted spin®
Dirac operators.

The left hand sides of Theorem 2.5 and Theorem 2.6 provide new cubic forms on spin®
manifolds, generalizing the cubic forms in the spin case when the manifold is spin and
¢ = 0. The coefficients appearing in the new cubic forms will be studied in Section 5.

Clearly

_ Frepe(22) = frop.(0)

h(x) 54

is a polynomial of z valued in Z with highest term %x?’. We therefore see that on spin®
12-manifolds, there is an integral cubic refinement only for 2zyz rather than zyz,

2(2UyUz, [Z]) = h(z+y+z)—h(z+y)—h(z+2)—h(y+2)+h(x)+h(y)+h(z)—h(0). (0.25)

Theorem 2.5 and Theorem 2.6 are deduced from the factorization formulas (4.33) and
(4.42), which are proved in Section 4.2 by constructing the generalized Witten class

We(TZ) i= st IO LT Z)eh (O (Te Z,6c)) € H(Z:Q)lla)]  (0-26)
and the twisted generalized Witten classes

Q.(V1, Vo) := ez B2l (o (Wi tes W)y (T 7)o (7) 0ch(V) )ch(Va) € HY(Z;Q)[[q]],
(0.27)

Re(V) i= e 2000 WW (T Z2)p(r)5ch(V) € H*(Z;Q)[[q]].  (0.28)

Applying the Rokhlin congruence (2.1) in Theorem 2.1 to Theorems 2.5 and 2.6, we

f*“”1’°2(2$) and f*°‘1p2ﬂ(w) in Theorem 2.7. Now on

give mod 2 index interpretations of
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spin® manifolds, we have two types of mod 2 formulas: Theorem 2.2 and Theorem 2.7.
Subtracting the corresponding sides of these formulas, we obtain Corollary 2.1, which
involves interesting quadratic forms on 10 dimensional spin manifolds and mod 2 indices.
This motivates us to introduce an intersection pairing on 10 dimensional closed spin
manifold in the presence of a complex line bundle. Using the computation of Stong on
Q™K (Z,4)) ([28]), we are able to obtain Theorem 2.8, which is more general than
Corollary 2.1. The quadratic forms appearing in Theorem 2.8 are related to mod 2 indices
and give interesting quadratic refinements of the intersection pairings. See Remark 2.2.

0.4. Orientable case

Let Z be a 12 dimensional closed smooth oriented manifold without assuming any
additional topological constraints. In this general situation, we are not able to find char-
acteristic classes a of degree 4 and b of degree 8 such that the mod 12 equality (0.22)
holds for all x € H*(Z;Z).

However, by our modularity method, we find that if

b=4p? — Tpy

and b=1b (mod 3), then the following mod 3 equality holds,

b(#) =42°  (mod3) (0.29)

for all 7 € H*(Z;Z) ® Z/3Z. In fact, in Theorem 3.1 and Theorem 3.2, we will show
that when a = —pq,

fa,b(Qx)

) 0.30
- (0.30)
is a half integer and
Jas(2) (0.31)
3
is an integer, by demonstrating their analytic meanings as indices of twisted signature
operators.
Now let

h(.’l?) — fa,b(2x)6_ fa,b(o)7

which is a polynomial of  with value in Z and highest term %x3. We therefore see that
on general oriented 12-manifolds, there is an integral cubic refinement only for 8zyz
rather than for 2zyz or xyz,
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8(xUyUz, [Z]) = h(z+y+z)—h(x+y)—h(z+2)—h(y+2)+h(x)+h(y)+h(z)—h(0). (0.32)

We prove Theorem 3.1 and Theorem 3.2 in Section 4.3 by constructing the L-Witten
class and twisted L-Witten classes (see (4.47), (4.49) and (4.61)).

Remark 0.2. In view of Theorem 1 in [24], we may obtain formulas more general than
the ones presented in Section 3. In fact, let F' be a spin vector bundle of even rank over
M such that

Sp1(F) = 201 (M)

and S%(F) be the spinor bundles of F. In the construction of the L-Witten class (4.47),
one can replace the bundle

(Ch (T(cM) ® B9 (T@M) ® O3 (TcM)

©1 (Fc) ® 02 (Fc) ® O3 (Fc)

(see the construction of ©1, O3, O3 in (4.43), ((4.44), (4.45)). Then the similar modularity
method will deduce formulas giving analytic interpretations to some interesting new cubic
forms (depending on the rank of F') via the indices of twisted Dirac operators

®((S+(F) ST(F) ® Ve (),
® (ST(F) @ S™(F) ® TcZ),

57(
D®((5+(F) S7(F)) ® (\*(Fc) - $*(Fc))),

and
® (ST(F)® S~ (F)).
0.5. Organization of the paper

In Section 1, we review the Witten-Freed-Hopkins formula (Theorem 1.2) and present
the new type of anomaly cancellation formula (Theorem 1.3). We point out that they
are special cases of the corresponding anomaly cancellation formulas for spin® manifolds,
which are given in Section 2.2. As these formulas are consequences of the factorization
formulas (4.33) and (4.42), which hold on the level of differential forms, Theorems 1.2
and 1.3 have analogues for manifolds with boundary. They are stated in Theorem 1.4.

In Section 2, we give the Witten-Freed-Hopkins anomaly cancellation formulas on 12
dimensional spin® and spin“? manifolds. First in Section 2.1, we consider the original
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cubic forms as in the spin case. We use the Rokhlin congruence formulas in [35,36,38,39]
to express the original cubic forms as mod 2 indices on 10 dimensional characteristic
submanifolds with correction terms. Then in Section 2.2, for the spin® case, we give new
cubic forms and anomaly cancellation formulas, which generalize the anomaly cancella-
tion formulas in the spin case. We will also give the mod 2 congruence formulas for the
new cubic forms as well as the formulas for manifolds with boundary.

In Section 3, we present the anomaly cancellation formulas for 12 dimensional ori-
entable manifolds.

In Section 4, the proofs of the main theorems (Theorems 2.5, 2.6, 3.1 and 3.2) in Sec-
tion 2 and Section 3 will be given. Actually what we prove are the factorization formulas
(4.33), (4.42), (4.59) and (4.69), which are all equalities on the levels of differential forms.

In Section 5, we study the characteristic class coefficients appearing in the cubic forms
in Theorems 2.5, 2.6, 3.1 and 3.2.

In Section 6, details about spin“? structures and the obstruction classes to them are
studied.
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1. Cubic forms on spin 12-manifolds

In this section, we review the Witten-Freed-Hopkins anomaly cancellation formula,
present the new type of cancellation formula and point out that they can be deduced
from the more general formulas for the spin® case in Section 2.2. We will also present
the corresponding formulas when the manifolds have boundary.

Let Z be a closed spin smooth 12-manifold. Recall that A € H*(Z; Z) satisfies 2\ = p;.

Theorem 1.1 (Freed-Hopkins [11]). There is a canonical degree 8 integral class p =
wg (mod2) such that

2p = py — A2
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Let V(x) denote the real adjoint vector bundle associated to the principal Eg bundle
determined by a class x € H*(Z;Z). Denote by V¢ () the complexification of V(z). Let

C(z) =X+2z € HY(Z:Z).
One has the following important formula,

Theorem 1.2 (Witten-Freed-Hopkins [33,11]). The following identity holds,

<M, [Z]> = <%E(T2)ch(vc () + iﬁ(TZ)ch(TCZ) —A(TZ), [Z]> .

48

(1.1)

Proof. Taking £ = C and ¢ = 0 in Theorem 2.5, one obtains (1.1). O

We also have the following new cancellation formula. Let
Clz) =A+z e HY(Z; 7).
Theorem 1.3. Let
pP=p—3)\%
The following identity holds,
C(x)[p+ 6AC(x) — 4C(2)?]
2]
24

(1.2)

= <%E(TZ)ch(Vc () + = A(TZ)ch(Tc Z) + 122A(T Z), [Z]>.

N | =

Proof. Taking £ = C and ¢ = 0 in Theorem 2.6, one obtains (1.2). O

Now suppose Z has boundary and let Y be the boundary of Z with the induced spin
structure. Let 74, ¢V (®) be a Riemannian metric on 7Z and a Euclidean metric on V (x)
respectively. Let VTZ be the Levi-Civita connection on TZ and VV*) be a Euclidean
connection on V (z). g7%, gV @ vTZ V(=) induce the corresponding Hermitian metrics
and connections on TcZ and Vc(x), the complexifications. Assume all the involved
metrics and connections are of product structures near 07 =Y.

Let Dy be the Atiyah-Singer Dirac operator on Y. Let 77 denote the reduced n-
invariant in the sense of Atiyah-Patodi-Singer [1].

Denote by p;(VT?) the i-th Pontrjagin form of (TZ,V7%) (cf. [37]). Denote by
MVTZ) the characteristic form $p;(VT#) and by p(VT#) the characteristic form
%pg(sz) _ é]h(vTZ)Z.
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In the following, when a connection appears in a bracket of a characteristic class, we
always mean the corresponding characteristic form determined by this connection.

Denote
&= icQ(VC(:c) vVel),
60 ’
Let
C(x) = NVT?) + 27
and

As (1.1) and (1.2) hold on the level of forms, by the Atiyah-Patodi-Singer index
theorem [1], we have the following formulas.

Theorem 1.4.
]. - v — x 1_ —
50 / C@)p(VT?) = C@)) = n(Dy*) + JA(DYF) — 20(Dy) modZ;  (1.3)
Z

and

L / C@)[FVT?) + 6A(VTZ)0(F) — 4C(5)?)
7z

[\
>~

1 e 1
55(D¥C( ) + S(DF?) +1225(Dy)  mod Z.
2. Cubic forms on spin® and spin“? 12-manifolds

In this section, we extend the Witten-Freed-Hopkins anomaly cancellation formulas
to 12 dimensional spin® and spin®“2 manifolds.

2.1. The original cubic forms

Suppose Z is a closed 12 dimensional smooth manifold not necessarily spin. Then
the characteristic classes A and p in the above section for the spin case do not neces-
sarily exist. By abusing notations we simply denote %pl by A, and % (pg — ip%) by p in
H*(Z;Q).

Let x € H*(Z;Z). Let V() and V¢ (x) be the same meaning as introduced in the
beginning of Section 0.2.
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2.1.1. Spin° case

Let K be an 8k + 4 dimensional spin® manifold. Let £ be the complex line bundle of
the spin® structure. Let ¢ = ¢1(§) € H?(K;Z). Let U be a characteristic submanifold
of the spin® structure, i.e. an orientable 8% + 2 dimensional submanifold of K such that
[U] € Hsp42(K;Z) is dual to c. U carries a canonically induced spin structure up to spin
cobordism. Let Dy be the Atiyah-Singer spin Dirac operator on U.

Denote i : U — K the embedding. Let N be the normal bundle over U in K and
e € H*(U;Z) the Euler class of N. Clearly i*TK =~ TU & N.

Let E be a real vector bundle over K. Then ¢*FE is a real vector bundle over the
spin manifold U. Let Indy(i*E) be the mod 2 index in the sense of Atiyah—Singer [4]
associated to ¢*F, which is a spin cobordism invariant. Let E¢ be the complexification
of E.

We have the following analytic Rokhlin congruence formula.

Theorem 2.1 (Zhang [35,36,38]).

<2(TK) exp (g) ch(Eg), [K]> = Indz(D}; ) mod?2 (2.1)

and

<E(TK)ch(EC), [K]> = Indy(Di B — % <E(TU)ch(i*EC)tanh (Z) : [U]> mod 2.

(2.2)
Combining (2.2) with Theorems 1.2 and 1.3, we have

Theorem 2.2. If Z is a 12 dimensional closed smooth spin® manifold and U is a charac-
teristic submanifold, then the following identities hold,

<c<x>[p120<z>21 @)

- <2£(T2)ch(vc () + A(T2)ch(Tc Z) — 4A(TZ), [Z]>
= Indy(DEY) + Inda (DY)

- % </T(TU)ch (2i* Ve (x) + TeU + Ne — 4) tanh (Z) : [U]> mod 2;

and
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C(z)[p+ 61C () — 4C ()]
(sego-ien )

= (A(TZ)eb(Ve (x)) + A(TZ)en(Tc Z) + 244A(T2), 12])
=Indy (D}, ™) + Indy(DEY) + Indo (DY)

- %<A(TU)ch(i*Vc (z) + TeU + N + 244) tanh (Z) : [U]> mod 2.

2.1.2. Spin“2 case

We call an 8k +4 dimensional closed smooth oriented manifold K a spin“? manifold if
there exists a rank 2 nonorientable real vector bundle £ such that we(TK) = wa(§). Such
manifolds and the corresponding Rokhlin congruence have been studied in [36] and [39].
Let U be a characteristic submanifold of the spin“? structure, i.e., a nonorientable 8k + 2
dimensional submanifold of K such that [U] € Hgr12(K;Z/2Z) is dual to we(TK) €
H?(K;Z/2Z). U carries a canonically induced pin~ structure up to pin~ cobordism.

Denote i : U — K the embedding. Let N be the normal bundle over U in K and
e € H*(U,o(TU)) the Euler class of N.

Let E be a real vector bundle over K. Then ¢*FE is a real vector bundle over the
pin~ manifold U. Let Ind3(¢* E) be the mod 2 analytic index of the real vector bundle
i*E over U, which is defined via n-invariants (cf. [39]). We have the following Rokhlin
congruence formula.

Theorem 2.3 (Zhang (Theorem A.2 in [39])).

<E(TK)ch(EC), [K]> = IndS(i*E) — % <X(TU)ch(i*E(c) tanh (Z) , [U]> mod 2.
(2.5)

Combining (2.5) with Theorem 1.2 and Theorem 1.3, we have

Theorem 2.4. If Z is a 12 dimensional closed smooth spin®? manifold and U is a char-
acteristic submanifold, then the following identities hold,

<c<x>[p1—20<x>2]7[z]>

= <2£(TZ)ch(VC (z)) + E(TZ)ch(TC Z) — 4A\(TZ)a [Z]> (2.6)
= Ind3(TU) + Ind3(N)

1/~
-5 <A(TU)ch (2i* Ve (z) + TeU + Ne — 4) tanh (4

),[U]> mod 2;

and
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C(z)[p+ 6AC () — 4C(z)?]
< 12 ’ [Z]>

= (AT Z)ch(Ve(@)) + ATZ)e(Tc Z) + 2444(T2), [2])

= Ind5 (i*V(z)) + Ind5(TU) + Ind3(N)

- % </T(TU)ch(i*V(c (z) + TcU + Ng + 244) tanh (Z) , [U]> mod 2.

2.2. New cubic forms on spin® manifolds

Let Z be a 12 dimensional closed smooth spin® manifold. Let £ be the complex line
bundle of the spin® structure. We use &g for the notation of £ when it is viewed as an
oriented real plane bundle. Let ¢ = ¢ (£) € H?(Z;Z). Denote {c = (g ®g C. Clearly
fc=¢aE.

Since Z is spin®, TZ & &g is spin. By a result of McLaughlin (Lemma 2.2, [26]), there
is a canonical class p. € H*(Z;Z) associated to the spin® structure such that

20 =p1(TZ & &) € HY(Z;Z).

However,
n(TZ @ &) = —2((TZ & &r) ®r C)
=—c(TcZ) — (@& —a(TcZ)a(E @ €) (2.8)
= (TZ)+ .
So
2. = p1(TZ) + 2.
Let
e 1= pe—2¢> € HYZ;Z)
and

Co() = \e + 20 € HYZ; 7).
Theorem 2.5. There is a degree 8 integral class p. such that

Pe = wg (mod 2),
( ) (2.9)
8pe = 4py — p2 — 6p1c? + 39¢2.

Moreover, the following identity holds,
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C. e — Ce(z)? ~ 1~
< (@)l o (z) ],[Z]> = <A(TZ)eC/2ch(VC (2) + SA(TZ)een(Te Z)
. (2.10)
A2 ablge 0 6 — e +2112]).
The existence of p. € H8(Z;Z) is proved in Theorem 5.1. Let
Pe = pe — 3)‘2'
In Theorem 5.1, it is also shown that
Pe = ws + w2 +wi (mod 2),
¢ = s b it (mod 2) (2.11)

8§c =4py — 7p% + 30]9162 - ].504.
Let
Ce(x) = A+ 2 € HY(Z; 7).

Theorem 2.6. The following identity holds,

<éc(x)[z’5c + 6).Co(z) — 4C.(z)?
12

,[Z}> = <21(Tz)ec/2ch(vc(x)) + A(TZ)e*ch(Te Z)
+ A(TZ)e>ch|~£c ® & + Ec + 246, [Z}> .
(2.12)

These two theorems are consequences of the factorization formulas for degree 12 char-
acteristic forms: (4.33) and (4.42) (proved in Section 4.2) and a direct computation of
the degree 8 components in (4.33) and (4.42).

Let U be a characteristic submanifold of Z. Let N be the normal bundle over U in
Z. Applying the Rokhlin congruence formula (2.1), we have

Theorem 2.7. The following identities hold,

< Ce(2)[pc —

12 Celel, [Z]> = Inda(D}Y) + Inda (DY ®N)  mod 2; (2.13)

and

<aumaw&aww4auﬂ[m>
12 ’

(2.14)
=Indy(DEY) + Indy (DNEN) + Indy (D5 Y ™) mod 2.

Please cite this article in press as: F. Han et al., Cubic forms, anomaly cancellation and modularity,
Adv. Math. (2021), https://doi.org/10.1016/j.aim.2021.108023




YAIMA:108023

F. Han et al. / Advances in Mathematics sss (ssss) seesee 21

Proof. Clearly i*TZ =2 TU @ N and i*{g = N.
Combining Theorem 2.5 with (2.1), we have, when mod 2,

<Cc(x)[pc — Ce(2)?] ’ [Z]>

12
= (2A(T2)e (Ve (@) + A(TZ)e 2en(Te 2) - ATZ)e g © & — &c +21,12])

s

—2Indy (D}, V™) + Indy(DEY) + Indy (DY) + Indy(DY®N) + Indy (DY) + 2Indy (Dy)
=Indy(DEY) + Indo (DY EN). (2.15)

Combining Theorem 2.6 with (2.1), we have, when mod 2,

Co()[Pe + 6ACe(z) — 4C.(2)?]

2]
12

= (AT 2)e2eh(Ve (2) + A(TZ)e/2ch(Te Z) + A(TZ)e/[~c @ bc + Ec +246], 7] )

=Indy (D5 ") + Indy(DFY) + Inda (DY) + Indy (DYEN) + Indy (DY) + 246Indy (Dyy)

—Indy(DEY) + Indo(DY®N) 4 Indy (DL Y ™). (2.16)

The desired formulas follow. O

By subtracting the corresponding sides of (2.3) from (2.13), and (2.4) from (2.14)
respectively, and then applying the Poincaré duality, we can show the following through
direct computations.

Corollary 2.1. Let e be the Euler class of N over U. The following identities hold,

6i4 (e-{24i*C(z)* — (4p1(TU) 4 10€*)i*C(z) + p1 (TU)?

—4ps(TU) + 6p1 (TU)e? — 21e*}, [U])

= Indy (DY) + Indo (DY EN) (2.17)
+ % <E(TU)ch (2i* Ve (z) + TeU + Ne — 4) tanh (Z) , [U]> mod 2;
and
6i4<e {48i*C ()% — (28p1(TU) + 10€?)i*C () + Tp1 (TU)?
—dpy(TU) + 6p1 (TU)e? — 21e*}, [U]) (218

= Indz(D}Y) + Ind2 (D)

+ % <A(TU)ch(i*vC (z) + TeU + Ng + 244) tanh (Z) : [U]> mod 2.
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Remark 2.1. Note that on the spin manifold U,
i C(x)zipl(TU)—I—Zz x, 1 C’(J;)zipl(TU)—l—z x.

The left hand sides of (2.17) and (2.18) give interesting integral quadratic forms on
H*(U;7Z) after being multiplied by 64.

Motivated by Corollary 2.1 and Remark 2.1, for any 10-dimensional closed spin man-
ifold B with an auxiliary complex line bundle £, we consider the following pairing on the
cohomology classes of degree 4:

L£°:HYB;Z)® HY(B;Z) » Z
defined by
L(z,y) = (xUyUc,[B]),

where ¢ := ¢1(§) € H?(B;Z) is the first Chern class of ¢ and [B] is the fundamental
class of B. This naturally defines a symmetric bilinear form on the free part of H*(B;Z),
which we denote by L°.

Furthermore, it was shown by Stong [28] that the 11-th spin bordism group over
the Eilenberg-MacLane space K (Z,4) is trivial, i.e., Q3*""(K(Z,4)) = 0. Since by Bott-
Samelson [6], K(Z,4) is homotopy equivalent to BEg up to 15 skeleton, it is also true
that

Q" (BEs) = 0.

This implies that the circle bundle S(&) of £, which is spin, bounds a 12-dimensional spin
manifold W such that any Es-principal bundle over S(§) can be extended to W. Again
by Bott-Samelson [6] that K(Z,4) is homotopy equivalent to BFEg up to 15 skeleton, the
isomorphism classes of Fg-principal bundles over any manifold M of dimension less than
15 are in one-one correspondence with the 4-classes in H*(M;Z). Let x € H*(B;Z)
correspond to a given FEg-principal bundle over B. Since the disk bundle D () of ¢
is homotopy equivalent to B, this Es-principal bundle is extended to D (&), and then
restricted to S(§) with a further extension to W. Now gluing D(§) with W along S(§),
we get a 12-dimensional closed spin® manifold

Z=D@) W
S(€)

such that there exists a principal Eg-bundles restricted to the given one over B. It is
clear that B is a characteristic submanifold of Z. Let V' (x) denote the real adjoint bundle
over B associated to the principal Eg-bundle determined by the class z. By Corollary 2.1
and Remark 2.1, we have
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Theorem 2.8.

L e (240(2)? - 4py(TB) + 102)C(x) + p1 (TB)?

64
_ ¢ —21ct
4ps(TB) + 6p1 (T B)c* — 21c*} [ B]) (2.19)
= Indo(D3F) + Indy (D5F%F)
n % <E(TB)ch (2Ve () + TeB + {¢ — 4) tanh (2) : [B]> mod 2;
and
6_14<C~ {48C(x)? — (28p1(T B) + 10¢*)C (x) + Tp (T B)?
_ & —21ct
4po(TB) + 6p1 (T B)c* — 21c*}, [B]) (2.20)

= Indy (D) + Indy (DO

~

+ % <A(TB)ch(VC (z) + Te B + &c + 244) tanh (2) , [B]> mod2,

where C(z) = ip1(TB) + 2z, and C(z) = ip1(TB) + =.
Remark 2.2. It is not hard to check that

6i4 {c-{24C(2)* — (4p1(TB) + 10¢*)C(z) + p1(TB)? — 4ps(TB) + 6p1 (T B)c?
—21c*},[B)),

and

61—4<c.{486(x)2—(28p1(TB)+10c2)(?(x)+7p1(TB)2 —4py(TB)+6py (T B)c*—21¢'}, [B])

are quadratic refinements of 3£¢ and 6L° respectively.

Now suppose Z has boundary and let Y be the boundary of Z with the induced spin®
structure. Assume all the involved metrics and connections are of product structures
near 0Z =Y. Let Dy, be the Atiyah-Singer spin® Dirac operator on Y.

Let

Co(@) = Ae(VT?) + 2
and
Co(#) = (V7)) + .

As (4.33) and (4.42) hold on the level of forms, by the Atiyah-Patodi-Singer index
theorem [1], we have the following formulas,
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Theorem 2.9. The following identities hold,
27( DY) 47Dy TeH) (DG 4TE) mod Z;

(2.21)

1 . .
E Cc(x)[pc(vTZ)ch(x)ﬂ =
7
and
= / Col@®) [Pl V77) + 6A(VTZ)C(#) — 4C(2)?)
7 (2.22)
Eﬁ(Dg}VC(w))—|—ﬁ(D§}1T‘CZ)+ﬁ(D§}_£C®§C+£C+246) mod Z.

3. Cubic forms on orientable 12-manifolds
In this section, we give the Witten-Freed-Hopkins type anomaly cancellation formulas
on 12 dimensional orientable manifolds, without assuming that the manifold is spin, spin®

or spin“2.
Let Z be a 12 dimensional oriented smooth closed manifold. Let
x (3.1)

L(z) =

T) =
tanh §

be the L-polynomial and L(TZ) be the L-class of TZ (cf. [24]). Let d, be the signature
operator on Z and W be a complex vector bundle over Z. Then by the Atiyah-Singer

index theorem ([3])
Ind(ds @ W) = (L(TZ)ch(W), [Z)).

For z € H*(Z;Z), let
—p1 + 2x.

D(z) =

Theorem 3.1. The following identity holds,
! <2E(TZ)ch(vC (2)) + 2L(TZ)ch(Tc Z)

D(z)[4p? — Tp2 — D(x)?] _
( G )=
+ L(TZ)ch(AX (T Z) — S2(Te Z)) — AL(T Z), [Z]> .
(3.2)

Let
D(z) = —p1 + .
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Theorem 3.2. The following identity holds,

<5<x>uﬁ ~ Tps — 6p1 D(x) — 4D(2)’] [Z]>
3 Y

<E(TZ)ch(VC (2)) + 2L(TZ)ch(Tc Z)

1
" 16
+L(TZ)ch(AX(Te Z) — S*(Te Z)) + 244L(T Z), [Z]> .

These two theorems are consequences of the factorization formulas for degree 12 char-
acteristic forms: (4.59) and (4.69) (proved in Subsection 4.3) and direct computations of
the degree 8 components in (4.59) and (4.69).

Now suppose Z has boundary and let Y be the boundary of Z with the induced
orientation. Assume all the involved metrics and connections are of product structures
near 0Z =Y. Let By be the signature operator on Y.

Denote

D(&) = —p1(VT?) 4 2%
and
D(#) = —p (V1) + &

As (4.59) and (4.69) hold on the level of forms, by the Atiyah-Patodi-Singer index
theorem [1], we have

Theorem 3.3. The following identities hold,

3 / D(@)aps (V72)? — Tpa(VTZ) — D(&)?)

(3.4)
_QTI(BV«:(JU)) + Zn(BTCZ) _‘_ﬁ(BQZ’(TCZ)—SZ(TCZ)) — 47(By) mod Z;
and
16 5 ~ ~ .
3/ B)[p1(VT2)2 — Tpo(VTZ) — 6p1 (VTZ)D (%) — 4D(%)?]
2 (3.5)
=7(BY @) 4+ o5(BT?) + {(BY TeD=5TeD) | 9447(By) mod Z.
4. Proofs

The purpose of this section is to give proofs to Theorem 2.5, Theorem 2.6, Theorem 3.1
and Theorem 3.2. In order to conduct the proofs, we first briefly review some basic
materials on the representation theory of affine Eg following [20] (see also [21]).
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4.1. The basic representation of affine Eg

Let g be the Lie algebra of Eg. Let ( ,) be the Killing form on g. Let g be the affine
Lie algebra corresponding to g defined by

g=Clt,t 'J@gaCe,
with the bracket

P ® 430, QO) 5+ 1] = PO ® [r.1] + (r.5) Reseco (T 2000 )

Let g be the affine Kac-Moody algebra obtained from g by adding a derivation t%
which operates on C[t,t~!] ® g in an obvious way and sends ¢ to 0.

The basic representation V(Ag) is the g-module defined by the property that there is a
nonzero vector vy (highest weight vector) in V(Ag) such that cvy = vy, (C[t] & Ct )y, =
0. Setting V := {v € V(A0)|t% = —kv} gives a Z-grading by finite spaces. Since
[g,d] = 0, each V}, is a representation py of g. Moreover, p; is the adjoint representation
of Fg.

Let ¢ = e2™V~17 7 € H. Fix a basis for the Cartan subalgebra and let {z;}3_; be the
corresponding coordinates. The character of the basic representation is given by

oo

Ch(213227 e 728a7—) = Z(Chvk)(zlvz% e ,28)qk = ()0(7—)_8@9(213227 e 728a7—)7
k=0

where ¢(7) = [[°2,(1 — ¢") so that n(r) = ¢*/?*¢(7) is the Dedekind 7 function;

O©g(21, 22, , 28, 7) is the theta function defined on the root lattice @ by
Og(21, 22, ,28,7) = 3 g1 /2e2mV/ "1,
veQ
where 7 = (21, 22, - , 28).

It was proved in [12] that there is a basis for the Egs root lattice such that

8 8 8 8
Og(21,++ .28,7) = % <H 0(z1,7) + [ [ 01z, 7) + [ [ 0221, 7) + HQ?’(ZZ’T)) , (41)
=1 =1 =1 =1

where 6 and 6; (i =1, 2, 3) are the Jacobi theta functions (cf. [8] and [15]):

0(v,7) = 2¢"/% sin(mv) H[(1 — )1 = VI (1 — eV (4.2)
01(v,7) = 2¢"/3 cos(mv) H[(l —¢)(1+ 62”\/__1”qj)(1 + 6_2”‘/__1”qj)], (4.3)
j=1
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92(1},7') _ H[(l o qj>(1 . 627r\/—_1vqj—1/2)(1 _ e—27r\/—_11)qj—1/2>], (44)
j=1
O3(v,7) = ﬁ[(l — )1+ TGP T2 (1 4 eI ) (4.5)

Il
_

J

The theta functions satisfy the following transformation laws (cf. [8]),

_ S\ 12 ,
O(v,7+1) = 6"\/4_0(’1},7'), 0(v,—1/7) = \/%_1 (\/__1> g™V 1T 0 (rv,7) ; (4.6)
/=1 T 1/2 2
Or(v,7+1) =T Oy(v,7), 6 (v,—1/7)= (\/_1) eV (ro, 7)1 (4.7)
T 1/2 2
Oo2(v, 7+ 1) =03(v,7), 0O3(v,—1/7)= <\/__1> g™V 1T 01(Tv,7) ; (4.8)
T 1/2 2
Os(v, 7 +1) = 05(v,7), 0s(v,—1/7) = <\/__1) ™I 05 (1o, 7)) (4.9)

4.2. Proof of Theorem 2.5 and Theorem 2.6
Now we are ready to give the proofs.

4.2.1. Proof of Theorem 2.5
The proof of the statement (2.9) about p. can be found in Theorem 5.1.
For the principal Eg bundles P;, i = 1,2, consider the associated bundles

o0

V=Y (P, Vi) d* € K(2)][g]).
k=0

Let W; = P; x,, Vi,i = 1,2, be the complex vector bundles associated to the adjoint
representation p;.
By the knowledge reviewed in Section 4.1, we see that there are formally two forms
yi (i=1,2and 1 <1< 8) on Z such that
1 . 8 . 8 . 8 .
wm%wm2<ﬂw%ﬂ+ emmﬂ+H%@WﬁdI%ww0- (4.10)
1 1=1 1=1

=1 =

Since 0(z,7) is an odd function about z, one can see that up to degree 12, the term
H?Zl (yi, ) can be dropped and therefore we have

8 8 8
oV = = ([[oswi) + [ 02 ) + [ 0swiom) ). (411)
2 =1 =1 =1
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Since 01(z,7),02(z,7) and 03(z,7) are all even functions about z, the right hand side
of the above equality only contains even powers of y;'»’s. Therefore ch(WW;) only consists
of forms of degrees divisible by 4 (this is actually a basic fact about Eg). So

ch(V))=1+ch(Wy)g+--- =1+ (248 —co(W;) +---)g+--- . (4.12)

On the other hand,

8 8 8 8
% (H 01(yi,7) + [ [ 2w, 7) + H03<yf,r>> =1+ (240 +30> (y)* +- ) 4+0(q°).
=1 =1 =1 =1
(4.13)

From (4.11), (4.12) and (4.13), we have

8
S W)’ = —%@(Wi). (4.14)
=1

Let T'Z be the tangent bundle of Z and T Z be its complexification. Let £ be a rank
two real oriented Euclidean vector bundle over Z carrying a Euclidean connection V.
Let ¢ = e(¢, V) be the Euler form canonically associated to V.

If F is a complex vector bundle over Z, set E = E — C™*(®)_ Recall that for an
indeterminate t,

M(E)=Clg +tE+t* N> (E) +---, Si(E)=C|z +tE+t*S*(E)+---, (4.15)

are the total exterior and symmetric powers of E respectively. The following relations
between these two operations hold (cf. [2]),

Sy(E) = AM(E — F) = . (4.16)

Following [9], set

O(TcZ, &c) == <m§ils (TcZ)) ® ( ® Aq (E«:)) (Elf\_quuz (55))

<®Au 172 f(C)

where {¢ is the complexification of &.
Clearly, ©(Tc Z, {c) admits a formal Fourier expansion in ¢ as

G(TCZaEC):(C_i_qu—"_B?qQ B (417)
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where the B;’s are elements in the semi-group formally generated by complex vector
bundles over Z. Moreover, they carry canonically induced connections denoted by VZi’s
Let V® be the induced connection with g-coefficients on ©.

For 1 <4,5 <2, set

(P77 L€, ) . {624E2(T)(p1(TZ) 3C2+$(c2(Wi)+C2(W]‘)))A\(TZ)
2 (4.18)
x cosh ( ) ch (6(Tc Z,&c)) @(T)lﬁch(Vi)ch(Vj)} .

Here

By (7) :1—24i Yd|q" (4.19)

n=1 dln

is the Eisenstein series. Unlike the other Eisenstein series Far(7),k > 1, Eo(7) is not
a modular form over SL(2,Z), instead E5(7) is a quasimodular form over SL(2,7Z),
satisfying:

at +b\ 5 6v/—1c(ct +d)
E, (CT—I—d) = (et +d)°Eq (1) — — (4.20)

In particular, we have

EQ(T =+ ].) = EQ(T), (421)
By (-%) = 72By(r) — 6v—Ir (4.22)

™

(cf. Chap 2.3 in [7]).
Lemma 4.1. Q(P;, P;,&, 1) is a modular form of weight 14 over SL(2;Z).

Proof. Let {+2mv/—1z;}(1 < k < 6) be the formal Chern roots for (TcZ, VTc?). Let
c=e(&,V4) = 2ry/—1u. One has

(P“ f, ) {624E2(7)(p1(TZ) 3c? + 35 (c2 (W) +ca (W. ));[(TZ) cosh (g)

xch (O(Tc Z, &¢)) () Sch (Vi)eh(V;) 1P
a1 3624 (e (W) co (W 0'(0, 1)
_ 24E2(T)(P1(TZ) 3c +30(92(W1)+02(W3)) )
{e (,H <“e<xk,r>>>

. 01(u, ) O2(u, 1) O3(u, 7)

61(0,7) 02(0,7) 65(0,7) (4.23)
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1 8 . 8 . 8 .
. Z (Hal(yllﬂ—) + H92(y;77) + HGS(yllvT)>
=1 =1 =1
8 8 8 (12)
: (H&(yfaf) + ] 020, 7) + H93(yzjﬁ)> } :
=1 =1 =1

Then we can perform the transformation laws (4.6)-(4.9) for the theta functions and
the transformation laws (4.21), (4.22) for Ea(7) to show that Q(F;, Pj, &, 7) is a modular
form of weight 14 over SL(2;Z). O

Expanding the g¢-series, using (4.12), (4.17) and (4.19), we have
A BT 3 eV a0 A(1 2) cosh (£)

-ch (O(Tc Z,&¢)) @(7)Cch(Vi)ch(V;)
= (6214(171(712)3C2+310(62(Wi)+62(Wj))) _ 31 (P1(T2)=3¢"+ g5 (ca(Wi)+e2(W))))

(m2) =3¢+ W) + eaW)) 4+ 0 )

~

- A(T'Z) cosh (g) ch(C + Big + O0(¢%))(1 — 16¢ + O(¢?))

~(1+ ch(Wi)g + O(q*)) (1 + ch(W))g + O(¢*))
— 31 (P1(T2) =3¢ 455 (2(Wi)+e2 (W) A(T Z) cosh (§>
+q (eﬁ(pl(TZ)73c2+%(62(Wi)+62(Wj)))A\(TZ) cosh (g) ch(By — 16 + W; + W;)
— 31 (P1(T2)=3¢"+ 55 (c2(Wi)+e2 (W) <p1(TZ) — 32+ 3_10(02(Wi) + CQ(WJ-)))
-~ . E 9
A(TZ) cosh (2)) +0(c?). (4.24)

It is well known (cf. Chap 2.1 in [7]) that modular forms over SL(2;Z) can be expressed
as polynomials of the Eisenstein series F4(7), Eg(7), where

Ey(7) = 1+ 240q + 2160¢® + 6720¢° + - - -, (4.25)
Eo(7) = 1 — 504q — 16632¢* — 122976¢° + - - - . (4.26)

Their weights are 4 and 6 respectively.
Since the weight of the modular form Q(P;, P;,{,7) is 14 and the space of modular

forms of weight 14 over SL(2,Z) is 1-dimensional and spanned by E?(7)Es(7) (cf. Chap
2.1 in [7]), it must be a multiple of

Ey(7)?Ee(t) =1—24q+--- . (4.27)
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So from (4.24) and (4.27), we have

—~ 12
{eﬁ(pl(TZ)—3c2+%(CQ(Wi)+C2(Wj)))A(TZ) cosh ( ) Ch(Bl 16+ W+ W )}( )

_ {6214(pl(TZ)—3cz+310(Cz(Wi)+Cz(Wj))) (pl(TZ) —3c2 + 3_10(62(1/[/1.) + cz(Wj))>
. ey ) (12
- A(TZ) cosh (5) }
~ (12)
—_ 94 {eﬁ(pl<TZ)—3c2+$<c2<wi>+c2<wj>>)A(TZ) cosh <2>}
(4.28)

Therefore
~ c (12)
{A(TZ) cosh (5) ch(W; + W, + By + 8)}

1
- (pl(TZ) — 3%+ %(CQ(WZ-) + cz(Wj))>
eﬁ(pl(TZ)_3C2+%(CQ(Wi)JFCQ(Wj)) -1
p1(TZ) — 3¢ + & (ca(Wi) + c2(W;))

A(TZ) cosh (g) ch(W; + W, + By +8)

(®)
31 (1 (T2) =34 55 (2 (W +e2 (W) A(T Z) cosh (g) } '
(4.29)

To find By, we have
O(TcZ,&c)

:( & Sqm (@)) ® ( ) (6_9 qu—1/2( &c)) (vglAqvw(gE))
q+0(q%).

—1+(T<c271273§<cf§<c®§c) O(q
(4.30)
So
By =TcZ — 12 — 3¢c — &¢ ® Ec. (4.31)
Plugging Bj into (4.29), we have
~ c (12)
{A(TZ) cosh (5) ch(W; + W, + TeZ — 4 — 3¢ — E¢ ®g<c)}
1
—(1(12) -3¢ 4 g eal) + ea())
21 (P1(T2) =3+ 45 (c2(Wi)+ea (W) _ 1
P - A(TZ) cosh (f) (4.32)
p1(TZ) =3¢ + 35(ca(Wi) + ca(W)) 2
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-ch(W; + W; + TcZ — 4 - 3¢c — &c ® &c)

(8)
1P (T2) =3¢+ 35 (2 (W) +e2(W5) A(TZ) cosh (g) } .

Since ch(W;), ch(W;) only contribute degree 41 forms, we can replace cosh () by e2.
Then in (4.32), putting W; = Wy = Ve(x), we get
1
2

- . N . R . Yy
{A(TZ)e2ch(VC () + =A(TZ)ez2ch(Tc Z) — %A(TZ)eich(él +3c +&c ® fC)}

TZ) — 3c? 1
(2= L)
(P1(TZ)=3c2+ 12 (Ve (%)) _ 1

' {_ pi(TZ) =3¢ + Lea(Ve())

~

A(TZ)e?ch(A)

+ B (P (T2) =33+ e2(Ve @) A(T7)e }(8)’
(4.33)
where
A=2Ve(z) + TeZ — 4 — 3&c — ¢ ® Ec.
It is not hard to check that 4+3§6+E&®5€ =& ®&c —€&c + 2 and

TZ)—3c2 1
% + s5a(Ve(@)) = Ao+ 20 = Cula).

A direct computation shows that the 8-form in the right hand side of (4.33) verifies

e31 (P1(TZ)=3c"+ 2 (Ve (2)) _ 12(TZ) £ ch(2)
— ezc
p1(TZ) =3¢+ Lea(Ve(z))
© 2 (4.34)
§ BTN 2 (e 0) (775 } =t
We therefore get (2.10), and have completed the proof of Theorem 2.5.
4.2.2. Proof of Theorem 2.0
For each i, set
R(Pz, ga T)
~ (12)
= { BB D=8 552 000) A7 7) cosh () ch (O(Te Z,£c)) p(7)*ch(Vy)}
(4.35)

Please cite this article in press as: F. Han et al., Cubic forms, anomaly cancellation and modularity,
Adv. Math. (2021), https://doi.org/10.1016/j.aim.2021.108023




YAIMA:108023

F. Han et al. / Advances in Mathematics sss (ssss) seesee 33

Lemma 4.2. R(P;, &, 7) is a modular form of weight 10 over SL(2;Z).

Proof. This can be similarly proved as Lemma 4.1 by seeing that

R(P;,&,7)

{eﬂEz(T)(pl(TZ)_3C2+%C2(W (12)

72) cosh ( & ) ch(O(TcZ,&c)) p(r)*ch(V;) }

A(
6
624E2(T)(101(TZ) 3¢+ g5 e (W5)) H P 6/ 61 (U,T) 92(u7T) 03(u77—)
9(581, 01(0,7) 62(0,7) 05(0,7)

l

-1

WA ' 8 ' 8 (12)

5 <H 91(yll,7') +H92(yl17 +H93 ylv ) } ) (436)
=1

=1 =1

and then we can perform the transformation laws (4.6)-(4.9) for the theta functions and
the transformation laws (4.21), (4.22) for E5(7) to show that R(P;,&,7) is a modular
form of weight 10 over SL(2;Z). O

Similar to the proof of Theorem 2.5, expanding the g-series, using (4.12), (4.17) and
(4.19), we have

eﬁ@(T)(Pl(TZ)*302+%C2(W1'));1\(TZ) cosh (g) ch (0(Tc Z,&éc)) o(T)3ch(V;)

_ <e214 (p1(TZ)—3c2+ 35 c2(W3))

— B T2 5 dyea (W) (p1<:rz> 5oy %@(w)) 1+ 0l ))

- A(TZ) cosh (5 ) eh(C + Big + O(g*))(1 = 8¢ + O(¢)) (1 + ch(Wi)q + O(q*)
o (p1(TZ) =32+ L ea(Wi)) 7 3. (€
=e24\P A(TZ) cosh (2)

+q <e24 (p1(T2)=3¢*+552(W) A(TZ) cosh (g) ch(By — 8 + W;)

_ 21 (p1(T2) =3¢+ grea (W) <p1(TZ) 324 31062(Wi)> A(TZ) cosh (;))

+ O(g%).
(4.37)

However modular form of weight 10 must be a multiple of (cf. Chap 2.1 in [7])
Eym)Es(7) =1—264g+ - . (4.38)

So from (4.37) and (4.38), we have
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L (p1(TZ) =3+ L ea (W) 7 ¢ (12)
{624 p1 30 ©2 A(TZ) cosh (5) ch(B; — 8+ WZ)}
(12)
(01 (T2) =3¢+ & ca(W)) A ¢
—{e24 30 pl(TZ) — 30 + %CQ(W) A(TZ) cosh 5

=—2064 {eﬁ(pl(TZ)_SCu%C?(W’i))E(TZ) cosh (g) }(12) .

(4.39)
Therefore
~ (12)
{A(TZ) cosh (9) ch(W; + By + 256)}
2
1
& (p1(TZ) =3¢+ 52 (W) _ 1 ~ (4.40)
ez c
S Q= A(TZ h (=) ch(W; + By + 256
{ p1(TZ) = 3¢ + 35c2(W;) (TZ) cos (Q)C (Wi + By + 256)
(8)
+ €21 (P1(T2) =3+ 35¢2(W) A(T 7) cosh (E) } .
2
Plugging in By (see (4.31)), we have
~ c (12)
{A(TZ) cosh <§> ch(W; + TeZ + 244 — 36c — ¢ @ &c)}
1
= <p1 (TZ) - 3¢ + %CQ(W;))
(4.41)

et TD 7302 1 207 cosh () eh(Wi + TeZ
A Y 5 it
W (TZ) 33 + Loy Z)eos (5) et ¢

(8)
+244 — 3¢¢ — £¢ ® &) + €21 (1 T2) =34 55e2(W) A(T 7) cosh (g) } .

) by e2. Taking

Since ch(W;) only contributes degree 4/ forms, we can replace cosh (%

W,; = Ve (z), we have

{E(TZ)e%ch(vC (x)) + A(TZ)esch(Tc Z) + A(TZ)e ch(244 — 3¢c — &c ® &c)}m)

A(TZ)

30

1 e31(P1(TZ2)=3c+g5e2(Ve () _
— (pl(TZ) 3c2 + —co(Ve(z )))

n(TZ) =32 + 5¢2(Ve ()

®)
-e2ch(B) + ei(m(TZ)—Bc?%cz(Vc(r)))E(Tz)e%} ;

(4.42)
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where
B = Ve(z)+ TeZ +244 — 3¢c — éc ® E¢.

Tt is not hard to check that 244 — 3¢c — ¢ ® & = 246 — & @ &c + & and

p1(TZ) — 3¢ + %CQ(V(C () =2\ + 22 = 25c(x).

A direct computation shows that the 8-form in the right hand side of (4.42) verifies

eﬁ(p1(TZ)—3c2+3—loc2(VC(z))) _ 1A\(TZ) . h(@)
— ezc
p(TZ) —3c%+ %cz(vc(x))
(®)
4+ o1 (pl(TZ)—3C2+%62(VC(I)))E(Tz)eé }

Do+ 6MCo(x) — AC.(2)?
B 24 '

We therefore get (2.12), and have completed the proof of Theorem 2.6.
4.3. Proof of Theorem 3.1 and Theorem 3.2

4.8.1. Proof of Theorem 3.1
Following [9], set

01(1c2) = & A (Te2)) € K@)l (4.43)
0u(1c2)i= ( B0 prn(eZ) ) € K(2)a"]] (4.44)
0u(te2) = 3 Apern(TeD)) € K@) (445
Construct ([25])
B(TeZ) = O(Te Z) © 0, (Te Z) © 05 (Te Z) © 05 (Te Z) € K (2)[[4)] (4.46)
and define
Wi (TZ) = e 2B T L(TZ)ch(B(Te Z)) € H* (TZ,Q). (4.47)

We call W;(T'Z) the L-Witten, class of TZ.
Perform the formal Fourier expansion in ¢ as

D(TcZ) =O0(TcZ2)© 01 (TcZ) © O, (T Z) © O3 (Te Z) = C+ Dig+ Dag® - -+, (4.48)
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where the D;’s are elements in the semi-group formally generated by complex vector
bundles over Z. Moreover, they carry canonically induced connections denoted by VP4’s

Let V® be the induced connection with g-coefficients on ®.
For 1 < 4,5 < 2, construct the twisted L-Witten class

e B2 (2 (T2 450 (W tea W) T(T Z)ch (B(T Z)) () ch(Vi)ch(Vy) € H*(Z,Q)

(4.49)
and denote
Qr(P;, Py, 1)
~ (12)
{624E2(T)( 2”1(TZ)J“S%(CZ(WI‘)“?(WJ')))L(TZ)ch(CIJ(TCZ))@(T)lﬁch(Vi)ch(Vj)} .
(4.50)

Lemma 4.3. Qp(P;, Pj,T) is a modular form of weight 14 over SL(2;Z).
Proof. Let {£+2m\/—1z;}(1 < k < 6) be the formal Chern roots for (T¢Z,VIcZ). One
has

QL (Pw P'v T)

~ (12)
{624E2(T)( 2p1(TZ)+ﬁ(cz(Wi)+CQ(Wj)))L(TZ)Ch(@(TCZ)) (T)IGCh(VZ‘)Ch(Vj)}

_96 ) o B2 () (=201 (TZ)+ 35 (ca (Wi)+e2(W;)) H k '(0,7) 01(wg, 7) O2(wk, 7) O3(wk, 7)
l'k, 01(0’7—) 92(077-) 93(077-)

8 8
i <H 01(yi,7) + [ [ 02(vi,7) + Hes(yf, T))
=1 =1 =1
8 ‘ 8 _ 8 ‘ (12)
: (H 01(yi,7) + [ [ 0206, 7) + Hes(y{ﬁ)) } : (4.51)
=1 =1 =1

Then we can perform the transformation laws (4.6)-(4.9) for the theta functions and
the transformation laws (4.21), (4.22) for Es(7) to show that Qr(P;, P;, ) is a modular
form of weight 14 over SL(2;Z). O

Expanding the g-series, using (4.12), (4.19) and (4.48), we have

et (M2 T (W) 220N LT Z)ch (2(Te 2)) (1) Cch(Vy)eh (V)

_ (ei (=2p1 (T Z)+ 25 (c2 (W) +c2 (W)

o eﬁ(72171(TZ)+%(C2(W1)+62(WJ‘))) (—Qpl(TZ) +
30

L(TZ)ch(C + Dig + 0(g%))(1 — 16 + O(¢*))(1 + ch(Wi)g + O(¢?)) (4.52)

L <W>+cQ<W>>)q+o< >>
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- (1+ ch(W;)q + O(¢?))
:e;_4(_2p1(TZ)"F%(CZ(Wi)+C2(Wj)))E(TZ)

tq <€214(2P1(TZ)+310(C2(Wi)+02(W7')))E(TZ)Ch(Dl — 164+ W; + W)

1 -~
_ e31(m201(T2)+ 55 (c2(Wi)+e2 (W) <_2p1(TZ) + %(CQ(Wi) + CQ(W],))> L(TZ))

+0(¢).
Since the weight of the modular form Q(P;, P;, ) is 14, it must be a multiple of
Ey(1)Eg(1) =1—24q+ --- . (4.53)

So from (4.52) and (4.53), we have

{eﬁ(—2p1(TZ)+%(cz(Wi)-&-cz(Wj)))Z(Tz)Ch(Dl 164 W, + Wj)}(lQ)

_ {6214 (=2p1(TZ)+ 55 (c2(Wi)+c2(W5)))
) (12) (4.54)
(=22 + el +ex()) E(TZ)}

(12)

= — 24 AT Watea W [(T7))
Therefore

L (12)
{L(TZ)Ch(Wi + W+ D1+ 8)}

1
—(~2n(12) + g5eal) + eal))
{ 31 (=201 (T 2)+ g5 (c2(Wi)+e2(W))) _ 1 (4.55)

T2 (T2) + 5 (ea(Wy) + ca(W))) L(TZ)ch(W; + W, 4+ Dy +8)

(8)
+6214(_2p1(TZ)+310(02(Wi)+02(Wj))E(TZ)} )
To find Dy, we have

0(1c2) = ( 5 5,TeD)) o 3 A (Te2) )

< T Pay e 4.56
® <n@1Aqu1/2 (T(CZ)) & (n@ll\qul/z (TCZ)> ( )

=1+ (2TcZ + NA(Tc Z) — S*(Tc Z) — 12)q + O(¢?).
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So
Dy =2TcZ + N (Tc Z) — S*(Tc Z) — 12. (4.57)

Plugging D, into (4.55), we have
~ (12)
{L(TZ)ch(Wi + W+ 2T Z + NA(Te Z) — S2(Te Z) — 4)}
1
~ (2T 2) 4 gylaW) + ()

o (221 (T2) 4y (ea(Wo)ea(W))) _ 1 T — (4.58)
. C + + 21¢c
—2p1(TZ) + 35 (ca(Wy) + ca (W)

(8)
NATeZ) — SH(TcZ) — 4) + e2i (Z2P1(TZ)+ g5 (ca(Wa) +ea (W, ))Z(TZ)} _

Putting W, = Wy = Ve (), we get
<2T;(TZ)ch(vC (2)) + 2L(TZ)ch(Tc Z)

+ L(TZ)ch(AX(Tc Z) — S2(Te Z)) — AL(TZ), [Z]>

e31 (=201 (TZ)+F5c2 (Ve () _ 1 .
- (0 + gt {_ 7T Lt LaA@ ¢
15

(8)
' +6214(zpl(TZ)+11562(V<c(I)))E(TZ)} )

where
¢ =2Ve(x) +2Tc Z + N (Tc Z) — S*(Tc Z) — 4.
Note that the 4-form
—2m(TZ) + %CQ(VC (x)) = 2D(x).

A direct computation shows that the 8-form in the right hand side of (4.59) verifies

L(TZ)ch(€)

{ e31 (=201 (T2)+ s ea (Ve () _ |

—2p1(TZ) + 52 (Ve (2)) (4.60)
60

(8)
+ 6214(2p1(TZ)+115302(VC(I)))E(TZ)} — g (410% — Tpy — D(x)Z) )
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We therefore get (3.2), and have completed the proof of Theorem 3.1.

4.83.2. Proof of Theorem 3.2
For each i, construct the twisted L-Witten class

21 B2 (N (=201(T2) 4552 WI) (T 7)ch (®(Te Z)) o(7)8ch(V;) € H*(Z,Q) (4.61)

and set
! 1 -~ (12)
Ri(P,7) = {eﬂE2(T)(_2p1(TZ)+%C2(Wi))L(TZ)ch (®(Tc2)) go(T)SCh(Vi)} . (4.62)
Lemma 4.4. R (P;,7) is a modular form of weight 10 over SL(2;Z).

Proof. This can be similarly proved as Lemma 4.3 by seeing that

RL(PZ‘,T)
) . - (12)
_ {eﬂmr)(—m<TZ>+W2<W0> L(TZ)ch (B(Tc 7)) cp(T)gch(Vi)}
—96 ) o 3i Ba(7)(~2p1 (T 2)+ g ea (W) ﬁx 0(0,7) 0r(2x, 7) Oa(ws, 7) Os(@,7) | (4.63)
"0(zr,7) 01(0,7) 02(0,7) 05(0,7)

k=1
e s 8 (12)
) (Hel(y;ﬂ')+H92(y;77)+H93(y;77)>} ’
=1 =1 =1

and then we can perform the transformation laws (4.6)-(4.9) for the theta functions and
the transformation laws (4.21), (4.22) for Es(7) to show that Rp(P;,7) is a modular
form of weight 10 over SL(2;Z). O

Expanding the g-series, using (4.12), (4.19) and (4.48), we have
e2: 22 T30 WL (T Z)ch (®(Tc Z)) o(r)Pch(Vi)

_ <6;4<2p1<Tz>+;)c2<wi>>

1 1 1
— e (721 (T2 +35ea(Wi) <_2p1(TZ) + %@(WJ) q+ O(q2)>
- L(TZ)ch(C + D1g + O(¢*)(1 — 8¢ + O(¢*))(1 + ch(Wi)g + O(¢?))
262_14(_QPI(TZH%Q(W”)Z(TZ)

tq <€214(2p1(TZ)+31002(W7:))E(TZ)Ch(D1 — 8+ W) (4.64)
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1 1 1 ~
— 23 (F (T D)+ 55 e2(W2) (—2p1(TZ) + %CQ(Wi)> L(TZ)> +0(q°).

However modular form of weight 10 must be a multiple of
Ey(m)Eg(7) =1—264g+ - . (4.65)

So from (4.64) and (4.65) we have
L (=2p1(T2)+ L ca(Wi)) T (12)
{624( 2p1(T Z)+gz5¢2( %))L(TZ)Ch(Dl — 84 Wz)}
) ~ (12)
- {e%—?m(”)%cz%)) <—2p1(TZ) + %CQ(Wi)) L(TZ)} (4.66)
1 1 -~ (12)
— 264 {eﬁ(_2p1(TZ)+%C2(Wi))L(TZ)} .
Therefore

~ (12)
{L(TZ)ch(Wi LD+ 256)}

- <—2p1(TZ) + %&(M))

{ e31 (=201 (T2)+ge2(Wi)) _ 1 (4.67)

L(TZ)ch(W; + Dy + 256
_Qpl(TZ) + 3—1062(WZ) ( ) ( ! )
(8)
+ez~14(2P1<TZ>+5002<Wi>>E(TZ)} .
Plugging in D; (see (4.57)), we have

~ (12
{L(TZ)ch(Wi Y2 Z + N(TeZ) — SA(TeZ) + 244)}

30

1 e31(=2p(TZ)+35c2(Wi)) _ 1
- (—2p1<TZ> ; —cQ<Wz»>) -

om0 + Ty ATY) .

~ch(W; +2Tc Z + N (Tc Z) — S*(Tc Z) + 244)

(8)
+e214(2p1(TZ)+§oCQ(Wi))E(TZ)} |

Taking W; = V¢ (), we have
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{LT2)eh(Ve (@) + 2Tc Z + nX(Tc Z) - $*(Tc Z) + 244)}(12)

9 (TZ 1 v e21(—2p1(TZ)+ 552 (Ve (2))) _ 1E 77
= —_ +7 —
(2nr2)+ geaVe) {7t Tonveey HT)

(4.69)
(8)
-ch(D) + eﬁ(—2p1(TZ)+%CQ(Vc(@))E(Tz)} ’
where
D =Ve(x)+2TcZ + N2 (Tc Z) — S*(Tc Z) + 244.
Note that the 4-form
1 ~
—2p1(TZ) + %CQ(VC (z)) = 2D(x).

A direct computation shows that the 8-form in the right side of (4.69) verifies

e21 (—2p1(TZ)+55c2(Ve (2)) _ q
—2p1(TZ) + s5¢2(Ve (2))

:§ (p% — Tp2 — 6p1D(x) — 45(55)2) :

®)
L(TZ)ch(D) + ezi(2P1<TZ>+§>C2<V«3(I>>>E(TZ)}

We then get (3.3), and have completed the proof of Theorem 3.2.
5. The characteristic classes in the cubic forms

The spin® characteristic classes are determined by Duan [10] by computing the integral
cohomology of its classifying space BSpin¢. Let ¢ € H?(BSpin®) be the class with the
mod 2 reduction

¢ = wy mod 2,

where wo is the second Stiefel-Whitney class. Then by a theorem of Duan [10] (cf. Thomas

[29])
H*(BSpin®) = Z[e, q1, g2, g3, - - ] ® (the 2—torsion part), (5.1)

where g; is called the the i-th universal spin® class with deg(q;) = 4i. The spin® classes
determine the Pontrjagin classes. In the low dimensions, we have

p1=2q1 + ¢,
P2 = 2g> + qi, (5.2)
P3 = gs.
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The relations between spin® classes and Stiefel-Whitney classes can be described by the
mod 2 reductions of spin® classes (cf. Benson-Wood [5]). In the low dimensions,

q1 = w4 mod 2,
g2 = wg mod 2, (5.3)

g3 = w2 mod 2.

To obtain spin characteristic classes, we can simply let ¢ = 0 in (5.1) and (5.2). In this
case, (5.3) is still valid. Notice that in Freed-Hopkins [11], they denoted ¢; by A and ¢a
by p. With the above in hand, it is easy to calculate the following

Theorem 5.1. Let M be any spin® manifold with the determinant class ¢ € H?(M).
(i) One has

dpy — p? — 6p1c® + 39c* = 8(qz2 — 2q1¢* + 4ct).
Hence,

4py — p? — 6p1c? + 39¢
Pc = 3

is well defined and
Pe = wg mod 2.
(ii) One has
dpy — Tp? 4+ 30p1c? — 15¢* = 8(qo — 3¢ +4q1® + ¢*).

Hence

~ 4py — 7p% +30p1c? — 15¢4
Pec = S

is well defined and
Pe = wg + w? +wj mod 2.
(#ii) p. and p. satisfy
Pe = pe —3\2,
where

1
Ae = 5(]31 -3 =q — ¢,
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and
Ae = wy + w% mod 2.
Theorem 5.2. For any orientable manifold,

4p% —Tpy = wi mod 2,

p? — Tpy = w) + w? mod 2.
6. Obstruction classes of spin® and spin“? structures

Definition 6.1. An oriented closed manifold M is called spin® if its second Stiefel-Whitney
class wo (M) can be realized as that of some real vector bundle & of rank 2 over M, that
is,

wa (M) = wa(§).

The concept spiné is a generalization of spin®. Indeed, M is spin® when £ can be
chosen to be orientable. However, there are non-spin® spin manifolds.

Definition 6.2. An oriented closed manifold M is called spin®? if wy (M) can be realized
as that of some nonorientable real vector bundle £ of rank 2 over M.

Recall that the obstruction class to spin® structure is the third integral Stiefel-Whitney
class W3(M) € H3(M;Z). In contrast, we need to use cohomology with local coefficients
(or twisted cohomology) to investigate the obstructions of spin® and spin“? structures.
There are two standard ways to define cohomology with local coefficients: via module
over the group ring of fundamental group, or via bundle of groups (for instance, see
Hatcher, Section 3.H of [17]). They correspond to each other in a natural way.

Here, we deal with the obstruction problem for the homotopy lifting diagram

BO(2)
LT e (6.1)

M K(2/27,2),
- K(z/22,2)

where K(Z/27,2) is Eilenberg-MacLane space, and ws represents the second universal

Stiefel-Whitney class. For the classifying space BO(2), the first universal Stiefel-Whitney
class

w1 € H'(BO(2);Z/27Z) = Hom(7,(BO(2)), Aut(Z) = 7./27)
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determines a bundle of groups Z“* — BO(2) with fibre Z. Moreover, BO(2) is a gener-
alized Eilenberg-MacLane space in the sense of Gitler [13], and by Theorem 7.18 of [13],
for any t € H*(M;Z/2Z) = Hom (w1 (M), 71 (BO(2)))

(M, BO(2)): = H*(M; Z"), (6.2)

where the set [M, BO(2)]; C [M, BO(2)] consists of the classes of maps f such that f, =¢
on fundamental groups, and the local coefficient (or the bundle of groups) Z* = t*(Z*1).
From the short exact sequence of bundles of groups

027 27" 5 7/27 — 0,
there exists a long exact sequence of cohomology with local coefficients
o HA(MGZY S HA(M; 2 53 HA(M;2/22) 5 B3 (M2t — - (6.3)

where ps is the mod-2 reduction to the cohomology with the untwisted coefficient Z /27,
and ¢ is the t-twisted Bockstein homomorphism. Let us call Wi(M) := B (wq(M)) the
third t-twisted integral Stiefel-Whitney class. Set M = BO and t = wy, we have the third
universal t-twisted integral Stiefel-Whitney class

W3 = " (we).

In particular, for t = 0 W9(M) = W5(M) is the usual third integral Stiefel-Whitney
class.

Theorem 6.1. An oriented closed manifold M is spins if and only if
Wi(M) =0,
for some t € HY(M;Z/2Z).

Proof. From the exactness of the sequence (6.3), Wi(M) = 0 is equivalent to that

wa(M) = pa(ct) for some ¢! € H?(M;Z?), which by (6.2) is equivalent to the existence
of a real vector bundle & of rank 2 such that w(¢") =t and wa(¢') = wo(M). O

In particular, the theorem recovers the obstruction result for spin® structure and
determines the obstruction class for spin“? structure as well.

Corollary 6.1. An oriented closed manifold M is spin“? if and only if
Wi(M) =0,

for some t € HY(M;Z/2Z) and t # 0.
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