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Abstract
In this paper, we study the Pontryagin numbers of 24 dimensional Stringmanifolds. In partic-
ular, we find representatives of an integral basis of the String cobrodism group at dimension
24, based on the work ofMahowald and Hopkins (The structure of 24 dimensional manifolds
having normal bundles which lift to BO[8], from “Recent progress in homotopy theory” (D.
M. Davis, J. Morava, G. Nishida, W. S. Wilson, N. Yagita, editors), Contemp. Math. 293,
Amer. Math. Soc., Providence, RI, 89-110, 2002), Borel and Hirzebruch (Am J Math 80:
459–538, 1958) andWall (AnnMath 75:163–198, 1962). This has immediate applications on
the divisibility of various characteristic numbers of the manifolds. In particular, we establish
the 2-primary divisibilities of the signature and of the modified signature coupling with the
integral Wu class of Hopkins and Singer (J Differ Geom 70:329–452, 2005), and also the 3-
primary divisibility of the twisted signature. Our results provide potential clues to understand
a question of Teichner.
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1 Introduction

Let M be a 4m dimensional oriented closed manifold. M is called Spin if its second Stiefel–
Whitney class vanishes: ω2(M) = 0. To investigate the geometry and topology of M , it is
classical to study its characteristic numbers as cobordism invariants. Among others, there are
two important types of characteristic numbers, namely the twisted A-hat genus ̂A(M, E) and
the twisted signature Sig(M, E) for any given complex bundle E over M (see Appendix A.1
for explicit definitions). For instance, there are the twisted genera coupling with bundles
naturally constructed from the tangent bundle T M of M

̂A(M, T i ⊗ ∧ j ⊗ Sk) := ̂A(M,⊗i TCM ⊗ ∧ j (TCM) ⊗ Sk(TCM)),

Sig(M, T i ⊗ ∧ j ⊗ Sk) := Sig(M,⊗i TCM ⊗ ∧ j (TCM) ⊗ Sk(TCM)),

where ∧ j (TCM) and Sk(TCM) are the j-th exterior and k-th symmetric powers of TCM
respectively.

As a twisted ̂A-genus, the famous Witten genus W (M) ([30]; see Appendix A.1 for
explicit definition) possesses nice properties especially when M is String, that is, half of the
first Pontryagin class vanishes: p1(M)

2 = 0. For instance, in the String case, the Witten genus
W (M) is a modular form of weight 2m over SL(2, Z)with integral Fourier expansion ([31]).
The homotopy theoretical refinement of the Witten genus on String manifolds leads to the
theory of tmf (topological modular form) developed by Hopkins and Miller [12]. The String
condition is the orientablity condition for this generalized cohomology theory.

String manifolds of dimension 24 are of special interest. For instance, in this dimension,
one has (cf. page 85–87 in [11])

W (M) = ̂A(M)�̄ + ̂A(M, T )�,

where �̄ = E3
4 − 744 · � with E4 being the Eisenstein series of weight 4 and � being the

modular discriminant of weight 12 (see Sect. 1.5 for definitions). Hirzebruch raised his prize
question in [11] that whether there exists a 24 dimensional compact String manifold M such
that W (M) = �̄ (or equivalently ̂A(M) = 1, ̂A(M, T ) = 0) and the Monster group acts on
M as self-diffeomorphisms. The existence of such manifold was confirmed by Mahowald–
Hopkins [20]. Indeed, they determined the image of Witten genus at this dimension via tm f .
However, the part of the question concerning the Monster group is still open.

In this paper, we study the Pontryagin numbers of 24 dimensional String manifolds from
the perspective of algebraic topology. Combining the works of Mahowald–Hopkins [20],
Borel–Hirzebruch [3] and Wall [29] we find representatives of an integral basis of the String
cobordism group at dimension 24. This has immediate applications to the divisibility of vari-
ous characteristic numbers of the 24 dimensional String manifolds. It also provides potential
clue for understanding a question of Teichner (see Sect. 1.5).
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1.1 Basis of string cobordism at dimension 24

Let�String
24 be the String cobordismgroup of dimension 24.By the calculation ofGorbounov–

Mahowald [10], it is known that as a group

�
String
24

∼= Z ⊕ Z ⊕ Z ⊕ Z.

In [20] Mohowald–Hopkins determined two out of the four generators as the coimage of the
Witten genus. In particular, by homotopy arguments they constructed two 24 dimensional
String manifolds with explicit Pontryagin numbers, which we denote by M1 and M2 respec-
tively in Sect. 3. It should be emphasized that the geometry of M1 and M2 is still mystery,
which is crucial to the prize question of Hirzebruch. In Sects. 4 and 5, we construct the
remaining two generators M3 and M4, and compute their Pontryagin numbers, respectively.

Our main result is that these 4 manifolds, M1, M2, M3 and M4, represent an integral
basis of �

String
24 . Indeed, this integral basis realizes a particular basis of all possible integral

Pontryagin numbers of String 24-manifolds, consisting of ̂A(−), 1
24
̂A(−, T ), ̂A(−,∧2), and

1
8Sig(−). Here, for any M ∈ �

String
24 , 1

24
̂A(M, T ) ∈ Z was proved by Mahowald-Hopkins

([20]; also see the discussion in Sect. 1.5), and 1
8Sig(−) ∈ Z is showed in Lemma 2.2 (cf.

Sect. 7 of [20]). In particular, we completely understand the Pontryagin numbers of String
manifolds at dimension 24.

Theorem 1 The correspondence κ : �
String
24 → Z ⊕ Z ⊕ Z ⊕ Z by

κ(M) = (̂A(M),
1

24
̂A(M, T ), ̂A(M,�2),

1

8
Sig(M))

is an isomorphism of abelian groups. Moreover, there exist two explicitly constructed mani-
folds M3, M4 ∈ kerW such that

K :=

⎛

⎜

⎜

⎝

κ(M1)

κ(M2)

κ(M3)

κ(M4)

⎞

⎟

⎟

⎠

τ

=

⎛

⎜

⎜

⎝

0 1 0 0
−1 0 0 0

23 · 33 · 5 22 · 3 · 17 · 1069 −1 0
28 · 3 · 61 28 · 5 · 37 22 · 7 1

⎞

⎟

⎟

⎠

.

Two notable consequences of Theorem 1 are as follows.

Corollary 2 For any rational homogeneous polynomial P in the Pontryagin classes with
degree 24 and with P(M) ∈ Z for all M ∈ �

String
24 , there exist unique integers a1, · · · , a4

such that

P(M) = a1̂A(M) + 1

24
a2̂A(M, T ) + a3̂A(M,∧2) + 1

8
a4Sig(M).

Corollary 3 The four manifolds Mi in Theorem 1 form a basis of the group �
String
24 .

1.2 2-primary divisibility of signature

Theorem 1 has strong implications on the characteristic numbers of 24-dimensional String
manifolds. The first example concerns the signatures of the manifolds. Indeed, for 24 dimen-
sional String manifold M , it is always true that (Lemma 2.2, or Section 7 of [20] by
Mahowald–Hopkins)

8 | Sig(M),
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which is optimal because Sig(M4) = 8 as indicated in Theorem 1. Nevertheless, if we
have more information about the topology of the manifold, say the divisibility of its second
Pontryagin class, it can be expected that there is higher divisibility of the signature. To be
precise, letm and n be two positive integer. By abuse of notation, we can define a new integer
( n
m ) by

νp(
n

m
) =

{

νp(n) − νp(m) if νp(n) ≥ νp(m),

0 if νp(n) < νp(m),

where νp(k) denotes the exponent of the largest power of the prime p that divides k.

Theorem 4 Let M be a 24 dimensional String manifold. If its 8-th Stiefel-Whitney class
vanishes: ω8(M) = 0, then

32 | Sig(M).

Furthermore, if the second Pontryagin class p2(M) is divisible by a positive integer n, then

( n3

22 · 35 · 53 · 41
) | Sig(M).

Let us remark that it is known that for a String manifold M of any dimension, 6 | p2(M)

by Borel–Hirzebruch [3] (also see Li–Duan [15]).

1.3 2-primary divisibility of modified signature

Let BSpin be the classifying space of the spinor groups in the stable range. In [13] Hopkins-
Singer constructed a universal integral lift ν

Spin
4k ∈ H4k(BSpin; Z) of the mod-2 Wu class

with degree 4k for each positive integer k, and the total integral Spin Wu class

ν
Spin
t = 1 + ν

Spin
4 + ν

Spin
8 + ν

Spin
12 + · · ·

has the characteristic series of the form

g(x) = 1 + 1

2
x2 + 11

8
x4 + 37

16
x6 + 691

128
x8 + 2847

256
x10 + · · · .

In term of these classes we define for a Spin 8k-manifold M the modified signature by the
formulae

Sig(M, ν) := Sig(M) − 〈νSpin4k (M) ∪ ν
Spin
4k (M), [M]〉, ν

Spin
4k (M) := f ∗(νSpin4k ),

where f : M → BSpin is the classifying map of the normal bundle of M in the stable range.
It is a classical result that Sig(M, ν) is divisible by 8 for Spin manifolds. For our String
manifold M however, we actually can get higher divisibility.

Theorem 5 Let M be a 24 dimensional String manifold. Then

32 | Sig(M, ν).

The divisibility in Theorem 5 is optimal, as we shall see in its proof in Sect. 2 that the
manifold 67M3 + 3M4 ∈ �

String
24 has the modified signature exactly equal to 32.
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1.4 3-primary divisibility of twisted signature

In [4], Chen-Han studied the mod-3 congruence properties of certain twisted signature of
24 dimensional String manifolds. By the techniques of modular forms in index theory, they
showed that

3 | Sig(M,∧2)

for any 24 dimensional String manifold M , and this is the best possible. By Theorem 1, it is
easy to give a topological proof of this result by straightforward computation. Indeed, it can
be showed that (see Remark 2.3)

96 | Sig(M,∧2)

in general, while for the generator M1

32 � Sig(M1,∧2).

However, as in Theorem 4, with 3-primary divisibility of the second Pontryagin class p2(M),
we can obtain higher divisibility for the twisted signature Sig(M,∧2).

Theorem 6 Let M be a 24 dimensional String manifold. If 3k+1 | p2(M) (k ≥ 1), then

33k−1 | Sig(M,∧2).

1.5 Discussions on a question of Teichner

The original proof of Mahowald–Hopkins [20] on the fact (observed by Teichner [26]) that

24 | ̂A(M, T ) (1.1)

for any 24 dimensional String manifold is of homotopy theoretical argument. It is based on
the homotopy theory of Witten genus via tm f . Actually let �String

4k be the string cobordism
group in dimension 4k. Let MFZ

2k(SL(2,Z)) be the space of modular forms of weight 2k
over SL(2,Z) with integral Fourier expansion. The Witten genus W is the composition of
the maps ([19]):

�
String
4k

σ
tm f −4k(pt)

e
MFZ

2k(SL(2,Z)) ,

where σ is the refined Witten genus and e is the edge homomorphism in a spectral sequence.
Hopkins and Mahowald ([19]) show that σ is surjective. For i, l ≥ 0, j = 0, 1, define

ai, j,l =
⎧

⎨

⎩

1 i > 0, j = 0
2 j = 1

24/gcd(24, l) i, j = 0
.

Hopkins and Mahowald also show that the image of e (and therefore the image of the Witten
genus) has a basis given by monomials

ai, j,l E4(τ )i E6(τ ) j�(τ)l , i, l ≥ 0, j = 0, 1, (1.2)

where

E4(τ ) = 1 + 240(q + 9q2 + 28q3 + · · · ),
E6(τ ) = 1 − 504(q + 33q2 + 244q3 + · · · )
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are the Eisenstein series and �(τ) = q
∏

n≥0(1 − qn)24 is the modular discriminant. Their
weights are 4,6, 12 respectively. In dimension 24, the image of the Witten genus is spanned
by the monomials E4(τ )3, 24�(τ) and since ̂A(M, T ) − 24̂A(M) is the coefficient of q in
the expansion of the Witten genus, ̂A(M, T ) is divisible by 24. This observation was due to
Teichner [26], who consequently raised the following question,

Question 7 Can we give a geometric proof of (1.1)?

Zhang [33] suggested that we may look at the geometry of this divisibility from the index
theoretical point of view, that is, to study if we can express 1

24
̂A(M, T ) as an integral linear

combination of indices of twisted Dirac operators or twisted signature operators.
Indeed, we are able to show with the help of computer program that for the generator M1

of Hopkins–Mahowald, when i + j + k ≤ 5, one has

24 | ̂A(M1, T
i ⊗ ∧ j ⊗ Sk),

24 | Sig(M1, T
i ⊗ ∧ j ⊗ Sk).

(1.3)

This motivates us to conjecture that

Conjecture 8 For any non-negative integer i , j and k,

24 | ̂A(M1, T
i ⊗ ∧ j ⊗ Sk),

24 | Sig(M1, T
i ⊗ ∧ j ⊗ Sk).

(1.4)

If the conjecture is true, then 1
24
̂A(M1, T ) can not be written as a linear combination

of ̂A(M1, T i ⊗ ∧ j ⊗ Sk) or Sig(M1, T i ⊗ ∧ j ⊗ Sk) with integral coefficients. Otherwise,
suppose we have an index formula for 1

24
̂A(M, T ) of this form, then it follows from (1.4)

that 1
24
̂A(M1, T ) must be divisible by 24. However, it is equal to −1 by Theorem 1, hence

a contradiction. Indeed, from the discussion, if the conjecture is true, then for any k ≥ 2,
1
k
̂A(M1, T ) can not written as a linear combination of ̂A(M1, T i ⊗∧ j ⊗Sk) or Sig(M1, T i ⊗

∧ j ⊗ Sk) with integral coefficients.
This suggests that if we want to express 1

24
̂A(M1, T ) as linear combination of indices of

twisted Dirac operators or twisted signatures, one need to look at more types of twistings in
addition to the bundles of the form T i ⊗ ∧ j ⊗ Sk .

1.6 Organization of the paper

The paper is organized as follows. In Sect. 2, we prove the 4 theorems in the introduction sec-
tion by the knowledge presented in Sects. 3, 4 and 5. In Sect. 3 we summarize part of the work
of Mahowald–Hopkins [20] on the coimage of Witten genus at dimension 24. In particular,
we review the Pontryagin numbers of M1 and M2. In Sects. 4 and 5 we construct M3 and M4,
and compute their Pontryagin numbers respectively. For M4 more explicitly, we applyWall’s
classification on (n − 1)-connected 2n-manifolds [29] to construct M4 as F4-OP2-bundle
(5.1), and apply the classical Borel–Hirzebruch algorithm [3] to calculate its Pontryagin
classes. This is divided into 4 steps in Sect. 5. We end the paper with Appendix A.1 explain-
ing the geometric and analytic aspects of twisted A-hats and twisted signatures together with
their definitions.
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2 Proof of Theorem 1, 4, 5 and 6

Before proving the main theorems stated in the Introduction, we summarize necessary results
whose proofs are postponed to Sects. 3–5.

Theorem 2.1 There exist four elements Mi ∈ �
String
24 , 1 ≤ i ≤ 4, whose Pontryagin numbers

and Witten genus are given by the table below:

M M1 M2 M3 M4

p32 213 · 35 · 53 −213 · 35 · 53 · 41 27 · 35 · 5 3888
p23 210 · 34 · 52 · 72 210 · 34 · 52 · 72 · 31 0 200

p2 p4 212 · 35 · 53 −212 · 35 · 53 · 41 25 · 33 · 53 2868
p6 29 · 34 · 52 · 89 −29 · 34 · 52 · 112 25 · 33 · 5 · 13 1958
W −24� � 0 0

,

where �̄ = E3
4 − 744 · � with E4 the Eisenstein series of weight 4 and � the cusp form of

weight 12.

Proof The manifolds M1 and M2 are constructed and studied by Mahowald–Hopkins [20]
from the homotopy theoretical point of view, and their Pontryagin numbers andWitten genera
are summarized in Theorem 3.2 and Lemma 3.3. In particular, M1 and M2 form a basis of the
coimage of the Witten genus at dimension 24. On the other hand, M3 and M4 form a basis of
the kernel of the Witten genus which are explicitly constructed in Sects. 4 and 5 respectively.
Their Pontryagin numbers are summarized in Lemmas 4.2 and 5.12. ��

Lemma 2.2 Let M be a 24 dimensional String manifold. Then

8 | Sig(M).

The lemma was implicitly proved by Mahowald–Hopkins [20] without statement. Here
we give an alternative proof.

Proof Recall that any integral lift of the middle Wu class ν12(M) ∈ H12(M; Z/2) is a
characteristic element for the intersection form I (M) of M over Z. However, since M is
String (by Bensen–Wood [1] or Duan [7])

0 = q1(M) ≡ ω4(M) mod 2,

which implies that

ω6(M) = Sq2ω4(M) = 0

as well. It follows that

ν12(M) = ω2
6(M) = 0.

In particular, the trivial cohomology class 0 acts as an integral lift of ν12(M) and hence is a
characteristic. It follows that the intersection form I (M) is of even type, and

Sig(M) ≡ I (M)(0, 0) = 0 mod 8.

��
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Proof of Theorem 1, Corollarys 2 and 3 Recall we have 4 particular String manifolds M1, M2,
M3 and M4 of dimension 24, the Pontryagin numbers of which are given in Theorem 2.1.
With this information, it is straightforward to calculate the following4particular characteristic
numbers of these 4 manifolds.

̂A(M2) = 1, ̂A(Mi ) = 0, for i �= 2,

̂A(M1, T ) = −24, ̂A(Mi , T ) = 0, for i �= 1,

̂A(M1,∧2) = 1080, ̂A(M2,∧2) = 218076, ̂A(M3,∧2) = −1, ̂A(M4,∧2) = 0,

Sig(M1) = 374784,Sig(M1) = 378880,Sig(M1) = 224,Sig(M1) = 8.

(2.1)

In [20], Mahowald–Hopkins showed that for any 24 dimensional String manifold M

24 | ̂A(M, T ) (2.2)

(this is also observed by Teichner [26]; cf. the discussions at Page 2961 in [4]). Together with
Lemma 2.2, there exists a well defined homomorphism of abelain groups

κ := (̂A(−),
1

24
̂A(−, T ), ̂A(−,∧2),

1

8
Sig(−)) : �

String
24 → Z ⊕ Z ⊕ Z ⊕ Z. (2.3)

The values of κ (2.1) on the 4 manifolds Mi (1 ≤ i ≤ 4) are given by the matrix

K = (κ(M1)
τ , κ(M2)

τ , κ(M3)
τ , κ(M4)

τ ) =

⎛

⎜

⎜

⎝

0 1 0 0
−1 0 0 0
1080 218076 −1 0
46848 47360 28 1

⎞

⎟

⎟

⎠

. (2.4)

It is clear that det(K ) = −1. In particular, κ is an epimorphsim. On the other hand, by the
calculation of Gorbounov–Mahowald [10], it is known that

�
String
24

∼= Z ⊕ Z ⊕ Z ⊕ Z.

Hence, κ is indeed an isomorphism, and {M1, M2, M3, M4} is an integral basis of �
String
24 .

We have showed Theorem 1 and Corollary 3. For Corollary 2, for any rational Pontryagin
polynomial P(−) we have

P(M) = a1̂A(M) + a2
1

24
̂A(M, T ) + a3̂A(M,∧2) + a4

1

8
Sig(M),

with some ai ∈ Q. If P(M) ∈ Z for any M ∈ �
String
24 . First choose M = M4 and we have

P(M4) = a4 by (2.4). It follows that a4 ∈ Z. Then choose M = M3, and we have P(M3) =
−a3+28a4 by (2.4) which implies that a3 ∈ Z. Finally, P(M2) = a1+218076a3+47360a4
implies that a1 ∈ Z, while P(M1) = −a2 + 1080a3 + 46848a4 implies that a2 ∈ Z. This
completes the proof of Corollary 2. ��
Proof of Theorem 4 First let us make a comment on the condition ω8(M) = 0. By Bensen–
Wood [1] or Duan [7], it is known that

1

2
p1(M) = q2(M) ≡ ω8(M) mod 2.

Hence the condition ω8(M) = 0 is equivalent to 4 | p2(M). To show that 32 | Sig(M) under
this condition, let us recall from Theorem 2.1 that the characteristic numbers p32 of the basis
manifolds {M1, M2, M3, M4} are
(p32(M1), p

3
2(M2), p

3
2(M3), p

3
2(M4)) = (213 ·35 ·53, −213 ·35 ·53 ·41, 27 ·35 ·5, 24 ·35).

(2.5)
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By Theorem 1, up to String cobrodism M =
4
∑

i=1
xi Mi for some integral vector

(x1, x2, x3, x4) ∈ Z
⊕4. Hence

26 | p32(M) =
4
∑

i=1

xi p
3
2(Mi ),

which with (2.5) implies that
22 | x4. (2.6)

On the other hand, from (2.1) we have the signature vector

(Sig(M1),Sig(M2),Sig(M3),Sig(M4)) = (211 · 3 · 61, 211 · 5 · 37, 25 · 7, 23). (2.7)

Combining it with (2.6), it follows that 25 | Sig(M). The second statement in the theorem
can be proved by the same strategy, and we have completed the proof Theorem 4. ��

Proof of Theorem 5 By Hopkins–Singer [13], it can be computed that for 24 dimensional
String manifold M , the middle integral Spin Wu class

ν
Spin
12 (M) = 5p3(M).

Then with (2.7) and Theorem 2.1, it is straightforward to compute the value of the modified
signatures of the basis manifolds

(Sig(M1, v),Sig(M2, v),Sig(M3, v),Sig(M4, v)) =
(−210 · 3 · 826753, −210 · 5 · 23 · 668687, 25 · 7, −27 · 3 · 13),

and the greatest common divisor

g.c.d.(Sig(M1, v),Sig(M2, v),Sig(M3, v),Sig(M4, v)) = 32.

The theorem then follows immediately from Theorem 1. Moreover, Sig(67M3 + 3M4, v) =
32 by direct computation. This verifies the remark after Theorem 5. ��

Proof of Theorem 6 The theorem can be proved by the same strategy used in the proof of
Theorem 4 with the value of the twisted signature of the manifolds

(Sig(M1,∧2),Sig(M2,∧2),Sig(M3,∧2),Sig(M4,∧2)) =
(213 · 3 · 4013, −213 · 34 · 1063, 27 · 3 · 7 · 23, 25 · 3 · 23),

(2.8)
which can be computed directly from Theorem 2.1. ��

Remark 2.3 Notice by (2.8) we also have

96 | Sig(M,∧2)

for any 24-dimensional String manifold M . This reproves the result of Chen–Han [4] that
3 | Sig(M,∧2) by different methods.
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3 M1 andM2 ∈ Coim(W)

In this section, we review the information of two String manifolds M1 and M2 of dimension
24 constructed by Mahowald–Hopkins [20]. Let us start with Kervaire–Milnor’s almost par-
allelizable manifolds. In [23] Kervaire–Milnor showed that there is an almost parallelizable
manifold M4n

0 of dimension 4n with the top Pontryagin class

pn(M
4n
0 ) = denom

(

B2n

4n

)

· an · (2n − 1)! · x4n, (3.1)

where x4n ∈ H4n(M4n
0 ) is the generator,

an =
{

2 n = odd
1 n = even,

and B2n is the Bernoulli number. Then it is easy to calculate that for M4
0

p1(M
4
0 ) = 48x4, Sig(M4

0 ) = 16, (3.2)

for M8
0

p2(M
8
0 ) = 1440x8, Sig(M8

0 ) = 224, (3.3)

and for M12
0

p3(M
12
0 ) = 120960x12, Sig(M12

0 ) = 7936. (3.4)

The following proposition is well known.

Proposition 3.1

�SO∗ ⊗ Q ∼= Q[M4
0 , M8

0 , M12
0 , · · · ].

��
From this proposition, Mahowald–Hopkins chose a particular basis for �SO

24 ⊗ Q

B1 = M8
0 × M8

0 × M8
0 ,

B2 = 1

2
M12

0 × 1

2
M12

0 ,

B3 = M8
0 × M16

0 ,

B4 = 1

2
M24

0 .

(3.5)

They called 1
2M

8k+4
0 a fake manifold since it is not a proper manifold. Nevertheless, they

showed that there is a proper manifold B2 with its Pontryagin numbers equal to those of
the square of 1

2M
12
0 . Among others, in [20] Mahawold–Hopkins determined the image of

Witten genus at dimension 24. Recall that at this particular case, there is the famous formula
of Hirzebruch (Page 85–87 in [11])

W (M) = ̂A(M)�̄ + ̂A(M, T )�, (3.6)

for any 24 dimensional String manifold M , where

�̄ = E3
4 − 744 · �,

with E4 the Eisenstein series of weight 4 and � the famous cusp form of weight 12.
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Theorem 3.2 (Sect. 9 in [20])There exist twoproper Stringmanifold M1 and M2 of dimension
24, such that in the rational oriented cobordism ring

M1 = B1 + B2

72
, M2 = −41B1 + 31B2

72
. (3.7)

Furthermore, the image of Witten genus at dimension 24

Im
{

W : �
String
24 → Z[[q]]} ∼= Z{M1, M2}, (3.8)

with
W (M1) = −24�, W (M2) = �̄. (3.9)

��
Let us summarize the Pontryagin numbers of M1 and M2.

Lemma 3.3 For M1,

p32 = 213 · 35 · 53, p23 = 210 · 34 · 52 · 72, p2 p4 = 212 · 35 · 53, p6 = 29 · 34 · 52 · 89,
and for M2,

p32 = −213 · 35 · 53 · 41, p23 = 210 · 34 · 52 · 72 · 31,
p2 p4 = −212 · 35 · 53 · 41, p6 = −29 · 34 · 52 · 112.

��

4 M3 ∈ Ker(W)

Since the image of the Witten genus is known, we are left to consider its kernel. There is an
outstanding principle to attack it.

Theorem 4.1 (Jung and Dessai; [6]) The ideal of �String∗ ⊗ Q, consisting of bordism classes
of Caley plane bundles with connected structure groups, is precisely the kernel of the rational
Witten genus. ��

The local version of the theorem was proved by McTague [21] for the localization of
Witten genus away from 6. The simplest Caley plane bundles are, of course, the trivial ones.
Let us define

M3 := M8
0 × OP2, (4.1)

where M8
0 is the almost parallelizable manifold (3.1) of dimension 8, and OP2 is the Caley

plane or the octonionic projective plane. The cell structure of OP2 is clear from its coho-
mology ring

H∗(OP2) ∼= Z[u8]/u38, (4.2)

where deg(u8) = 8. Further, OP2 is a 16 dimensional manifold with the total Pontryagin
class (Theorem 19.4 in [3])

p(OP2) = 1 + 6u8 + 39u28. (4.3)

Hence, we can compute all the Pontryagin classes of M3. It is clear that

W (M3) = 0,
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but there is the particular twisted genus

̂A(M3,∧2) = −1. (4.4)

Let us summarize the Pontryagin numbers of M3.

Lemma 4.2 For M3,

p32 = 27 · 35 · 5, p23 = 0, p2 p4 = 25 · 33 · 53, p6 = 25 · 33 · 5 · 13.
��

5 M4 ∈ Ker(W)

We continue to construct particular String manifolds of dimension 24 in the kernel of Witten
genus. In this non-trivial case, we need to construct an appropriate closed 8-manifold N 8 and
apply the pullback diagram

OP2
OP2

M24 f̃

π

BSpin(9)

�

N 8 f
BF4,

(5.1)

where F4 is the exceptional Lie group, and

OP2 → BSpin(9)
�→ BF4 (5.2)

is called the universal F4-OP2-bundle following Klaus [17]. It exists since Spin(9) is the
subgroup of F4 with the quotient

F4/Spin(9) ∼= OP2.

The pullback bundle π is called an F4-OP2-bundle, as a generalization of PSp(3)-HP2-
bundles of Kreck–Stolz [18]. These bundles were studied by Borel–Hirzebruch [3] in general
context. In particular, Borel–Hirzebruch [3] developed a theory with associated algorithm
to compute the Pontrygin classes of such bundles. In the following, we will first recall the
Borel–Hirzebruch algorithm, and then construct an appropriate M4 step by step.

5.1 Borel–Hirzebruch algorithm

Given any fibre bundle

F → E
p→ B (5.3)

with structural group G, and F , E , B are all manifolds. Set dimF = n. There is the induced
bundle

R
n → E ×G T F → E, (5.4)
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where the action of G on the tangent bundle T F is induced from that on F . The bundle (5.4),
denoted by p� as in [17], is called the bundle along the fibre associated to the bundle p (5.3).
In particular, it is easy to see that

T E ∼= p� ⊕ p∗(T B). (5.5)

Now let G be a compact connected Lie group with subgroup H . The principal bundle

H → G → G/H

can be extended twice to the right, and we have the fibre bundle

G/H → BH
�→ BG (5.6)

Let S be the maximal torus of H . The inclusion of the maximal torus induces a map of
classifying maps

ρ : BS → BH (5.7)

Theorem 5.1 (Special version of Theorem 10.7 in [3]; the universal case) Let S ≤ H ≤ G
and ρ as above. Denote by

{±b j }kj=1

the set of the roots of G with respect to S, which are complementary to those of H (view
b j ∈ H2(BS; Z)). Then the Pontryagin class of the bundle along the fibre ��, associated
to the fibre bundle �, is determined by

ρ∗(p(��)) =
k
∏

j=1

(1 + b2j ). (5.8)

��

5.2 Step 1: compute the Pontryagin class of the bundle along the fibre21

Now let us restrict ourselves to consider the bundle (5.2)

OP2 → BSpin(9)
�→ BF4.

Recall that F4 and Spin(9) are of both rank 4, and there is a maximal torus

S ∼= T 4 ↪→ Spin(9),

which is also the maximal torus of F4 via the inclusion Spin(9) ↪→ F4. Denote

H2(BS; Z) ∼= Z[x1, x2, x3, x4].
It is known that the roots of Spin(9), with respect to S, are

±xi ± x j (1 ≤ j < j ≤ 4), ± x1,±x2,±x3,±x4,

while the complementary root of F4 are

1

2
(±x1 ± x2 ± x3 ± x4).

123



F. Han, R. Huang

Let ri = 1
2 (x1 ± x2 ± x3 ± x4). By Theorem 5.1, we have that

ρ∗(p(��)) =
8
∏

i=1

(1 + r8i ), (5.9)

where ρ : BS → BSpin(9). On the other hand, we know that

4
∏

i=1

(1 + x2i ) = ρ∗(1 + p1 + p2 + p3 + p4),

where pi ∈ H4i (BSpin(9) is the i-th Pontryagin class. Hence, by straightforward calculation
we obtain the following

Proposition 5.2 The Pontryagin class of the bundle along the fibre associated to the universal
F4-OP2-bundle � is

p(��) = 1 + (2p1) + (−p2 + 7

4
p21) + (2p3 − 3

2
p1 p2 + 7

8
p31)

+
(

−17

2
p4 + 2p1 p3 + 3

8
p22 − 15

16
p21 p2 + 35

128
p41

)

+
(

−5

2
p1 p4 − p2 p3 + 3

4
p21 p3 + 3

8
p1 p

2
2 − 5

16
p31 p2 + 7

128
p51

)

+
(

−7

4
p2 p4 + 5

16
p21 p4 + p23 − 1

2
p1 p2 p3 + 1

8
p31 p3 − 1

16
p32

+ 9

64
p21 p

2
2 − 15

256
p41 p2 + 7

1024
p61

)

.

(5.10)

��

5.3 Step 2: the appropriate basemanifold and classifyingmap (N8, f)

At this step, we construct an appropriate Spin manifold N 8 of dimension 8 as the base
manifold of the F4-OP2-bundle π in (5.1). We need Wall’s (n− 1)-connected 2n-manifolds
with n = 4 [29] (also see [7]).

Definition 5.3 Let A = {ai j }n×n be a unimodular symmetric integral matrix of rank n,
b = (b1, b2, · · · , bn) be a sequence of integers of length n. The pair (A, b) is called a Wall
pair if it satisfies the congruent condition

aii ≡ bi mod 2, 1 ≤ i ≤ n. (5.11)

It is natural to ask that whichWall pairs (A, b) can be realized as the pair (I (N 8), q1(N 8))

of a Wall manifold N 8; here I (N 8) is the intersection form of N 8 and q1(N 8) = 1
2 p1(N

8)

is the first Spin class of N 8 (also see (5.21) and (5.22)).

Theorem 5.4 (Theorem 4 in [29]; also see Theorem 10.11 and 10.13 in [7]) For any Wall
pair (A, b) such that

Sig(A) ≡ bAbτ mod 224, (5.12)

there exists a smooth manifold N 8 such that under a certain choice of basis of

H4(N 8; Z) ∼= Z{x1, · · · , xn},
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the intersection form I (N 8) is represented by the matrix A, and the first Spin class q1(N 8)

is represented by b; in other word,

I (N 8)(xi , x j ) = ai j , and q1(N8) = b1x1 + · · · bnxn .

Proof The theorem has been proved in [7] based on [29]. Indeed Wall [29] showed that for
each Wall pair (A, b) there exists a closed 8 dimensional topological manifold N 8 such that
its intersection form is represented by A and its first Spin class is represented by b. Moreover,
M = W ∪h D8 where W is a 3-connected smooth manifold with boundary ∂W a homotopy
7-sphere and h : ∂W → ∂D8 is a homeomorphism. To show that N 8 is smooth, we may
compute the Eells–Kuiper μ-invariant [8] of the boundary ∂W

μ(∂W ) ≡ bAbτ − Sig(A)

224
mod 1.

Since μ-invariant is a complete invariant for homotopy 7-spheres, we see that ∂W is diffeo-
morphic to the standard S7, and hence N 8 is smooth. ��

We now apply Theorem 5.4 to construct an appropriate N 8 such that after particular
pullback f the total space M24 in Diagram (5.1) will be a String manifold. For that, we may
choose

A = diag(H , E8), b = (2, 2, 0, · · · , 0) (5.13)

where

H =
(

0 1
1 0

)

, and E8 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

are the hyperbolic matrix of rank 2 and the Cartan matrix of the exceptional Lie group E8

respectively. It is then clear that the conditions (5.11) and (5.12) are satisfied, and even better

Sig(A) = bAbτ = 8. (5.14)

Hence, by Theorem 5.4 there exists a smooth N 8 such that

H4(N 8) ∼= Z{a1, a2, b1, · · · b8}, (5.15)

q1(N
8) = 2(a1 + a2), (5.16)

and under the basis {a1, a2, b1, · · · b8} the intersection form of N 8 is represented by A in
(5.13). In particular, we can use the Hirzebruch signature formula to calculate the second
Pontryagin class of N 8.

Lemma 5.5

p(N 8) = 1 + 4(a1 + a2) + 56a1a2.

��

123



F. Han, R. Huang

In Diagram (5.1), by Lemma 5.6 below let us choose

f : N 8 → BF4

such that
f ∗(x4) = −(a1 + a2), (5.17)

where x4 ∈ H4(BF4) is the generator such that (cf. (5.24))

�∗(x4) = q1 ∈ H4(BSpin(9)). (5.18)

We notice that by Proposition 5.2

p1(�
�) = 2p1 = 4q1 ∈ H4(BSpin(9))

Hence, by (5.5) we have

p1(M
24) = p1(π

�) + π∗(p1(N 8))

= f̃ ∗(p1(��)) + 4(a1 + a2)

= 4 f̃ ∗(q1) + 4(a1 + a2)

= 4 f̃ ∗ ◦ �∗(x4) + 4(a1 + a2)

= 4π∗ ◦ f ∗(q1) + 4(a1 + a2)

= 0.

Hence, M24 is a String manifold, and from now on we may denote this particular String
manifold by M4.

Lemma 5.6 There is a natural isomorphism of sets

[N 8, BF4] ∼=
⎡

⎣

2
∨

i=1

S4ai ∨
8
∨

j=1

S4b j
, BF4

⎤

⎦ ∼= Z
⊕10,

where S4ai (i = 1, 2) and S4b j
(1 ≤ j ≤ 8) represents the cohomology class ai and b j in

(5.15) respectively.

Proof By the computation of Mimura [24], it is known that

πi (BF4) = 0, 0 ≤ i ≤ 8, and i �= 4.

Then by applying the functor [−, BF4] to the cofibre sequence determined the attaching map
of N 8, we get an exact sequence. From that the lemma follows easily. ��
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5.4 Step 3: determine the pullback image of H∗(BSpin(9))

In the last step, we have constructed the String manifold M4 as the total space of the F4-
OP2-bundle over the particular Wall manifold N 8, via the pullback diagram

OP2
OP2

M4
f̃

π

BSpin(9)

�

N 8 f
BF4,

(5.19)

such that

f ∗(x4) = −(a1 + a2).

It is clear that
H∗(M4) ∼= H∗(N )[u8]/〈u38 − ta1a2u

2
8〉, (5.20)

for some t ∈ Z, and a1a2u28 ∈ H24(M4) is a generator. In order to compute the Pontryagin
class of M4, we need to determine the image of H∗(BSpin(9)) under f̃ ∗.

First, by the computation of Duan [7] it is known that (cf. Thomas [25] and Benson–Wood
[1])

H∗(BSpin(9)) ∼= Z[q1, q2, q3, q4] ⊕ (the 2 torsion part), (5.21)

where qi is called the the i-th universal Spin class with deg(qi ) = 4i . The Spin classes
determine the Pontryagin classes, in which way they illustrate the divisibility of Pontryagin
classes of Spin manifolds. In the low dimensions, the conversion formulae are

p1 = 2q1,

p2 = 2q2 + q21 ,

p3 = q3,

p4 = 2q4 + q22 − 2q1q3.

(5.22)

On the other hand, it is also known that

H∗(BF4) ∼= Z[x4, x12, x16] ⊕ (the torsion part), (5.23)

where deg(xi ) = i . Since OP2 is 7-connected and BF4 is 3-connected, the fibre bundle

OP2 i→ BSpin(9)
�→ BF4

is a cofibre sequence up to degree 11, by the dual Blakers-Massey theorem or a simple
argument of the Serre spectral sequence. In particular, we have

�∗(x4) = q1, (5.24)

and there is an exact sequence

→ 0 = H7(OP2) → H8(BF4)
�∗→ H8(BSpin(9))

i∗→ H8(OP2) → H9(BF4) → H9(BSpin(9)) = 0.
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Since �∗ maps H8(BF4) ∼= Z{x24 } isomorphically onto Z{q21 } ≤ H8(BSpin(9)) and
H9(BF4) ∼= Z/3 by Toda [27], the above exact sequence implies the short exact sequence

0 → Z{q2} → H8(OP2) ∼= Z{u8} → Z/3 → 0.

Hence
i∗(q2) = 3u8, (5.25)

which implies that
f̃ ∗(q2) = 3u8 + ka1a2, (5.26)

for some k ∈ Z. In order to determine the image of q3 and q4 under f̃ , we need to use the
Weyl invariants of F4.

Theorem 5.7 (Borel [2]) Let G be a compact Lie group with a maximal torus T and Weyl
group WG. The inclusion T ↪→ G induces an isomorphism

H∗(BG; Q) ∼= H∗(BT ; Q)WG .

��
We borrow the notations from Step 1. Let

4
∏

i=1

(1 + x2i ) = 1 + p1 + p2 + p3 + p4,

and

ri = 1

2
(x1 ± x2 ± x3 ± x4), 1 ≤ i ≤ 8.

Let

I2k =
4
∑

i=1

x2ki +
8
∑

j=1

r2kj .

It is known that (for instance, see [22], or [28])

H∗(BS; Q)WF4 = Q[I2, I6, I8, I12].
From this, it is not hard to show that (Section 19 in [3])

H≤16(BS; Q)WF4 ∼= Q
≤16[p1,−6p3 + p1 p2, 12p4 + p22 − 1

2
p21 p2]. (5.27)

Lemma 5.8

f̃ ∗(−6p3 + p1 p2) = 0, f̃ ∗(12p4 + p22 − 1

2
p21 p2) = 0.

Proof We have the commutative diagram

H∗(M4) H∗(BSpin(9))
ρ∗f̃

H∗(BS)WSpin(9)

H∗(N 8)

π∗

H∗(BF4)
ρ∗

�∗

f ∗
H∗(BS)WF4 ,

(5.28)

which particularly implies that f̃ ∗ ◦ �∗(x) = 0 for any x with deg(x) > 8. Then by
Theorem 5.7 and (5.27), the lemma follows easily. ��
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We can now determine the pullback image of H∗(BSpin(9)) through f̃ .

Lemma 5.9

f̃ ∗(q1) = −(a1 + a2),

f̃ ∗(q2) = 3u8 + ka1a2,

f̃ ∗(q3) = −2(a1 + a2)u8,

f̃ ∗(q4) = −6u28 + 4a1a2u8 − 4ka1a2u8.

Proof The image of q1 and q2 were determined already. For the other two, we only need to
use the conversion formulas (5.22) to rewrite the two equalities in Lemma 5.8 in Spin classes,
and then solve f̃ ∗(q3) and f̃ ∗(q4) from them directly. ��

5.5 Step 4: compute the Pontryagin numbers ofM4

We are now in a position to compute the Pontryagin numbers of M4. First, let us translate the
image of H∗(BSpin(9)) under f̃ , obtained in Lemma 5.9, in terms of Pontryagin classes by
using the conversion formulas (5.22).

Lemma 5.10

f̃ ∗(p1) = −2(a1 + a2),

f̃ ∗(p2) = 6u8 + 2(k + 1)a1a2,

f̃ ∗(p3) = −2(a1 + a2)u8,

f̃ ∗(p4) = −3u28 − 2ka1a2u8.

��
By (5.5), we know that

p(M4) = π∗(p(N 8)) · f̃ ∗(p(��)). (5.29)

With Lemma 5.5 for p(N 8), Proposition 5.10 for p(��) and Lemma 5.10 for f̃ , it is now
straightforward to calculate the Pontryagin class of M4.

Lemma 5.11

p(M4) = 1 + (36a1a2 − 2ka1a2 − 6u8) − 10(a1 + a2)u8

+ (−244a1a2 + 26ka1a2 + 39u8)u8

+ 126(a1 + a2)u
2
8 + (1958a1a2 + 18ka1a2 + 18u8)u

2
8.

��
We can now determine the Pontryagin numbers of M4.

Lemma 5.12 For M4,

p32 = 3888, p23 = 200, p2 p4 = 2868, p6 = 1958.

Proof Recall by (5.20) u38 = ta1a2u28 and a1a2u
2
8 is a generator of H

24(M). By Lemma 5.11,
it is straightforward to calculate that

p32 = 3888−216(k + t), p23 = 200, p2 p4 = 2868−234(k + t), p6 = 1958+18(k + t).
(5.30)
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Hence, by Hirzebruch’s signature theorem, it is easy to calculate that

Sig(M4) = 8 + 9590138

70945875
(k + t). (5.31)

On the other hand, by a theorem of Chern-Hirzebruch-Serre [5] we know that

Sig(M4) = Sig(N 8)Sig(OP2) = 8. (5.32)

Hence from (5.31) k + t = 0, and the lemma follows from (5.30). ��
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Appendix A: Twisted A-hats and twisted signatures

Let M be a 4m dimensional oriented closed smooth manifold. There are two important
characteristic numbers, namely the (twisted) A-hat genus and the (twisted) signature, which
are the topological pillars of the Atiyah–Singer index theory.

Equip M with a Riemannian metric gT M . Let ∇T M be the associated Levi-Civita connec-
tion on T M and RTM = (∇T M )2 be the curvature of ∇T M . ∇T M extends canonically to a
Hermitian connection ∇TCM on TCM = T M ⊗ C, the complexification of T M .

Let ̂A(T M,∇T M ) be the Hirzebruch ̂A-form defined by (cf. [32])

̂A(T M,∇T M ) = det1/2

⎛

⎝

√−1
4π RTM

sinh
(√−1

4π RTM
)

⎞

⎠ . (A.1)

Let E be a Hermitian vector bundles over M carrying a Hermitian connection ∇E . Let
RE = (∇E )2 be the curvature of ∇E . The Chern character form (cf. [32]) is defined as

ch(E,∇E ) = tr

[

exp

(√−1

2π
RE

)]

. (A.2)

The ̂A-genus and the twisted ̂A-genus are defined respectively as

̂A(M) =
∫

M

̂A(T M,∇T M ),

̂A(M, E) =
∫

M

̂A(T M,∇T M )ch(E,∇E ).

(A.3)

When M is spin, let S(T M) = S+(T M) ⊕ S−(T M) denote the bundle of complex
spinors associated to the Spin structure. Then S(T M) carries induced Hermitian metric and
connection preserving the above Z2-grading. Let

D± : �(S±(T M)) → �(S∓(T M))
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denote the induced Spin Dirac operators (cf. [14]). By the Atiyah-Singer index theorem,

̂A(M) = Ind(D),

̂A(M, E) = Ind(D ⊗ E).
(A.4)

Let ̂L(T M,∇T M ) be the Hirzebruch characteristic form defined by (cf. [16,32])

̂L(T M,∇T M ) = det1/2

⎛

⎝

√−1
2π RTM

tanh
(√−1

4π RTM
)

⎞

⎠ . (A.5)

Note that ̂L(T M,∇T M ) defined here is different from the classical Hirzebruch L-form
defined by

L(T M,∇T M ) = det1/2

⎛

⎝

√−1
2π RTM

tanh
(√−1

2π RTM
)

⎞

⎠ .

However they give same top (degree 4m) forms and therefore
∫

M

̂L(T M,∇T M ) =
∫

M
L(T M,∇T M ). (A.6)

We would also like to point out that our ̂L is different from thêL in page 233 of [14].
Let ch(E,∇E ) = ∑2m

i=0 ch
i (E,∇E ) such that chi (E,∇E ) is the degree 2i component.

Define

ch2(E,∇E ) =
2m
∑

i=0

2ichi (E,∇E ). (A.7)

It’s not hard to see that
∫

M

̂L(T M,∇T M )ch(E,∇E ) =
∫

M
L(T M,∇T M )ch2(E,∇E ). (A.8)

Let �C(T ∗M) be the complexified exterior algebra bundle of T M . Let 〈 , 〉�C(T ∗M) be
the Hermitian metric on �C(T ∗M) induced by gT M . Let dv be the Riemannian volume
form associated to gT M . Then �(M,�C(T ∗M)) has a Hermitian metric such that for α, α′ ∈
�(M,�C(T ∗M)),

〈α, α′〉 =
∫

M
〈α, α′〉�C(T ∗M) dv.

For X ∈ T M , let c(X) be the Clifford action on �C(T ∗M) defined by c(X) = X∗ − iX ,
where X∗ ∈ T ∗M corresponds to X via gT M . Let {e1, e2, · · · , e2n} be an oriented orthogonal
basis of T M . Set

� = (
√−1)nc(e1) · · · c(e2n).

Then one can show that � is independent of the choice of the orthonormal basis and �E =
� ⊗ 1 is a self-adjoint operator on �C(T ∗M) ⊗ E such that �2

E = Id|�C(T ∗M)⊗E .
Let d be the exterior differentiation operator and d∗ be the formal adjoint of d with respect

to the Hermitian metric. The operator

DSig := d + d∗ =
2n
∑

i=1

c(ei )∇�C(T ∗M)
ei : �(M,�C(T ∗M)) → �(M,�C(T ∗M))
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is the signature operator and the more general twisted signature operator is defined as (cf.
[9])

DSig ⊗ E :=
2n
∑

i=1

c(ei )∇�C(T ∗M)⊗E
ei : �(M,�C(T ∗M) ⊗ E) → �(M,�C(T ∗M) ⊗ E).

The operators DSig⊗E and�E are anti-commutative. If we decompose�C(T ∗M)⊗E =
�+

C
(T ∗M) ⊗ E ⊕ �−

C
(T ∗M) ⊗ E into ±1 eigenspaces of �E , then DSig ⊗ E decomposes

to define

(DSig ⊗ E)± : �(M,�±
C
(T ∗M) ⊗ E) → �(M,�∓

C
(T ∗M) ⊗ E). (A.9)

The twisted signature of M is defined as the index of the operator (DSig ⊗ E)+ denoted
by Sig(M, E),

Sig(M, E) = Ind((DSig ⊗ E)+). (A.10)

By the Atiyah-Singer index theorem,

Sig(M, E) =
∫

M

̂L(T M,∇T M )ch(E,∇E ).

Note that in the book [14] (Theorem 13.9), the following formula is given

Sig(M, E) =
∫

M
L(T M,∇T M )ch2(E,∇E ).

There is an important twisted ̂A-genus, namely the Witten genus [30] by coupling ̂A(M)

with the Witten bundle [30]

�(TCM) = ∞⊗
n=1

Sq2n (T̃CM), with T̃CM = T M ⊗ C − C
4m .

The Witten genus then can defined as

W (M) = 〈

̂A(T M)ch (� (TCM)) , [M]〉 .
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