HOLONOMIC SYSTEMS FOR PERIOD MAPPINGS

JINGYUE CHEN, AN HUANG, AND BONG H. LIAN
Dedicated to Professor Shing-Tung Yau on the occasion of his 65th birthday.

Abstract

Period mappings were introduced in the sixties [G to study variation of complex structures of families of algebraic varieties. The theory of tautological systems was introduced recently [LSY [LY to understand period integrals of algebraic manifolds. In this paper, we give an explicit construction of a tautological system for each component of a period mapping.

Contents

1. Setup 1
1.1. Tautological systems 1
1.2. Period mapping 2
2. Scalar system for first derivative 6
2.1. Vector valued system. 6
2.2. Scalar valued system 7
2.3. Regular holonomicity of the new system 9
3. Scalar systems for higher derivatives 10
4. Concluding remarks 13
5. Acknowledgement 13
References 13

1. Setup

1.1. Tautological systems. We will follow notations in [HLZ]. Let G be a connected algebraic group over \mathbb{C}. Let X be a complex projective G-variety and let \mathcal{L} be a very ample G-bundle over X which gives rise to a G-equivariant embedding

$$
X \rightarrow \mathbb{P}(V)
$$

where $V=\Gamma(X, \mathcal{L})^{\vee}$. Let $n=\operatorname{dim} V$. We assume that the action of G on X is locally effective, i.e. $\operatorname{ker}(G \rightarrow \operatorname{Aut}(X))$ is finite. Let $\hat{G}:=G \times \mathbb{C}^{\times}$, whose Lie algebra is $\hat{\mathfrak{g}}=\mathfrak{g} \oplus \mathbb{C} e$, where e acts on V by identity. We denote by $Z: \hat{G} \rightarrow$ $\mathrm{GL}(V)$ the corresponding group representation, and by $Z: \hat{\mathfrak{g}} \rightarrow$ End (V) the corresponding Lie algebra representation. Note that under our assumption, $Z: \hat{\mathfrak{g}} \rightarrow$ End (V) is injective.

Let $\hat{\iota}: \hat{X} \subset V$ be the cone of X, defined by the ideal $I(\hat{X})$. Let $\beta: \hat{\mathfrak{g}} \rightarrow \mathbb{C}$ be a Lie algebra homomorphism. Then a tautological system as defined in [LSY] [LY] is the cyclic D-module on V^{\vee}

$$
\tau(G, X, \mathcal{L}, \beta)=D_{V^{\vee}} / D_{V^{\vee}} J(\hat{X})+D_{V^{\vee}}(Z(x)+\beta(x), x \in \hat{\mathfrak{g}})
$$

where

$$
J(\hat{X})=\{\widehat{P} \mid P \in I(\hat{X})\}
$$

is the ideal of the commutative subalgebra $\mathbb{C}[\partial] \subset D_{V \vee}$ obtained by the Fourier transform of $I(\hat{X})$. Here \widehat{P} denotes the Fourier transform of P.

Given a basis $\left\{a_{1}, \ldots, a_{n}\right\}$ of V, we have $Z(x)=\sum_{i j} x_{i j} a_{i} \frac{\partial}{\partial a_{j}}$, where $\left(x_{i j}\right)$ is the matrix representing x in the basis. Since the a_{i} are also linear coordinates on V^{\vee}, we can view $Z(x) \in \operatorname{Der} \mathbb{C}\left[V^{\vee}\right] \subset D_{V^{\vee}}$. In particular, the identity operator $Z(e) \in$ End V becomes the Euler vector field on V^{\vee}.

Let X be a d-dimensional compact complex manifold such that its anticanonical line bundle $\mathcal{L}:=\omega_{X}^{-1}$ is very ample. We shall regard the basis elements a_{i} of $V=\Gamma\left(X, \omega_{X}^{-1}\right)^{\vee}$ as linear coordinates on V^{\vee}. Let $B:=$ $\Gamma\left(X, \omega_{X}^{-1}\right)_{s m} \subset V^{\vee}$, which is Zariski open.

Let $\pi: \mathcal{Y} \rightarrow B$ be the family of smooth CY hyperplane sections $Y_{a} \subset$ X, and let $\mathbb{H}^{\text {top }}$ be the Hodge bundle over B whose fiber at $a \in B$ is the line $\Gamma\left(Y_{a}, \omega_{Y_{a}}\right) \subset H^{d-1}\left(Y_{a}\right)$. In [LY] the period integrals of this family are constructed by giving a canonical trivialization of $\mathbb{H}^{\text {top }}$. Let Π be the period sheaf of this family, i.e. the locally constant sheaf generated by the period integrals.

Let G be a connected algebraic group acting on X.
Theorem 1.1 (See [LY]). The period integrals of the family $\pi: \mathcal{Y} \rightarrow B$ are solutions to

$$
\tau \equiv \tau\left(G, X, \omega_{X}^{-1}, \beta_{0}\right)
$$

where β_{0} is the Lie algebra homomorphism with $\beta_{0}(\mathfrak{g})=0$ and $\beta_{0}(e)=1$.
In [LSY] and [LY, it is shown that if G acts on X by finitely many orbits, then τ is regular holonomic.
1.2. Period mapping. Now we consider the period mapping of the family \mathcal{Y} :

$$
\begin{aligned}
\mathcal{P}^{p, k}: B & \rightarrow \operatorname{Gr}\left(b^{p, k}, H^{k}\left(Y_{a_{0}}, \mathbb{C}\right)\right) / \Gamma \\
a & \mapsto\left[F^{p} H^{k}\left(Y_{a}, \mathbb{C}\right)\right] \subset\left[H^{k}\left(Y_{a}, \mathbb{C}\right)\right] \cong\left[H^{k}\left(Y_{a_{0}}, \mathbb{C}\right)\right]
\end{aligned}
$$

where $a_{0} \in B$ is a fixed base point,

$$
b^{p, k}:=\operatorname{dim} F^{p} H^{k}\left(Y_{a}, \mathbb{C}\right)=\operatorname{dim} F^{p} H^{k}\left(Y_{a_{0}}, \mathbb{C}\right)
$$

and Γ is the monodromy group acting on $\operatorname{Gr}\left(b^{p, k}, H^{k}\left(Y_{a_{0}}, \mathbb{C}\right)\right)$.
Consider the local system $R^{k} \pi_{*} \mathbb{C}$, its stalk at $a \in B$ is $H^{k}\left(Y_{a}, \mathbb{C}\right)$. The Gauss-Manin connection on the vector bundle $\mathcal{H}^{k}=R^{k} \pi_{*} \mathbb{C} \otimes \mathcal{O}_{B}$ has the property that

$$
\nabla F^{p} \mathcal{H}^{k} \subset F^{p-1} \mathcal{H}^{k} \otimes \Omega_{B}
$$

If we choose a vector field $v \in \Gamma(B, T B)$, then $\nabla_{v} F^{p} \mathcal{H}^{k} \subset F^{p-1} \mathcal{H}^{k}$, i.e. $\nabla_{v} F^{p} H^{k}\left(Y_{a}, \mathbb{C}\right) \subset F^{p-1} H^{k}\left(Y_{a}, \mathbb{C}\right)$.

Throughout this paper we shall consider the case $k=d-1$. $\mathbb{H}^{\text {top }}$ is the bundle on B whose fiber is

$$
H^{0}\left(Y_{a}, \Omega^{d-1}\right)=H^{d-1,0}\left(Y_{a}\right)=F^{d-1} H^{d-1}\left(Y_{a}, \mathbb{C}\right)
$$

Thus $\mathbb{H}^{\text {top }}=F^{d-1} \mathcal{H}^{d-1}$. Theorem 1.1 tells us that its integral over a $(d-1)$ cycle on each fiber $Y_{a_{0}}$ is governed by the tautological system τ.

We shall describe the Gauss-Manin connection explicitly below.
Let $\left(K_{X}^{-1}\right)^{\times}$denote the complement of the zero section in the total space K_{X}^{-1} of \mathcal{L}. Consider the principal \mathbb{C}^{\times}-bundle $\left(K_{X}^{-1}\right)^{\times} \rightarrow X$ (with right action). Then there is a natural one-to-one correspondence between sections of ω_{X}^{-1} and \mathbb{C}^{\times}-equivariant morphisms $f:\left(K_{X}^{-1}\right)^{\times} \rightarrow \mathbb{C}$, i.e. $f\left(m \cdot h^{-1}\right)=h f(m)$. We shall write f_{a} the function that represents the section a. Since $\left(K_{X}^{-1}\right)^{\times}$is a CY bundle over X by [LY], it admits a global non-vanishing top form $\hat{\Omega}$. Let x_{0} be the vector field generated by $1 \in \mathbb{C}=\operatorname{Lie}\left(\mathbb{C}^{\times}\right)$. Then $\Omega:=\iota_{x_{0}} \hat{\Omega}$ is a G-invariant \mathbb{C}^{\times}-horizontal form of degree d on $\left(K_{X}^{-1}\right)^{\times}$. Moreover, since $\frac{\Omega}{f_{a}}$ is $G \times \mathbb{C}^{\times}$-invariant, it defines a family of meromorphic top form on X with pole along $V\left(f_{a}\right)$ LY, Thm. 6.3].

Let $a_{i}^{*} \in \Gamma\left(X, \omega_{X}^{-1}\right)$ be the dual basis of a_{i}. Let $f=\sum a_{i} a_{i}^{*}$ be the universal section of $V^{\vee} \times X \rightarrow K_{X}^{-1}$. Let $V(f)$ be the universal family of hyperplane sections, where $V\left(f_{a}\right)=Y_{a}$ is the zero locus of the section $f_{a} \equiv a \in V^{\vee}$. Let $U:=V^{\vee} \times X-V(f)$ and $U_{a}=X-V\left(f_{a}\right)$. Let $\pi^{\vee}: U \rightarrow V^{\vee}$ denote the projection.

Let $\hat{\pi}^{\vee}: U \rightarrow B$ be the restriction of π^{\vee} to B. Then there is a vector bundle $\hat{\mathcal{H}}^{d}:=R^{d}\left(\hat{\pi}^{\vee}\right)_{*} \mathbb{C} \otimes \mathcal{O}_{B}$ whose fiber is $H^{d}\left(X-V\left(f_{a}\right)\right)$ at $a \in B$. Then $\frac{\Omega}{f}$ is a global section of $F^{d} \hat{\mathcal{H}}^{d}$. And the Gauss-Manin connection on $\frac{\Omega}{f}$ is

$$
\nabla_{\partial a_{i}} \frac{\Omega}{f}=\frac{\partial}{\partial a_{i}} \frac{\Omega}{f}
$$

where $\partial_{a_{i}}:=\frac{\partial}{\partial a_{i}}, i=1, \ldots, n$.
Consider the residue map Res : $H^{d}\left(X-V\left(f_{a}\right)\right) \rightarrow H^{d-1}\left(Y_{a}, \mathbb{C}\right)$, it is shown in [LY] that Res $\frac{\Omega}{f} \in \Gamma\left(B, \mathcal{H}^{d-1}\right)$ is a canonical global trivialization of $\mathbb{H}^{\text {top }}=$ $F^{d-1} \mathcal{H}^{d-1}$. And similarly we have

$$
\nabla_{\partial a_{i}} \operatorname{Res} \frac{\Omega}{f}=\frac{\partial}{\partial a_{i}} \operatorname{Res} \frac{\Omega}{f}=\operatorname{Res} \frac{\partial}{\partial a_{i}} \frac{\Omega}{f} .
$$

In [HLZ, Coro. 2.2 and Lemma 2.6], it is shown that
Theorem 1.2. If $\beta(\mathfrak{g})=0$ and $\beta(e)=1$, there is a canonical surjective map

$$
\tau \rightarrow H^{0} \pi_{+}^{\vee} \mathcal{O}_{U}, \quad 1 \mapsto \frac{\Omega}{f}
$$

We now want to give an explicit description of each step of the Hodge filtration.

Let X be a projective variety of dimension d and Y a smooth hypersurface. We make the following hypothesis:
(*) For every $i>0, k>0, j \geq 0$, we have

$$
H^{i}\left(X, \Omega_{X}^{j}(k Y)\right)=0
$$

where $\Omega_{X}^{j}(k Y)=\Omega_{X}^{j} \otimes \mathcal{O}_{X}(Y)^{\otimes k}$.
Theorem 1.3 (Griffiths). Let X be a projective variety and Y a smooth hypersurface. Assume (*) holds. Then for every integer p between 1 and d, the image of the natural map

$$
H^{0}\left(X, \Omega_{X}^{d}(p Y)\right) \rightarrow H^{d}(X-Y, \mathbb{C})
$$

which to a section α (viewed as a meromorphic form on X of degree d, holomorphic on $X-Y$ and having a pole of order less than or equal to p along Y) associates its de Rham cohomology class, is equal to $F^{d-p+1} H^{d}(X-Y)$ (See [Vo, II, p 160].)

Corollary 1.4. Assume (*) holds for smooth $C Y$ hypersurfaces $Y_{a} \subset X$. Then the de Rham classes of

$$
\left\{\nabla_{\partial a_{\iota_{1}}} \cdots \nabla_{\partial a_{\iota_{p-1}}} \frac{\Omega}{f_{a}}\right\}_{1 \leq \iota_{1}, \ldots, \iota_{p-1} \leq n}
$$

generate the filtration $F^{d-p+1} H^{d}\left(U_{a}\right)$ for $1 \leq p \leq d$.
Proof. By our assumption X is projective and $\mathcal{O}_{X}\left(Y_{a}\right)=\omega_{X}^{-1}$ is very ample. By Theorem 1.3 it is sufficient to show that

$$
\begin{equation*}
\mathbb{C}\left\{\nabla_{\partial a_{\iota_{1}}} \cdots \nabla_{\partial a_{\iota_{p-1}}} \frac{\Omega}{f_{a}}\right\}_{1 \leq \iota_{1}, \ldots, \iota_{p-1} \leq n}=H^{0}\left(X, \Omega_{X}^{d}\left(p Y_{a}\right)\right) \tag{1.1}
\end{equation*}
$$

Since Y_{a} are CY hypersurfaces, there is an isomorphism

$$
\mathcal{O}_{X} \simeq \Omega_{X}^{d}\left(Y_{a}\right), \quad 1 \leftrightarrow \frac{\Omega}{f_{a}}
$$

Let $\mathcal{M}\left(p Y_{a}\right)$ be the sheaf of meromorphic functions with a pole along Y_{a} of order less than or equal to p. Then there is an isomorphism

$$
\mathcal{O}_{X}\left(Y_{a}\right)^{p-1} \simeq \mathcal{M}\left((p-1) Y_{a}\right), \quad g \leftrightarrow \frac{g}{f_{a}^{p-1}}
$$

Thus we have an isomorphism

$$
\mathcal{O}_{X} \otimes \mathcal{O}_{X}\left(Y_{a}\right)^{p-1} \simeq \Omega_{X}^{d}\left(Y_{a}\right) \times \mathcal{M}\left((p-1) Y_{a}\right), 1 \otimes g \leftrightarrow \frac{\Omega}{f_{a}} \frac{g}{f_{a}^{p-1}}
$$

Since

$$
\Omega_{X}^{d}\left(p Y_{a}\right):=\Omega_{X}^{d} \otimes \mathcal{O}_{X}\left(Y_{a}\right)^{p} \equiv \mathcal{O}_{X}\left(Y_{a}\right)^{p-1}
$$

we have

$$
H^{0}\left(X, \Omega_{X}^{d}\left(p Y_{a}\right)\right)=\left\{\left.g \frac{\Omega}{f_{a}^{p}} \right\rvert\, g \in H^{0}\left(X, \mathcal{O}_{X}\left(Y_{a}\right)^{p-1}\right) .\right\}
$$

For $p=1$, the statement is clearly true.
For $p=2, f=\sum_{i} a_{i} a_{i}^{*}, \nabla_{\partial a_{i}} \frac{\Omega}{f_{a}}=\frac{\partial}{\partial a_{i}} \frac{\Omega}{f_{a}}=-\frac{a_{i}^{*} \Omega}{f_{a}^{2}}$. Since $\left\{\left.\frac{a_{i}^{*} \Omega}{f_{a}^{2}} \right\rvert\, a_{i}^{*} \in\right.$ $\left.H^{0}\left(X, \omega_{X}^{-1}\right)\right\}=H^{0}\left(X, \Omega_{X}^{d}\left(2 Y_{a}\right)\right)$, (1.1) is true.
Claim 1.5. For a very ample line bundle L over X,

$$
H^{0}\left(X, L^{k}\right) \otimes H^{0}\left(X, L^{l}\right) \rightarrow H^{0}\left(X, L^{k+l}\right)
$$

is surjective.
Proof of claim. Since L is very ample, let $V:=H^{0}(X, L)^{\vee}$, it follows that $L=$ $\left.\mathcal{O}_{\mathbb{P} V}(1)\right|_{X}$. Since restriction commutes with tensor product, $L^{k}=\left.\mathcal{O}_{\mathbb{P} V}(k)\right|_{X}$. And since $H^{0}\left(\mathbb{P} V, \mathcal{O}_{\mathbb{P} V}(k)\right) \otimes H^{0}\left(\mathbb{P} V, \mathcal{O}_{\mathbb{P} V}(l)\right) \rightarrow H^{0}\left(\mathbb{P} V, \mathcal{O}_{\mathbb{P} V}(k+l)\right)$ is surjective, it follows that $H^{0}\left(X, L^{k}\right) \otimes H^{0}\left(X, L^{l}\right) \rightarrow H^{0}\left(X, L^{k+l}\right)$ is surjective.

For $p=3, \nabla_{\partial a_{i}} \nabla_{\partial a_{j}} \frac{\Omega}{f_{a}}=\frac{2 a_{a}^{*} a_{j}^{*} \Omega}{f_{a}^{3}}$. Since $\mathcal{L}:=\omega_{X}^{-1}$ is very ample, $H^{0}(X, \mathcal{L}) \otimes$ $H^{0}(X, \mathcal{L}) \rightarrow H^{0}\left(X, \mathcal{L}^{2}\right)$ is onto. So $\left\{a_{i}^{*} a_{j}^{*}\right\}_{1 \leq i, j \leq n}$ generate $H^{0}\left(X, \mathcal{L}^{2}\right)$. Thus

$$
\mathbb{C}\left\{\frac{a_{i}^{*} a_{j}^{*} \Omega}{f_{a}^{3}}\right\}_{1 \leq i, j \leq n}=H^{0}\left(X, \Omega_{X}^{d}\left(3 Y_{a}\right)\right)
$$

and therefore (1.1) holds.
Similarly, since $H^{0}\left(X, \mathcal{L}^{p-2}\right) \otimes H^{0}(X, \mathcal{L}) \rightarrow H^{0}\left(X, \mathcal{L}^{p-1}\right)$ is surjective, by induction $a_{\iota_{1}}^{*} \cdots a_{\iota_{p-1}}^{*}$ generate $H^{0}\left(X, \mathcal{L}^{p-1}\right)$. Therefore the de Rham classes of

$$
\left\{\nabla_{\partial_{a_{1}}} \cdots \nabla_{\partial_{a_{\iota_{p-1}}}} \frac{\Omega}{f_{a}}=(-1)^{p-1} \frac{(p-1)!a_{\iota_{1}}^{*} \cdots a_{\iota_{p-1}}^{*} \Omega}{f_{a}^{p}}\right\}_{1 \leq \iota_{1}, \ldots, \iota_{p-1} \leq n}
$$

generate $F^{d-p+1} H^{d}\left(U_{a}\right)$.

Corollary 1.6. Assume (*) holds for smooth $C Y$ hypersurfaces $Y_{a} \subset X$. Then the de Rham classes of

$$
\left\{\nabla_{\partial_{a_{\iota_{1}}}} \cdots \nabla_{\partial_{a_{\iota_{p-1}}}} \operatorname{Res} \frac{\Omega}{f_{a}}\right\}_{1 \leq \iota_{1}, \ldots, \iota_{p-1} \leq n}
$$

generate the filtration $F^{d-p} H_{v a n}^{d-1}\left(Y_{a}\right)$ for $1 \leq p \leq d$.
Proof. Consider the exact sequence

$$
0 \rightarrow H_{\mathrm{prim}}^{d}(X) \rightarrow H^{d}\left(X-V\left(f_{a}\right)\right) \xrightarrow{\mathrm{Res}} H_{\mathrm{van}}^{d-1}\left(Y_{a}, \mathbb{C}\right) \rightarrow 0
$$

it shows that $H^{d}\left(X-V\left(f_{a}\right)\right)$ is mapped surjectively onto the vanishing cohomology of $H^{d-1}\left(Y_{a}, \mathbb{C}\right)$ under the residue map. Since the residue map preserves the Hodge filtration, by Corollary 1.4 the result follows.

The goal of this paper is to construct a regular holonomic differential system that governs the p-th derivative of period integrals for each $p \in \mathbb{Z}$. By the preceding corollary, this provides a differential system for "each step" of the period mapping of the family \mathcal{Y}.

2. SCALAR SYSTEM FOR FIRST DERIVATIVE

We shall use τ to denote interchangeably both the D-module and its left defining ideal. Let $P(\zeta) \in I(\hat{X})$ where $\zeta \in V$, then its Fourier transform $\widehat{P}=P\left(\partial_{a}\right), a \in V^{\vee}$. Then the tautological system $\tau=\tau\left(G, X, \omega_{X}^{-1}, \beta_{0}\right)$ for $\Pi_{\gamma}(a)$ becomes the following system of differential equations:

$$
\left\{\begin{array}{l}
P\left(\partial_{a}\right) \phi(a)=0 \tag{2.1a}\\
\left(\sum_{i, j} x_{i j} a_{i} \frac{\partial}{\partial a_{j}}\right) \phi(a)=0 \\
\left(\sum_{i} a_{i} \frac{\partial}{\partial a_{i}}+1\right) \phi(a)=0 .
\end{array}\right.
$$

Let $\omega_{a}:=\operatorname{Res} \frac{\Omega}{f_{a}}$ for $a \in B$. Since the topology of Y_{a} doesn't change, we choose a $(d-1)$-cycle in $H^{d-1}\left(Y_{a_{0}}, \mathbb{C}\right)$ for some $a_{0} \in B$. Then the period integral becomes $\Pi_{\gamma}(a)=\int_{\gamma} \omega_{a}$. Then by Theorem 1.1, $\Pi_{\gamma}(a)$ are solutions of τ. By [BHLSY] and [HLZ], if X is a projective homogeneous space, then τ is complete, meaning that the solution sheaf agrees with the period sheaf.

The goal of this section is to write a system of scalar valued partial differential equations whose solution contains all the information of first order partial derivatives of period integrals.
2.1. Vector valued system. Taking derivatives of equations in τ gives us a vector valued system of differential equations that involve all first order derivatives of period integrals.

Let $\phi_{k}(a):=\frac{\partial}{\partial a_{k}} \phi(a), 1 \leq k \leq n$.
From equation (2.1a) we have

$$
\frac{\partial}{\partial a_{k}} p\left(\partial_{a}\right) \phi(a)=P\left(\partial_{a}\right) \frac{\partial}{\partial a_{k}} \phi(a)=P\left(\partial_{a}\right) \phi_{k}(a)=0 .
$$

From equation (2.1b) we have

$$
\begin{aligned}
\frac{\partial}{\partial a_{k}}\left(\sum_{i, j} x_{i j} a_{i} \frac{\partial}{\partial a_{j}}\right) \phi(a) & =\left(\sum_{i, j} x_{i j} a_{i} \frac{\partial}{\partial a_{j}} \frac{\partial}{\partial a_{k}}\right) \phi(a)+\left(\sum_{j} x_{k j} \frac{\partial}{\partial a_{j}}\right) \phi(a) \\
& =\left(\sum_{i, j} x_{i j} a_{i} \frac{\partial}{\partial a_{j}}\right) \phi_{k}(a)+\sum_{j} x_{k j} \phi_{j}(a)=0 .
\end{aligned}
$$

From equation (2.1c) we have

$$
\begin{aligned}
\frac{\partial}{\partial a_{k}}\left(\sum_{i} a_{i} \frac{\partial}{\partial a_{i}}+1\right) \phi(a) & =\left(\sum_{i} a_{i} \frac{\partial}{\partial a_{i}} \frac{\partial}{\partial a_{k}}+\frac{\partial}{\partial a_{k}}+\frac{\partial}{\partial a_{k}}\right) \phi(a) \\
& =\left(\sum_{i} a_{i} \frac{\partial}{\partial a_{i}}+2\right) \phi_{k}(a)=0
\end{aligned}
$$

We also have a relation between derivatives $\frac{\partial}{\partial a_{i}} \frac{\partial}{\partial a_{j}} \phi(a)=\frac{\partial}{\partial a_{j}} \frac{\partial}{\partial a_{i}} \phi(a)$, which implies

$$
\frac{\partial}{\partial a_{i}} \phi_{j}(a)=\frac{\partial}{\partial a_{j}} \phi_{i}(a) .
$$

Then we get a system of differential equations whose solutions are vector valued of the form $\left(\phi_{1}(a), \ldots, \phi_{n}(a)\right)$ as follows:

$$
\left\{\begin{array}{l}
P\left(\partial_{a}\right) \phi_{k}(a)=0, \forall 1 \leq k \leq n \tag{2.2a}\\
\left(\sum_{i, j} x_{i j} a_{i} \frac{\partial}{\partial a_{j}}\right) \phi_{k}(a)+\sum_{j} x_{k j} \phi_{j}(a)=0, \forall 1 \leq k \leq n \\
\left(\sum_{i} a_{i} \frac{\partial}{\partial a_{i}}+2\right) \phi_{k}(a)=0, \forall 1 \leq k \leq n \\
\frac{\partial}{\partial a_{i}} \phi_{j}(a)=\frac{\partial}{\partial a_{j}} \phi_{i}(a), \forall 1 \leq i, j \leq n .
\end{array}\right.
$$

Then by Theorem 1.1, $\left(\frac{\partial}{\partial a_{1}} \Pi_{\gamma}(a), \ldots, \frac{\partial}{\partial a_{n}} \Pi_{\gamma}(a)\right)$ are solutions to system (2.2).
2.2. Scalar valued system. Now let b_{1}, \ldots, b_{n} be another copy of the basis of V^{\vee}. We now construct, by an elementary way, a system of differential equations over $V^{\vee} \times V^{\vee}$ that is equivalent to (2.2), but whose solutions are function germs on $V^{\vee} \times V^{\vee}$. Consider the system

$$
\left\{\begin{array}{l}
P\left(\partial_{a}\right) \phi(a, b)=0 \tag{2.3a}\\
\left(\sum_{i, j} x_{i j} a_{i} \frac{\partial}{\partial a_{j}}+\sum_{i, j} x_{i j} b_{i} \frac{\partial}{\partial b_{j}}\right) \phi(a, b)=0 \\
\left(\sum_{i} a_{i} \frac{\partial}{\partial a_{i}}+2\right) \phi(a, b)=0 \\
\frac{\partial}{\partial a_{i}} \frac{\partial}{\partial b_{j}} \phi(a, b)=\frac{\partial}{\partial a_{j}} \frac{\partial}{\partial b_{i}} \phi(a, b), \forall 1 \leq i, j \leq n \\
\frac{\partial}{\partial b_{i}} \frac{\partial}{\partial b_{j}} \phi(a, b)=0, \forall 1 \leq i, j \leq n \\
\left(\sum_{i} b_{i} \frac{\partial}{\partial b_{i}}-1\right) \phi(a, b)=0 .
\end{array}\right.
$$

Theorem 2.1. By setting $\phi(a, b)=\sum_{k} b_{k} \phi_{k}(a)$ and $\phi_{k}(a)=\frac{\partial}{\partial b_{k}} \phi(a, b)$, the systems (2.2) and (2.3) are equivalent.

Proof. First we show that if $\left(\phi_{1}(a), \ldots, \phi_{n}(a)\right)$ is a solution to system (2.2), let $\phi(a, b)=\sum_{k} b_{k} \phi_{k}(a)$, then $\phi(a, b)$ is a solution to system (2.3).

Since $\phi(a, b)=\sum_{k} b_{k} \phi_{k}(a)$, equation (2.2a) implies that

$$
P\left(\partial_{a}\right) \phi(a, b)=P\left(\partial_{a}\right) \sum_{k} b_{k} \phi_{k}(a)=\sum_{k} b_{k} P\left(\partial_{a}\right) \phi_{k}(a)=0,
$$

thus equation (2.3a) holds.
Equation (2.3b) can be shown as follows:

$$
\begin{aligned}
& \left(\sum_{i, j} x_{i j} a_{i} \frac{\partial}{\partial a_{j}}+\sum_{i, j} x_{i j} b_{i} \frac{\partial}{\partial b_{j}}\right)\left(\sum_{k} b_{k} \phi_{k}(a)\right) \\
& =\sum_{k} b_{k}\left(\left(\sum_{i, j} x_{i j} a_{i} \frac{\partial}{\partial a_{j}}\right) \phi_{k}(a)\right)+\sum_{i, j} x_{i j} b_{i} \phi_{j}(a) \\
& =\sum_{k} b_{k}\left(-\sum_{j} x_{k j} \phi_{j}(a)\right)+\sum_{i, j} x_{i j} b_{i} \phi_{j}(a)=0 .
\end{aligned}
$$

Equation (2.2 C$)$ shows that $\phi_{k}(a)$ is homogeneous of degree -2 in a, it implies that $\phi(a, b)$ is also homogeneous of degree -2 in a, which implies equation (2.3c).

Since $\frac{\partial}{\partial b_{k}} \phi(a, b)=\phi_{k}(a)$, equation (2.2d) is the same as saying that

$$
\frac{\partial}{\partial a_{i}} \frac{\partial}{\partial b_{j}} \phi(a, b)=\frac{\partial}{\partial a_{j}} \frac{\partial}{\partial b_{i}} \phi(a, b) \quad \forall i, j,
$$

which is equation (2.3d).
Since $\phi(a, b)$ is linear in b, equation (2.3e) holds. $\phi(a, b)$ is homogeneous of degree 1 in b, it implies equation (2.3f).

Next we show that if $\phi(a, b)$ is a solution to system (2.3), set $\phi_{k}(a)=$ $\frac{\partial}{\partial b_{k}} \phi(a, b)$, then $\left(\phi_{1}(a), \ldots, \phi_{n}(a)\right)$ is a solution to system (2.2).

Equation (2.3e) tells us that $\phi(a, b)$ is linear in b, i.e. there exists functions $h_{k}(a)$ and $g(a)$ on V^{\vee} such that

$$
\phi(a, b)=\sum_{k} b_{k} h_{k}(a)+g(a) .
$$

Equation (2.3f) shows that $\phi(a, b)$ is homogeneous of degree 1 in b, which implies that $g=0$ and

$$
\phi(a, b)=\sum_{k} b_{k} h_{k}(a) .
$$

Now $\phi_{k}(a)=\frac{\partial}{\partial b_{k}} \phi(a, b)=\frac{\partial}{\partial b_{k}}\left(\sum_{k} b_{k} h_{k}(a)\right)=h_{k}(a)$ and we thus can write

$$
\phi(a, b)=\sum_{k} b_{k} \phi_{k}(a) .
$$

Equation (2.3a) shows that

$$
P\left(\partial_{a}\right) \sum_{k} b_{k} \phi_{k}(a)=\sum_{k} b_{k}\left(P\left(\partial_{a}\right) \phi_{k}(a)\right)=0 .
$$

Since the b_{i} 's are linearly independent, this further shows that

$$
P\left(\partial_{a}\right) \phi_{k}(a)=0 \quad \forall k
$$

which coincides with equation (2.2a).
From equation (2.3b) we can see that

$$
\begin{aligned}
& \left(\sum_{i, j} x_{i j} a_{i} \frac{\partial}{\partial a_{j}}+\sum_{i, j} x_{i j} b_{i} \frac{\partial}{\partial b_{j}}\right)\left(\sum_{k} b_{k} \phi_{k}(a)\right) \\
& =\sum_{k} b_{k}\left(\sum_{i, j} x_{i j} a_{i} \frac{\partial}{\partial a_{j}}\right) \phi_{k}(a)+\sum_{i, j} x_{i j} b_{i} \phi_{j}(a) \\
& =\sum_{k} b_{k}\left(\left(\sum_{i, j} x_{i j} a_{i} \frac{\partial}{\partial a_{j}}\right) \phi_{k}(a)+\sum_{j} x_{k j} \phi_{j}(a)\right)=0 .
\end{aligned}
$$

Since the b_{i} 's are linearly independent, we have

$$
\left(\sum_{i, j} x_{i j} a_{i} \frac{\partial}{\partial a_{j}}\right) \phi_{k}(a)+\sum_{j} x_{k j} \phi_{j}(a)=0, \quad \forall k
$$

which is equation (2.2b).
Equation (2.3c) shows that $\sum_{k} b_{k} \phi_{k}(a)$ is homogeneous of degree -2 in a, which implies that $\phi_{k}(a)$ is homogeneous of degree -2 in a as well, which would imply equation (2.2c).

It's also clear that equation (2.3d) implies (2.2d).
Therefore the two systems are equivalent in the above sense.
Therefore $\sum_{k} b_{k} \frac{\partial}{\partial a_{k}} \Pi_{\gamma}(a)$ are solutions to system (2.3).
2.3. Regular holonomicity of the new system. In this section we will show that system (2.3) is regular holonomic, by extending the proof for the original tautological system in paper [LSY].

Let $\mathcal{M}:=D_{V \vee \times V \vee} / \mathcal{J}$ where \mathcal{J} is the left ideal generated by the operators in system (2.3).

Theorem 2.2. Assume that the G-variety X has only a finite number of G orbits. Then the D-module \mathcal{M} is regular holonomic.

Proof. Consider the Fourier transform:

$$
\widehat{a_{i}}=\frac{\partial}{\partial \zeta_{i}}, \widehat{b_{i}}=\frac{\partial}{\partial \xi_{i}}, \frac{\widehat{\partial}}{\partial a_{i}}=-\zeta_{i}, \frac{\widehat{\partial}}{\partial b_{i}}=-\xi_{i}
$$

where $\zeta, \xi \in V$. The Fourier transform of the D-module $\mathcal{M}=D_{V^{\vee} \times V^{\vee}} / \mathcal{J}$ is $\widehat{\mathcal{M}}=D_{V \times V} / \widehat{\mathcal{J}}$, where $\widehat{\mathcal{J}}$ is the $D_{V \times V}$-ideal generated by the following operators:

$$
\left\{\begin{array}{l}
P(\zeta) \tag{2.4a}\\
\zeta_{i} \xi_{j}-\zeta_{j} \xi_{i}, \forall 1 \leq i, j \leq n \\
\xi_{i} \xi_{j}, \forall 1 \leq i, j \leq n \\
\sum_{i, j} x_{i j} \frac{\partial}{\partial \zeta_{i}} \zeta_{j}+\sum_{i, j} x_{i j} \frac{\partial}{\partial \xi_{i}} \xi_{j}=\sum_{i, j} x_{j i} \zeta_{i} \frac{\partial}{\partial \zeta_{j}}+\sum_{i, j} x_{j i} \xi_{i} \frac{\partial}{\partial \xi_{j}}+\sum 2 x_{i i} \\
\sum_{i} \frac{\partial}{\partial \zeta_{i}}\left(-\zeta_{i}\right)+2=\sum_{i}-\zeta_{i} \frac{\partial}{\partial \zeta_{i}}-n+2 \\
\sum_{i} \frac{\partial}{\partial \xi_{i}}\left(-\xi_{i}\right)-1=\sum_{i}-\xi_{i} \frac{\partial}{\partial \xi_{i}}-n-1
\end{array}\right.
$$

Consider the $G \times \mathbb{C}^{\times} \times \mathbb{C}^{\times}$-action on $V \times V$ where G acts diagonally and each \mathbb{C}^{\times}acts on V by scaling. Consider the ideal \mathcal{I} generated by (2.4a), (2.4b) and (2.4c). Operator (2.4c) tells us that $\xi_{i}=0$ for all i, thus $(V \times V) / \mathcal{I} \subset V \times\{0\}$. The ideal \mathcal{I} also contains (2.4a), thus $(V \times V) / \mathcal{I}=\hat{X} \times\{0\}$, which is an algebraic variety. Operator (2.4d) comes from the G-action on $V \times V$, operators (2.4e) and (2.4f) come from each copy of \mathbb{C}^{\times}-action on V. Now from our assumption the G-action on X has only a finite number of orbits, thus when lifting to $\hat{X} \times\{0\} \subset V \times V$ there are also finitely many $G \times \mathbb{C}^{\times} \times \mathbb{C}^{\times}$-orbits. Therefore $\widehat{\mathcal{M}}$ is a twisted $G \times \mathbb{C}^{\times} \times \mathbb{C}^{\times}$-equivariant coherent $D_{V^{\vee} \times V^{\vee} \text {-module }}$ in the sense of [H0] whose support Supp $\widehat{\mathcal{M}}=\hat{X} \times\{0\}$ consists of finitely many $G \times \mathbb{C}^{\times} \times \mathbb{C}^{\times}$-orbits. Thus the $\widehat{\mathcal{M}}$ is regular holonomic [Bo].

The D-module $\mathcal{M}=D_{V^{\vee} \times V^{\vee}} / \mathcal{J}$ is homogeneous since the ideal \mathcal{J} is generated by homogeneous elements under the graduation $\operatorname{deg} \frac{\partial}{\partial a_{i}}=\operatorname{deg} \frac{\partial}{\partial b_{i}}=-1$ and $\operatorname{deg} a_{i}=\operatorname{deg} b_{i}=1$. Thus \mathcal{M} is regular holonomic since its Fourier transform $\widehat{\mathcal{M}}$ is regular holonomic $[\mathrm{Br}]$.

3. Scalar systems for higher derivatives

Now we take derivative of system (2.2) and get a new scalar valued system whose solution consists of n^{2} functions $\phi_{l k}:=\frac{\partial}{\partial a_{l}} \frac{\partial}{\partial a_{k}} \phi(a), 1 \leq l, k \leq n$.

$$
\left\{\begin{array}{l}
P\left(\partial_{a}\right) \phi_{l k}(a)=0, \forall 1 \leq k, l \leq n \tag{3.1a}\\
\left(\sum_{i, j} x_{i j} a_{i} \frac{\partial}{\partial a_{j}}\right) \phi_{l k}(a)+\sum_{j} x_{l j} \phi_{j k}(a)+\sum_{j} x_{k j} \phi_{l j}(a)=0, \forall k, l \\
\left(\sum_{i} a_{i} \frac{\partial}{\partial a_{i}}+3\right) \phi_{l k}(a)=0, \forall 1 \leq k, l \leq n \\
\phi_{l k}(a)=\phi_{k l}(a), \forall 1 \leq k, l \leq n \\
\frac{\partial}{\partial a_{i}} \phi_{j k}(a)=\frac{\partial}{\partial a_{j}} \phi_{k i}(a)=\frac{\partial}{\partial a_{k}} \phi_{i j}(a), \forall 1 \leq i, j, k \leq n
\end{array}\right.
$$

And considering $\phi(a, b):=\sum_{l, k} b_{l} b_{k} \phi_{l, k}(a)$, we get a new system:

$$
\left\{\begin{array}{l}
P\left(\partial_{a}\right) \phi(a, b)=0 \tag{3.2a}\\
\left(\sum_{i, j} x_{i j} a_{i} \frac{\partial}{\partial a_{j}}+\sum_{i, j} x_{i j} b_{i} \frac{\partial}{\partial b_{j}}\right) \phi(a, b)=0 \\
\left(\sum_{i} a_{i} \frac{\partial}{\partial a_{i}}+3\right) \phi(a, b)=0 \\
\left(\sum_{i} b_{i} \frac{\partial}{\partial b_{i}}-2\right) \phi(a, b)=0 \\
\frac{\partial}{\partial b_{i}} \frac{\partial}{\partial b_{j}} \frac{\partial}{\partial b_{k}} \phi(a, b)=0, \forall 1 \leq i, j, k \leq n \\
\frac{\partial}{\partial a_{i}} \frac{\partial}{\partial b_{j}} \frac{\partial}{\partial b_{k}} \phi(a, b)=\frac{\partial}{\partial a_{j}} \frac{\partial}{\partial b_{k}} \frac{\partial}{\partial b_{i}} \phi(a, b)=\frac{\partial}{\partial a_{k}} \frac{\partial}{\partial b_{i}} \frac{\partial}{\partial b_{j}} \phi(a, b), \forall i, j, k
\end{array}\right.
$$

Similar to the previous case, we have:
Proposition 3.1. By setting $\phi(a, b)=\sum_{l, k} b_{l} b_{k} \phi_{l, k}(a)$ and $\phi_{l k}(a)=\frac{\partial}{\partial b_{l}} \frac{\partial}{\partial b_{k}} \phi(a, b)$, the systems (3.1) and (3.2) are equivalent.

Proof. Here we check for (3.2b) and the rest is clear. Let $\phi(a, b)=\sum_{l, k} b_{l} b_{k} \phi_{l, k}(a)$, then the left-hand side of (3.2b) becomes

$$
\begin{aligned}
& \sum_{i, j, k, l} b_{k} b_{l} x_{i j} a_{i} \frac{\partial}{\partial a_{j}} \phi_{l, k}(a)+\sum_{i, j, k, l} x_{i j} \delta_{k j} b_{i} b_{l} \phi_{l k}(a)+\sum_{i, j, k, l} x_{i j} \delta_{k l} b_{i} b_{k} \phi_{l k}(a) \\
= & \sum_{i, j, k, l} b_{k} b_{l} x_{i j} a_{i} \frac{\partial}{\partial a_{j}} \phi_{l, k}(a)+2 \sum_{j, k, l} x_{l j} b_{k} b_{l} \phi_{j k}(a)
\end{aligned}
$$

And (3.1b) implies that

$$
\begin{aligned}
& -\sum_{k, l} b_{k} b_{l} \sum_{i, j} x_{i j} a_{i} \frac{\partial}{\partial a_{j}} \phi_{l k}(a) \\
= & \sum_{k, l} b_{k} b_{l} \sum_{j} x_{l j} \phi_{j k}(a)+\sum_{k, l} b_{k} b_{l} \sum_{j} x_{k j} \phi_{l j}(a) \\
= & 2 \sum_{j, k, l} b_{k} b_{l} x_{l j} \phi_{j k}(a)
\end{aligned}
$$

Therefore the left-hand side of (3.2b) equals 0 . The reverse direction is also clear.

Proposition 3.2. Assume that the G-variety X has only a finite number of G-orbits, then system (3.2) is regular holonomic.

The proof of Theorem 2.2 follows here.

In general, for p-th derivatives of $\phi(a)$ satisfying τ, we can construct a new system as follows:

$$
\left\{\begin{array}{l}
P\left(\partial_{a}\right) \phi(a, b)=0 \tag{3.3a}\\
\left(\sum_{i, j} x_{i j} a_{i} \frac{\partial}{\partial a_{j}}+\sum_{i, j} x_{i j} b_{i} \frac{\partial}{\partial b_{j}}\right) \phi(a, b)=0 \\
\left(\sum_{i} a_{i} \frac{\partial}{\partial a_{i}}+1+p\right) \phi(a, b)=0 \\
\left(\sum_{i} b_{i} \frac{\partial}{\partial b_{i}}-p\right) \phi(a, b)=0 \\
\frac{\partial}{\partial b_{k_{1}}} \cdots \frac{\partial}{\partial b_{k_{p}}} \phi(a, b)=0 \quad \forall 1 \leq k_{i} \leq n \\
\frac{\partial}{\partial a_{k_{1}}} \frac{\partial}{\partial b_{k_{2}}} \cdots \frac{\partial}{\partial b_{k_{p}}} \phi(a, b)=\frac{\partial}{\partial a_{k_{l_{1}}}} \frac{\partial}{\partial b_{k_{l_{2}}}} \cdots \frac{\partial}{\partial b_{k_{l_{p}}}} \phi(a, b)
\end{array}\right.
$$

where $1 \leq k_{i} \leq n$ and $\left\{l_{1}, \ldots, l_{p}\right\}$ is any permutation of $\{1, \ldots, p\}$.
The relationship between $\phi(a, b)$ and the derivatives of $\phi(a)$ is:

$$
\phi(a, b)=\sum_{k_{1}, \ldots, k_{p}} b_{k_{1}} \cdots b_{k_{p}} \frac{\partial}{\partial a_{k_{1}}} \cdots \frac{\partial}{\partial a_{k_{p}}} \phi(a)
$$

From our previous argument it is clear that if G acts on X with finitely many orbits, this system is regular holonomic.

By Theorem 1.1, $\sum_{k_{1}, \ldots, k_{p}} b_{k_{1}} \cdots b_{k_{p}} \frac{\partial}{\partial a_{k_{1}}} \cdots \frac{\partial}{\partial a_{k_{p}}} \Pi_{\gamma}(a)$ are solutions to system (3.3).

4. Concluding Remarks

We conclude this paper with some remarks about our new differential systems for period mappings.

For the family of CYs \mathcal{Y}, since the period mapping is given by higher derivatives of the periods of $(d-1,0)$ forms, any information about the period mapping can in principle be derived from period integrals, albeit somewhat indirectly. However, the point here is that an explicit regular holonomic system for the full period mapping would give us a way to study the structure of this mapping by D-module techniques directly. Thanks to the Riemann-Hilbert correspondence, these techniques have proven to be a very fruitful approach to geometric questions about the family \mathcal{Y} (e.g. degenerations, monodromy, etc.) BHLSY, HLZ] when applied to τ. The new differential system that we have constructed for the period mapping is in fact nothing but a tautological system. Namely, it is a regular holonomic D-module defined by a polynomial ideal together with a set of first order symmetry operators - conceptually of the same type as τ. It is therefore directly amenable to the same tools (Fourier transforms, Riemann-Hilbert, Lie algebra homology, etc.) we applied to investigate τ itself. The hope is that understanding the structure of the new D-module will shed new light on Hodge-theoretic questions about the family \mathcal{Y}. We would like to return to these questions in a future paper.

5. Acknowledgement

We dedicate this paper to our mentor, teacher and colleague Professor ShingTung Yau on the occasion of his 65th birthday, 60 years after the celebrated Calabi conjecture. The authors AH and BHL also thank their collaborators S. Bloch, R. Song, D. Srinivas, S.-T. Yau and X. Zhu for their contributions to the foundation of the theory of tautological systems, upon which this paper is based. Finally, we thank the referee for corrections and helpful comments. BHL is partially supported by NSF FRG grant DMS 1159049.

References

[BHLSY] S. Bloch, A. Huang, B.H. Lian, V. Srinivas, S.-T. Yau, On the Holonomic Rank Problem, J. Differential Geom. 97 (2014), no. 1, 11-35.
[Bo] A. Borel et al, Algebraic D-modules, Perspectives in Mathematics, 2. Academic Press, Inc., Boston, MA, 1987.
[Br] J.-L. Brylinski, Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Astérisque No. 140-141 (1986), 3134, 251.
[G] P. Griffiths, The residue calculus and some transcendental results in algebraic geometry, I. Proc. Natl. Acad. Sci. USA, 55 (5) (1966), 1303-1309.
[HLZ] A. Huang, B.H. Lian, X. Zhu, Period Integrals and the Riemann-Hilbert Correspondence, arXiv:1303.2560v2.
[Ho] R. Hotta, Equivariant D-modules, arXiv:math/9805021v1.
[LSY] B.H. Lian, R. Song and S.-T. Yau, Periodic Integrals and Tautological Systems, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 4, 1457-1483.
[LY] B.H. Lian and S.-T. Yau, Period Integrals of CY and General Type Complete Intersections, Invent. Math. 191 (2013), no. 1, 35-89, 2013.
[Vo] C. Voisin, Hodge Theory and Complex Algebraic Geometry, Cambridge University Press, Vol. I \& II, 2002.
J.-Y. Chen, Department of Mathematics, Brandeis University, Waltham MA 02454. jychen@brandeis.edu.
A. Huang, Department of Mathematics, Harvard University, Cambridge MA 02138. anhuang@math.harvard.edu.
B.H. Lian, Department of Mathematics, Brandeis University, Waltham MA 02454.
lian@brandeis.edu.

