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PERIOD INTEGRALS AND TAUTOLOGICAL

SYSTEMS

BONG H. LIAN, RUIFANG SONG, AND SHING-TUNG YAU

Abstract. We study period integrals of CY hypersurfaces in a
partial flag variety. We construct a regular holonomic system of
differential equations which govern the period integrals. By means
of representation theory, a set of generators of the system can be de-
scribed explicitly. The results are also generalized to CY complete
intersections. The construction of these new systems of differential
equations have lead us to the notion of a tautological system.
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1. Introduction

Let X be a nonsingular d-dimensional Fano variety, i.e. K−1
X is am-

ple. Assume that a general section f0 ∈ V ∗ = H0(X,K−1
X ) defines a

nonsingular CY variety Yf0 = {f0 = 0}. The local Torelli theorem im-

plies that the line Hd−1,0(Yf) ⊂ Hd−1(Yf0) determines the isomorphism

class of Yf , for f close to a fixed f0. Period integrals provide a way to
1
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parameterize the lines Hd−1,0(Yf), as f vary. By the Kodaira-Nakono-

Akizuki vanishing theorem and Serre duality, the Poincaré residue se-

quence collapses to give an isomorphism

Res : H0(X,Ωd(Yf)) → Hd−1,0(Yf).

Let γi be a basis of the free part of Hd−1(Yf0,Z), and τ(γi) ∈ Hd(X,Z)

be a small tube over γi. We can choose a local family of meromorphic

d-forms Ωf with a single pole along Yf , so that
∫

γi

Res Ωf =

∫

τ(γi)

Ωf .

These period integrals determine the line Hd−1,0(Yf), and they fit to-

gether to form a sheaf of functions, which we call the period sheaf over

V ∗−D. Here D is the discriminant locus, consisting of f such that Yf
is singular. If Ωf is globally defined on V ∗−D, then its period integrals

define a locally constant sheaf of finite rank over V ∗ −D.

Let π : Y → V ∗ − D be the universal family of smooth CY hyper-

surfaces in X . For f ∈ V ∗ − D, let j : Yf →֒ X be the inclusion

map. The vanishing cohomology of Yf is defined as Hd−1(Yf)van :=

Ker(Hd−1(Yf)
j∗
−→ Hd+1(X)). We have Hd−1(Yf) = j∗Hd−1(X) ⊕

Hd−1(Yf)van and the splitting preserves the Hodge structures. We also

have the following short exact sequence

0 → Hd(X)prim → Hd(X − Yf)
Res
−−→ Hd−1(Yf)van → 0.

The groups Hd−1(Yf ,C) form a flat vector bundle Hd−1
C over V ∗−D.

Let Hd−1 = Hd−1
C ⊗COV ∗−D be the corresponding locally free sheaf over

V ∗ −D. {Hd−1(Yf)van}f∈V ∗−D form a local system over V ∗ −D which

we denote by Hd−1
van . Let H

d−1
van = Hd−1

van ⊗COV ∗−D. The map f 7→ Res Ωf

gives a section of Hd−1
van . Thanks to [14], the vanishing cohomology of

a sufficiently ample hypersurface Y ⊂ X can be realized as residues of

meromorphic forms onX with poles along Y . Moreover, this realization

relates the Hodge level to the order of the pole.

Theorem 1.1. [14] Suppose Y is a sufficiently ample hypersurface in

X, i.e. for any p ≥ 0, q > 0, and s > 0 we have Hq(X,Ωp
X(sY )) = 0.

The residues Res η
fk for η ∈ H0(X,KX(kY )) generates F

d−k−1Hd−1(Y )van.

Here F •Hd−1(Y )van is the induced Hodge filtration on Hd−1(Y )van.
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The result can be used to device a reduction procedure for comput-

ing differential equations for period integrals. However, the procedure

is difficult to implement, except in simple examples. Inspired by mir-

ror symmetry [8], additional tools and alternative methods have been

developed for hypersurfaces in a toric variety (see for e.g. [2][18] and

references therein.) In this case, one can explicitly construct a global

family of meromorphic top forms Ωf , and a D-module that governs the

period sheaf. The D-module turns out to be an extension of a GKZ

hypergeometric system. General solutions to GKZ systems and their

holonomic ranks have been found [13][1], under certain nondegener-

acy conditions. In one important degenerate case (for applications in

mirror symmetry) a closed formula for the general solutions near a par-

ticular singular point, a point of maximal unipotent monodromy, has

also been constructed [19][24], giving explicit power series expansions

for period integrals of CY hypersurfaces. We refer the reader to [25][9]

for surveys and the extensive bibliography therein for studies on the

GKZ hypergeometric systems in other important contexts.

The main motivation of the present paper is to study period integrals

and deformations of CY complete intersections in a homogeneous space.

In this paper, we shall mostly restrict ourselves to partial flag varieties.

We begin, in section 2, by constructing period integrals for the universal

family of these CY manifolds, by means of a global Poincaré residue

formula. An explicit formula in the case of Grassmannians is given. We

show that the family of CY is deformation complete. Next, we would

like to explicitly construct, describe, and ultimately solve a D-module

that governs the period integrals. One attempt would be to imitate

the construction of GKZ systems for toric hypersurfaces. In this case,

recall that the idea was to start with a “natural” basis of H0(X,K−1
X )

(which is indexed by integral points of some polytope); relations of

the integral points then give rise to GKZ type binomial differential

operators that govern the period integrals. The torus action on X

yields additional first order operators. Together, the operators form

a regular holonomic system. For homogeneous spaces, the standard

monomial theory for representations of reductive groups provides a

natural way to index bases of cohomology of line bundles over X . Thus

one would expect that there should be a parallel approach to construct
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GKZ type systems in this case. Unfortunately, the D-modules one

constructs this way are almost never holonomic – there would not be

enough binomial differential operators to determine the period integrals

– mainly because the variety defined by the binomial ideal typically has

the wrong dimension in this case.

The present paper solves this problem by introducing a type of sys-

tems of differential equations, which we call tautological systems. For

a fixed reductive algebraic group G, to every G-variety X equipped

with a very ample equivariant line bundle L (or a list of such bundles),

we attach a system of differential operators defined on H0(X,L), de-

pending on a group character (section 3.) We show that the system

is regular holonomic when X is a homogeneous space. A number of

examples, including a toric variety, are discussed (section 4.) In this

case, the construction recovers the GKZ hypergeometric system for CY

hypersurfaces in a toric variety X , when G is the usual torus acting on

X . Likewise the extended version of GKZ system is recovered when

G is taken to be Aut(X). Finally, we show that the period integrals

of the universal family of CY complete intersections in a partial flag

variety are solutions to a tautological system. We also give an explicit

description of this system (section 5.) In section 6, we discuss some

numerical examples and their solutions. Further generalizations and

examples will appear in a future paper.

Acknowledgements. The first author would like to thank Peter Lit-

telmann and Gerry Schwarz for helpful communications. We also thank

the reviewer for helpful suggestions. B.H.L. is partially supported by

NSF FRG grant DMS-0854965, and S.T.Y. by NSF FRG grant DMS-

0804454.

2. Poincaré residues for partial flag varieties

We follow the standard convention that the Lie algebra of a group

H is denoted by the gothic letter h.
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Theorem 2.1. Let X = G/P , where G = SLn and P be a parabolic

subgroup of G. Then there exists a nowhere vanishing, G-invariant,

holomorphic form Ω of degree d = dimX, defined on a principal Z-

bundle over X where Z is an algebraic torus.

Proof. We shall fix a Borel subgroup B of G and assume that P ⊃ B.

Let Φ,∆ = {α1, .., αl} (n = l + 1) be respectively the root system and

the set of simple roots of G, relative to B. It is well-known that the

parabolic subgroups of G containing B are parameterized by subsets

of ∆. The set

S = ∆− {αd1, .., αdr}, (0 = d0 < d1 < · · · < dr < dr+1 := n)

corresponds to the parabolic subgroup PS, whose Lie algebra is

pS = b+
∑

α∈[S]

g−α

Here [S] is the set of positive roots in the linear span of S. In this

case, the homogeneous space X = G/PS can be identified with the flag

variety F (d1, .., dr, n), which consists of r-step flags

(0) ⊂ E1 ⊂ · · · ⊂ Er ⊂ Cn, (dimEi = di.)

Put

M̃ =Md1,d2 × · · · ×Mdr ,n

where Ma,b (a < b) denotes the space of a× b matrices of rank a. Put

K = SLd1 × · · · × SLdr

K̂ = GLd1 × · · · ×GLdr

Z = Z(K̂) ∼= (C×)r.(2.1)

Let (g1, .., gr, g) ∈ K̂ ×G act on M̃ by

(g1, .., gr, g) · (m1, .., mr) = (g1m1g
−1
2 , ..., grmrg

−1).

The map p : M̃ → X , (m1, .., mr) 7→ (R(m1 · · ·mr) ⊂ · · · ⊂ R(mr)),

defines a G-equivariant principal K̂-bundle over X . Here R(m) denotes

the span of the row vectors of the matrix m. The matrix entries of

the mi are called the Stiefel coordinates of X = G/PS. Let x1, .., xp
(p = dim K̂) form a basis of holomorphic vector fields generated by

the action of K̂ on M̃ . Let ω0 denote that coordinate top form on

the matrix space M̃ , regarded as an open subset of the affine space
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Cd1d2×· · ·×Cdrdr+1. The form ω0 is G-invariant and nowhere vanishing

on M̃ . Let ιxi
be the interior multiplication operator with respect to

the vector field xi. Since the holomorphic vector fields x1, .., xp are

everywhere linearly independent, and since ω0 is nowhere vanishing,

the holomorphic form

Ω = ιx1
· · · ιxpω0

of degree dimX is nowhere vanishing. Since G and K commutes, and

since ω0 is G-invariant, Ω is also G-invariant. Since K acts trivially on

∧pk̂, and since ω0 is K-invariant, Ω is also K-basic (i.e. K-invariant

and K-horizontal). Note that Ω is Z-horizontal, but not Z-invariant

because ω0 is not Z-invariant. It follows that Ω defines a form on

the G-equivariant principal Z-bundle M̃/K → X . This completes the

construction of Ω. �

By construction, it is clear that Z acts on Cω0, hence on Ω, by the

character
∏r

i=1 det(ti)
di+1−di−1 . Note that

(2.2) c1(TX) = c1(K
−1
X ) =

r∑

i=1

(di+1 − di−1)λdi ∈ Pic(X)

whose coefficients agrees with the exponents of the character above.

Here λ1, .., λl are the fundamental dominant weights of G = SLn.

Example 2.2. G(d, n), the Grassmannian of d-planes in Cn.

We will derive an explicit formula for Ω in this case. Let π :Md,n →

Md,n/GLd = G(d, n) be the natural projection. Ĝ(d, n) := Md,n/SLd

is a principal C∗-bundle over G(d, n). Let {zij|1 ≤ i ≤ d; 1 ≤ j ≤ n}

be Stiefel coordinates for G(d, n). The GLd-action on Md,n generates

d2 linearly independent vector fields uij = Σn
l=1zil

∂
∂zjl

(1 ≤ i, j ≤ d).

Let ω =
∏

1≤r≤d;1≤s≤n dzrs. We will contract ω with uij successively to

obtain the desired SLd-invariant d(n− d)-form Ω.

Let ιuj
= ιudj

· · · ιu1j
and ιu = ιud

· · · ιu1
for convenience.



PERIOD INTEGRALS AND TAUTOLOGICAL SYSTEMS 7

Let Id,n = {I = (1 ≤ i1 < i2 < · · · < id ≤ n)} and let detZI be the

minor of (zij)k×n indexed by I, then

ιuj
= ιudj

· · · ιu2j
ιu1j

=
∏

1≤i≤k ι(zi1 ∂
∂zj1

+zi2
∂

∂zj2
+···+zin

∂
∂zjn

)

=
∑

I∈Id,n
detZI

∏
l∈I ι ∂

∂zjl

ιu = (
∑

Id∈Id,n
detZId

∏
l∈Id

ι ∂
∂zdl

) · · · (
∑

I1∈Id,n
detZI1

∏
l∈I2

ι ∂
∂z1l

)

=
∑

Ij∈Id,n
detZId · · ·detZI1

∏
1≤j≤d;l∈Ij

ι ∂
∂zjl

=
∑

σi∈Sn/Sd×Sn−d
(−1)σ1 · · · (−1)σdpσ1(I0) · · · pσd(I0)

∏
1≤j≤d;l∈σj(I0)

ι ∂
∂zjl

where I0 = (1 < 2 < 3 < · · · < d).

Applying the above contraction operator ιu to ω gives us (up to a

sign)

Ω =
∑

σi∈Sn/Sd×Sn−d

(−1)σ1 · · · (−1)σdpσ1(I0) · · · pσd(I0)

∏

1≤r≤d;d+1≤s≤n

dzrσr(s)

Let L1, .., Ls be ample line bundles on the partial flag variety X such

that L1 + · · ·+ Ls = K−1
X . By the Borel-Weil theorem, the H0(X,Li)

are irreducible representations of G. Assume that fi ∈ H0(X,Li) are

general sections.

Corollary 2.3. The Poincaré residue Res Ω
f1···fs

defines a holomorphic

top form on the CY manifold Y : f1 = · · · = fs = 0.

Proof. Recall that every line bundle L =
∑
ndiλdi on X is the tensor

product of the pullbacks of line bundles ndiλdi on the Grassmannians

G(di, n), via the natural projections X → G(di, n). For L ample,

by the Borel-Weil theorem, the sections of L can be represented as

polynomials of the Plücker coordinates of those Grassmannians. It is

easy to check that the multi-degrees of these polynomials are given

by c1(L), namely, (n1, .., nr). Since the Plücker coordinates can be

represented as polynomials of the Stiefel coordinates (m1, .., mr), we

can view the section f1 · · · fs of L1+· · ·+Ls as aK-invariant polynomial

of the Stiefel coordinates. Moreover, since L1 + · · · + Ls = K−1
X , this
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polynomial transforms under K̂, by the same character as Ω does (cf.

eqn. (2.2).) It follows that Ω
f1···fs

is a K̂-invariant meromorphic d-

form on the matrix space M̃ (with d = dimX .) Thus it defines a

meromorphic top form on X . The pole of this form is clearly ∪Yi, hence

the form is a global section of Ωt
X(∪Yi). This implies that Res Ω

f1···fs

defines a holomorphic top form on Y . �

We briefly describe the cohomology of a CY complete intersection

Y in X = F (d1, .., dr, n), with focus on the case of hypersurfaces for

simplicity. We begin with the cohomology ofX [17]. The ringH∗(X,Z)

is isomorphic to the quotient of

S(x1, x2, · · · , xd1)⊗S(xd1+1, xd1+2, · · · , xd2)⊗· · ·⊗S(xdr−1+1, · · · , xdr)

by the ideal generated by S+(x1, x2, · · · , xn), where S(x1, · · · , xk) is

the ring of symmetric functions in x1, · · · , xk with integer coefficients,

and S+ is the set of elements of degree > 0.

Let WG,WP be the Weyl groups of G and P = PS respectively. The

B-orbits on G/P are in one-on-one correspondence with elements in

the coset WG/WP . The Bruhat decomposition G/P = ∪w∈WG/WP
BwP

is a cellular decompositon and the cells have the form BwP ∼= Cµ(w),

where µ(w) is defined as follows. Let Φ+ be the set of positive root of

G. Let Ψ = Φ+− [S] be the set of positive roots α such that −α is not

a root for P . Then µ(w) be the number of elements in w(Φ+) ∩ (−Ψ).

Thus the Poincaré polynomial of X is Pt(X) = 1
|WP |

∑
w∈WG

t2µ(w).

Example 2.4. [15] CY hypersurfaces in Grassmannian X = F (d, n) =

G(d, n).

Fix a full flag 0 = V0 ( V1 ( V2 ( · · · ( Vn = Cn in Cn. For

any sequence of integers a = (n − d ≥ a1 ≥ a2 ≥ · · · ≥ ad ≥ 0), the

associated Schubert cell is defined to be

Wa1,a2,··· ,ad = {Λ ∈ G(d, n)| dim(Λ ∩ Vn−d+i−ai) = i} ∼= Cd(n−d)−
∑

ai

The closure W a1,a2,··· ,ad = {Λ ∈ G(d, n)| dim(Λ ∩ Vn−d+i−ai) ≥ i} is

called the Schubert variety associated to a and has dimension d(n−d)−∑
ai. The associated Schubert cycle is the homology class σa1,a2,··· ,ad =

[W a1,a2,··· ,ad ]. The Schubert cells are all even dimensional cells and
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therefore all boundary maps are 0. This implies that the homology

ring H∗(X,Z) has no torsion and is freely generated by all Schubert

cycles σa1,a2,··· ,ad. In particular, the dimension of H2p(X,Z) is equal to

the number of Schubert cycles of codimension p, i.e. the number of

sequences of integers a = (n − d ≥ a1 ≥ a2 ≥ · · · ≥ ad ≥ 0) such that∑
ai = p.

Let Y be a CY hypersurface in X = G(d, n). Its total Chern class is

c(TX) =
∏

1≤i≤d;d+1≤j≤n(1 − xi + xj) and the total Chern class of the

normal bundle is c(NY/X) = 1 + x1 + x2 + · · ·+ xd. Thus one gets

(2.3)
χ(Y ) =

∫
X

c(TX)c1(NY/X)

c(NY/X)

=
∫
X

∏
1≤i≤d;d+1≤j≤n(1− xi + xj)

(x1+x2+···+xd)
1+x1+x2+···+xd

Since Y is ample, by Lefschets hyperplane theorem and the fact that

Hp,q(X) = 0 for p 6= q, we have

(2.4) Hp,q(Y ) ∼= Hp,q(X) = 0, if p 6= q and p+ q 6= dimY.

Together with eqn. 2.3, these conditions determine the Betti numbers

of the hypersurface Y . The Hodge numbers of Y can be computed as

follows. Put ∧yΩ
1
X = ⊕p≥0y

pΩp
X and recall the χy-genus:

χy(X) = χ(X,∧yΩ
1
X) =

∑

p,q

(−1)qhp,q(X)yp.

By the Hirzebruch-Riemann-Roch formula, we have

(2.5)
χy(Y ) = χ(X,∧yΩ

1
X(1 + y[−Y ])−1(1− [−Y ]))

=
∫
X

1−e−λ

1+ye−λ

∏
1≤i≤d;d+1≤j≤n

(xj−xi)(1+yexi−xj )

1−exi−xj

where λ = c1([Y ]). Together with eqn.2.4, this equality determine the

Hodge numbers of Y .

We now turn to the question of deformation completeness. Let

L1, L2, · · · , Ls be ample line bundles on X such that
∑s

i=1 Li = K−1
X ,

as before. Put

V ∗ = H0(X,⊕s
i=1Li) = H0(X,L1)× · · · ×H0(X,Ls)
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and let D ⊂ V ∗ be the locus of singular complete intersections. Con-

sider the universal family of smooth CY complete intersections Y pa-

rameterized by V ∗ −D in X = F (d1, .., dr, n):

Y = {(p, f) ∈ X × P(V ∗ −D)|f(p) = 0} → P(V ∗ −D).

Suppose dimY > 2. Adapting an argument of [4], we will show the

deformation completeness and the discreteness of automorphisms of Y .

Theorem 2.5. The family Y → P(V ∗−D) is a complete deformation.

Moreover, any fiber of this family has no nontrivial holomorphic vector

fields.

Proof. ∀f = (f1, f2, · · · , fs) ∈ V ∗ −D, where fi ∈ H0(X,Li), let Y be

the complete intersection defined by f = 0. Let κ : TfV
∗ → H1(Y, TY )

be the Kodaira-Spencer map.

The short exact sequence 0 → TY → TX |Y → ⊕s
i=1OY (Li) → 0

induces a long exact sequence

(2.6)

0 → H0(Y, TY ) → H0(Y, TX |Y ) → H0(Y,⊕s
i=1OY (Li))

κ
−→ H1(Y, TY )

→ H1(Y, TX |Y ) → · · ·

To show that every small deformation of Y is still a complete inter-

section, it suffices to show κ is surjective, equivalently H1(Y, TX |Y ) = 0,

and that the restriction mapH0(X,⊕s
i=1OX(Li)) → H0(Y,⊕s

i=1OY (Li))

is surjective. We will need the following result [6]:

(2.7) Hq(X,Ωp
X) = 0 if p 6= q and, Hp(X, TX) = 0 if p > 0.

Lemma 2.6. Let E = ⊕s
i=1Li andK

−r = ∧rE∗ = ⊕1≤j1<···<jr≤sO(−Lj1−

· · ·−Ljr)). K
0 = OX . The Kozsul complex defined as follows is a res-

olution of OY .

K � : 0 → K−s d−s

−−→ · · ·
d−2

−−→ K−1 d−1

−−→ K0

where d−r(e1 ∧ · · · ∧ er) =
∑r

i=1(−1)i−1fie1 ∧ · · · ∧ êi ∧ · · · ∧ er.
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First, consider the two spectral sequences abutting to the hyper-

cohomology of K � ⊗ E. We have ′Ar,t
1 = H t(X,Kr ⊗ OX(E)) and

′′Ar,t
2 = H t(X,Hr(K �⊗OX(E))). By the above lemma, the second one

degenerates and

H0(X,K � ⊗OX(E)) =
′′ A1,0

2 = H0(Y,OY (E)).

On the other hand, we will show that in the first spectral sequence
′A−r,r

1 = 0 for all r 6= 0, and thus ′A0,0
1 = H0(X,OX(E)) maps onto

H0(Y,OY (E)).
′A−r,r

1 is different from 0 only for 0 ≤ r ≤ s and

(2.8)
′A−r,r

1 = Hr(X,K−r ⊗OX(E))
∼= ⊕1≤j1<···<jr≤sH

r(X,OX(−Lj1 − · · · − Ljr)⊗⊕s
i=1O(Li))

∼= ⊕1≤j1<···<jr≤s;1≤i≤sH
r(X,OX(−Lj1 − · · · − Ljr + Li)

∼= ⊕1≤j1<···<jr≤sH
dimX−r(X,KX ⊗OX(Lj1 + · · ·+ Ljr − Li))

∗

Since KX = −
∑s

j=1 Lj , KX ⊗OX(Lj1 + · · ·+Ljr −Li) is a negative

line bundle. By the Kodaira vanishing theorem, the above cohomology

group vanishes unless r = 0.

Second, consider the two spectral sequences abutting to the hy-

percohomology of K � ⊗ TX . We have ′Br,t
1 = H t(X,Kr ⊗ TX) and

′′Br,t
2 = H t(X,Hr(K � ⊗ TX)). The second one degenerates and

H1(X,K � ⊗ TX) =
′′ B1,0

2 = H1(Y, TX |Y ).

On the other hand, we will show that in the first spectral sequence
′B−r,r+1

1 = 0 for all r, from which it follows that H1(Y, TX |Y ) = 0.

(2.9)
′B−r,r+1

1 = Hr+1(X,K−r ⊗ TX)
= ⊕1≤j1<···<jr≤sH

r+1(X,OX(−Lj1 − · · · − Ljr)⊗ TX)
= ⊕1≤j1<···<jr≤sH

dimX−r−1(X,KX ⊗OX(Lj1 + · · ·+ Ljr)⊗ Ω1
X)

When r 6= s and r > 0, since KX ⊗OX(Lj1 + · · ·+Ljr) is negative and

thus HdimX−r−1(X,KX⊗OX(Lj1+ · · ·+Ljr)⊗Ω1
X) = 0 by the Kodaira

vanishing theorem. When r = 0, B0,1
1 = H1(X, TX) = 0 by (2.7).
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When r = s, B−s,s+1
1 = HdimX−s−1(X,Ω1

X) = 0 if dimX − s − 1 6= 1,

i.e dimY > 2. (This excludes the K3 case).

Finally, since KY is trivial, by Serre duality and by using the Lef-

schetz hyperplane theorem inductively we have

H0(Y, TY ) ∼= HdimY (Y,Ω1
Y )

∗ ∼= H1,dimY (Y )∗ ∼= H1,dimY (X)∗ = 0

and thus Y has no nontrivial holomorphic vector fields. This completes

the proof. �

Therefore P(V ∗ − D)//SLn is a coarse moduli space for Y . It is

unirational and dimP(V ∗ −D)//SLn = dimV ∗ − n2 ([10], [11]).

3. Tautological systems

In this section, let G be a connected linear reductive algebraic group,

let X be a projective G-manifold. Let V be a finite dimensional G-

module, and let φ : X →֒ PV be a G-equivariant embedding. Denote

by I(X,PV ) ⊂ C[V ] = Sym V ∗ the vanishing ideal of φ(X) in PV .

Since we have a canonical symplectic form 〈, 〉 on T ∗V = V × V ∗, each

linear function ζ ∈ V ∗ uniquely defines a derivation ∂ζ ∈ Der C[V ∗],

by the formula ∂ζa = 〈a, ζ〉, a ∈ V . The linear G action G → Aut V

induces a Lie algebra action g → End V ⊂ Der C[V ∗], x 7→ Zx, with

Zxa = x · a. We refer to the Zx as the G operators.

Definition 3.1. Fix an an integer β, viewed as a character of C×.

The tautological system (or D-module) τ(X, φ,G, β), is the DV ∗-module

DV ∗/J where J is the left ideal of DV ∗ generated by the following op-

erators: {p(∂ζ)|p(ζ) ∈ I(X,PV )}, {Zx|x ∈ g}, together with the Euler

operator
∑

i ai∂ζi + β, where the ai and ζi are dual bases of V, V ∗. We

shall call I(X,PV ) (and the ideal of differential operators corresponding

to it,) the embedding ideal of X relative to φ.

Remark 3.2. The correspondence ζ 7→ ∂ζ may be thought of as part

of the Fourier transform between DV and DV ∗ .
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The definition can be made slightly more general and purely algebraic

by starting with the initial data: V a G-module and an radical ideal

I ⊂ C[V ], possibly inhomogeneous. Since only the action of the Lie

algebra of G × C× on V ∗ enters the definition, it can be extended to

allow an arbitrary (hence possibly non-integrable) action of this Lie

algebra, with the integer β being replaced by a character. Since the

main examples of this paper do come equipped with group actions, we

will defer this generality to a future study. However, for application to

complete intersections, we will later generalize the definition to allow

multiple line bundles on X (section 5.)

In Definition 1, p15 [21], Hotta introduces the notion of an “L-

twistedly G-equivariant” D-module over a G-variety X , where L is

a connection on G. A result there can be applied to a tautological sys-

tem.1. On p17 [21], we can let V ∗ play the role ofX there, DV ∗I(X,PV )

the role of I there, and β the role of the G-character λ. Then Hotta’s

Theorem 2 implies that a tautological system has the λ-twistedly G-

equivariance property. In section 4, p22 of the same reference, he con-

siders the special case when X is given by the closure of the G-orbit

of a point in a linear representation of G; this can also be viewed as a

special case of Definition 3.1.

Using the dual bases, we can write an element of C[V ] = C[ζ1, ζ2, ...]

as a polynomial p(ζ) = p(ζ1, ζ2, ...), and p(∂ζ) as a partial differential

operator p( ∂
∂a1
, ∂
∂a2
, ...) with constant coefficients, acting on functions of

the variables a1, a2, .... If (xji) is the matrix representing x ∈ g acting

on V in the basis ai, i.e. x · ai =
∑

j xjiaj, then

Zx =
∑

xjiaj
∂

∂ai
.

Let j : V →֒ W be a G-module homomorphism, π : W ∗
։ V ∗

the dual map. This induces a G-equivariant map on structure sheaves

π# : OV ∗ → π∗OW ∗, f 7→ f ◦ π for f ∈ OV ∗(U), and the induced

homomorphism on germs is also a g-module homomorphism:

(3.1) (ZV
x f) ◦ π = ZW

x (f ◦ π)

1We thank the reviewer for pointing this out to us.
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where f ∈ OV ∗ . Here ZV
x , Z

W
x are the G operators on V ∗,W ∗ respec-

tively. Likewise for the Euler operators (with the same character β.)

Now π : W ∗
։ V ∗ induces the G-equivariant algebra homomor-

phisms π : C[W ] ։ C[V ] and

π : C[∂ζW |ζW ∈ W ∗] ։ C[∂ζV |ζV ∈ V ∗] ∂ζW 7→ ∂πζW .

It is straightforward to check that for f ∈ OV ∗ , p(∂ζW ) ∈ C[∂ζW ], we

have

(3.2) [(πp(∂ζW ))f ] ◦ π = p(∂ζW )(f ◦ π).

Let SV ∗ (likewise SW ∗) be the subsheaf of OV ∗ whose stalks con-

sists of germs annihilated by the defining ideal J of the D-module

M = τ(X, φV , G, β). Then we have a canonical isomorphism (of CV ∗-

modules) from SV ∗ to the solution sheaf HomDV ∗ (M,OV ∗) of M. Un-

der this identification, we can therefore view SV ∗ as the solution sheaf

of M.

Lemma 3.3. (Change of variables) Let φV : X →֒ PV be a G-equivariant

embedding of a G-variety X, and φW = j◦φV , where j : V →֒ W is a G-

module homomorphism, and π : W ∗
։ V ∗ its dual. Let SV ∗ ⊂ OV ∗ and

SW ∗ ⊂ OW ∗ be the solutions sheaves of the D-modules τ(X, φV , G, β)

and τ(X, φW , G, β). Then π
# maps SV ∗ isomorphically onto SW ∗.

Proof. Since π : C[W ]/I(X,PW ) → C[V ]/I(X,PV ) ∼= C[X ] is an

isomorphism with πI(X,PW ) = I(X,PV ), it follows from eqns. (3.2)

and (3.1) that if f ∈ SV ∗ , then f ◦ π ∈ SW ∗ . In other words, π#

sends a solution to τ(X, φV , G, β) to a solution to τ(X, φW , G, β), so

π# : SV ∗ → SW ∗ . It is injective, because it is so on the structure

sheaves.

Fix bases a1, .., ap of V , and b1, .., bq of W , such that j : ai 7→ bi for

1 ≤ i ≤ p. Then we can regard sections of OV ∗ , OW ∗ to be functions of

the variables a and b respectively. Then π# maps a function f(a1, ..., ap)

on V ∗ to f(b1, .., bp), and π maps ∂
∂bi

to ∂
∂ai

if 1 ≤ i ≤ p, and to zero

otherwise. So, the ∂
∂bi

(p+1 ≤ i ≤ q) are generators in τ(X, φW , G, β),

hence they kills SW ∗ . Thus all solutions on W ∗ are independent of the



PERIOD INTEGRALS AND TAUTOLOGICAL SYSTEMS 15

variables bp+1, .., bq. Given any such solution f(b1, .., bp), it is straight-

forward to check that the function f(a1, .., ap) is a solution on V ∗. This

shows that π# is surjective on the solution sheaves. �

The lemma will be used to give different descriptions to essentially

the same D-module, by choosing different G-modules as targets for

embedding X . As the proof shows, the net effect of changing the target

from PV to PW in the initial data of our tautological system, is that we

introduce additional linear variables, and at the same time, additional

first order operators corresponding to the linear forms in V ⊥ ⊂W ∗.

Let φ : X →֒ PV be a given G-equivariant embedding. Let M

be the tautological DV ∗-module τ(X, φ,G, β) for short. Let H be the

solution sheaf H = HomDV ∗ (M,OV ∗). The following is an analogue of

Theorem 5.1.3 [22].

Theorem 3.4. Assume that the G-variety X has only a finite number

of G-orbits. Then the following statements hold.

(1) The D-module M is regular holonomic. In particular, there

is an open subset V ∗
gen such that the restriction of the solution

sheaf H to V ∗
gen is locally constant of finite rank.

(2) More explicitly, let X = ⊔r
l=1Xl be the decomposition into G-

orbits and let X∨
l ⊂ V ∗ be the conical variety whose projec-

tivization P(X∨
l ) is the projective dual to the Zariski closure of

Xl in X. Then V ∗
gen = V ∗ − ∪r

l=1X
∨
l .

(3) Suppose the coordinate ring C[X ] is Cohen-Macaulay, then the

rank of the solution sheaf H over the generic stratum V ∗
gen is

less than or equal to the degree of X in PV .

Proof. We will adopt a mix of arguments of Kapranov [22] and Hotta

[21].

The Fourier transform of the tautological D-module M = DV ∗/J is

M̂ = DV /Ĵ , where Ĵ is the DV -ideal generated by

I(X,PV ), {
∑

xjiζi
∂

∂ζj
+
∑

xii, x ∈ g},
∑

i

ζi
∂

∂ζi
+ dimV − s
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It is a twisted G× C×-equivarant coherent DV -module in the sense of

[21] whose support Supp M̂ is the cone over X in V and thus consists

of finitely many G× C×-orbits. Thus M̂ is regular holonomic [5].

The tautological D-module M = DV ∗/J is homogeneous since the

ideal J is generated by homogeneous elements under the graduation

deg ∂
∂ai

= −1 and deg ai = 1. Thus M is regular holonomic since its

Fourier transform M̂ is regular holonomic ([7]).

The characteristic variety ofM has the following explicit description.

Let X̂l be the cone of the G-orbitXl in V −0. The group C× acts on the

cone X̂ over φ(X) by scaling, and G×C× acts on it with finite number

of orbits X̂l, together with the fixed point X̂0 := 0. Consider the

characteristic variety Ch(M) of M as a subvariety of the symplectic

variety T ∗V ∗ = V ∗ × V , equipped with the standard symplectic form

〈, 〉. Ch(M) is contained in the following zero locus of principle symbols

of the generators of J .

p(ζ) = 0, ∀p ∈ I(X, V ) ⊂ C[ζ ]∑
xjiajζi = 0, x ∈ g∑
aiζi = 0.

The first set of equations says that if (a, ζ) ∈ Ch(M), then ζ lies in

X̂, hence in a unique orbit X̂l. The second set of equations says that

if (a, ζ) ∈ Ch(M) then 〈a, Z∗
xζ〉 = 0, where Z∗

x is viewed here as the

tangent vector field corresponding to x ∈ g generated by the dual G-

action on V . The last equation says that a is normal to the Euler vector

field generated by the C× action. In summary, if (a, ζ) ∈ Ch(M), then

ζ lies in a G×C× orbit X̂l and a ∈ V ∗ is normal to the orbit. In other

words,

Ch(M) ⊂ ⊔r
l=0T

∗
X̂l
V

where T ∗
X̂l
V is the conormal bundle of X̂l in V .

Lemma 3.5. By the natural identification T ∗V = T ∗V ∗, we have

(3.3) ⊔r
l=0 T

∗
X̂l
V = ∪r

l=0T
∗
X∨

l
V ∗ ∪ V × {0}

where X∨
l ⊂ V ∗ be the conical variety whose projectivization P(X∨

l ) is

the projective dual to the Zariski closure of Xl in X.
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Proof. The decomposition into G × C×-orbits X̂ = ⊔r
l=1X̂l ⊔ {0} is a

Whitney stratification. In fact, for any pair (X̂s, X̂l) such that X̂s ⊂

X̂l, there exists an open dense set U ⊂ X̂l such that (X̂s, U) satisfies

Whitney condition; and sinceG×C×-action on U generates X̂l, (X̂s, X̂l)

also satisfies Whitney condition. In particular, T ∗
X̂l
V ∩ π−1(X̂s) ⊂

T ∗
X̂s
V , where π : T ∗V → V is the natural projection. Thus

Ch(M) ⊂ ⊔r
l=1T

∗
X̂l
V ⊔ {0} × V = ∪r

l=1T
∗
X̂l
V ∪ {0} × V.

T ∗
X̂l
V ⊂ T ∗V is a closed conical Lagrangian submanifold. Under the

natural identification T ∗V ∗ = T ∗V = V ×V ∗, we have T ∗
X̂l
V = T ∗

X∨
l
V ∗,

where X∨
l is the conical variety dual to X̂l, i.e. P(X∨

l ) ⊂ PV ∗ is the

projective dual to Xl. �

The singular locus of the D-module M is the Zariski closure of the

image of Ch(M) − V ∗ × {0} under the projection T ∗V ∗ → V ∗ [25]

and it is contained in the union ∪r
l=1X

∨
l . Thus the restriction of the

solution sheaf H to V ∗
gen = V ∗ − ∪r

l=1X
∨
l is a locally constant sheaf of

finite rank. This proves parts (1)-(2).

To prove part (3), we apply the following lemma of Kapranov [22].

Lemma 3.6. [22] Let X̂ be the cone over X in V , and let E ⊂ V be a

linear subspace such that dimE + dim X̂ = dimV and X̂ ∩ E = {0}.

If C[X ] is Cohen-Macaulay, then

dimC(C[E]⊗C[V ] C[X ]) = degX.

The characteristic ideal J̃ of M = DV ∗/J is the ideal in C[a, ζ ]

generated by the principal symbols of differential operators in J . The

holonomic rank of M is rank(M) = dimC(a)(C(a)[ζ ]/C(a)[ζ ] · J̃). This

gives the rank of the solution sheaf H over the generic stratum.

For any point a ∈ V ∗
gen, let Ea be the linear subspace of V defined

by the linear equations
∑

xjiajζi = 0, x ∈ g;
∑

aiζi = 0.
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Then Ea ∩ X̂ = 0 by the construction of V ∗
gen and dimEa + dim X̂ =

dimV . Thus the quotient of C[X ] by the ideal generated by those

linear equations has dimension equal to degX . This is the quotient

obtained by moding out the principal symbols of generators of J and

its dimension is bigger than or equal to the dimension of the quotient

by the full characteristic ideal J̃ . Therefore rank(M) ≤ degX , i.e. the

rank of the solution sheaf H is less than or equal to degX . �

The homogeneous coordinate ring of the Grassmannian G(d, n) is

Cohen-Macaulay (see [12]) and the degree ofG(d, n) →֒ P(∧dCn), under

the Plücker embedding, is given by the following formula (see [16])

degG(d, n) = (d(n− d))!
d−1∏

i=0

i!

(n− d+ i)!
.

It follows that the degree of φ : X = G(d, n) →֒ PV , V = H0(X,K−1
X )∗,

is this times nd(n−d).

Thus we have the following

Corollary 3.7. The tautological system τ(G(d, n), φ, SLn, 1) is regular

holonomic, and the solution sheaf H is locally constant of finite rank

over V ∗−X∨, where X∨ ⊂ V ∗ is the discriminant locus parametrizing

singular CY hypersurfaces in G(d, n). Moreover, the rank of H is less

than or equal to nd(n−d)(d(n− d))!
∏d−1

i=0

i!

(n− d+ i)!
.

4. Examples

We keep the same notations as in preceding sections.

Example 4.1. Very ample equivariant line bundle.

Let X be a G-manifold, and L be a very ample G-equivariant line

bundle on X , and ϕL : X →֒ PV , V = H0(X,L)∗, be the G-equivariant

embedding provided by L. Note that the embedding ideal I(X,PV )

contains no nontrivial linear forms in this case. In particular, the Eu-

ler and the G operators are the only first order generators of our tau-

tological system in this case. The Change-of-variables lemma shows
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that if we can realize the same G-module V inside another module

W , then we obtain an alternative description for the solutions sheaf of

τ(X,ϕL, G, β).

Example 4.2. Projective toric variety.

Let A = {µ̄0, ..., µ̄p} ⊂ 1 × Zn ⊂ Zn+1 be a finite list of distinct

vectors generating Zn+1, and L ⊂ Zp+1 be the lattice consisting of

vectors l such that
∑

i liµ̄i = 0. Note that
∑

i li = 0. For each l ∈ L,

put l± ∈ Z
p+1
≥ such that l = l+ − l−. Let XA be the projective variety

defined by the homogeneous (because
∑

i li = 0) polynomials

ζ l
+

− ζ l
−

, (l ∈ L)

in the variables ζ0, .., ζp. This is an n dimensional irreducible projective

toric variety. The algebraic torus T = (C×)n acts on XA by

t · [ζ0, .., ζp] = [tµ0ζ0, .., t
µpζp]

where µ̄i = (1, µi). Let φ : XA →֒ Pp be the inclusion map, and β

any integer. The tautological D-module τ(XA, φ, T, β) coincides with

a GKZ A-hypergeometric system, as introduced in [13], and have im-

portant applications in mirror symmetry [2][18]. If we replace T by

Aut XA, the resulting tautological D-module becomes an extended

GKZ A-hypergeometric system, as introduced in [19].

An important case that often arises in mirror symmetry is that one

starts with a smooth projective toric variety X , such that K−1
X is semi-

ample, i.e. c1(X) lies in the closure of the ample cone of X . The

sections of the bundle defines a rational map ϕ : X− → PV with

V = H0(X,K−1
X )∗, away from the base locus of the linear system. The

closure of the image in PV can then be identified with XA above, where

A can be explicitly determined.

Example 4.3. Kapranov’s A-hypergeometric systems.

In [22] Kapranov introduced a generalization of the GKZ A-hyper

-geometric systems by, roughly speaking, replacing the algebraic torus

T by a general reductive group H , a finite set of Laurent monomials

by a finite set A = {Vα} of irreducible representations of H , and finally

the “index” β ∈ t∗ by a character χ of the Lie algebra h. Put M∗
A =

⊕αEnd Vα and let ρA : H →
∏

αGL(Vα) ⊂ M∗
A − 0 be the direct sum
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module. Then the closure of ρA(H) in M∗
A− 0 is a spherical variety YA

on which H × H act naturally. Kapranov’s A-hypergeometric system

associated with the data A is the differential system defined on the

affine space MA given by (Eqn. 5.1.1 [22]):

(4.1)

{
LhΦ = RhΦ = χ(h)Φ, h ∈ h

PfΦ = 0, f ∈ IA

Here S•(MA) → C[∂], f 7→ Pf , is the standard isomorphism between

the polynomial ring onMA and the ring of differential operators onMA

with constant coefficients; Lh and Rh are the infinitesimal generators

of the left and right actions of H on MA; IA is the ideal of XA :=

P(YA). According to Definition 3.1, we see that Kapranov’s system

coincides with τ(XA, φA, H ×H, (−χ,−χ)), where φA : XA →֒ PM∗
A is

the inclusion map.

Example 4.4. D-modules with “residual” symmetry.

Let X be a G-variety, V a G-module, and φ : X →֒ PV a G-

equivariant embedding. Let K be a closed subgroup of G. Then the

D-module τ(X, φ,K, β) admits a “residual” group action by the cen-

tralizer H of K in G. In particular, H acts on the solution sheaf of this

D-module. One interesting example is X = PM where M is the space

of n×m (n ≥ m) matrices, andG = SLn×SLm acting by the usual left-

right multiplications. Put K = SLn × 1. Then there are exactly m K-

orbits inX – the matrices inM of a given rank (≥ 1) form a single orbit.

In particular, our D-module is regular holonomic. Since X = PM is

also a toric variety (under the action of a maximal torus of SL(M)), we

can construct general solutions to τ(X,O(dimM), SL(M), β) by using

the method of [19]. Since K ⊂ G = K × H ⊂ SL(M), our general

solutions are à priori solutions to the D-module τ(X, φ,K, β) which are

also H-invariant.

Example 4.5. Partial flag variety.

Let X = F (d1, .., dr, n), and let G = SLn act on Cn as usual. This

induces a transitive G action on X , and so there is exactly one G orbit

in X . Let L be an ample line bundle on X , and put

V = H0(X,L)∗
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Then by the Borel-Weil-Bott theorem, V is an irreducible representa-

tion of G. Moreover, given a highest vector v ∈ V , we have a unique

G-equivariant embedding

ϕL : X →֒ PV

which maps the standard flag in X to [v]. By Theorem 3.4, it follows

that the tautological system

τ(X,ϕL, G, β)

is regular holonomic.

In the next section, we show that for L = K−1
X and β = 1, this system

governs the period integrals of the universal family of CY hypersurfaces

in X . Moreover, we will give an explicit description of this system by

enumerating its generators.

5. Tautological systems for partial flag varieties

In this section, we shall study a tautological system associated to

the partial flag variety

X = F (d1, .., dr, n).

As in section 2, we fix a Borel subgroup B of G = SLn, and let

∆ = {α1, .., αn−1}

be the simple roots of G. Put

S = ∆− {αd1 , .., αdr}

and let PS be the parabolic subgroup of G = SLn corresponding to

S. Let Φ,Φ+ be the corresponding the root system, and its positive

roots. Denote by λ1, .., λn−1 the fundamental dominant weights of SLn,

so that 〈λi, αj〉 = δij . Thanks to result of [6], the Picard group (G-

equivariant or otherwise) of X has the following description

Proposition 5.1. Put X = F (d1, .., dr, n). Then Pic(X) = PicG(X) =

Hom(PS,C) ∼=
∑r

i=1Zλdi . Moreover, a line bundle L =
∑r

i=1 ndiλdi is

ample iff it is very ample iff ndi ≥ 1 for all i.
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By direct computation, we get

Proposition 5.2. For X = F (d1, .., dr, n), we have K
−1
X =

∑r
i=1 ndiλdi

with ndi ≥ 2 for all i.

Fix an ample line bundle L =
∑
ndiλdi = λ ∈ Pic(X), and put

V = H0(X,L)∗.

We can factor the embedding ϕL : X →֒ PV in canonical way, as

follows. We define the incidence map:

ι : X = F (d1, .., dr, n) →֒ G(d1, n)× · · · ×G(dr, n)

x 7→ (ι1x, ..., ιrx)

where the ιi : X → G(di, n) are the natural projection maps. For each

i, we have the standard Plücker embedding of the Grassmannian

πi : G(di, n) →֒ PVi

where Vi = ∧diCn is the fundamental representation of weight λdi . We

also have the Veronese maps

νi : PVi →֒ PSymndiVi, [v] 7→ [v ⊗ · · · ⊗ v]

and the Segre map

ψ : PSymnd1V1×· · ·×PSymndrVr →֒ PW, ([u1], ..., [ur]) 7→ [u1⊗· · ·⊗ur]

where

W = Symnd1V1 ⊗ · · · ⊗ SymndrVr.

Put

ν = ν1 × · · · × νr, π = π1 × · · · × πr.

Then we get a G-equivariant embedding

φ = ψ ◦ ν ◦ π ◦ ι : X →֒ PW

such that φ∗OPW (1) = L. By the Borel-Weil theorem, H0(X,L)∗ = Vλ
is an irreducible module with highest weight λ. Clearly, λ is the highest

weight in W of multiplicity 1, implying that W contains a unique copy

of Vλ. It follows the image φ(X) in PW lies in the linear subspace

defined by V ⊥
λ ⊂W ∗, consisting of the linear forms on W annihilating

Vλ ⊂ W . Moreover, V ⊥
λ contains every linear form vanishing on φ(X).
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We now specialize to

L = −KX

and proceed to describe the image φ(X) in PW . Put

Y = PV1 × · · · × PVr.

We first enumerates generators of the vanishing ideal I(Y,PW ) of Y in

PW , under the embedding

ψ ◦ ν : Y →֒ PW.

Fix a basis zij (1 ≤ j ≤ mi = dimVi) of V ∗
i = H0(PVi, O(1)), and

introduce the notation

zv = zv11 · · · zvrr =
∏

i,j

z
vij
ij , v = (v1, .., vr) ∈ Zm1

≥ × · · · × Zmr
≥ .

Let E be the set of exponent v = (v1, .., vr) such that |vi| :=
∑

j vij =

ndi , for each component vector vi. For v ∈ E , we can view zv as a

monomial function on V1×· · ·×Vr. Let ξi,vi (|vi| = ndi) be the basis of

H0(PSymndiVi, O(1)) such that ν∗i : ξi,vi 7→ zvii (the restriction map),

and ζv the basis of H0(PW,O(1)) such that ψ∗ : ζv 7→ ξ1,v1 · · · ξr,vr . It

is easy to show that the binomial quadratic forms in PW

ζuζv − ζwζt, u+ v = w + t, (u, v, w, t ∈ E)

vanish on Y . On the other hand it is also known that I(Y,PW ) is

generated by quadratic forms. Then by term-wise elimination, we find

that any quadratic form vanishing on Y is a linear combination of the

binomials above. Finally, by Proposition 5.2, we find that I(X,PW ) is

generated by the linear forms V ⊥
λ ⊂W ∗, together with I(Y,PW ).

Remark 5.3. For general ample line bundle L, when the condition

ndi ≥ 2 does not necessarily hold, the quadrics in I(X,PW ) can be

much more complicated, involving quadratic forms which are not nec-

essarily binomials. For example, if X = G(d, n), L = O(1) and

W = H0(X,L)∗, then I(X,PW ) is generated by the Plücker relations,

which are of course not binomials.

Theorem 5.4. Let X = F (d1, .., dr, n) = G/PS. LetK
−1
X =

∑
α∈∆−S ndiλdi,

and φ : X →֒ PW , W = Symnd1V1 ⊗ · · · ⊗ SymndrVr be as de-

fined above. Let f ∈ H0(PW,O(1)) be a general section, and put

Yf = {f = 0}∩ φ(X). For γ ∈ Hd−1(Yf ,Z), let τ(γ) be a tube over the
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cycle γ in X. Then the period integral
∫
τ(γ)

Ω
f
is a solution to the tauto-

logical system τ(X, φ,G, 1). The system is generated by the G-operators

Zx (x ∈ g), the Euler operator
∑
av

∂
∂av

+ 1, the first order operators∑
〈av, ζ〉

∂
∂av

(ζ ∈ V ⊥
λ ⊂W ∗), together with the binomial operators

∂

∂au

∂

∂av
−

∂

∂aw

∂

∂at
, u+ v = w + t, (u, v, w, t ∈ E .)

Proof. A general section has the form f = f(a, ζ) =
∑

v avζv. By a

direct calculation, for p(ζ) ∈ I(X,PW ) of degree s, we find that

p(∂ζ)
1

f
= (−1)ss!

p(ζ)

f s+1

which is zero on X . This implies that the period integral is killed by

p(∂ζ). Let g be any automorphism of X . Since the period integral is

the Poincaré pairing 〈τ(γ), Ω
f
〉 on X − Yf , it is invariant under g:

〈τ(γ),
Ω

f
〉 = 〈(g∗)

−1τ(γ), g∗
Ω

f
〉.

Now let g ∈ G be close to identity. Then (g∗)
−1τ(γ) = τ(γ). By

Theorem 2.1, Ω is G-invariant, so

〈τ(γ),
Ω

f
〉 = 〈τ(γ), g∗(

1

f
)Ω〉.

For x ∈ g, consider the action of the 1-parameter subgroup g = gt =

exp(tx) of G. We have

d

dt
|t=0g

∗
t (
1

f
) = −

x · f

f 2
= −

Zxf

f 2
= −Zx(

1

f
).

It follows that

0 = 〈τ(γ), Zx(
1

f
)Ω〉 = Zx〈τ(γ),

Ω

f
〉

Finally, the period is killed by the Euler operator
∑
av

∂
∂av

+1 because
1
f
is homogeneous of degree −1 in the variables av. Thus we have shown

that the period is killed by all generators of the tautological system.

The last assertion of the theorem follows from the argument preced-

ing the statement of the theorem. �
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By the Change-of-variables lemma, we can use the linear forms in

V ⊥
λ to eliminate variables by expressing the coordinate functions av

of W ∗, in terms of a basis of H0(X,L)∗ = Vλ. Then the D-module

τ(X, φ,G, 1) reduces to the D-module τ(X,ϕL, G, 1), corresponding to

the canonical embedding ϕL : X →֒ PVλ. Thus, we can view the

preceding theorem as giving an alternative description of τ(X,ϕL, G, 1),

by introducing more variables to the differential equation system, by

factoring ϕL in terms of the four classical maps, ι, π, ν, ψ. The reward

is that the factorization gives a system whose quadratic operators are

all binomials with simple (and universal) description, while the price is

the introduction of a collection of first order operators with constant

coefficients corresponding to the linear forms in V ⊥
λ ⊂W ∗ ⊂ I(X,PW ).

Our results on hypersurfaces can be generalized to complete intersec-

tions as follows. In section 2, we have already seen the Poincaré residue

formula for CY complete intersections in X . Let Li be G-equivariant

ample line bundles, and βi ∈ Z, i = 1, 2, · · · , s. Let Vi = H0(X,Li)
∗

and V = V1 × · · · × Vs. Let ail be a basis of Vi and ζ il be the dual

basis of V ∗
i . The line bundles Li defines an equivariant embedding

φ : X →֒ PV1 × · · · × PVs. Denote by I(X,PV ) the ideal of polynomial

functions in C[V ] which vanish on φ(X) ⊂ PV1 × · · · × PVs. Note that

I(X,PVi) ⊂ I(X,PV ). Let Z i
x, x ∈ g be the infinitesimal form of the

G-action on Vi and let Zx =
∑s

i=1 Z
i
x.

Definition 5.5. We define the tautological system τ(X,G, L1, .., Ls, β1, .., βs)

as the DV ∗-module DV ∗/J , where J is the left DV ∗-ideal generated by

the following operators: {p(∂ζ)|p(ζ) ∈ I(X,PV )}, {Zx|x ∈ g}, and the

Euler operators
∑

l a
i
l∂ζil + βi, i = 1, 2, · · · , s.

The argument for Theorem 3.4 can be generalized to show that the

system

τ(X,G, L1, .., Ls, β1, .., βs)

is a regular holonomic D-module. One considers the G× (C×)s action

on V , where (C×)s acts by scaling on the s factors of the representation

V = V1 × · · · × Vs of G. The characteristic variety of the D-module is

then shown to be a subvariety of the disjoint union of conormal bundles
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of the finitely many G× (C×)s orbits in the cone X̂ over φ(X), where

each of the conormal bundles is Lagrangian in T ∗V ∗.

Now assuming
∑

i Li = K−1
X , generic sections fi ∈ H0(X,Li) define

a smooth CY complete intersection Yf := {f1 = f2 = · · · = fs = 0} in

X . For γ ∈ HN(Yf ,Z) (N = dimYf), let τ(γ) be a tube over the cycle

γ in X . Let βi = 1, i = 1, 2, · · · , s. Then the period integral
∫

γ

Res
Ω

f1f2 · · · fs
=

∫

τ(γ)

Ω

f1f2 · · ·fs

is a solution to the tautological system τ(X,G, L1, .., Ls, β1, .., βs). This

follows from a verbatim argument as in the case of hypersurfaces (The-

orem 5.4.)

6. Explicit examples

Example 6.1. X = Pn−1.

Let z1, z2, · · · , zn be homogeneous coordinates on X and

∆1 = conv{nei}
n
i=1 ⊂ Rn

be the set of exponents of degree n monomials in zj . ∆1 lies in an affine

hyperplane in Rn. Shifting it by (1, 1, · · · , 1) ∈ Zn and then projecting

it to a coordinate plane, we get the following convex polytope in Rn−1.

∆ = conv{(−1, · · · ,−1), (n−1,−1, · · · ,−1), · · · , (−1,−1, · · · , n−1)}.

Let A = ∆∩Zn = {v0, v1, · · · , vN−1} and suppose v0 = (0, 0, · · · , 0).

Let tj =
zj
zn
, 1 ≤ j ≤ n− 1 be affine coordinates on X . Then

V ∗ = H0(X,O(n)) = ⊕N
i=1Cz1z2 · · · znt

vi .

Let φ : X →֒ PV be the degree n Veronese embedding. Let

L = {l ∈ ZN |
∑

livi = 0}

be the lattice of integral relations among vi.
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In this case, our construction in 2.1 recovers the well-known form

Ω =

n∑

i=1

(−1)i−1zidz1dz2 · · · d̂zi · · ·dzn = z1z2 · · · zn

n−1∏

i=1

dti
ti
.

Let f(a, t) = z1z2 · · · zn
∑
ait

vi ∈ V ∗ be a generic section such that

Y = {f = 0} is smooth. Then Res Ω
f
is a nowhere zero holomorphic top

form on Y . We have an isomorphism Hn−1(X − Y )
Res
−−→
∼=

Hn−2(Y )van.

When n is odd, Hn−2(Y )van = Hn−2(Y ).

Period integrals Πγ(a) =
∫
τ(γ)

Ω
f(a,t)

, where γ ∈ Hn−1(X−Y ) are solu-

tions to the system τ(X, φ, SLn, 1), which coincides with the following

extended GKZ-system [19]:

(6.1)



∂
∂ai

∂
∂aj

Πγ(a) = ∂
∂a′i

∂
∂aj′

Πγ(a) if vi + vj = vi′ + vj′ ∈ Zn

ZxΠγ(a) = 0 ∀x ∈ sln∑
i ai

∂
∂ai

Πγ(a) = −Πγ(a)

Integrating Res Ω
f
along a particular cycle

γ0 = {|t1| = |t2| = · · · = |tn−1| = 1},

we get

(6.2)

Πγ0(a) =
∫
|tj |=1,∀j

∑n
j=1

(−1)j−1zjdz1dz2···d̂zj ···dzn∑
aizvi

=
∫
|tj |=1,∀j

1∑
aitvi

∏n−1
i=1

dtj
tj

= 1
a0

∑
l∈L,l0<0,li≥0 if i 6=0(−1)l0 (−l0)!∏

i6=0
li!
al

Note that the period integral above gives a power series solution

to the system 6.1 near a0 = ∞, where a0 is the coefficient of the

monomial z1 · · · zn in f(a, z). By a result in [20], this is the only regular

solution near this infinity. All other solutions have log singularities. An

explicit formula for them can be given in terms of Gamma function.
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The formula also generalize to an arbitrary Fano toric manifold. See

[19][24] for details.

Example 6.2. X = G(2, 4).

Under the Plücker embedding, X = G(2, 4) →֒ P5 is a quadratic

hypersurface. The moduli space of CY hypersurfaces in X is given by

PH0(X,O(4))//SL4, whose dimension is 89.

A CY hypersurface in X can be considered as a complete intersection

of type (2, 4) in P5 and the procedure to find periods on CY complete

intersections in toric varieties applies. Let z0 = p12, z1 = p13, z2 =

p23, z3 = p14, z4 = p24, z5 = p34 be homogeneous coordinates on P5.

Then X = {z0z5 + z2z3 − z1z4 = 0}. The particular period

Π(a) =

∫

|z0|=···=|z5|

∑
i(−1)izidz0 · · · d̂zidz5

(z0z5 + z2z3 − z1z4)(
∑
aizvi)

,

where
∑
aiz

vi ∈ H0(P5,O(4)), can be computed as a double residue.

On the other hand, we can evaluate the period along a cycle in an

affine chart in G(2, 4) explicitly as follows. The weight polytope of SL4-

action on H0(X,O(4)) is ∆w = conv{4(ei + ej), 1 ≤ i < j ≤ 4} ⊂ R4.

On the affine chart U = {(id2×2, ∗2×2)} ∼= C4, we have p12 = 1.

p13 = z1, p23 = z2, p14 = z3, p24 = z4 are affine coordinates on this patch

and p34 = z1z4−z2z3. We have a linear map H0(X,O(4)) → ⊕|v|≤8Cz
v

expanding degree 4 polynomials in pij into polynomials in z of degree

≤ 8. Let v0 be the exponent such that pv0 = p13p23p14p24 = z1z2z3z4.

The period integral Πγ0(a) =
∫
γ0

Ω∑
aipvi

, where
∑
aip

vi ∈ H0(X,O(4)),

along the cycle

γ0 = {|zj| = 1, 1 ≤ j ≤ 4}

can be computed as follows.2

2We thank B. Song who first worked this out.
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(6.3)

Πγ0(a) =
∫
|zj |=1

z1z2z3z4∑
aipvi

dz1dz2dz3dz4
z1z2z3z4

=
∫
|zj |=1

1
a0+

∑
i6=0 aip

vi−v0

∏ dzj
zj

= 1
a0

∑∞
n=0 constant term in (

∑
aipvi

z1z2z3z4
)n 1

an
0

= 1
a0

∑∞
n=0

n!∏
li!
al · constant term in p

∑
livi

(z1z2z3z4)n

= 1
a0

∑∞
n=0

n!∏
li!
al · constant term in p

∑
livi

(z1z2z3z4)n

= 1
a0

∑
l∈L,l0≤0,li≥0 if i 6=0

(−l0)!∏
i6=0

li!

(
n5(l)

n5(l)+n2(l)−n

)
al

where n5(l) is the exponent of p34, n2(l) is the exponent of p23, n1(l)

is the exponent of p13 in p
∑

livi respectively. L is the integral lattice

defined by {
∑
liwi = 0}, where wi is the weight of (C

×)4-action on pvi .

Example 6.3. X = G(d, n).

We have Pic(X) = ZO(1) and K−1
X = O(n), where O(1) is the

pullback of the hyperplane bundle via the Plücker embedding X →֒

P(∧dCn). Any nonzero element in V ∗ = H0(X,O(n)) defines a CY

hypersurface in X . Let W ∗ = ⊕N
i=1Cp

vi be the direct sum of all degree

n monomials in Plücker coordinates. Then V ∗ = W ∗/Qn, where Qn

is the degree n part of the ideal genereated by Plücker relations. Let

a1, a2, · · · , aN be coordinates on W ∗.

Consider the composition of the Plücker embedding and the Veronese

embedding φ : X →֒ P(∧dCn) →֒ PW, which commutes with the anti-

canonical embedding X →֒ PV →֒ PW . The ideal defining X in PW

is the sum of the ideals defining P(∧dCn) and PV in PW , and hence is

generated by quadratic Veronese relations and linear relations in Qn.

Corresponding to these generators, we define the following differential

operators.

• Veronese operators: { ∂
∂ai

∂
∂aj

− ∂
∂ai′

∂
∂aj′

|vi+vj = vi′ +vj′ ∈ Z(
n
d)}.

• degree 1 polynomial operators: {
∑

i ci
∂
∂ai

|
∑

i cip
vi ∈ Qn}.

Let ρ : sln → End(W ∗) be the infinitesimal form of the SLn-action

onW ∗. The vector field generated by any x ∈ sln onW ∗ can be written

as
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Zx =
∑

i,j

ρij(x)aj
∂

∂ai
.

The period integrals on CY hypersurfaces in G(d, n) are solutions to

the following system of differential equations, which is an equivalent

form of the tautological system τ(X, φ, SLn, 1), where φ : X →֒ PV is

as above.

(6.4)



∂
∂ai

∂
∂aj

Πγ(a) = ∂
∂ai′

∂
∂aj′

Πγ(a) if vi + vj = vi′ + vj′ ∈ Z(
n
d)

∑
i ci

∂
∂ai

Πγ(a) = 0 ∀
∑

i cip
vi ∈ Qn

ZxΠγ(a) = 0 ∀x ∈ sln∑
i ai

∂
∂ai

Πγ(a) = −Πγ(a)

7. Note added: on holonomic rank

Consider the universal family of CY hypersurfaces in a given partial

flag variety X , Example 4.5. The well-known applications of variation

of Hodge structures in mirror symmetry show that it is important to

decide which solutions of a differential system come from period inte-

grals. The central object of our study is the period sheaf, i.e. the sheaf

generated by the period integrals of the CY hypersurfaces. By Lemma

3.3 and Theorem 5.4, the period sheaf is a subsheaf of the solution

sheaf of the module

M = τ(X,ϕK−1

X
, SLn, 1).

Thus an important open problem is to decide when the two sheaves

coincide. If they do not coincide, how much larger is the solution sheaf?

From Hodge theory, it is well-known that the rank of the period sheaf

is given by the dimension of the varying middle cohomology of the

smooth hypersurfaces Yf :

dimHN(Yf ,C)− dim i∗HN(X,C)

where N = dim Yf , and i : Yf →֒ X denotes the inclusion map. There-

fore, to answer those questions, it is clearly desirable to know precisely

the holonomic rank of M.
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Let us recall what is known about those general questions. In the

case of CY hypersurfaces in, say, a Fano toric manifold X , it is known

[13][1] that the rank of the GKZ hypergeometric system (cf. Example

4.2) in this case is the normalized volume of the polytope generated by

the exponents of the monomial sections in H0(X,K−1
X ). This number

is also the same as the degree of the anticanonical embedding X →֒

PH0(X,K−1
X )∗. It is also known [19] that this number always exceeds

(and is usually a lot larger than) the rank of the period sheaf. If one

considers the extended GKZ hypergeometric system, where the torus

T acting on X is replaced by the full automorphism group Aut X , one

would expect that rank of this system should be closer to that of the

period sheaf. In fact, based on numerical evidence, it was conjectured

[19] that for X = Pn (which lives in both the toric world and the

homogeneous world), the holonomic rank of M coincides with the rank

of the period sheaf. In the case when X = XA is a spherical variety

of a reductive group G corresponding to a given set of irreducible G-

modules A, Kapranov [22] showed that the holonomic rank of his A-

hypergeometric system (see Example 4.3) is bounded above by the

degree of embedding XA ⊂ PM∗
A, if C[YA] is assumed to be Cohen-

Macaulay. Theorem 3.4 generalizes this to an arbitrary tautological

system τ(X, φ,G, β) where X has only a finite number of G-orbits.

Note, however, that the rank upper bound in each case cited above

can be obtained without using (therefore does not take advantage of)

assumptions about whether the underlying D-module arises from the

variation of Hodge structures of CY hypersurfaces.

Since the release of the current paper in May 2011, progress has been

made toward the problem of holonomic rank for CY hypersurfaces. We

mention the following recent result.

Theorem 7.1. [3] Let X = G(d, n). Then the holonomic rank of the

D-module M at f ∈ H0(X,K−1
X ) is precisely dimHd(n−d)(X − Yf).

Note that the theorem holds not just at generic sections, but at

every hyperplane section f . The theorem has also been generalized to

an arbitrary flag variety. The proof is beyond the scope of this paper,

and is expected to appear shortly [3]. The theorem also implies the

above mentioned conjecture of [19]:
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Corollary 7.2. For X = Pn, the solution sheaf of M coincides with

the period sheaf of CY hypersurfaces in X.

Let’s compare this with the upper bound given by Corollary 3.7. In

this case, X = G(1, n + 1) = Pn and the latter bound is (n + 1)n.

We claim that this always exceeds the rank of the period sheaf, which

is given by the dimension of the varying cohomology of a smooth CY

hyperplane section in X . In fact, by using the Lefschetz hyperplane

theorem, we find that the rank of the period sheaf is
n

n+ 1
(nn − (−1)n) < nn + 1 ≤ (n+ 1)n.
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