
ar
X

iv
:m

at
h/

05
01

08
4v

7 
 [

m
at

h.
D

G
] 

 1
0 

Ju
l 2

00
6

Chiral Equivariant Cohomology I

Bong H. Lian and Andrew R. Linshaw

ABSTRACT. We construct a new equivariant cohomology theory for a certain class of

differential vertex algebras, which we call the chiral equivariant cohomology. A principal

example of a differential vertex algebra in this class is the chiral de Rham complex of

Malikov-Schechtman-Vaintrob of a manifold with a group action. The main idea in this

paper is to synthesize the algebraic approach to classical equivariant cohomology due to

H. Cartan1, with the theory of differential vertex algebras, by using an appropriate notion

of invariant theory. We also construct the vertex algebra analogues of the Mathai-Quillen

isomorphism, the Weil and the Cartan models for equivariant cohomology, and the Chern-

Weil map. We give interesting cohomology classes in the new theory that have no classical

analogues.

Keywords: differential vertex algebras, equivariant de Rham theory, invariant theory, semi-

infinite Weil algebra, Virasoro algebra.

Cartan’s theory was further developed by Duflo-Kumar-Vergne [8] and Guillemin-Sternberg

[18]. This paper follows closely the latter approach.

http://arXiv.org/abs/math/0501084v7


2 Bong H. Lian & Andrew R. Linshaw

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Equivariant de Rham theory . . . . . . . . . . . . . . . . . . . . . . 2
1.2. A vertex algebra analogue of G∗-algebras . . . . . . . . . . . . . . . . 3
1.3. Vertex algebra invariant theory . . . . . . . . . . . . . . . . . . . . 4
1.4. Chiral equivariant cohomology of an O(sg)-algebra . . . . . . . . . . . . 4

2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1. An interlude on vertex algebras . . . . . . . . . . . . . . . . . . . . 5
2.2. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3. Differential and graded structures . . . . . . . . . . . . . . . . . . . 21
2.4. The commutant construction . . . . . . . . . . . . . . . . . . . . . 22
2.5. A vertex algebra for each open set . . . . . . . . . . . . . . . . . . . 23
2.6. MSV chiral de Rham complex of a smooth manifold . . . . . . . . . . . 29

3. From Vector Fields on M to Global Sections of QM . . . . . . . . . . . . . 35
3.1. From vector fields to O(sX)-algebras . . . . . . . . . . . . . . . . . . 36
3.2. From group actions to global sections . . . . . . . . . . . . . . . . . . 38

4. Classical Equivariant Cohomology Theory . . . . . . . . . . . . . . . . . 39
4.1. Weil model for H∗

G(A) . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2. Cartan model for H∗

G(A) . . . . . . . . . . . . . . . . . . . . . . . 44
5. Chiral Equivariant Cohomology Theory . . . . . . . . . . . . . . . . . . . 45

5.1. Semi-infinite Weil algebra . . . . . . . . . . . . . . . . . . . . . . . 46
5.2. Weil model for H∗

G(A) . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3. Cartan model for H∗

G(A) . . . . . . . . . . . . . . . . . . . . . . . 52
6. Abelian Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1. The case A = C . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2. A spectral sequence for H∗

T (A) . . . . . . . . . . . . . . . . . . . . . 56
7. Non-Abelian Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.1. Weight one classes . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2. Weight two classes . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.3. A general spectral sequence in the Cartan model . . . . . . . . . . . . . 67
7.4. A general spectral sequence in the Weil model . . . . . . . . . . . . . . 69
7.5. Abelianization? . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

1. Introduction

1.1. Equivariant de Rham theory

For a topological space M equipped with an action of a compact Lie group G, the G-

equivariant cohomology of M , denoted by H∗
G(M), is defined to be H∗((M × E)/G)),

where E is any contractible topological space on which G acts freely. When M is a
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smooth manifold on which G acts by diffeomorphisms, there is a de Rham model of

H∗
G(M) due to H. Cartan [5][6], and developed further by Duflo-Kumar-Vergne [8] and

Guillemin-Sternberg [18]. The treatment in [18] is simplified considerably by the use of

supersymmetry [2][24][31][35][23], and will be the approach adopted in the present paper.

Guillemin-Sternberg define the equivariant cohomology H∗
G(A) of any G∗-algebra A, of

which the algebra Ω(M) of smooth differential forms on M is an example. A G∗-algebra is

a commutative superalgebra A equipped with an action of G, together with a compatible

action of a certain differential Lie superalgebra (sg, d) associated to the Lie algebra g of G.

Taking A = Ω(M) gives us the de Rham model of H∗
G(M), and H∗

G(Ω(M)) = H∗
G(M) by

an equivariant version of the de Rham theorem. A G∗-algebra (A, d) is a cochain complex,

and the subalgebra of A which is both G-invariant and killed by sg forms a subcomplex

known as the basic subcomplex. H∗
G(A) may be defined to be H∗

bas(A ⊗W (g)), where

W (g) = Λ(g∗) ⊗ S(g∗) is the Koszul complex of g. A change of variables [18] shows that

W (g) is isomorphic to the subcomplex of Ω(EG) which is freely generated by the con-

nection one-forms and curvature two-forms. Here EG is the total space of the classifying

bundle of G and Ω(EG) is the de Rham complex of EG. This subcomplex is known as

the Weil complex, and H∗
bas(A ⊗ W (g)) is known as the Weil model for H∗

G(A). Using

an automorphism of the space A⊗W (g) called the Mathai-Quillen isomorphism, one can

construct the Cartan model which is often more convenient for computational purposes.

1.2. A vertex algebra analogue of G∗-algebras

Associated to G is a certain universal differential vertex algebra we call O(sg), which

is analogous to (sg, d). An O(sg)-algebra is then a differential vertex algebra A equipped

with an action of G together with a compatible action of O(sg). When G is connected,

the G-action can be absorbed into the O(sg)-action.

Associated to any Lie algebra g is a Z≥0-graded vertex algebra W(g) known as the

semi-infinite Weil complex of g (a.k.a. the bcβγ-system in physics [15]). When g is finite

dimensional, W(g) is a vertex algebra which contains the classical Weil complex W (g) as

the subspace of conformal weight zero, and is an example of an O(sg)-algebra. It was

studied in [10][1] in the context of semi-infinite cohomology of the loop algebra of g, which

is a vertex algebra analogue of Lie algebra cohomology and an example of the general

theory of semi-infinite cohomology developed in [9][11].

In [29], Malikov-Schechtman-Vaintrob constructed a sheaf QM of vertex algebras on

any nonsingular algebraic scheme M , which they call the chiral de Rham sheaf. They also
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pointed out that the same construction can be done in the analytic and smooth categories

(see remark 3.9 [29].) In this paper, we will carry out a construction that is equivalent in

the smooth category. The space Q(M) of global sections of the MSV sheaf QM is a Z≥0-

graded vertex algebra, graded by conformal weight, which contains the ordinary de Rham

algebra Ω(M) as the subspace of conformal weight zero. There is a square-zero derivation

dQ on Q(M) whose restriction to Ω(M) is the ordinary de Rham differential d, and the

inclusion of complexes (Ω(M), d) →֒ (Q(M), dQ) induces an isomorphism in cohomology.

When M is a G-manifold, the algebra Q(M) is another example of an O(sg)-algebra.

1.3. Vertex algebra invariant theory

For any vertex algebra V and any subalgebra B ⊂ V , there is a new subalgebra

Com(B, V ) ⊂ V known as the commutant of B in V . This construction was introduced in

[14] as a vertex algebra abstraction of a construction in representation theory [21] and

in conformal field theory [17], known as the coset construction. It may be interpreted

either as the vertex algebra analogue of the ordinary commutant construction in the the-

ory of associative algebras, or as a vertex algebra notion of invariant theory. The latter

interpretation was developed in [28], and is the point of view we adopt in this paper.

1.4. Chiral equivariant cohomology of an O(sg)-algebra

Our construction of chiral equivariant cohomology synthesizes the three theories out-

lined above. We define the chiral equivariant cohomology H∗
G(A) of any O(sg)-algebra A

by replacing the main ingredients in the classical Weil model for equivariant cohomology

with their vertex algebra counterparts. The commutant construction plays the same role

that ordinary invariant theory plays in classical equivariant cohomology. We also construct

the chiral analogues of the Mathai-Quillen isomorphism, the Cartan model for H∗
G(A), and

a vertex algebra homomorphism κG : H∗
G(C) → H∗

G(A) which is the chiral version of the

Chern-Weil map. Here C is the one-dimensional trivial O(sg)-algebra.

Specializing to A = Q(M), for a G-manifold M , gives us a chiral equivariant coho-

mology theory of M which contains the classical equivariant cohomology. It turns out that

there are other interesting differential vertex algebras A, some of which are subalgebras

of Q(M), for which H∗
G(A) can be defined and also contains the classical equivariant co-

homology M . This will be the focus of a separate paper; see further remarks in the last

section.
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In the case where G is an n-dimensional torus T , we give a complete description of

H∗
T (C). Working in the Cartan model, we show that for any O(st)-algebra A, H∗

T (A) is

actually the cohomology of a much smaller subcomplex of the chiral Cartan complex, which

we call the small chiral Cartan complex. Like the classical Cartan complex, the small chiral

Cartan complex has the structure of a double complex, and there is an associated filtration

and spectral sequence that computes H∗
T (A). For non-abelian G, we also construct a

double complex structure in the Weil and Cartan models, and derive two corresponding

spectral sequences.

When G is a simple, connected Lie group, we show that H∗
G(C) contains a vertex

operator L(z) which has no classical analogue, and satisfies the Virasoro OPE relation.

In particular, H∗
G(C) is an interesting non-abelian vertex algebra. This algebra plays the

role of H∗
G(C) = S(g∗)G, the equivariant cohomology of a point, in the classical theory.

Acknowledgement. We thank J. Levine for discussions and for his interest in this work,

and G. Schwarz for helpful discussions on invariant theory. We thank E. Paksoy and B.

Song for helping to correct a number of mistakes in an earlier draft of this paper. B.H.L.’s

research is partially supported by a J.S. Guggenheim Fellowship and an NUS grant. A.R.L.

would like to thank the Department of Mathematics, The National University of Singapore,

for its hospitality and financial support during his visit there, where this paper was written.

2. Background

In this section we discuss the necessary background material in preparation for the

main results to be developed in sections 2-7. Vertex algebras and modules have been

discussed from various different points of view in [15][32][3][13][12][26][22][20]. We will

follow the formalism developed in [26] and partly in [22]. We also carry out the construction

of the chiral de Rham sheaf in the smooth category.

2.1. An interlude on vertex algebras

Let V be a vector space (always assumed defined over the complex numbers). Let

z, w be formal variables. By QO(V ), we mean the space of all linear maps V → V ((z)) :=

{
∑

n∈Z
v(n)z−n−1|v(n) ∈ V, v(n) = 0 for n >> 0}. Each element a ∈ QO(V ) can be

uniquely represented as a power series a = a(z) :=
∑

n∈Z
a(n)z−n−1 ∈ (End V )[[z, z−1]],

though the latter space is clearly much larger than QO(V ). We refer to a(n) as the n-th

Fourier mode of a(z). If one regards V ((z)) as a kind of “z-adic” completion of V [z, z−1],
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then a ∈ QO(V ) can be thought of as a map on V ((z)) which is only defined on the dense

subset V [z, z−1]. When V is equipped with a super vector space structure V = V 0⊕V 1 then

an element a ∈ QO(V ) is assumed to be of the shape a = a0+a1 where ai : V j → V i+j((z))

for i, j ∈ Z/2.

On QO(V ) there is a set of non-associative bilinear operations, ◦n, indexed by n ∈ Z,

which we call the n-th circle products. They are defined by

a(w) ◦n b(w) = Resza(z)b(w) i|z|>|w|(z − w)n −Reszb(w)a(z) i|w|>|z|(z − w)n ∈ QO(V ).

Here i|z|>|w|f(z, w) ∈ C[[z, z−1, w, w−1]] denotes the power series expansion of a rational

function f in the region |z| > |w|. Be warned that i|z|>|w|(z − w)−1 6= i|w|>|z|(z − w)−1.

As it is customary, we shall drop the symbol i|z|>|w| and just write (z − w)−1 to mean

the expansion in the region |z| > |w|, and write −(w − z)−1 to mean the expansion in

|w| > |z|. Resz(· · ·) here means taking the coefficient of z−1 of (· · ·). It is easy to check

that a(w) ◦n b(w) above is a well-defined element of QO(V ). When V is equipped with

a super vector space structure then the definition of a ◦n b above is replaced by one with

the extra sign (−1)|a||b| in the second term. Here |a| is the Z/2 grading of a homogeneous

element a ∈ QO(V ).

The circle products are connected through the operator product expansion (OPE)

formula ([26], Prop. 2.3): for a, b ∈ QO(V ), we have

a(z)b(w) =
∑

n≥0

a(w) ◦n b(w) (z − w)−n−1+ : a(z)b(w) : (2.1)

where
: a(z)b(w) : = a(z)−b(w) + (−1)|a||b|b(w)a(z)+

a(z)− =
∑

n<0

a(n)z−n−1, a(z)+ =
∑

n≥0

a(n)z−n−1.

Note that : a(w)b(w) : is a well-defined element of QO(V ). It is called the Wick product

of a and b, and it coincides with a ◦−1 b. The other negative circle products are related to

this by

n! a(w) ◦−n−1 b(w) =: (
dn

dwn
a(w)) b(w) : . (2.2)

For a1(z), ..., ak(z) ∈ QO(V ), it is convenient to define the k-fold iterated Wick product

: a1(z)a2(z) · · ·ak(z) :
def
= : a1(z)b(z) :
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where b(z) =: a2(z) · · ·ak(z) :. It is customary to rewrite (2.1) as

a(z)b(w) ∼
∑

n≥0

a(w) ◦n b(w) (z − w)−n−1.

Thus ∼ means equal modulo the term : a(z)b(w) :. Note that when a ◦n b = 0 for n >> 0

(which will be the case throughout this paper later), then formally a(z)b(w) can be thought

of as a kind of meromorphic function with poles along z = w. The product a◦nb is formally
∮

C
a(z)b(w)(z−w)ndz where C is a small circle around w (hence the name circle product).

From the definition, we see that

a(w) ◦0 b(w) = [a(0), b(w)].

From this, it follows easily that a◦0 is a (graded) derivation of every circle product [25].

This property of the zeroth circle product will be used often later.

The set QO(V ) is a nonassociative algebra with the operations ◦n and a unit 1. We

have 1 ◦n a = δn,−1a for all n, and a ◦n 1 = δn,−1a for n ≥ −1. We are interested in

subalgebras A ⊂ QO(V ), i.e. linear subspaces of QO(V ) containing 1, which are closed

under the circle products. In particular A is closed under formal differentiation

∂a(w) =
d

dw
a(w) = a ◦−2 1.

We shall call such a subalgebra a circle algebra (also called a quantum operator algebra in

[26]).

Remark 2.1. Fix a nonzero vector 1l ∈ V and let a, b ∈ QO(V ) such that a(z)+1l =

b(z)+1l = 0 for n ≥ 0. Then it follows immediately from the definition of the circle products

that (a ◦p b)+(z)1l = 0 for all p. Thus if a circle algebra A is generated by elements a with

the property that a(z)+1l = 0, then every element in A has this property. In this case the

vector 1l determines a linear map

χ : A→ V, a 7→ a(−1)1l = lim
z→0

a(z)1l

(called the creation map in [26]) having the following basic properties:

χ(1) = 1l, χ(a ◦n b) = a(n)b(−1)1l, χ(∂pa) = p! a(−p− 1)1l. (2.3)
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Definition 2.2. We say that a, b ∈ QO(V ) circle commute if (z − w)N [a(z), b(w)] = 0

for some N ≥ 0. If N can be chosen to be 0, then we say that a, b commute. We say that

a ∈ QO(V ) is a vertex operator if it circle commutes with itself.

Definition 2.3. A circle algebra is said to be commutative if its elements pairwise circle

commute.

Again when there is a Z/2 graded structure, the bracket in the definition above means

the super commutator. We will see shortly that the notion of a commutative circle algebra

is essentially equivalent to the notion of a vertex algebra (see for e.g. [13]). An easy

calculation gives the following very useful characterization of circle commutativity.

Lemma 2.4. Given N ≥ 0 and a, b ∈ QO(V ), we have

(z − w)N [a(z), b(w)] = 0

⇐⇒ [a(z)+, b(w)] =

N−1
∑

p=0

(a ◦p b)(w) (z − w)−p−1

& [a(z)−, b(w)] =

N−1
∑

p=0

(−1)p(a ◦p b)(w) (w − z)−p−1

⇐⇒ [a(m), b(n)] =

N−1
∑

p=0

(

m
p

)

(a ◦p b)(m+ n− p) ∀m,n ∈ Z.

Using this lemma, it is not difficult to show that for any circle commuting a(z), b(z) ∈

QO(V ) and n ∈ Z, we have

a(z) ◦n b(z) =
∑

p∈Z

(−1)p+1(b(z) ◦p a(z)) ◦n−p−1 1. (2.4)

Note that this is a finite sum by circle commutativity and the fact that c(z) ◦k 1 = 0 for

all c(z) ∈ QO(V ) and k ≥ 0.

Many known commutative circle algebras can be constructed as follows. Start with

a set S ⊂ QO(V ) and use this lemma to verify circle commutativity of the set. Then S

generates a commutative circle algebra A by the next lemma [26][22].
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Lemma 2.5. Let a, b, c ∈ QO(V ) be such that any two of them circle commute. Then a

circle commutes with all b ◦p c.

Proof: We have

[a(z1), [b(z2), c(z3)]] = [[a(z1), b(z2)], c(z3)]] ± [b(z2), [a(z1), c(z3)]]. (2.5)

For M,N ≥ 0, write (z1−z3)
M+N = ((z1−z2)+(z2−z3))

N (z1−z3)
M and expand the first

factor binomially. ForM,N >> 0, each term (z1−z2)
i(z2−z3)

N−i(z1−z3)
M annihilates ei-

ther the left side of (2.5) or the right side. Thus (z1−z3)
M+N annihilates (2.5). Multiplying

(2.5) by (z2−z3)
p, p ≥ 0, and taking Resz2 , we see that (z1−z3)

M+N [a(z1), (b◦pc)(z3)] = 0.

From this, we can also conclude that c circle commutes with all b ◦p a, p ≥ 0.

Now consider the case p < 0. For simplicity, we write a = a(z), b = b(w), c = c(w).

Suppose (z − w)N [a, b] = 0. Differentiating (z − w)N+1[a, b] = 0 with respect to w shows

that a circle commutes with ∂b. By (2.2), it remains to show that a circle commutes with

the Wick product : bc :. We have

[a, : bc :] = [a, b−]c± b−[a, c] + [a, c]b+ ± c[a, b+].

For M >> 0, (w − z)M annihilates [a, b], [a, c]. In particular, (w − z)M [a, b−] = (w −

z)M [b+, a]. It follows that

(w − z)M [a, : bc :] = (w − z)M [b+, a]c∓ c(w − z)M [b+, a].

For M >> 0, the right side is zero by Lemma 2.4 because c circle commutes with all b◦p a,

p ≥ 0, and that b ◦p a = 0 for p >> 0.

In the formulation Definition 2.3, many formal algebraic notions become immediately

clear: a homomorphism is just a linear map that preserves all circle products and 1;

a module over a circle algebra A is a vector space M equipped with a circle algebra

homomorphism A → QO(M), etc. For example, every commutative circle algebra A is

itself a faithful A-module, called the left regular module, as we now show. Define

ρ : A→ QO(A), a 7→ â, â(ζ)b =
∑

(a ◦n b) ζ
−n−1.

Lemma 2.6. For a, b ∈ A, m,n ∈ Z, we have

[â(m), b̂(n)] =
∑

p≥0

(

m
p

)

â ◦p b(m+ n− p).
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Proof: Applying the left side to a test vector u ∈ A, and using Lemma 2.4, we have

â(m) · b̂(n) · u(z) − b̂(n) · â(m) · u(z)

= Resz1Resz2 [a(z2), b(z1)]u(z)(z2 − z)m(z1 − z)n

−Resz2Resz1u(z)[a(z2), b(z1)](−z + z2)
m(−z + z1)

n

= Resz1Resz2
∑

p≥0

(a ◦p b)(z1)u(z)
(−1)p

p!

(

∂pz2δ(z2, z1)
)

(z2 − z)m(z1 − z)n

−Resz1Resz2
∑

p≥0

u(z)(a ◦p b)(z1)
(−1)p

p!

(

∂pz2δ(z2, z1)
)

(−z + z2)
m(−z + z1)

n

where δ(z1, z2) = (z1−z2)
−1 +(z2−z1)

−1. By doing formal integration by parts and using

the fact that Resz2z
n
2 δ(z2, z1) = zn1 , the last expression becomes

∑

p

Resz1

(

m
p

)

(a◦pb)(z1)u(z)(z1−z)
m−p+n−

∑

p

Resz1

(

m
p

)

u(z)(a◦pb)(z1)(−z+z1)
m−p+n.

This is equal to the right side of our assertion applied on u.

Theorem 2.7. ρ is an injective circle algebra homomorphism.

Proof: We will consider the case without the Z/2 grading. The argument carries over

to superalgebra case with some sign changes, as usual. The map ρ is injective because

â(−1)1 = a ◦−1 1 = a. Multiplying the formula in the preceding lemma by ζ−n−1 and

summing over n, we find

[â(m), b̂(ζ)] =
∑

p≥0

(

m
p

)

â ◦p b(ζ) ζ
m−p. (2.6)

On the other hand, it follows from the OPE formula that for m ≥ 0,

[â(m), b̂(ζ)] =
∑

p≥0

(

m
p

)

(â ◦p b̂)(ζ) ζ
m−p.

Specializing the two preceding formulas to m = 0, 1, 2, ..., we find that

â ◦p b = â ◦p b̂
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for p ≥ 0. This shows that ρ preserves the circle products ◦p, p ≥ 0. In particular

(2.6) becomes

[â(m), b̂(ζ)] =
∑

p≥0

(

m
p

)

(â ◦p b̂)(ζ) ζ
m−p

for all m ∈ Z. This implies that â, b̂, circle commute, by Lemma 2.4.

Let A′ be the (commutative) circle algebra generated by ρ(A) inQO(A). Since â(n)1 =

a ◦n 1 = 0 for a ∈ A, n ≥ 0, i.e. â+1 = 0, it follows that every element α ∈ A′ has α+1 = 0

by Remark 2.1. Consider the creation map χ : A′ → A, α 7→ α(−1)1, which is clearly

surjective because χ ◦ ρ = id. We also have [∂, â(ζ)]b = ∂
∂ζ
â(ζ)b, where ∂b(z) = d

dz
b(z).

Applying the next lemma to the algebra A′ ⊂ QO(A), the vector 1 ∈ A, and the linear

map ∂ : A→ A, we find that χ is an isomorphism with inverse ρ. (In particular this shows

that A′ = ρ(A), hence ρ(A) is closed under the circle products.) By Remark 2.1, we have

χ(â ◦n b̂) = a ◦n b

for all n. Applying ρ to both sides yields that â ◦n b̂ = â ◦n b for all n. This shows that ρ

preserves all circle products.

Lemma 2.8. Let A ⊂ QO(V ) be a commutative circle algebra, 1l ∈ V a nonzero vector,

and D : V → V a linear map such that D1l = 0 = a+1l and [D, a(z)] = ∂a(z) for a ∈ A. If

the creation map χ : A→ V , a 7→ a(−1)1l, is surjective then it is injective.

Proof: By assumption, for a ∈ A, we have Da(n)1l = −na(n − 1)1l. Thus if a(−1)1l = 0,

then a(−2)1l = 0. Likewise a(n)1l = 0 for all n < 0. Since a+1l = 0, it follows that a1l = 0.

Since χ is surjective it suffices to show that a(z)b(−1)1l = 0 for arbitrary b ∈ A. Fix N ≥ 0

with (z − w)N [a(z), b(w)] = 0. Then

(z − w)Na(z)b(w)1l = (z − w)N b(w)a(z)1l = 0.

Since b+1l = 0, we have b(w)1l → b(−1)1l as w → 0. This shows that zNa(z)b(−1)1l = 0,

implying that a(z)b(−1)1l = 0.

The following are useful identities for circle commuting operators which measure the

non-associativity and non-commutativity of the Wick product, and the failure of the pos-

itive circle products to be left and right derivations of the Wick product.
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Lemma 2.9. Let a, b, c be pairwise circle commuting, and n ≥ 0. Then we have the

identities

: (: ab :)c : − : abc :=
∑

k≥0

1

(k + 1)!

(

: (∂k+1a)(b ◦k c) : +(−1)|a||b| : (∂k+1b)(a ◦k c) :
)

a ◦n (: bc :)− : (a ◦n b)c : −(−1)|a||b| : b(a ◦n c) :=

n
∑

k=1

(

n
k

)

(a ◦n−k b) ◦k−1 c

(: ab :) ◦n c =
∑

k≥0

1

k!
: (∂ka)(b ◦n+k c) : +(−1)|a||b|

∑

k≥0

b ◦n−k−1 (a ◦k c)

: ab : −(−1)|a||b| : ba :=
∑

k≥0

(−1)k

(k + 1)!
∂k+1(a ◦k b).

Proof: By the preceding theorem, it suffices to show that â, b̂, ĉ satisfy these identities.

They can be checked as follows. First, apply the creation map χ to both sides and use

(2.3) and Lemma 2.4. The calculations are straightforward, and details are left to the

reader.

Let A be a commutative circle algebra. A two-sided ideal of circle algebra A is a

subspace I invariant under left and right operations by the circle products. In this case,

there is a canonical homomorphism

A→ QO(A/I), a 7→ ā(ζ), ā(n)(b+ I) = â(n)b+ I = a ◦n b+ I.

This preserves the circle products, since the preceding theorem says that A → QO(A),

a 7→ â, is a circle algebra homomorphism. Likewise for a, b ∈ A, we have that ā, b̄ circle

commute. Thus the image Ā of A in QO(A/I) is a commutative circle algebra, and we

have an exact sequence 0 → I → A→ Ā→ 0. We call Ā the quotient algebra of A by I.

Theorem 2.10. If A is a commutative circle algebra, then (A, 1, ∂, ρ) is a vertex algebra

in the sense of [13] (without grading or Virasoro element).

Proof: We know that the map ρ : A → QO(A), a 7→ â, has the property that [∂, â(ζ)]b =
∂
∂ζ
â(ζ)b. Moreover ∂1 = 0 and that χ : ρ(A) → A, â 7→ â(−1)1 = a, is the inverse of ρ. So

it remains to verify the vertex algebra Jacobi identity:

Resζ( ̂̂a(ζ)b)(w)ζn(w + ζ)q = Reszâ(z)b̂(w)(z − w)nzq −Resz b̂(w)â(z)(−w + z)nzq (2.7)
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for n, q ∈ Z, a, b ∈ A. We will do this in several steps.

Case 1. n ∈ Z, q = 0. The identity

â ◦n b = â ◦n b̂

is nothing but (2.7) in this case. For convenience, we will drop the ˆ from the notations

temporarily.

Case 2. n = 0, q = −1. The right side of (2.7) becomes, using Lemma 2.4,

[a(−1), b] =
∑

p≥0

(−1)p(a ◦p b)(w) w−p−1,

which agrees with the left side of (2.7).

Case 3. n = −1, q = −1. By direct computation, the right side of (2.7) is

∑

p≥0

a(−p− 2)b(w)wp −
∑

p≥0

b(w)a(p− 1)w−p−1 = (a−b− a(−1)b)w−1 + (ba+ + ba(−1))w−1

=: ab : w−1 − [a(−1), b]w−1.

This agrees with the left side of (2.7).

Case 4. n = 0, q < 0. Using integration by parts, the first term of the right side of

(2.7) becomes

Resza(z)b(w)zq =
−1

q + 1
Resz∂a(z)b(w)zq+1

for q < −1. Likewise for two other terms in (2.7). Thus this case can be reduced to Case

2.

Case 5. n ∈ Z, q ≥ 0. We have

(z − w)nzq = (z − w)n+1zq−1 + (z − w)nzq−1w

(−w + z)nzq = (−w + z)n+1zq−1 + (−w + z)nzq−1w

ζn(w + ζ)q = ζn+1(w + ζ)q−1 + ζn(w + ζ)q−1w

Using these identities, we can easily reduce this case to Case 1.

Case 6. n ≥ 0, q < 0. We have

(z − w)nzq = (z − w)n−1zq+1 − (z − w)n−1zqw

(−w + z)nzq = (−w + z)n−1zq+1 − (−w + z)n−1zqw

ζn(w + ζ)q = ζn−1(w + ζ)q+1 − ζn−1(w + ζ)qw
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Using this identities, we reduce this case to Case 4.

Case 7. n < 0, q = −1. Take (2.7) in Case 3, and operate on both sides by d
dw

repeatedly. We then get (2.7) for n < 0, q = −1.

Case 8. n < 0, q < 0. Using integration by parts, the first term of the right side of

(2.7) becomes

Resza(z)b(w)(z−w)nzq =
−1

q + 1
Resz∂a(z)b(w)(z−w)nzq+1+

−n

q + 1
Resza(z)b(w)(z−w)n−1zq+1.

for q < −1. Likewise for two other terms in (2.7). Now we verify that this case reduces to

Case 7.

This completes the proof.

Lemma 2.11. If (V, 1l, D, Y ) is a vertex algebra, then Y (V ) ⊂ QO(V ) is a commutative

circle algebra.

Proof: Write a(z) = Y (a, z), b(z) = Y (b, z), for a, b ∈ V . The Jacobi identity implies

that Y (a(p)b, z) = a(z) ◦p b(z) for all p, which shows that Y (V ) is closed under the

circle products. The Jacobi identity also implies that the commutator relations in Lemma

2.4 hold for a(z), b(z), which shows that a(z), b(z) circle commute. This shows that Y (V ) ⊂

QO(V ) is a commutative circle algebra.

Remark 2.12. Thus the notion of a vertex algebra is abstractly equivalent to our notion

of a commutative circle algebra. While the former theory emphasizes the quadruple of

structures (V, 1l, D, Y ) satisfying an infinite family of (Jacobi) identities, the latter theory

emphasizes the circle products and circle commutativity, and shows that all other structures

can be obtained canonically in any given commutative circle algebra. The latter theory

will be more convenient for the purposes of this paper. Note that the formal algebraic

notions such as modules, ideals, and quotients for vertex algebras [12] are equivalent to

the corresponding notions for commutative circle algebras under this dictionary. We will

refer to a commutative circle algebra simply as a vertex algebra throughout the rest of the

paper.

The left regular module guarantees that for any given abstract vertex algebra A, one

can always embed A in QO(A) in a canonical way. It is often convenient to pass between

A and its image ρ(A) in QO(A). For example, we shall often denote the Fourier modes

â(n) simply as a(n). Thus when we say that a vertex operator b(z) is annihilated by the
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Fourier mode a(n) of a vertex operator a(z), we mean that a ◦n b = 0. Here we regard b as

being an element in the state space A, while a operates on the state space, and the map

a 7→ â is the state-operator correspondence.

Note that every commutative (super) algebra is canonically a vertex algebra where

any two elements strictly (graded) commute. More generally we shall say that a vertex

algebra is abelian if any two elements pairwise commute. Otherwise we say that the vertex

algebra is non-abelian. If a, b are two vertex operators which commute, then their Wick

product is the ordinary product and we write ab or a(z)b(z).

2.2. Examples

We now give several constructions of known examples of vertex (super) algebras, all

of which will be used extensively later.

Example 2.13. Current algebras.

Let g be a Lie algebra equipped with a symmetric g-invariant bilinear form B, possibly

degenerate. The loop algebra of g is defined to be

g[t, t−1] = g ⊗C[t, t−1],

with bracket given by [utn, vtm] = [u, v]tn+m. The form B determines a 1-dimensional

central extension ĝ of g[t, t−1] as follows:

ĝ = g[t, t−1] ⊕ Cτ,

with bracket

[utn, vtm] = [u, v]tn+m + nB(u, v)δn+m,0τ.

ĝ is equipped with the Z-grading deg(utn) = n, and deg(τ) = 0. Let g≥ be the subalgebra

of elements of non-negative degree, and let

N(g, B) = Uĝ ⊗g≥
C

where C is the g≥-module in which g[t] acts by zero and τ by 1. Clearly N(g, B) is graded

by the non-positive integers. For u ∈ g, denote by u(n) the linear operator on N(g, B)

representing utn, and put

u(z) =
∑

n

u(n)z−n−1.
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Then for u, v ∈ g, we get

[u(z)+, v(w)] = B(u, v)(z − w)−2 + [u, v](w)(z − w)−1

[u(z)−, v(w)] = −B(u, v)(w − z)−2 + [u, v](w)(w− z)−1.

It follows immediately that (z − w)2[u(z), v(w)] = 0. Thus the operators u(z) ∈

QO(N(g, B)) generate a vertex algebra [14][27][26], which we denote by O(g, B). Con-

sider the vector 1l = 1 ⊗ 1 ∈ N(g, B), called the vacuum vector.

Lemma 2.14. [27] The creation map χ : O(g, B) → N(g, B), a(z) 7→ a(−1)1l, is an

O(g, B)-module isomorphism.

Proof: We sketch a proof. By Remark 2.1, we have χ(a ◦n b) = a(n)χ(b), hence O(g, B)

is an O(g, B)-module homomorphism. Next, U ĝ has a derivation defined by Dτ = 0,

D(utn) = −nutn−1, and it descends to a linear map onN(g, B) such that [D, u(z)] = ∂u(z).

This implies that [D, a] = ∂a for all a ∈ O(g, B). Thus to show that χ is a linear

isomorphism, it suffices to show that it is surjective, by Lemma 2.8. But this follows from

PBW (see below).

It is convenient to identify the spaces N(g, B) and O(g, B) under this isomorphism.

Obviously O(g, B) contains the iterated Wick products

: uI0∂uI1 · · ·∂puIp :

where uI means the symbol u1(z)
i1 · · ·ud(z)

id , ∂uI means the symbol ∂u1(z)
i1 · · ·∂ud(z)

id ,

for a given multi-index I = (i1, .., id), and likewise for other multi-index monomials. Here

the u1, .., ud form a basis of g. Under the creation map the image of the iterated Wick

products above are the vectors, up to nonzero scalars,

u(−1)I0u(−2)I1 · · ·u(−p− 1)Ip1l

which form a PBW basis, indexed by (I0, I1, I2, ...), of the induced module N(g, B). Note

also that there is a canonical inclusion of linear spaces g →֒ O(g, B), u 7→ u(z).

An even vertex operator J is called a current if J(z)J(w) ∼ α (z − w)−2 for some

scalar α. The formula for [u(z)+, v(w)] above implies the more familiar OPE relation

u(z)v(w) ∼ B(u, v)(z − w)−2 + [u, v](w) (z − w)−1.



Chiral Equivariant Cohomology I 17

In particular each u(z) is a current (hence the name current algebra). The vertex al-

gebra O(g, B) has the following universal property [27]. Suppose that A is any vertex

algebra and φ : g → A is a linear map such that φ(u)(z) φ(v)(w) ∼ B(u, v)(z − w)−2 +

φ([u, v])(w) (z − w)−1 for u, v ∈ g. Then there exists a unique vertex algebra homomor-

phism O(g, B) → A sending u(z) to φ(u)(z) for u ∈ g. In particular, any Lie algebra

homomorphism (g, B) → (g′, B′) preserving the bilinear forms induces a unique vertex

algebra homomorphism O(g, B) → O(g′, B′) extending g → g′. It is also known [27] that

any Lie algebra derivation d : (g, B) → (g, B) induces a unique vertex algebra derivation

(i.e. a graded derivation of all circle products) d : O(g, B) → O(g, B) with u(z) 7→ (du)(z).

When g is a finite-dimensional Lie algebra, g possesses a canonical invariant, symmet-

ric bilinear form, namely, the Killing form κ(u, v) = Tr
(

ad(u) · ad(v)
)

. In this case, the

current algebra O(g, λκ) is said to have a Schwinger charge λ [33].

It is easy to see that if B1, B2 are bilinear forms on g, and M1,M2 are O(g, B1)-,

O(g, B2)-modules respectively, then M1 ⊗M2 is canonically an O(g, B1 +B2)-module. In

particular, tensor products of O(g, 0)-modules are again O(g, 0)-modules.

There is a verbatim construction for any Lie super algebra equipped with an invariant

form.

Example 2.15. Semi-infinite symmetric and exterior algebras.

Let V be a finite dimensional vector space. Regard V ⊕ V ∗ as an abelian Lie algebra.

Then its loop algebra has a one-dimensional central extension by Cτ with bracket

[(x, x′)tn, (y, y′)tm] = (〈y′, x〉 − 〈x′, y〉)δn+m,0τ,

which is a Heisenberg algebra, which we denote by h = h(V ). Let b ⊂ h be the subalgebra

generated by τ , (x, 0)tn, (0, x′)tn+1, for n ≥ 0, and let C be the one-dimensional b-module

on which each (x, 0)tn, (0, x′)tn+1 act trivially and the central element τ acts by the

identity. Consider the Uh-module Uh⊗b C. The operators representing (x, 0)tn, (0, x′)tn+1

on this module are denoted by βx(n), γx
′

(n), and the Fourier series

βx(z) =
∑

βx(n)z−n−1, γx
′

(z) =
∑

γx
′

(n)z−n−1 ∈ QO(Uh ⊗b C)

have the properties

[βx+(z), γx
′

(w)] = 〈x′, x〉(z − w)−1, [βx−(z), γx
′

(w)] = 〈x′, x〉(w − z)−1.
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It follows that (z − w)[βx(z), γx
′

(w)] = 0. Moreover the βx(z) commute; likewise for

the γx
′

(z). Thus the βx(z), γx
′

(z) generate a vertex algebra S(V ). This algebra was

introduced in [FMS], and is known as a fermionic ghost system, or a βγ-system, or a

semi-infinite symmetric algebra. By using the Lie algebra derivation D : h → h defined by

(x, 0)tn 7→ −n(x, 0)tn−1, (0, x′)tn+1 7→ −n(0, x′)tn, τ 7→ 0, one can easily show, as in the

case of O(g, B), that the creation map S(V ) → Uh ⊗b C, a(z) 7→ a(−1)1 ⊗ 1, is a linear

isomorphism, and that the βx, γx
′

have the OPE relation

βx(z)γx
′

(w) ∼ 〈x′, x〉(z − w)−1.

By the PBW theorem, it is easy to see that the vector space Uh⊗b C has the structure of

a polynomial algebra with generators given by the negative Fourier modes βx(n), γx
′

(n),

n < 0, which are linear in x ∈ V and x′ ∈ V ∗.

We can also regard V ⊕ V ∗ as an odd abelian Lie (super) algebra, and consider its

loop algebra and a one-dimensional central extension by Cτ with bracket

[(x, x′)tn, (y, y′)tm] = (〈y′, x〉 + 〈x′, y〉)δn+m,0τ.

Call this Z-graded algebra j = j(V ), and form the induced module Uj ⊗a C. Here a is

the subalgebra of j generated by τ , (x, 0)tn, (0, x′)tn+1, for n ≥ 0, and C is the one-

dimensional a-module on which (x, 0)tn, (0, x′)tn+1 act trivially and τ acts by 1. Then

there is clearly a vertex algebra E(V ), analogous to S(V ), and generated by odd vertex

operators bx(z), cx
′

(z) ∈ QO(Uj ⊗a C) with OPE

bx(z)cx
′

(w) ∼ 〈x′, x〉(z − w)−1.

This vertex algebra is known as a bosonic ghost system, or bc-system, or a semi-infinite

exterior algebra. Again the creation map E(V ) → Uj ⊗a C, a(z) 7→ a(−1)1 ⊗ 1, is a linear

isomorphism. As in the symmetric case, the vector space Uj ⊗a C has the structure of an

odd polynomial algebra with generators given by the negative Fourier modes bx(n), cx
′

(n),

n < 0, which are linear in x ∈ V and x′ ∈ V ∗.

A lot of subsequent computations involve taking OPE of iterated Wick products of

vertex operators in

W(V ) := E(V ) ⊗ S(V ).

There is a simple tool from physics, known as Wick’s theorem, that allows us to compute

A(z)B(w) easily where each of A,B has the shape : a1 · · ·ap : where ai is one of the
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generators of W(V ), or their higher derivatives. For an introduction to Wick’s theorem,

see [20]. Here is a typical computation by Wick’s theorem by “summing over all possible

contractions”:

(: a1(z)a2(z) :)(: a3(w)a4(w) :) ∼ 〈a2a3〉〈a1a4〉 + (−1)|a2||a3|〈a1a3〉〈a2a4〉

+ 〈a2a3〉 : a1(z)a4(w) : + : a2(z)a3(w) : 〈a1a4〉

+(−1)|a2||a3|〈a1a3〉 : a2(z)a4(w) : +(−1)|a2||a3| : a1(z)a3(w) : 〈a2a4〉.

Here the ai are homogeneous vertex operators with OPE ai(z)aj(w) ∼ 〈aiaj〉, where the

symbol 〈aiaj〉 denotes something of the form const. (z−w)−p depending on i, j. To get the

final answer for the OPE, one formally expands each : ai(z)aj(w) : on the right side above in

powers of (z−w), i.e. replacing it formally by : ai(w)aj(w) : + : ∂ai(w)aj(w) : (z−w)+· · ·.

Now let g be a Lie algebra and V be a finite-dimensional g-module via the homomor-

phism ρ : g → End V . Associated to ρ is a g-invariant bilinear form B on g given by

B(u, v) = Tr
(

ρ(u)ρ(v)
)

.

Lemma 2.16. ρ : g → End V induces a vertex algebra homomorphism ρS : O(g,−B) →

S(V ).

Proof: Let ρ∗ : g → V ∗ be the dual module, let 〈, 〉 denote the pairing between V and V ∗.

Choose a basis x1, . . . , xn of V , and let x′1, . . . , x
′
n be the dual basis. Put

Θu
S(z) = − : βρ(u)xi(z)γx

′
i(z) :

(summing over i, as usual). We need to show that the following OPE holds:

Θu
S(z)Θv

S(w) ∼ −B(u, v)(z − w)−2 + Θ
[u,v]
S (w)(z − w)−1. (2.8)

By Wick’s theorem,

Θu
S(z)Θv

S(w) =
(

− : βρ(u)xi(z)γx
′
i(z) :

)(

− : βρ(v)xj (w)γx
′
j (w) :

)

= −〈ρ(u)xi, x
′
j〉〈ρ(v)xj, x

′
i〉(z − w)−2 − 〈ρ(v)xj, x

′
i〉 : βρ(u)xi(w)γx

′
j (w) : (z − w)−1

+ 〈ρ(u)xi, x
′
j〉 : βρ(v)xj (w)γx

′
i(w) : (z − w)−1

which yields the right side of (2.8).

Likewise we have the fermionic analogues E(V ) of S(V ), and Θu
E of Θu

S with

Θu
E(z) =: bρ(u)xicx

′
i : .



20 Bong H. Lian & Andrew R. Linshaw

A verbatim computation with gives

Lemma 2.17. ρ : g → End V induces a vertex algebra homomorphism ρE : O(g, B) →

E(V ).

Now let’s specialize to the case where V is the adjoint module of g, where g is a

finite-dimensional Lie algebra. Then W(g) = E(g) ⊗ S(g) is called the semi-infinite Weil

algebra of g. This algebra has been studied by numerous authors (see e.g. [10][1][16]). By

the two preceding lemmas, we have a vertex algebra homomorphism O(g, 0) → W(g), with

u(z) 7→ Θu
E (z) ⊗ 1 + 1 ⊗ Θu

S(z) for u ∈ g.

Example 2.18. Virasoro elements.

Let A be a vertex algebra. We call a vertex operator L ∈ A a Virasoro element if

L(z)L(w) ∼
c

2
(z − w)−4 + 2L(w) (z − w)−2 + ∂L(w) (z − w)−1

where c is a scalar called the central charge of L. One often further requires that L(w)◦1

acts diagonalizably on A and that L(w)◦0 acts by ∂. If these two conditions hold, then

A, equipped with L, is called a conformal vertex algebra of central charge c. A vertex

operator a ∈ A is said to be primary (with respect to L) of conformal weight ∆ ∈ C if

L(z)a(w) ∼ ∆ a(w) (z − w)−2 + ∂a(w) (z − w)−1.

A vertex operator a ∈ A is said to be quasi-primary of conformal weight ∆ ∈ Z> if

L(z)a(w) ∼ α (z − w)−∆−2 + ∆ a(w) (z − w)−2 + ∂a(w) (z − w)−1

for some scalar α.

For example if g is a finite-dimensional simple Lie algebra then the vertex algebra

O(g, λκ) has a Virasoro element given by Sugawara-Sommerfield formula

L(z) =
1

2λ+ 1

∑

i

: xi(z)xi(z) :

where the xi is an orthornormal basis of (g, κ). This Virasoro element has central charge
2λ dim g

2λ+1
provided of course that the denominator is nonzero. (Note that we have chosen a

normalization so that we need not explicitly mention the dual Coxeter number of g.) More

generally if (g, B) is any finite dimensional Lie algebra with a non-degenerate invariant
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form then O(g, λB) admits a Virasoro element L for all but finitely many values of λ [27].

The Virasoro element above is characterized by property that for every x ∈ g, the vertex

operator x(z) is primary of conformal weight 1.

Example 2.19. Topological vertex algebras.

This notion was introduced in [25] Definition 3.4, where we call these objects TVA. It is

an abstraction based on examples from physics (see e.g. [4][7][25]). A topological vertex

algebra is a vertex algebra A equipped with four distinguished vertex operators L, F, J,G,

where L is a Virasoro element with central charge zero, F is an even current which is a

conformal weight one quasi-primary (with respect to L), J an odd conformal weight one

primary with J(0)2 = 0, and G an odd conformal weight two primary, such that

J(0)G = L, F (0)J = J, F (0)G = −G.

In special cases, further conditions are often imposed, such as that J(z) commutes with

itself, or that G(z) commutes with itself, which we do not require here. Note also that we

do not require that the Fourier mode L(1) acts diagonalizably on A. There are numerous

examples arising from physics. One of the simplest is given by W(C), which has four

generators b, c, β, γ. If we put (suppressing z) L = − : b∂c : + : β∂γ :, F = − : bc :,

J =: cβ :, G =: b∂γ :, then it is straightforward to check that they give W(C) the

structure of a TVA. The same vertex algebra W(C) supports many TVA structures. One

can twist the one above by using the current F to get some other TVA structures on W(C).

Another such example is given in [16].

2.3. Differential and graded structures

The vertex algebras we consider here typically come equipped with a number of graded

structures. The Z/2-graded structure on a vertex algebra often arises from a Z-grading we

call degree. The semi-infinite exterior algebra E(V ) is one such example, where the odd

generators bx, cx
′

are assigned degrees -1 and +1 respectively. Then E(V ) is a direct sum

of subspaces consisting of degree homogeneous elements. Like the Z/2-graded structure in

this case, the degree structure on a vertex algebra is additive under the circle products. In

general, we say that a vertex algebra A is degree graded if it is Z-graded A = ⊕p∈ZA
p, and

the degree is additive under the circle products. We denote the degree by deg = degA.

In addition to the degree grading, the vertex algebras we consider often come equipped

with another Z-grading we call weight. In the example E(V ), the vertex operator bx, cx
′
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can be assigned weights 1 and 0 respectively. Then E(V ) is a direct sum of subspaces

consisting of weight homogeneous elements. The weight structure is not additive under

the circle products in this case. But rather, we have wt(a ◦n b) = wt(a) + wt(b) − n − 1.

In general, we say that a vertex algebra A weight graded if it is Z-graded A = ⊕n∈ZA[n],

and the nth circle product has weight −n− 1. We denote the weight by wt = wtA. Note

that there can be several different weight structures on the same vertex algebra.

We say that a vertex algebra A is degree-weight graded if it is both degree and weight

graded and the gradings are compatible, i.e. A[n] = ⊕p∈ZA
p[n], Ap = ⊕n∈ZA

p[n], where

Ap[n] = Ap ∩ A[n].

As a consequence of Lemma 2.9, if a vertex algebra A is weight graded and has no

negative weight elements, then A[0] is a commutative associative algebra with product ◦−1

and unit 1. Almost all vertex algebras in this paper have this property.

If a vertex algebra A comes equipped with a Virasoro element L where L◦1 acts

diagonalizably on A with integer eigenvalues, then the eigenspace decomposition defines a

weight grading on A.

We call a pair (A, δ) a differential vertex algebra if A is a vertex algebra equipped

with a linear map which is vertex algebra derivation, i.e. a super-derivation of each circle

product, such that δ2 = 0. If, furthermore, A is degree graded, then we assume that δ is

a degree +1 linear map. If, furthermore, A is weight graded, then we assume that δ is a

weight 0 linear map. The categorical notion of homomorphisms and modules of differential

vertex algebras are defined in an obvious way.

2.4. The commutant construction

This is a way to construct interesting vertex subalgebras of a given vertex algebra, and

it is the vertex algebra analogue of the commutant construction in the theory of associative

algebras.

Let A be a vertex algebra and S ⊂ A any subset. The commutant of S in A is the

space

Com(S,A) = {a(z) ∈ A| b(z) ◦n a(z) = 0, ∀b(z) ∈ S, n ≥ 0}.

It is a vertex subalgebra of A: this follows from the fact that for any elements a, b in

a vertex algebra, we have [b(z), a(w)] = 0 iff b(z) ◦n a(z) = 0 for n ≥ 0, which is an

immediate consequence of Lemma 2.4. From this, it also follows that if C is the vertex

algebra generated by the set S, then

Com(C,A) = Com(S,A).
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Clearly if S ⊂ S′ ⊂ A, then we have Com(S′, A) ⊂ Com(S,A).

The commutant subalgebra Com(C,A) has a second interpretation. It can be thought

of as a vertex algebra analogue of the ring of invariants in a commutative ring with a Lie

group or a Lie algebra action. First we can think of A as a C-module via the left regular

action of A. Then Com(C,A) is the subalgebra of A annihilated by all ĉ(n), c ∈ C, n ≥ 0.

If C is a homomorphic image of a current algebra O(g, B), then Com(C,A) = Ag≥ where

the right side is the subspace of A annihilated by u(n), u ∈ g, n ≥ 0. The invariant theory

point of view of the commutant construction is developed in [28]. In our construction of

the chiral equivariant cohomology later, the commutant subalgebra will play the role of

the classical algebra of invariants in the classical equivariant cohomology.

2.5. A vertex algebra for each open set

Notations. Here U,U ′, V, V ′ will denote open sets in Rn, γ : Rn → R an arbitrary

linear coordinate, and γi : Rn → R the i-th standard coordinate. The space of smooth

complex-valued differential forms Ω(U) can be thought of as the space of functions on a

super manifold. Without digressing into super geometry, it suffices to think of the linear

coordinates γi (restricted to U) as even variables, and the coordinate one-forms ci := dγi

as odd variables. We can regard the βi = ∂
∂γi

as even vector fields acting as derivations,

and the bi = ∂
∂ci

as odd vector fields acting as odd derivations, on the function space Ω(U).

Let C = C{ ∂
∂γi

, ∂
∂ci

: 1 ≤ i ≤ n} = C0 ⊕C1 denote the C-span of the constant vector

fields. It is an abelian Lie (super) algebra acting by derivations on the commutative super

algebra Ω(U). We now apply the current algebra construction to the semi-direct product

Lie algebra

Λ(U) := C ⊲ Ω(U)

equipped with the zero bilinear form 0. Thus we consider the loop algebra Λ(U)[t, t−1]

and its module

V(U) := N(Λ(U), 0)

For any x ∈ Λ(U), denote by x(k) ∈ End V(U) the operator representing the xtk ∈

Λ(U)[t, t−1], and form x(w) =
∑

x(k)w−k−1 ∈ QO(V(U)). Then the x(w) generates the

vertex (super) algebra O(Λ(U), 0) defined in Example 2.13. As before, we identify this as

a linear space with V(U). Recall that we have a linear inclusion Λ(U) →֒ V(U), x 7→ x(w).
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In particular for any function f ∈ C∞(U) ⊂ Ω(U) ⊂ Λ(U) and any vector field β ∈ C0,

we have

β(z)f(w) ∼ β(f)(w) (z − w)−1.

The vertex algebra V(U) is too large. For example the constant function 1 gives a

vertex operator 1(w) which is not equal to id. If f, g are two smooth functions then the

vertex operators (fg)(w) and : f(w)g(w) : are not the same. Let I(U) be the two-sided

ideal in V(U) generated by the vertex operators

d

dw
f(w) −

d

dw
γi(w)

∂f

∂γi
(w) −

d

dw
ci(w)

∂f

∂ci
(w), (fg)(w)− f(w)g(w), 1(w) − id

where f, g ∈ Ω(U). (As always, the repeated index i is summed over i = 1, .., n, unless

said otherwise.) We put

Q(U) := V(U)/I(U).

Note that Λ(U) becomes a Z+-graded Lie super algebra if we declare C,Ω(U) to have

weight 1,0 respectively. This induces a Z-grading on Q(U), and a canonical surjection 2

Q(U)[0] → Ω(U). On Q(U), we also have

bi(z)cj(w) ∼ δij(z − w)−1.

Let Γ be the vertex algebra generated by β(w) with β ∈ C0, and the f(w) with

f ∈ C∞(U), subject to the relations

β(z)f(w) ∼ β(f)(w) (z − w)−1

and with

d

dw
f(w) −

d

dw
γi(w)

∂f

∂γi
(w), (fg)(w)− f(w)g(w), 1(w) − id

being set to zero for all f, g ∈ C∞(U). Let B be the vertex algebra generated by the

bi(w), ci(w), subject to the relations bi(z)cj(w) ∼ δij(z − w)−1. We claim that there is a

canonical isomorphism

Q(U) ∼= Γ ⊗B

We thank B. Song for pointing this out. If we declare that βi(z), bi(z), ci(z) have weights 1,1,0

respectively, f(z) has weight 0 for f ∈ C∞(U), then I(U) is homogeneous ideal in N(Λ(U),0).

Hence Q(U)[0] → Ω(U), g(z) 7→ g, is well-defined and surjective.
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Since each f ∈ Ω(U) can be uniquely written as fIc
I where fI ∈ C∞(U) and cI = ci1ci2 · · ·,

i1 < i2 < · · ·, we can define a map Λ(U) → Γ ⊗ B, fIc
I 7→ fI(z) ⊗ ci1(z)ci2(z) · · ·,

βi 7→ βi(z)⊗ 1, bi 7→ 1⊗ bi(z). Since the image of Λ(U) satisfies the expected OPE of the

current algebra O(Λ(U), 0) ≡ N(Λ(U), 0), by the universal property, we have a surjective

map N(Λ(U), 0) → Γ ⊗ B. It is easy to check that this map factors through the ideal of

relations I(U), hence we have a surjective map Q(U) → Γ ⊗ B. Likewise, we have maps

Γ → Q(U), B → Q(U) whose images commute in Q(U). This yields a map Γ⊗B → Q(U).

Then we verify that this map is the inverse of Q(U) → Γ ⊗B above.

We would like to write down a basis for Γ. For this, we will construct Γ in a different

way. Define a Z-graded Heisenberg Lie algebra g by the relations

[βp, γq] = δp+q,0β(γ) 1l

where the generators βp are linear in β ∈ C0, and the γq are linear in γ ∈ Hom(Rn,R).

Let g≥ ⊂ g be the subalgebra generated by 1l and the βp, γp with p ≥ 0. We make C∞(U)

a g≥-module by

βp · f = γp · f = 0, p > 0

β0 · f = β(f), γ0 · f = γf, 1l · f = f.

Put

Γ′ := Ug ⊗g≥
C∞(U).

The commutation relations of the operators βp, γq acting on this g-module translate into

the equivalent relations

[β(z), β′(w)] = [γ(z), γ′(w)] = 0,

[β(z)+, γ(w)] = β(γ) (z − w)−1, [β(z)−, γ(w)] = β(γ) (w − z)−1.

for β, β′ ∈ C0 and γ, γ′ ∈ Hom(Rn,R), where β(w) =
∑

βnw
−n−1, γ(w) =

∑

γnw
−n. By

Lemma 2.4, it follows that the operators β(z), γ(z) ∈ QO(Γ′) generate a vertex algebra.

Note that g acts on the abelian Lie algebra C∞(U)[t, t−1] by derivations defined by

βp · ft
q = β(f)tp+q, γp · ft

q = 1l · ftp = 0.

We will extend the g action on Γ′ to an action of the semi-direct product algebra g ⊲

C∞(U)[t, t−1] on Γ′ as follows. Having this action is the main point of constructing the

module Γ′.
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By using the existence of a PBW basis of Ug, we will first define a map f(k) : Ug ⊗

C∞(U) → Γ′ for each ftk ∈ C∞(U)[t, t−1] inductively, and then show that f(k) descends

to an operator f(k) : Γ′ → Γ′. Given f, g ∈ C∞(U), we define f(k)(1⊗ g) = δk,−1(1⊗ fg)

for k ≥ −1. For k < −1, we put

f(k)(1 ⊗ g) =
1

k + 1

∑

p<0

p γip
∂f

∂γi
(k − p)(1 ⊗ g).

Note that this definition is recursive. The formula comes from solving for the Fourier

modes f(k) using the anticipated relation (from our earlier construction of Γ)

d

dw
f(w)(1⊗ g) =

d

dw
γi(w)

∂f

∂γi
(w)(1 ⊗ g).

The sought-after vertex operator f(w) =
∑

f(k)w−k−1 ∈ QO(Γ′) will eventually play the

role of the f(w) ∈ QO(Γ) earlier. Now suppose f(k)(ω ⊗ g) is defined for all f ∈ C∞(U)

and all k ∈ Z. We define

f(k)(γpω ⊗ g) = γpf(k)(ω ⊗ g)

f(k)(βpω ⊗ g) = βpf(k)(ω ⊗ g) − β(f)(k + p)(ω ⊗ g).

This completes the definition of the f(k) : Ug⊗C∞(U) → Γ′. Note that when f ∈ C∞(U)

is the restriction of a given linear function γ ∈ Hom(Rn,R), then f(k) = γk+1, i.e.

f(w) = γ(w) in this case.

Using the recursive definition above, it is straightforward but tedious to check that

f(k) descends to an operator f(k) : Γ′ → Γ′, and that f(w) =
∑

f(k)w−k−1 ∈ QO(Γ′)

satisfies the relations

[γ(z), f(w)] = 0, [β(z)+, f(w)] = β(f)(w) (z−w)−1, [β(z)−, f(w)] = β(f)(w) (w−z)−1.

(2.9)

To see that Γ′ has a module structure over the Lie algebra g ⊲C∞(U)[t, t−1], it remains to

show that [f(z), g(w)] = 0 for all f, g ∈ C∞(U). This follows from the next lemma.

Lemma 2.20. For f, g ∈ C∞(U), we have

f(z)g(w) = g(w)f(z), (fg)(w) = f(w)g(w), 1(z) = id,
d

dw
f(w) =

d

dw
γi(w)

∂f

∂γi
(w).
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In particular Γ′ has a module structure over the Lie algebra g ⊲ C∞(U)[t, t−1].

Proof: It follows from (2.9) that the γp commute with the commutator [f(z), g(w)] for any

γ ∈ Hom(Rn,R). It follows from the recursive definition of the f(k) that [f(z), g(w)]1⊗

h = 0 for any h ∈ C∞(U). For β ∈ C0, (2.9) implies that

[βp, [f(z), g(w)]] = zp[β(f)(z), g(w)] + wp[f(z), β(g)(w)], [γp, [f(z), g(w)]] = 0.

Using these commutator relations and the existence of a PBW basis of Ug, we find by

induction that [f(z), g(w)] must be identically zero on Γ′. This proves the first asserted

equation. The argument for each of the remaining three equations is analogous.

Corollary 2.21. The circle algebra G′ ⊂ QO(Γ′) generated by the operators {β(w), f(w)|β ∈

C0, f ∈ C∞(U)} is a vertex algebra. It is linearly isomorphic to Γ′.

Proof: By the first equation of the preceding lemma together with (2.9), it follows that

(z − w)[β(z), f(w)] = 0 and [f(z), g(w)] = 0. This implies that G′ is a vertex algebra.

Moreover we have βk1Γ′ = f(k)1Γ′ = 0 for k ≥ 0, where 1Γ′ := 1 ⊗ 1 ∈ Ug ⊗g≥
C∞(U). It

follows that the creation map

G′ → Γ′, a(w) 7→ lim
w→0

a(w)1Γ′ = a(−1)1Γ′

is a well-defined linear map.

We claim that this is a linear isomorphism. In fact, it follows from the preceding

lemma, that G′ is spanned by the vertex operators, each having the shape

: βI0
dβ

dw

I1 d2β

dw2

I2

· · ·
dγ

dw

J1 d2γ

dw2

J2

· · · fα(w) :∈ G′.

Its image under the creation map is a nonzero scalar (given by products of factorials) times

the vector

β(−1)I0β(−2)I1 · · ·γ(−2)J1γ(−3)J2 · · · ⊗ fα ∈ Γ′.

Here {fα} is a given basis of C∞(U), and β(k) = βk, γ(k) = γk+1;
dkβ
dwk

I

means the usual
dk

dwk
βi1(w) dk

dwk
βi2(w) · · · for any given finite list I = {i1, i2, ...} of indices ranging over

{1, .., n}; likewise for other multi-index monomials. By the PBW theorem, these vectors

form a basis of Γ′ indexed by (I0, I1, .., J1, J2, ...α). This implies that G′ → Γ′ is a linear

isomorphism.

From now on, we identify G′ with Γ′ via this isomorphism.
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Corollary 2.22. Γ′ ⊗B is canonically a Λ(U)[t, t−1]-module such that xtp · 1Γ′ ⊗ 1B = 0

for x ∈ Λ(U), p ≥ 0.

Proof: An element x ∈ Λ(U) = C ⊲ Ω(U) can be uniquely written as x = β + b +
∑

fIc
I

where β ∈ C0, b = λib
i ∈ C1, fI ∈ C∞(U), cI = ci1ci2 · · · , i1 < i2 < · · ·, as before. We

define the linear operator x(p) representing xtp on Γ′ ⊗B to be the p-th Fourier mode of

the vertex operator

x(w) = β(w) + b(w) +
∑

fI(w)c(w)I

Here it is understood that b(w) = λib
i(w) and the ci(w) act on the factor B while β(w)

and the fI(w) act on the factor Γ′. Taking a second element x′ = β′+b′+
∑

f ′
I′c

I′ ∈ Λ(U),

and using (2.9) together with the first equation of the preceding lemma, we find that

x(z)x′(z′) ∼ [x, x′](z′)(z − z′)−1

where [x, x′] is the Lie bracket in Λ(U). This shows that xtp 7→ x(p) defines a Λ(U)[t, t−1]-

module structure on Γ′ ⊗ B. Finally, by construction, the β(w), b(w), fI(w), ci(w) are

vertex operators whose p-th Fourier modes annihilates 1′Γ ⊗ 1B for p ≥ 0. It follows that

the Fourier modes x(p) of x(z), which represent the xtp, have the same property.

Corollary 2.23. We have a vertex algebra isomorphism Q(U) = Γ⊗B → Γ′⊗B = G′⊗B

which sends x(z) to x(z) for x ∈ Λ(U).

Proof: By the universal property of the induced module V(U), and by the preceding

corollary, there is a unique Λ(U)[t, t−1]-module homomorphism sending 1 ⊗ 1 ∈ V(U) to

1Γ′ ⊗ 1B ∈ Γ′ ⊗ B. Since we identify V(U) with the vertex algebra generated by the

x(z) ∈ QO(V(U)), this map sends x(z) ∈ QO(V(U)) to x(z) ∈ G′ ⊗ B′. In particular, it

is a vertex algebra homomorphism. By the preceding lemma, this homomorphism factors

through the ideal I(U) ⊂ V(U), hence it descends to Q(U) → G′ ⊗B. By construction it

is obvious that Q(U) = Γ ⊗B is spanned by vertex operators of the shape

: βI0
dβ

dw

I1 d2β

dw2

I2

· · ·
dγ

dw

J1 d2γ

dw2

J2

· · · fα(w) : ⊗ : bK0
db

dw

K1 d2b

dw2

K2

· · · cL0
dc

dw

L1 d2c

dw2

L2

· · · :

But their images form a basis of G′⊗B. It follows that Q(U) → G′⊗B is an isomorphism.

From now on, we identify Q(U) with G′ ⊗ B via the isomorphism. But it will be

convenient to use both points of view.
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Corollary 2.24. There is a canonical map Ω(U) →֒ Q(U) such that fg 7→: f(w)g(w) :=

f(w)g(w).

Proof: The map is defined by f =
∑

fIc
I 7→ f(w) =

∑

fI(w)c(w)I ∈ G′ ⊗ B. It is

clear that this is independent of basis. By Lemma 2.20, it has the desired multiplicative

property. If f(w) = 0, then fI(w) = 0 for all I, since the c(w)I = ci1(w)ci2(w) · · · are

independent in B. In particular fI(−1)1Γ′ = 1 ⊗ fI = 0 in Γ′. It follows that fI = 0 for

all I. Thus the map f 7→ f(w) is injective.

2.6. MSV chiral de Rham complex of a smooth manifold

Following [29], the idea is to first construct a sheaf of vertex algebras on Rn, and then

transfer it onto any given smooth manifold M in a coordinate independent way.

Lemma 2.25. Any inclusion of open sets U
ι
⊂U ′ induces a canonical vertex algebra ho-

momorphism Q(U ′)
Q(ι)
→ Q(U). Moreover, this defines a sheaf of vertex algebras on Rn

Proof: Given an inclusion ι : U ⊂ U ′, clearly we have a Lie algebra homomorphism

Λ(U ′) → Λ(U) induced by restrictions of functions Ω(U ′) → Ω(U). By the functoriality

of the current algebra construction Example 2.13, we get a vertex algebra homomorphism

V(U ′) → V(U). The ideal I(U ′) is mapped into I(U) because I(U ′) is generated by vertex

operators constructed from the circle products ◦−1, ◦−2 and the vertex operators f(w),

f ∈ Ω(U ′). Thus we have a vertex algebra homomorphism Q(U ′) → Q(U), which we

denote by Q(ι). A similar argument shows that given inclusions of open sets U1

ι1
⊂U2

ι2
⊂U3,

we get Q(ι2 ◦ ι1) = Q(ι1)◦Q(ι2). This shows that the assignment U  Q(U) is a presheaf.

To see that Q is a sheaf, suppose that Ui
ιi
⊂U form a covering of U we need to show

that the sequence

0 → Q(U) →
∏

i

Q(Ui)⇉
∏

i,j

Q(Ui ∩ Uj)

is exact. By the PBW theorem applied to Q(U) = Γ′ ⊗B, each element a ∈ Q(U) can be

uniquely represented in the shape a =
∑

P PfP , where fP ∈ C∞(U), and {P} a basis of

the graded polynomial space

C[βi(k), γi(k − 1), bi(k), ci(k) : k ≤ −1, 1 ≤ i ≤ n].
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Given an inclusion ι : U ⊂ U ′, the restriction map Q(ι) : Q(U ′) → Q(U) sends
∑

PfP to
∑

PfP |U . Now our assertion follows from the exact sequence

0 → C∞(U) →
∏

i

C∞(Ui)⇉
∏

i,j

C∞(Ui ∩ Uj)

This completes the proof.

In order to transfer the sheaf Q from Rn to an arbitrary smooth manifold, we must

be able to compare the vertex algebras Q(U) under diffeomorphisms U → U ′ of open

sets. For this it is convenient to enlarge the category Open(Rn) of open sets by allowing

any open embedding U →֒ U ′ of open sets to be a morphism. We shall denote this

new category by (Open(Rn), →֒). This category is a special example of a Grothendieck

topology. Namely, if Ui
ψi
→֒U , i = 1, 2, are two morphisms then we declare the fiber product

to be U1 ×U U2 := ψ1(U1) ∩ ψ2(U2). We also declare any collection of morphisms Ui
ψi
→֒U

to be a covering if ∪iψi(Ui) = U . Note that any morphism U
ψ
→U ′ can be factorized as a

diffeomorphism followed by an inclusion U
ϕ
→ψ(U)

ι
⊂U ′. But there may be another open

set W ⊃ U and a diffeomorphism W
ρ
→U ′ such that ψ is factorized as U ⊂W

ρ
→U ′.

Lemma 2.26. Any diffeomorphism of open sets U
ϕ
→U ′ induces a canonical vertex algebra

isomorphism Q(U ′)
Q(ϕ)
→ Q(U). Moreover, given diffeomorphisms of open sets U1

ϕ1

→U2
ϕ2

→U3,

we get Q(ϕ2 ◦ ϕ1) = Q(ϕ1) ◦ Q(ϕ2).

Proof: The diffeomorphism ϕ induces the pull-back isomorphism ϕ∗ : Ω(U ′) → Ω(U) on

forms. This induces a vertex algebra isomorphism from the subalgebra 〈f(z)|f ∈ Ω(U ′)〉 ⊂

Q(U ′) onto 〈f(z)|f ∈ Ω(U)〉 ⊂ Q(U) by f(z) 7→ ϕ∗(f)(z). We would like to extend this to

Q(U ′) → Q(U). First note that ϕ∗ does not extend to a Lie algebra isomorphism between

Λ(U ′) and Λ(U) in general. However it extends to a Lie algebra isomorphism between two

larger Lie algebras

ϕ∗ : V ect(U ′) ⊲ Ω(U ′) → V ect(U) ⊲ Ω(U)

where V ect(U ′) = Ω(U ′){ ∂
∂γi

, ∂
∂ci

: 1 ≤ i ≤ n} = Ω(U ′) ⊗ C is the Lie algebra of all

smooth super derivations on Ω(U ′). Since the constant vector fields C can be regarded as

a subalgebra of V ect(U ′), ϕ∗ maps Λ(U ′) = C⊲Ω(U ′) to a Lie subalgebra of V ect(U)⊲Ω(U).

In particular, one can express each of the pull-backs ϕ∗ ∂
∂γi

, ϕ∗ ∂
∂ci
, ϕ∗ci, ϕ∗γi, uniquely in

terms of ∂
∂γi

, ∂
∂ci
, ci, γi ∈ Ω(U), and the coordinates ϕi of ϕ. In fact, we have

ϕ∗γi = γi ◦ ϕ = ϕi, ϕ∗ci = ϕ∗dγi =
∂ϕi

∂γj
cj
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and for any constant vector field X ∈ C, the vector field ϕ∗X ∈ V ect(U) is determined by

the condition that

(ϕ∗X)(ϕ∗f) = [ϕ∗X,ϕ∗f ] = ϕ∗[X, f ] = ϕ∗(X(f)), f ∈ Ω(U ′).

These pull-back expressions make sense as vertex operators if one formally replaces

the ∂
∂γi

, ∂
∂ci

, ci, γi, ϕi ∈ Ω(U), by their vertex operator counterparts βi(z), bi(z), ci(z),

γi(z), ϕi(z) ∈ Q(U). Equivalently, ϕ∗ determines an injective linear map Φ : Λ(U ′) →

Q(U) with the property that Φ(f) = (ϕ∗f)(z) for f ∈ Ω(U ′). In particular, by Lemma

2.20, Φ(fg) = Φ(f)Φ(g) for f, g ∈ Ω(U ′).

A remarkable result of [29] says that

Φ(bi)(z) Φ(cj)(w) ∼ δij(z − w)−1, Φ(β)(z) Φ(f)(w) ∼ Φ(β(f))(w) (z − w)−1 (2.10)

for β ∈ C0, f ∈ C∞(U ′), and all other OPE are trivial. Since each element x ∈ Λ(U ′)

can be uniquely expressed as x = β + b +
∑

fIc
I , it follows that Φ(x) = Φ(β) + Φ(b) +

∑

Φ(fI)Φ(cI). Taking a second element x′ ∈ Λ(U ′), it follows from (2.10) that

Φ(x)(z) Φ(x′)(z′) ∼ Φ([x, x′])(z′) (z − z′)−1.

By the universal property of the current algebra construction of V(U ′), the map Φ extends

to a vertex algebra homomorphism V(U ′) → Q(U). Note that Φ maps functions Ω(U ′) ⊂

Λ(U ′) →֒ V(U ′) to functions Ω(U) →֒ Q(U). Since Φ preserves the circle products, it

follows that Φ maps the ideal I(U ′) ⊂ V(U ′) to I(U) which is zero in Q(U). Thus we

obtain a homomorphism Q(U ′) → Q(U) which we denote by Q(ϕ).

Now consider two diffeomorphisms U1
ϕ1

→U2
ϕ2

→U3. It is clear that

(ϕ2 ◦ ϕ1)
∗ : V ect(U3) ⊲ Ω(U3) → V ect(U1) ⊲ Ω(U1)

coincides with ϕ∗
1 ◦ϕ

∗
2; this is functoriality of pull-back. However, because the definition of

Q(ϕi) involves formal substitutions of non-commuting vertex operators, it is not a priori

clear the same should hold for the Q(ϕi). But [29] showed (in the case when all three

Ui are the same by direct calculation using generators; but the proof works here), that

Q(ϕ2◦ϕ1) = Q(ϕ1)◦Q(ϕ2) indeed holds; this result requires a certain anomaly cancellation.

In any case, specializing this to U
ϕ
→U ′ϕ

−1

→ U , we conclude that Q(ϕ) is an isomorphism.
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Actually, there is a slight ambiguity in the choice of the isomorphism Φ above. When

the classical objects ∂
∂γi

, ∂
∂ci

, ci, γi, ϕi ∈ Ω(U) are formally replaced by their vertex opera-

tor counterparts βi(z), bi(z), ci(z), γi(z), ϕi(z) ∈ Q(U), care must be taken when deciding

in which order the vertex operators should appear because they do not commute in general.

This ambiguity occurs at just one place, namely the βi. The classical transformation law

for the derivation ∂
∂γi

, under coordinate transformations γ̃i = gi(γ), γi = f(γ̃), is

∂

∂γ̃i
=
∂f j

∂γ̃i
∂

∂γi
+

∂2fk

∂γ̃i∂γ̃j
∂gj

∂γl
cl

∂

∂ck

There is no ambiguity in the second term on the right side under the formal replacement.

But for the first term, we can have the vertex operators : ∂f
j

∂γ̃i
βj : or : βj ∂f

j

∂γ̃i
:, which are

not equal in general. Both choices give the right OPE for γ̃i, β̃j , but only the second choice

guarantees the composition property in the preceding lemma.

Lemma 2.27. Consider the following commutative diagram in (Open(Rn), →֒):

V
ι
⊂ U

ϕ′ ↓ ϕ ↓

V ′
ι′

⊂ U ′

where the vertical arrows are diffeomorphisms. This induces a commutative diagram under

Q, i.e.

Q(ϕ′) ◦ Q(ι′) = Q(ι) ◦ Q(ϕ).

Proof: The commutative diagram says that ϕ′ is the restriction of ϕ to V . The Q(ι′), Q(ι)

are defined by restrictions of (arbitrary) smooth functions; these operations are clearly

compatible with formal substitutions, hence with Q(ϕ).

Definition 2.28. For any open embedding U
ψ
→֒U ′, we define Q(ψ) : Q(U ′) → Q(U) by

Q(ψ) = Q(ϕ) ◦ Q(ι) where U
ϕ
→ψ(U)

ι
⊂U ′ is the factorization of ψ into a diffeomorphism

followed by an inclusion.

Lemma 2.29. The assigment Q : (Open(Rn), →֒)  VA, defines a sheaf of vertex

algebras in the Grothendieck topology on Rn.

Proof: The proof has little to do with vertex algebras. Suppose that one has a sheaf F

in the ordinary topology (Open(Rn),⊂) on Rn, and that F further assigns to each diffeo-

morphism U
ϕ
→U ′ an isomorphism F(ϕ) : F(U ′) → F(U) in a way that Lemmas 2.26 and
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2.27 hold for F . Then F defines a sheaf in the Grothendieck topology (Open(Rn), →֒).

Namely, one keeps the same assignment of objects F(U) for open sets U , and assign to

each open embedding ψ a morphism F(ψ) as in the preceding definition. Then one finds,

by straightforward checking, that

•F : (Open(Rn), →֒) VA is a functor;

•if Ui
ψi
→֒U is a covering, then the sequence

0 → F(U) →
∏

i

F(Ui)⇉
∏

i,j

F(Ui ×U Uj)

is exact.

Now apply this to Q.

Lemma 2.30. Given any sheaf of vertex algebras F : (Open(Rn), →֒)  VA in the

Grothendieck topology on Rn, we can attach, to every smooth manifold Mn, a sheaf of

vertex algebras FM in the ordinary topology of M .

Proof: This again has little to do with vertex algebras.

Let B be the set of all coordinate open subsets of M , i.e. O ∈ B iff there is a chart

ψ : O → Rn. Let CO be the set of such charts, and let GO be the groupoid consisting of

objects F(ψ(O)), ψ ∈ CO, and morphisms

F(ψ(O))
gψϕ:=F(ψ◦ϕ−1)

−→ F(ϕ(O)), ψ, ϕ ∈ CO .

By definition this groupoid has just one morphism gψϕ between any pair of objects. In

particular, these morphisms satisfy the “cocycle condition” that

gψϕgρψ = gρϕ.

We define the “average” of GO by

ḠO := {(vϕ) ∈
∏

ψ∈CO

F(ψ(O))|vϕ = gψϕvψ ∀ψ, ϕ}.

Note that each projection πϕ :
∏

ψ F(ψ(O)) → F(ϕ(O)), restricts to an isomorphism

πϕ : ḠO → F(ϕ(O)). Hence each tuple (vϕ) ∈ ḠO is determined by any one of its entries
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vϕ. Conversely, for any ϕ ∈ CO and any x ∈ F(ϕ(O)), there exists a unique tuple in ḠO,

which we denote by x̄, such that πϕ(x̄) = x.

Since a sheaf on M is determined by its values on a collection of open sets forming a

basis of M , it suffices to define FM (O) for O ∈ B. We define

FM (O) = ḠO O ∈ B,

and for O ⊂ P , we define the restriction map

resPO : ḠP → ḠO, v 7→ F(ι)πψ(v).

Here ψ : P → Rn is any given chart and ι : ψ(O) ⊂ ψ(P ) is the inclusion. It is straight-

forward to check that

•resPO is well-defined, i.e. independent of the choice of ψ;

•FM defines a sheaf on M . In other words, we have that

•if O ⊂ P ⊂ Q ∈ B, then

resPO resQP = resQO;

•if Oi ⊂ O ∈ B form a covering by open sets, then the sequence

0 → FM (O) →
∏

i

FM (Oi)⇉
∏

i,j

FM (Oi ∩Oj)

is exact.

Applying this to the sheaf Q, we obtain a sheaf QM of vertex (super) algebras for

every smooth manifold M . This is the chiral de Rham sheaf. Since Ω(U) →֒ Q(U) by

Corollary 2.24, it follows that QM contains the de Rham sheaf ΩM . To summarize:

Theorem 2.31. [29] For every smooth manifold M , we have a sheaf QM of vertex algebras

which contains ΩM as a subsheaf of vector spaces.

When M is fixed and no confusion arises, we shall denote the chiral de Rham sheaf by

Q without the subscript. It was shown further in [29] that for any M , the vertex algebra
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Q(M) of global sections contains a Virasoro element with central charge 0 given in local

coordinates by:

ωQ(z) = ωbos(z) + ωfer(z), ωbos(z) = − : bi(z)∂ci(z) :, ωfer(z) =: βi(z)∂γi(z) :,

(cf. [15]). Q(M) contains another vertex operator g(z), which will also be useful to us. It

is defined locally by

g(z) =: bi(z)∂γi(z) : .

When M is Calabi-Yau, Q(M) contains a topological vertex algebra (TVA), as in Example

2.19, where ωQ(z), g(z) play the roles of L(z), G(z), respectively. The differential dQ of

this TVA still makes sense when M is not Calabi-Yau, and the equation [dQ, g(z)] = ωQ

still holds. dQ is given by the zeroth Fourier mode of the vertex operator

: βi(z)ci(z) : .

Moreover (Q, dQ) has the structure of a complex of sheaves containing the de Rham com-

plex of sheaves (Ω, ddR). In particular (Ω(M), ddR) is a subcomplex of (Q(M), dQ). Q(M)

is a Z≥-graded module over the Virasoro algebra, where the grading is given by the eigen-

values of the Fourier mode ωQ(1) of the Virasoro element. Moreover the eigenspace of zero

eigenvalue is Ω(M). Since [dQ, g(1)] = ωQ(1), it follows that the Fourier mode g(1) is a

contracting homotopy for dQ in every eigenspace of nonzero eigenvalue. This means that

the chiral de Rham cohomology, i.e. the cohomology of (Q(M), dQ), coincides with the

classical de Rham cohomology.

3. From Vector Fields on M to Global Sections of QM

Recall that to any given Lie algebra g, we can attach a Lie (super) algebra as follows.

Let g−1 be the adjoint module of g, but declared to be an odd vector space. We can then

form the semi-direct product Lie algebra sg := g ⊲ g−1. Define a linear map d : sg → sg,

(ξ, η) 7→ (η, 0), which is a square-zero odd derivation. The result is an example of a

differential (graded) Lie algebra (sg, d), i.e. a Lie algebra equipped with a square-zero

derivation.

Assign to sg the zero bilinear form, and consider the current algebra O(sg, 0) defined

in Example 2.13. Then the Lie algebra derivation d : sg → sg induces a vertex algebra

derivation

d : O(sg, 0) → O(sg, 0)
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such that (ξ, η)(z) 7→ (η, 0)(z). Note that (sg, d) is a Z-graded Lie algebra where g, g−1, d

have degrees 0,-1,1 respectively. This makes O(sg)
def
= (O(sg, 0),d) a degree graded differ-

ential vertex algebra where (ξ, 0)(z), (0, ξ)(z) have degrees 0,−1 respectively. Note also

that O(sg) is also weight graded where (ξ, η)(z) has weight 1.

Definition 3.1. An O(sg)-algebra is a degree-weight graded differential vertex algebra

(A∗, δ) equipped with a homomorphism ΦA : O(sg) → (A, δ). We shall often denote the

O(sg)-structure on A simply by the map sg → A, (ξ, η) 7→ Lξ(z) + ιη(z). An O(sg)-

algebra homomorphism is a differential vertex algebra homomorphism f : (A, δ) → (A′, δ′)

such that f ◦ ΦA = ΦA′ . Likewise we have the categorical notions of O(sg)-modules and

O(sg)-module homomorphisms.

3.1. From vector fields to O(sX)-algebras

Consider X = X(M), the Lie algebra of vector fields on M . For X ∈ X let

LX : Ωk(M) → Ωk(M), ιX : Ωk(M) → Ωk−1(M)

respectively be the Lie derivative and the interior multiplication by X . They have the

familiar (super) commutators:

[LX , LY ] = L[X,Y ], [LX , ιY ] = ι[X,Y ], [ιX , ιY ] = 0.

Thus the map φ : sX = X ⊲ X−1 → Der Ω(M), (X, Y ) 7→ LX + ιY defines an injective Lie

algebra homomorphism. Since φ ◦ d = ddR ◦ φ, it follows that (sX, d) ∼= (φ(sX), ddR) as

differential Lie algebras. We shall identify these two algebras.

As before, we can consider the corresponding differential vertex algebra O(sX) =

(O(sX, 0),d). Since the invariant bilinear form we have chosen for sX is zero, the diagonal

map sX → sX⊕sX induces a Lie algebra homomorphism of the corresponding loop algebras,

and ultimately a differential vertex algebra homomorphism O(sX) → O(sX)⊗O(sX). This

makes the tensor product of any two O(sX)-algebras also an O(sX)-algebra; likewise for

modules.

Let X ∈ X. Write X = fi
∂
∂γi

in some local coordinates ψ : O → Rn. Then ιX = fi
∂
∂ci

as a derivation on Ω(M).
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Lemma 3.2. For X ∈ X(M), there exists a global section ιX(z) of the chiral de Rham

sheaf such that on a local coordinate open set we have ιX(z) =: fi(z)b
i(z) :.

Proof: Note that : fi(z)b
i(z) := fi(z)b

i(z) because the fi(z), b
i(z) commute. It is enough

to show that on two overlapping coordinate open sets O, Õ ⊂M , the two local expressions

for ιX(z) agree on O ∩ Õ. Denote the two local expressions for X by fi
∂
∂γi

and f̃i
∂
∂γ̃i

respectively. Since X and ιX are both globally defined on M , on the overlap we have the

relations f̃i = fj
∂γ̃i

∂γj
, ∂
∂c̃i

= ∂
∂cj

∂γj

∂γ̃i
. This means that fi(z), b

i(z) ∈ Q(O) and f̃i(z), b̃
i(z) ∈

Q(Õ), when restricted to O ∩ Õ, are related by f̃i(z) = fj(z)
∂γ̃i

∂γj
(z), b̃i(z) = bj(z)∂γ

j

∂γ̃i
(z).

It follows that

f̃i(z)b̃
i(z) = fj(z)b

j(z).

Here we have used the identity (a relation coming from the ideal I(U)) ∂γj

∂γ̃i
(z) ∂γ̃

i

∂γk
(z) =

(∂γ
j

∂γ̃i
∂γ̃i

∂γk
)(z) = δj,kid. This completes the proof.

Remark 3.3. Even though X = fi
∂
∂γi

is globally defined as a vector field, the formal

substitution : fi(z)β
i(z) : does not give a well-defined global section of Q(M). There are

two reasons. The first is that as a derivation on Ω(O), ∂
∂γi

does not transform like a vector.

The second is that fi(z), β
i(z) do not commute as vertex operators in Q(O). Both of these

make : fi(z)β
i(z) : transform in a complicated way and fail to be globally well-defined.

Recall that the vertex algebra Q(M) of global sections of the chiral de Rham sheaf

has a well-defined differential

dQ : Q(M) → Q(M), a(z) 7→ (βi(z)ci(z)) ◦0 a(z).

Note that the last expression is also the commutator of the zeroth Fourier mode of

βi(z)ci(z) with a(z). Thus we obtain a global section

LX(z)
def
= dQ ιX(z)

in Q(M). In local coordinates, LX(z) is given by

LX(z) =: βi(z)f i(z) : + :
∂f j

∂γi
(z) ci(z) bj(z) : .

Lemma 3.4. Both ιX(z), LX(z) are primary vertex operators of conformal weight 1.

Proof: This is a local calculation. Recall that the Virasoro element ωQ(z) ∈ Q(M) is

characterized by the fact that locally the vertex operators b(z), c(z), β(z), γ(z) are primary
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of conformal weights 1,0,1,0 respectively [15]. In particular, f(z) is primary of conformal

weight 0 for any f ∈ C∞(M). That makes ιX(z) =: fi(z)b
i(z) : primary of conformal

weight 1. Since ωQ(z) is dQ-exact it commutes with dQ. It follows that LX(z) = dQ ιX(z)

is also primary of conformal weight 1.

Theorem 3.5. The differential vertex algebra (Q(M), dQ) is an O(sX)-algebra.

Proof: Using the local formulas for LX(z), ιY (w) ∈ Q(M), we get easily

LX(z)ιY (w) ∼ ι[X,Y ](w) (z − w)−1.

Taking commutators on both sides with the zeroth Fourier modeD(0) ofD(z) = βi(z)ci(z),

and recalling that LY (w) = dQ ιY (w) = [D(0), ιY (w)], we get

LX(z)LY (w) ∼ L[X,Y ](w) (z − w)−1.

We also have ιX(z)ιY (w) ∼ 0. By the universal property of a current algebra (Example

2.13), there is a unique vertex algebra homomorphism ΦQ : O(sX, 0) → Q(M) such that,

for any (X, Y ) ∈ sX, we have (X, Y )(z) 7→ LX(z) + ιY (z). By definition, the differential

for O(sX) is given by d : (X, Y )(z) 7→ (Y, 0)(z), while the differential for Q(M) is dQ :

LX(z) + ιY (z) 7→ LY (z). This shows that ΦQ intertwines d and dQ, hence we have a

differential vertex algebra homomorphism ΦQ : O(sX) → (Q(M), dQ).

The formula for LX(z) and the statement that Q(M) is a module over the current

algebra O(X, 0) via X 7→ LX(z), also appear in [30].

Remark 3.6. Consider any given Lie subalgebra g ⊂ X. Then we have a differential

Lie subalgebra sg ⊂ sX. By Example 2.13, this induces an inclusion of differential vertex

algebras O(sg) ⊂ O(sX). This makes every O(sX)-algebra canonically an O(sg)-algebra,

and likewise for modules.

3.2. From group actions to global sections

Let G be a Lie group with Lie algebra g, and M a smooth G-manifold, i.e. M is

equipped with an effective G-action. Then the group homomorphism G → Diff(M)

induces an injective Lie algebra homomorphism given by

g → X(M), ξ 7→ Xξ, Xξ(x) =
d

dt
etξ · x|t=0.
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Thus g can be viewed as a Lie subalgebra of X = X(M). We shall denote LXξ simply by

Lξ, and likewise for ιξ. Now it follows immediately from the preceding remark that we

have

Theorem 3.7. Let G be Lie group with Lie algebra g, and M be a G-manifold. Then

(Q(M), dQ) is canonically an O(sg)-algebra.

In particular, each ξ ∈ g gives rise to two vertex operators Lξ(z), ιξ(z) ∈ Q(M).

4. Classical Equivariant Cohomology Theory

In this section we summarize the theory of classical equivariant cohomology from the

de Rham theoretic point of view. All material in this section is taken from the book of

Guillemin-Sternberg [18]. This summary will be used as a guide for formulating the vertex

algebra analogue of the theory.

Let G be a compact Lie group with Lie algebra g, and M a topological space equipped

with an action of G by homeomorphisms. The equivariant cohomology of M , denoted by

H∗
G(M), is defined to be the ordinary cohomology of the quotient (M × E)/G where E

is any contractible topological space on which G acts freely. It is well-known that this is

independent of the choice of E . Furthermore, if the G action on M is free then H∗
G(M) =

H∗(M/G). If the action is not free, the quotient space M/G may be pathological, and

H∗
G(M) is the appropriate substitute for H∗(M/G). From now on, we let M be a finite-

dimensional manifold on which G acts by diffeomorphisms. Then there is a de Rham model

for H∗
G(M) together with an equivariant version of the de Rham theorem which asserts

the equivalence between this model and the topological definition.

The G-action on M induces a group homomorphism ρ : G → Aut Ω(M) and a

differential Lie algebra homomorphism sg → Der Ω(M), (ξ, η) 7→ Lξ + ιη, making Ω(M)

a (sg, d)-module such that the following identities hold

[d, ιξ] = Lξ

d

dt
ρ(etξ)|t=0 = Lξ

ρ(a)Lξρ(a
−1) = LAda(ξ)

ρ(a)ιξρ(a
−1) = ιAda(ξ)

ρ(a)dρ(a−1) = d.

(4.1)
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Here d = ddR. Note that Ω(M) is Z-graded by the form degree and that operators Lξ, ιξ, d

have degrees 0,−1, 1 respectively. In the terminology of [18], (Ω(M), ddR) is an example

of

Definition 4.1. A G∗-algebra is a Z-graded differential commutative superalgebra (A, dA)

on which G acts by automorphisms ρ : G → Aut(A) and sg acts by (super) derivations

sg → Der A, (ξ, η) 7→ Lξ + ιη, such that (4.1) hold with d = dA. A G∗-algebra morphism

is an algebra homomorphism which preserves the above structures in an obvious way.

To make sense of (4.1) in this generality, one can either restrict the G-action to

G-finite vectors, or give an appropriate notion of differentiation along a curve in A.

We often denote (A, dA) simply by A.

Now suppose M is a principal G-bundle. Then the vector fields Xξ, ξ ∈ g, generate a

G-invariant trivial subbundle V ⊂ TM . Choose a G-invariant splitting TM = V ⊕H; we

get T ∗M = V ∗ ⊕H∗. Corresponding to the choice of H is a canonical map

g∗ →֒ Ω1(M), ξ′ 7→ θξ
′

θξ
′

|H = 0, ιξθ
ξ′ = θξ

′

(Xξ) = 〈ξ′, ξ〉.
(4.2)

Using the G-invariance of the splitting T ∗M = V ∗ ⊕H∗, it is easy to see that:

Lξθ
ξ′ = θad

∗(ξ)ξ′ .

The θξ
′

are called connection one-forms, and the two-forms µξ
′

= dθξ
′

+ 1
2θ
ad∗(ξi)ξ

′

θξ
′
i are

called the curvature forms of the θξ
′

, where ad∗ : g → End g∗ is the coadjoint module.

Definition 4.2. A G∗-algebra A is said to be of type C if there is an inclusion g∗ →֒ A1,

ξ′ 7→ θξ
′

such that ιξθ
ξ′ = 〈ξ′, ξ〉 and the image C ⊂ A1 is G-invariant.

Every one-form ω ∈ Ω1(M) such that ιξω = 0 for all ξ can be thought of as a section

of H∗, hence it is called a horizontal one-form. Likewise, any form ω ∈ Ω(M) satisfying

the same condition is called horizontal.

Definition 4.3. Let A be a G∗-algebra. An element ω ∈ A is said to be horizontal if

ιξω = 0 for all ξ ∈ g. It is called basic if it is horizontal and ρ(a)ω = ω for all a ∈ G. We
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denote by Ahor and Abas, respectively, the subalgebras of horizontal and basic elements in

A.

If G is connected then the condition that ρ(a)ω = ω can be replaced by the equivalent

condition that Lξω = 0. In particular, Abas is the sg-invariant subalgebra of A in this

case.

It is easy to see that d(Abas) ⊂ Abas. Thus Abas is a subcomplex of A and its

cohomology H∗
bas(A) is well-defined. Moreover, if φ : A→ B is a morphism of G∗-algebras,

then φ(Abas) ⊂ Bbas, and so φ induces a map

φbas : H∗
bas(A) → H∗

bas(B).

Guillemin-Sternberg define the equivariant cohomology of a G∗-algebra A, in a way that

is analogous to the topological definition.

Definition 4.4. Let E be any acyclic G∗-algebra of type C. For any G∗-algebra A, its

equivariant cohomology ring H∗
G(A) is defined to be H∗

bas(A⊗E). The usual rule of graded

tensor product of two superalgebras applies here.

Thus in the category of G∗-algebras, an acyclic G∗-algebra E plays the role of a

contractible space E with free G-action. This definition is shown to be independent of the

choice of E. Moreover, the equivariant de Rham theorem asserts that for any G-manifold

M ,

H∗
G(M) = H∗

G(Ω(M)),

where the right side is defined by taking A = Ω(M).

4.1. Weil model for H∗
G(A)

There is a natural choice for the acyclic G∗-algebra of type C, namely, the Koszul

algebra

W (g) = Λ(g∗) ⊗ S(g∗).

This algebra is Z≥-graded where the generators cξ
′

= ξ′ ⊗ 1, ξ′ ∈ g∗, of the exterior

algebra Λ(g∗), and the generators zξ
′

= 1⊗ξ′ of the symmetric algebra S(g∗), are assigned

degrees 1 and 2 respectively. The G action ρ : G → Aut W (g) is the action induced by
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the coadjoint action on g∗, and the (sg, d)-structure on W (g) is defined on generators by

the formulas
Lξc

ξ′ = cad
∗(ξ)ξ′ , Lξz

ξ′ = zad
∗(ξ)ξ′

ιξc
ξ′ = 〈ξ′, ξ〉, ιξz

ξ′ = cad
∗(ξ)ξ′

dW c
ξ′ = zξ

′

, dW z
ξ′ = 0.

We have an inclusion g∗ →֒W (g), ξ′ 7→ cξ
′

. This defines a G∗-algebra structure of type C

on W (g). This G∗-algebra is acyclic because dW has a contracting homotopy Q given by

Qzξ
′

= cξ
′

, Qcξ
′

= 0. In fact, we have

[dW , Q] = cξ
′
i
∂

∂cξ
′
i

+ zξ
′
i
∂

∂zξ
′
i

operating on the polynomial super algebra W (g) = C[cξ
′
i , zξ

′
i |i = 1, .., dim g], clearly

diagonalizably. This implies that the only dW -cohomology occurs in degree 0 and is one-

dimensional. Here the ξ′i form the dual basis of a given basis ξi of g. Hence H∗
bas(A⊗W (g))

provides a model for the equivariant cohomology of A, called the Weil model of H∗
G(A).

There is very useful (and crucial for us) change of variables we can perform on W (g).

Note that the cξ
′

play the role of connection one-forms, and the corresponding elements

playing the role of the curvature two-forms are

γξ
′

= zξ
′

+
1

2
cad

∗(ξi)ξ
′

cξ
′
i .

Note that they are homogeneous of degree 2 in W (g). We can view W (g) as an algebra

generated by the cξ
′

, γξ
′

. The defining relations of the G∗-algebra structure now become

Lξc
ξ′ = cad

∗(ξ)ξ′ , Lξγ
ξ′ = γad

∗(ξ)ξ′

ιξc
ξ′ = 〈ξ′, ξ〉, ιξγ

ξ′ = 0

dW c
ξ′ = −

1

2
cad

∗(ξi)ξ
′

cξ
′
i + γξ

′

, dW γ
ξ′ = γad

∗(ξi)ξ
′

cξ
′
i

(4.3)

The differential dW can be written as a sum dCE + dK where dCE is the Chevalley-

Eilenberg differential of the Lie algebra cohomology complex of g with coefficients in the

module S(g∗), and dK has the shape of a Koszul differential:

dCE = −cξ
′
iγξ

′
jβ[ξi,ξj ] −

1

2
cξ

′
icξ

′
jb[ξi,ξj ], dK = γξ

′
ibξi . (4.4)

where the bξ is an odd derivation on W (g) defined by bξcξ
′

= 〈ξ′, ξ〉, bξγξ
′

= 0, and the

βξ is an even derivation on W (g) defined by βξcξ
′

= 0, βξγξ
′

= 〈ξ′, ξ〉. The contracting

homotopy Q of dW in the new variables is given by Qcξ
′

= 0, Qγξ
′

= cξ
′

.
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The (sg, d)-module structure on W (g) can be given in a more instructive way by

rewriting (4.3)-(4.4) as follows. Introduce the Clifford-Weyl algebra

Clifford(g) ⊗Weyl(g)

to be the associative C-superalgebra with odd generators cξ
′

, bξ and even generators γξ
′

, βξ,

linear in ξ′ ∈ g∗, ξ ∈ g, subject to the commutation relations

[bξ, cξ
′

] = 〈ξ′, ξ〉 = [βξ, γξ
′

].

Note that dCE + dK given by the formulas (4.4) can be thought of as an element in this

algebra. Moreover W (g) becomes a module over this algebra where the cξ
′

, γξ
′

act by left

multiplications, and the bξ, βξ act by derivations, as defined above. There is a canonical

Lie algebra homomorphism (with commutator as the Lie bracket in the target)

(sg, d) →֒ Clifford(g) ⊗Weyl(g) (4.5)

defined by

(ξ, η) 7→ Θξ
W + bη, d 7→ dCE + dK

Θξ
W := Θξ

Λ + Θξ
S , Θξ

Λ = −cξ
′
ib[ξ,ξi], Θξ

S = −γξ
′
iβ[ξ,ξi].

Then, here is the main observation: the (sg, d)-module structure (sg, d) → End W (g)

factors through the Clifford-Weyl algebra via the map (4.5). In other words, the operators

Lξ, ιξ defining the G∗-algebra structure on W (g) can be explicitly represented by Θξ
W , b

ξ,

regarded as operators on W (g). The vertex algebra analogue of this structure will be

crucial later.

From (4.3), we find that W (g)bas = S(g∗)G, the space of G-invariants in S(g∗). From

(4.4), we find that dW = 0 on W (g)bas. It follows that

H∗
bas(W (g)) = H∗

G(C) = S(g∗)G.

Since W (g) is freely generated as an algebra by the variables cξ
′
i and dW c

ξ′i , W (g) is

easily seen to be an initial object in the category of G∗-algebras of type C.

Theorem 4.5. Let A be any G∗-algebra of type C. Then there exists a G∗-algebra

morphism ρ : W (g) → A. Furthermore, any two such morphisms are chain homotopic and

hence induce the same map from S(g∗)G → H∗
bas(A).

In particular, the notion of a G∗-algebra of type C is equivalent to the notion of a

G∗-algebra A which admits a G∗-algebra morphism ρ : W (g) → A. From now on, we will
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refer to such algebras as W (g)-algebras (not to be confused with the term W ∗-algebra,

which has a different meaning in [18]).

The preceding theorem shows that associated to any W (g)-algebra B is a canonical

map κG : S(g∗)G → H∗
bas(B). Since for any G∗-algebra A, A ⊗W (g) is a W (g)-algebra,

we have

κG : S(g∗)G → H∗
bas(A⊗W (g)) ∼= H∗

G(A).

This is called the Chern-Weil map. Consider the case where A = Ω(M) and M = pt.

Using the Weil model, we see that

H∗
G(C) = H∗

bas(Ω(pt) ⊗W (g)) = H∗
bas(W (g)) = S(g∗)G.

Topologically, the map κG : S(g∗)G → H∗
G(M) is induced by M → pt.

4.2. Cartan model for H∗
G(A)

Let A be a W (g)-algebra and B a G∗-algebra. Define

φ = cξ
′
i ⊗ ιξi ∈ End(A⊗B).

Since φ is a derivation and φn+1 = 0, n = dimG, it follows that Φ = exp(φ) is a well-defined

automorphism of the commutative (super) algebra A ⊗ B, known as the Mathai-Quillen

isomorphism.

Theorem 4.6. The Mathai-Quillen isomorphism satisfies

Φ(Lξ ⊗ 1 + 1 ⊗ Lξ)Φ
−1 = Lξ ⊗ 1 + 1 ⊗ Lξ

Φ(ιξ ⊗ 1 + 1 ⊗ ιξ)Φ
−1 = ιξ ⊗ 1

ΦdΦ−1 = d− γξ
′
i ⊗ ιξi + cξ

′
i ⊗ Lξi

where d = dA ⊗ 1 + 1 ⊗ dB.

The second relation shows that Φ((A ⊗ B)hor) = Ahor ⊗ B. Let’s specialize to A =

W (g). Since dW |W (g)hor = cξ
′
iLξi it follows that

ΦdΦ−1|W (g)hor ⊗B = (cξ
′
i ⊗ 1)(Lξi ⊗ 1 + 1 ⊗ Lξi) + 1 ⊗ dB − γξ

′
i ⊗ ιξi .

Since Φ is G-equivariant, we have Φ((W (g)⊗B)bas) = (S(g∗)⊗B)G =: CG(B). On CG(B),

the operator La ⊗ 1 + 1 ⊗ La is zero, so

ΦdΦ−1|CG(B) = 1 ⊗ dB − γξ
′
i ⊗ ιξi =: dG.

In particular, H∗
G(B) ∼= H∗(CG(B), dG). The right side is called the Cartan model for

H∗
G(B).
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5. Chiral Equivariant Cohomology Theory

For simplicity, we shall assume throughout that G is a connected compact Lie group.

Under this assumption, the appropriate analogue of a G∗-algebra is the notion of an O(sg)-

algebra given by Definition 3.1. Our theory can be easily modified to allow disconnected

G by further requiring that an O(sg)-algebra comes equipped with a compatible G-action,

as in the classical setting.

Using the classical Weil model ofH∗
G(A) as a guide, we will define the chiral equivariant

cohomology H∗
G(A) of an arbitrary O(sg)-algebra A. We have seen that the chiral de Rham

complex Q(M) of a G-manifold M is an example of an O(sg)-algebra. For A = Q(M), the

chiral equivariant cohomology of H∗
G(Q(M)) is a vertex algebra analogue of the classical

equivariant cohomology of the G∗-algebra Ω(M). We will see that there is a canonical

inclusion H∗
G(M) →֒ H∗

G(Q(M)).

Recall that an O(sg)-algebra is a Z-graded differential vertex algebra (A∗, dA)

equipped with a differential vertex algebra homomorphism ΦA : O(sg) = (O(sg, 0),d) →

(A, dA), (ξ, η)(z) 7→ Lξ(z) + ιη(z).

Definition 5.1. Let I ⊂ O(sg, 0) be the vertex subalgebra generated by the odd currents

(0, ξ)(z), ξ ∈ g. Let A be a given O(sg)-algebra. We define the horizontal and basic

subalgebras of A to be respectively

Ahor = Com(ΦAI,A), Abas = Com(ΦAO(sg, 0),A).

Thus Ahor consists of a(z) ∈ A which strictly commute with the elements ιξ(z) ∈ A, and

Abas consists of a(z) ∈ Ahor which strictly commute with the elements Lξ(z) ∈ A.

Since dA ιξ(z) = Lξ(z), and dA is a square-zero derivation of all the circle products, it

follows that (Abas, dA) is vertex algebra with a compatible structure of a cochain complex.

Its cohomology H∗
bas(A) is therefore a vertex algebra, which we will call the chiral basic

cohomology of A. An O(sg)-algebra homomorphism φ : A → B sends Abas to Bbas, so it

induces a vertex algebra homomorphism

φbas : H∗
bas(A) → H∗

bas(B).

Here is a small but important surprise: to get an induced homomorphism on basic

cohomology, one needs less than an O(sg)-algebra homomorphism. That is because the

notion of basic subalgebra uses only half the O(sg)-algebra structures.
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Definition 5.2. Let A,B be O(sg)-algebras. A differential vertex algebra homomorphism

φ : A → B is said to be basic if φ(Abas) ⊂ Bbas. In particular, a basic homomorphism

induces a vertex algebra homomorphism φbas on basic cohomology.

Example 5.3.

Let A,B be O(sg)-algebras and consider the map

φ : A → A⊗B, a 7→ a⊗ 1.

It is obviously a vertex algebra homomorphism, and it respects the differentials because

(1 ⊗ dB)(a⊗ 1) = 0. Now note that Abas ⊗ 1 ⊂ (A⊗ B)bas, again because 1 ⊗ Lξ(n)(a⊗

1) = 1 ⊗ ιξ(n)(a ⊗ 1) = 0 for n ≥ 0. Thus φ is a basic homomorphism. But φ will

not be an O(sg)-algebra homomorphism unless O(sg) acts trivially on B, in which case

1 ⊗ Lξ(z) = 1 ⊗ ιξ(z) = 0.

5.1. Semi-infinite Weil algebra

We saw that a crucial ingredient in the Weil model of the classical equivariant coho-

mology is the Koszul algebra W (g), and that via the Clifford-Weyl algebra, one can write

down the G∗-algebra structure on W (g) very explicitly. It turns out that in the vertex

algebra setting, there is a natural algebra that unifies the Koszul and the Clifford-Weyl

algebras into a single object. This is the semi-infinite Weil algebra.

W = W(g) = E(g) ⊗ S(g)

which we introduced in Example 2.15.

If we declare that the vertex operators bξ, cξ
′

, βξ, γξ
′

, have the respective degrees

−1, 1,−1, 1, then this defines a Z-valued bigrading

W = ⊕p,qWp,q

where Wp,q = Ep⊗Sq is the degree (p, q) subspace. This bigrading turns out to come from

the following two vertex operators in E(g),S(g):

jbc(z) = − : bξi(z)cξ
′
i(z) :, jβγ(z) =: βξi(z)γξ

′
i(z) : .
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Their zeroth Fourier modes are diagonalizable operators on E(g),S(g) respectively with

integer eigenvalues. The eigenspaces Ep,Sq are also called the subspaces of bc-number p

and βγ-number q. We put

Wn = ⊕n=p+2qWp,q.

There is yet another bigrading on W which is compatible with the one above. If we

declare that the vertex operators βξ, γξ
′

, bξ, cξ
′

, have the respective weights 1,0,1,0, then

this defines a Z≥-valued bigrading

W = ⊕m,n≥0W[m,n]

where W[m,n] = E [m] ⊗ S[n] is the weight (m,n) subspace. This bigrading turns out to

come from Virasoro elements in the vertex algebras E(g),S(g). Put

ωW(z) = ωE(z) + ωS(z), ωE(z) = − : bξi(z)∂cξ
′
i(z) :, ωS(z) =: βξi(z)∂γξ

′
i(z) : .

An OPE calculation by Wick’s theorem yields

Lemma 5.4. The vertex operators ωE(z), ωS(z) are Virasoro elements of central charges

∓2dim g in the respective vertex algebras E(g),S(g). Moreover, ωE(z) is the unique Vi-

rasoro element such that bξ(z), cξ
′

(z) are primary of conformal weight 1,0 respectively.

Likewise ωS(z) has a similar characterization in S(g). The E [m],S[n] are the respective

eigenspaces of ωE(1), ωS(1), of eigenvalues m,n. Moreover, ωE(0), ωS(0), act respectively

on E(g),S(g), as the derivation ∂.

Note that the subspace E [0] consists of the vertex operators which are polynomial in

the (anti-commuting) vertex operators cξ
′

(z), and is canonically isomorphic to the classical

exterior algebra Λ(g∗). Likewise S[0] is canonically isomorphic to the classical symmetric

algebra S(g∗). It follows that W[0, 0] is nothing but a copy of the classical Koszul algebra

W (g).

Define the vertex operators (suppressing the variable z):

Θξ
W = Θξ

E + Θξ
S , Θξ

E =: b[ξ,ξi]cξ
′
i :, Θξ

S = − : β[ξ,ξi]γξ
′
i : . (5.1)

D = J +K, J = − : cξ
′
iγξ

′
jβ[ξi,ξj ] : −

1

2
: cξ

′
icξ

′
jb[ξi,ξj ] :, K =: γξ

′
ibξi : (5.2)

The Fourier mode J(0) is called the semi-infinite differential. The next four lemmas follows

easily from direct computations by Wick’s theorem.
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Lemma 5.5. J(0)2 = K(0)2 = D(0)2 = [K(0), J(0)] = 0.

Corollary 5.6. The complex (W∗, D(0)) has the structure of a double complex

(W∗,∗, J(0), K(0)) where Wp,q is defined to be Wp−q,q. Thus we have

D(0) : Wn → Wn+1, J(0) : Wp,q → Wp+1,q, K(0) : Wp,q → Wp,q+1.

Lemma 5.7. D(0)bξ(z) = Θξ
W (z).

Lemma 5.8. The vertex operators Θξ
E(z),Θξ

S(z) are characterized in their respective

algebras E(g),S(g) by the properties that they are the only weight one elements such that

Θξ
E (z)bη(w) ∼ b[ξ,η](w) (z − w)−1, Θξ

E(z)cη
′

(w) ∼ cad
∗(ξ)η′(w) (z − w)−1.

Θξ
S(z)βη(w) ∼ β[ξ,η](w) (z − w)−1, Θξ

S(z)γη
′

(w) ∼ γad
∗(ξ)η′(w) (z − w)−1.

Lemma 5.9. The Θξ
E are primary of conformal weight 1 with respect to ωE . Likewise for

the Θξ
S with respect to ωS .

Lemma 5.10. There is a vertex algebra homomorphism O(g, κ) → E(g) such that ξ(z) 7→

Θξ
E(z). Likewise we have O(g,−κ) → S(g). Here κ(ξ, η) = Tr(ad(ξ)ad(η)), is the Killing

form of g.

Proof: We have

Θξ
E(z)Θη

E (w) ∼ κ(ξ, η) (z − w)−2 + Θ
[ξ,η]
E (w) (z − w)−1.

By the universal property of O(g, κ) given in Example 2.13, we get the first desired homo-

morphism. The case for S(g) is analogous.

Combining Lemmas 5.5, 5.7, and 5.10, we get

Theorem 5.11. O(sg) → W(g), (ξ, η)(z) 7→ Θξ
W (z) + bη(z), with d 7→ D(0), defines an

O(sg)-algebra structure on W(g).

We also have the vertex algebra analogues of the relations (4.3).
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Lemma 5.12.

Θξ
W (z)cξ

′

(w) ∼ cad
∗(ξ)ξ′(w)(z − w)−1, Θξ

W(z)γξ
′

(w) ∼ γad
∗(ξ)ξ′(w)(z − w)−1

bξ(z)cξ
′

(w) ∼ 〈ξ′, ξ〉(z − w)−1, bξ(z)γξ
′

(w) ∼ 0

D(0)cξ
′

= −
1

2
: cad

∗(ξi)ξ
′

cξ
′
i : +γξ

′

, D(0)γξ
′

=: γad
∗(ξi)ξ

′

cξ
′
i :

Lemma 5.13. [10][1] (W∗, D(0)) is acyclic.

Proof: Put h =: βξi∂cξ
′
i :. Then we find that J(0)h = 0, K(0)h = ωW . It follows that,

D(0)h(z) = ωW(z), implying that [D(0), h(1)] = ωW(1). Since ωW(1) is diagonalizable

with nonnegative eigenvalues, it follows that the cohomology of (W∗, D(0)) is the same

as the cohomology of the subcomplex (W∗[0, 0], D(0)). Recall that W∗[0, 0] is canonically

isomorphic to the classical Weil algebra W . From the formulas for the vertex operators

J,K, we see that J(0), K(0) restricted to W[0, 0] coincide with their classical counterparts

dCE , dK respectively under the isomorphism. Hence dW coincides with D(0) restricted to

W[0, 0]. Thus (W[0, 0], D(0)) and (W, dW ) are isomorphic as complexes. But the latter is

acyclic.

Lemma 5.14. J =: (Θξi
S + 1

2Θξi
E )cξ

′
i :.

Proof: By definition, we have J =: cξ
′
iΘξi

S : +1
2

: cξ
′
iΘξi

E :. Since the Θξ
S commute with the

cξ
′

, it suffices to show that

: cξ
′
iΘξi

E :=: Θξi
E c

ξ′i :

By Lemma 2.9, we have

: Θξi
E c

ξ′i := − : (cξ
′
j b[ξi,ξj ])cξ

′
i := − : cξ

′
j b[ξi,ξj ]cξ

′
i : −∂cξ

′
j 〈[ξi, ξj], ξ

′
i〉.

The second term on the right vanishes because ad∗(ξi)ξ
′
i = 0, while the first term coincides

with : cξ
′
iΘξi

E :.

We now define the vertex algebra analogue of a G∗-algebra of type C.

Definition 5.15. A W(g)-algebra is a differential vertex algebra (A, dA) equipped with a

differential vertex algebra homomorphism ρA : W(g) → A. We define a homomorphism of

W(g)-algebras (and modules) in an obvious way.

Lemma 5.16. Whor = 〈b〉 ⊗ S(g), Wbas = W
g≥

hor.

Proof: Here 〈b〉 is the vertex algebra generated by the bξ ∈ E(g), and (· · ·)g≥ is the subspace

of (· · ·) annihilated by the Θξ
W (n), n ≥ 0, ξ ∈ g. The first equality follows immediately
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from the fact that a vertex operator in E(g) commutes with the bξ iff it is in 〈b〉. The second

equality follows from the definition of the basic subalgebra and the fact that a ∈ Whor

commutes with the Θξ
W iff it is annihilated by the Θξ

W (n).

Here is another small surprise: unlike in the classical case where dK |Whor = 0 and

dbas = dW |Wbas = 0, neither K(0)|Whor nor D(0)|Wbas is zero in general.

Clearly ωW /∈ Whor. Since the vertex operators Θξ
W are primary of conformal weight

1 with respect to the Virasoro element ωW , they do not commute with ωW unless g is

abelian, in which case the Θξ
W are identically zero. However, since the Fourier mode ωW(1)

acts diagonalizably on W and the vertex operators bξ,Θξ
W have weight 1, it follows that

ωW(1) also acts diagonalizably on the basic vertex subalgebra Wbas. Again, the subspace

of zero eigenvalue is canonically isomorphic to the classical basic subalgebra Wbas. Since

[D(0), h(1)] = ωW(1) and D(0)2 = 0, it follows that ωW(1) commutes with D(0), hence

its action on Wbas descends to H∗
bas(W). Here h = βξi∂cξ

′
i . Note that h /∈ Wbas, so we

cannot conclude that ωW(1) acts by zero on cohomology. In fact, we will see that ωW(1)

does not act by zero on cohomology.

Lemma 5.17. H∗
bas(W (g)) is canonically isomorphic to the eigenspace of zero eigenvalue

of ωW(1) in H∗
bas(W(g)).

Proof: Recall that (W, dW ) is isomorphic to (W[0, 0], D(0)). Restricted to W[0, 0], the basic

subalgebra condition reduces to bξ(0)a = Θξ
W(0)a = 0, a ∈ W[0, 0]. It is easily seen that

this coincides with the basic subalgebra condition onW under the isomorphism above. This

shows that (Wbas[0], D(0)) is isomorphic to (Wbas, dW ), hence H∗
bas(W(g))[0] ∼= H∗

bas(W ).

5.2. Weil model for H∗
G(A)

Definition 5.18. For a given O(sg)-algebra A, we define its chiral G-equivariant coho-

mology to be

H∗
G(A) = H∗

bas(A⊗W(g)).

For A = C, H∗
G(C) = H∗

bas(W(g)), a vertex algebra which is already interesting and

difficult to compute. Consider the map

W(g) → A⊗W(g), a 7→ 1 ⊗ a.



Chiral Equivariant Cohomology I 51

In Example 5.3, we saw that this is a basic homomorphism but not an O(sg)-algebra

homomorphism in general. This induces a vertex algebra homomorphism

κG : H∗
G(C) = H∗

bas(W(g)) → H∗
bas(A⊗W(g)) = H∗

G(A).

This is our vertex algebra analogue of the Chern-Weil map.

Recall that given a manifold M , the vertex algebra Q(M) has a Virasoro element (in

local form)

ωQ =: βi∂γi : − : bi∂ci :

which is dQ-exact in (Q(M), dQ), and ωQ(1) acts diagonalizably with eigenvalues in Z≥.

Since ωW is D(0)-closed in (W(g), D(0)), it follows that

ωQ⊗W = ωQ ⊗ 1 + 1 ⊗ ωW

is also dQ⊗W -closed. In particular, ωQ⊗W (1) commutes with dQ⊗W . Again, since the

vertex operators ιξ⊗1+1⊗bξ , Lξ⊗1+1⊗Θξ
W have weight 1, it follows that ωQ⊗W (1) acts

diagonalizably on the basic subalgebra (Q(M) ⊗ W(g))bas and on the basic cohomology

H∗
G(Q(M)). Note, however, that the vertex operator ωQ⊗W is not a basic element in

general.

More generally, consider an O(sg)-algebra (A, dA) with O(sg)-structure (ξ, η) 7→

Lξ + ιη. Suppose that A has no negative weight elements. Then A[0] is canonically a

commutative associative algebra with product ◦−1. Moreover, the operators dA, Lξ◦0, ιη◦0

on A[0] define a G∗-structure on A[0]. If we assume, furthermore, that A has a dA-closed

Virasoro element ωA such that Lξ, ιη are primary of conformal weight 1 with respective to

ωA, then ωA⊗W = ωA ⊗ 1 + 1⊗ ωW is (dA +D(0))-closed Virasoro element in A⊗W(g).

Lemma 5.19. Let A be a vertex algebra and ω ∈ A be a Virasoro element. If a ∈ A

is primary of conformal weight one with respect to ω, then ω(m), m ≥ 0, preserves the

subalgebra Com(〈a〉,A).

Proof: By Lemma 2.4, the OPE ω(z)a(w) ∼ a(w)(z − w)−1 + ∂a(w)(z − w)−2 translates

into

[ω(m), a(n)] = −na(m+ n− 1).

Recall that b ∈ Com(〈a〉,A) iff a(n)b = 0 for all n ≥ 0. Thus for such an element b, we

have

a(n)ω(m)b = na(m+ n− 1)b = 0
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for all n,m ≥ 0. Thus ω(m)b ∈ Com(〈a〉,A) for all m ≥ 0.

Theorem 5.20. Let (A, dA) be an O(sg)-algebra with no negative weight elements. Then

the chiral equivariant cohomology H∗
G(A) is a degree-weight graded vertex algebra with Z≥-

valued weights such that H∗
G(A)[0] = H∗

G(A[0]). If A has a dA-closed Virasoro structure

ωA such that the O(sg)-structure on A are given by primary operators Lξ, ιη of conformal

weight 1, then the operators ωA⊗W(m) induce an action on H∗
G(A) for all m ≥ 0.

Proof: Obviously A ⊗ W(g) has no negative weight elements, so that the same holds

for its chiral basic cohomology. The weight zero subspace of A ⊗ W(g) is the tensor

product of weight zero spaces A[0] ⊗ W[0, 0]. We saw that (W[0, 0], D(0)) = (W, dW ) is

the classical Weil algebra, and that (A[0], dA) is canonically a G∗-algebra. It is clear that

(A⊗W(g))bas[0] coincides with the classical basic complex (A[0]⊗W )bas. This yields the

first assertion.

The basic subalgebra (A ⊗ W(g))bas consists of elements annihilated by the n ≥ 0

Fourier modes of the vertex operators ιξ ⊗ 1 + 1 ⊗ bξ and the Lξ ⊗ 1 + 1 ⊗ Θξ
W , each of

which is primary of conformal weight one with respect to the Virasoro element ωA⊗W .

By the preceding lemma, ωA⊗W(m), for all m ≥ 0, acts on the basic subalgebra. Since

ωW is D(0)-exact, and ωA is assumed dA-closed, it follows that dA +D(0) commutes with

ωA⊗W . Hence the action of its m ≥ 0 Fourier modes descends to an action on the basic

cohomology H∗
G(A).

Remark 5.21. From this, it is clear that our Chern-Weil map κG restricts to the classical

Chern-Weil map on the weight zero subspaces.

5.3. Cartan model for H∗
G(A)

We introduce the vertex algebra analogues of the Mathai-Quillen isomorphism and

the Cartan model. We will show that the Cartan model is equivalent to the Weil model in

the vertex algebra setting.

Given a vector space V , we call a linear map φ ∈ End(V ) pronilpotent if the restriction

of φ to any finite dimensional subspace of V is nilpotent. In this case,

eφ = 1 + φ+
1

2!
φ2 +

1

3!
φ3 + · · ·

is a well-defined automorphism of V . Let A be a vertex (super) algebra and a ∈ A a

homogeneous vertex operator such that the Fourier mode â(0) is pronilpotent. Since â(0)
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is a derivation of all circle products, it follows that eâ(0) : A → A is an automorphism

of the vertex algebra. As a reminder, we shall write a(0) instead of â(0) for notational

simplicity.

Let (A, dA) be a W(g)-algebra and (B, dB) an O(sg)-algebra. Consider the vertex

operator

φ(z) = cξ
′
i(z) ⊗ ιξi(z) ∈ A⊗ B.

We claim that the zeroth Fourier mode φ(0) is pronilpotent, as an operator on A⊗ B. It

suffices to show that for any given homogeneous element u⊗v ∈ A⊗B, we have φ(0)k(u⊗

v) = 0 for k >> 0. First, note that cξ
′

(p)u = 0 = ιξ(p)v for p >> 0. In particular, there

is an integer N > 0 such that φ(0)(u⊗ v) =
∑

|p|<N (−1)|u|cξ
′
i(−p− 1)u⊗ ιξi(p)v. Second,

note that the modes cξ
′
i(p), ιξi(q) are all pairwise anti-commuting, and in particular, each

one is square-zero. This shows that φ(0)k(u⊗ v) = 0 for k > 2N dim g.

By analogy with the classical case, we call

Φ = eφ(0) ≡ eφ̂(0)

the Mathai-Quillen isomorphism of A⊗ B.

Theorem 5.22. The Mathai-Quillen isomorphism satisfies

Φ(Lξ ⊗ 1 + 1 ⊗ Lξ) = Lξ ⊗ 1 + 1 ⊗ Lξ

Φ(ιξ ⊗ 1 + 1 ⊗ ιξ) = ιξ ⊗ 1

ΦdΦ−1 = d+ (−γξ
′
i ⊗ ιξi + cξ

′
i ⊗ Lξi)(0)

where d = dA ⊗ 1 + 1 ⊗ dB.

Proof: The vertex operators Lξ ⊗ 1 + 1⊗Lξ commute with the vertex operator φ because

their OPE with φ is regular, since the cξ
′
i transform in the coadjoint module of g while the

ιξi transform in the adjoint module. It follows that

φ(0)(Lξ ⊗ 1 + 1 ⊗ Lξ) = φ ◦0 (Lξ ⊗ 1 + 1 ⊗ Lξ) = 0.

This proves the first equality.

Next a simple OPE calculation yields

φ ◦0 (ιξ ⊗ 1) = −1 ⊗ ιξ

φ ◦0 (1 ⊗ ιξ) = 0
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This gives the second equality.

Finally, as operators on A⊗ B:

[φ(0), d] = −(dφ)(0), [φ(0), [φ(0), d]] = −(φ ◦0 dφ)(0).

Applying Lemma 5.12 and using that (A, dA) is a W(g)-algebra, we get

dφ = dAc
ξ′j ⊗ ιξj − cξ

′
j ⊗ dBιξj

= (−
1

2
: cad

∗(ξi)ξ
′
j cξ

′
i : +γξ

′

) ⊗ ιξj − cξ
′
j ⊗ Lξj

Since φ has regular OPE with the first term, we find that

φ ◦0 dφ = φ ◦0 (cξ
′
j ⊗ Lξj ) = cξ

′
icξ

′
j ⊗ ι[ξi,ξj ].

The last expression has regular OPE with φ, hence applying [φ(0),−] to d more than twice

yields zero. It follows that

ΦdΦ−1 = d− (dφ)(0) −
1

2
φ ◦0 dφ

yields the third equality.

It follows that Φ(A⊗B)hor = Ahor ⊗ B. Specializing to the case A = W(g), we have

Ahor = 〈b〉⊗S(g). Since Φ is an O(g, 0)-module homomorphism by the preceding theorem,

it follows that

Φ(W ⊗B)bas = (〈b〉 ⊗ S(g) ⊗ B)g≥ =: CG(B).

Put

dG = ΦdΦ−1|CG(B).

For any O(sg)-algebra B, the cohomology of the differential vertex algebra (CG(B), dG)

will be called the Cartan model for H∗
G(B). We have the following vertex algebra analogue

of Cartan’s fundamental theorem:

Theorem 5.23. The Mathai-Quillen isomorphism induces the differential vertex algebra

homomorphism

((W(g) ⊗ B)bas, dW⊗B) → (CG(B), dG).

Hence

H∗
G(B) = H∗((W(g) ⊗ B)bas, dW⊗B) ∼= H∗(CG(B), dG).
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6. Abelian Case

We now specialize to the case when G = T is an n dimensional torus. For the trivial

O(sg)-algebra C, we give a complete description of the chiral T -equivariant cohomology

H∗
G(C). Recall that C = Q(pt), so that H∗

G(C) is a vertex algebra analogue of H∗
G(C),

the classical equivariant cohomology of a point. For general O(sg)-algebras A, we derive

the analogue of a well-known spectral sequence that computes the classical T -equivariant

cohomology.

6.1. The case A = C

Our first task is to compute

H∗
T (C) = H∗

bas(W(t)).

Since T is abelian, both the adjoint and the coadjoint modules are trivial. In follows that

all the vertex operators Θξ
W in (5.1) are identically zero. Likewise the J (5.2) is also zero.

The differential D(0) on W is just

K(0) =
∑

n∈Z

γξ
′
i(n− 1) bξi(−n)

Let 〈γ〉 be the abelian vertex algebra generated by the γξ
′

, ξ′ ∈ t∗, in W(t).

Theorem 6.1. The inclusion 〈γ〉 ⊂ W(t) induces a canonical isomorphism

H∗
T (C) = H∗

bas(W(t)) ∼= 〈γ〉.

Proof: Since the Θξ
W are zero, it follows that Wbas = Whor = 〈b〉 ⊗ S(t) = 〈b, β, γ〉, the

vertex subalgebra of W(g) generated by the vertex operators bξ, βξ, γξ
′

. Since the bξ(n),

n ≥ 0, act by zero on this space, the basic differential becomes

dbas = D(0)|Wbas =
∑

n>0

γξ
′
i(n− 1) bξi(−n).

We claim that the odd operator

F =
∑

n>0

βξi(−n)cξ
′
i(n− 1)
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is the a homotopy inverse for dbas. First, it is obvious that FWbas ⊂ Wbas. Moreover we

have

[dbas, F ] =
∑

n>0

(

−bξi(−n)cξ
′
i(n− 1) + βξi(−n)γξ

′
i(n− 1)

)

This acts diagonalizably on Wbas with eigenvalues in Z≥. This shows that all basic co-

homology is concentrated in eigenspace-zero. This is the subspace of Wbas annihilated by

the cξ
′

(n− 1), γξ
′
i(n− 1), n > 0, which is just the subalgebra 〈γ〉. On the other hand dbas

is identically zero on this subalgebra.

Note that 〈γ〉 is a free polynomial algebra generated by the commuting vertex op-

erators ∂kγξ
′

, k ≥ 0, which are linear in ξ′ ∈ t∗. Each of these vertex operators has

cohomology degree 2 and Virasoro weight k. As expected from Theorem 5.20, the chiral

equivariant cohomology 〈γ〉 contains the polynomial subalgebra generated by the weight

zero vertex operators γξ
′

, which is a copy of the classical equivariant cohomology S(t∗).

6.2. A spectral sequence for H∗
T (A)

Recall that Whor = 〈b, β, γ〉 has a monomial basis given by interated Wick products

of the bξi , βξi , γξ
′
i and their derivatives. In particular, there is a Z≥ valued grading on

Whor, which we shall call the b#, which is given by the eigenvalues of the diagonalizable

operator on Whor:

B =
∑

n>0

bξi(−n)cξ
′
i(n− 1)

The idea is that the vertex operators b are non-classical (because they have weight one),

and we should first “crop” them from the chiral Cartan complex. Likewise for the β.

Let (A, dA) be a given O(st)-algebra. Recall that the Cartan model for the chiral

T -equivariant cohomology of A is the cohomology of the complex

CT (A) = (Whor ⊗A)t≥ = 〈b, β, γ〉 ⊗ At≥ .

The second equality follows from the important fact that the O(t)-structure on W(t) is

trivial because T is abelian. The differential is

dT = D(0) ⊗ 1 + 1 ⊗ dQ − (γξ
′
i ⊗ ιξi)(0) + (cξ

′
i ⊗ Lξi)(0).

Again, D(0) = K(0) because T is abelian. Consider the vertex subalgebra

CT (A) = 〈γ〉 ⊗ At≥ .
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We claim that

dT |CT (A) = 1 ⊗ dA − (γξ
′
i ⊗ ιξi)(0).

By Theorem 6.1, D(0)|〈γ〉 = 0. We have (cξ
′
i ⊗ Lξi)(0) =

∑

n∈Z
cξ

′
i(−n− 1)Lξi(n). Since

Lξ(n)At≥ = 0 for n ≥ 0, and cξ
′

(−n− 1)〈γ〉 = 0 for n < 0, we see that dT reduces to the

desired form. Thus we obtain an inclusion of complexes

ϕ : (CT (A), dT ) →֒ (CT (A), dT ).

We shall call the first complex the small chiral Cartan complex of A.

Lemma 6.2. The map induced by ϕ on cohomology is surjective.

Proof: Let a ∈ 〈b, β, γ〉 ⊗ At≥ be nonzero and dT -closed. We will show that a is dT -

cohomologous to an element in 〈γ〉 ⊗ At≥ . Let amax be the component of a with the

maximum b#. Suppose this b# is positive. We can write amax =
∑

pj ⊗ ωj where the

ωj ∈ At≥ are linearly independent elements and the pj ∈ 〈b, β, γ〉 have the same maximum

b#.

We look at the effects of each of the four terms in dT on the b# in 〈b, β, γ〉⊗At≥ . We

have
operators b#

K(0) ⊗ 1 =
∑

n≥0 γ
ξ′i(n)bξi(−n− 1) +1

1 ⊗ dA 0
−(γξ

′
i ⊗ ιξi)(0) 0

(cξ
′
i ⊗ Lξi)(0) =

∑

n<0 c
ξ′i(−n− 1)Lξi(n) −1.

(6.1)

It follows that the term (K(0) ⊗ 1)amax is the component in dT a with the highest b#.

Since dT a = 0, this highest term must be zero, hence
∑

K(0)pj ⊗ ωj = 0, implying that

K(0)pj = 0. By Theorem 6.1, pj = K(0)qj for some qj with b# one less than that of pj .

Put

a′ = a− dT
∑

qj ⊗ ωj = a− amax + · · ·

where the terms in · · · have only components with lower b# than amax. Thus by induction,

we see that a is dT -cohomologous to an element with b# zero i.e. in 〈β, γ〉 ⊗ At≥ . So we

may assume that a does not depend on the b.

Next we show that a does not depend on the β either. Since a is independent of the

b, it follows that the bξi(−n− 1)a, n ≥ 0, i = 1, .., dim t, are linearly independent. Again

by (6.1), (K(0)⊗ 1)a = 0. It follows that γξ
′
i(n)bξi(−n− 1)a = 0 for all n ≥ 0. This shows

that a is independent of the β. This completes the proof.
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Lemma 6.3. The map induced by ϕ on cohomology is injective.

Proof: Given an element ω in the small complex 〈γ〉 ⊗ At≥ which is dT -exact in the big

complex 〈b, β, γ〉 ⊗ At≥ , we want to show that ω is dT -exact in the small complex. Write

ω = dTa. We want to find a′ in the small complex so that dT a = dT a
′. Again, let

amax be the component of a with the maximum b#. By (6.1), (K(0) ⊗ 1)amax is the

component of dT a with the maximum and positive b#. Since dT a is in the small complex,

it does not depend on the b, implying that (K(0) ⊗ 1)amax = 0. Thus we get the shape

amax =
∑

K(0)qj ⊗ ωj and that

a− dT
∑

qj ⊗ ωj = a− amax + · · ·

where · · · have only components with lower b# than amax, as before. Thus we may as well

assume that a does not depend on the b. Following the same argument as in the preceding

lemma, we see that a does not depend on the β either.

Theorem 6.4. For any O(st)-algebra (A, dA), we have H∗
T (A) ∼= H∗(CT (A), dT ).

Proof: The two preceding lemmas show that ϕ induces an isomorphism on cohomology.

From now on, we specialize to the case A = Q(M) where M is a T -manifold.

Theorem 6.5. For any T -manifold M , we have H∗
T (Q(M)) ∼= H∗(CT (Q(M)), dT ).

Observe that the small complex on the right side is a double complex with the differ-

entials
d = 1 ⊗ dQ =

∑

n∈Z

βi(n)ci(−n− 1)

δ = −(γξ
′
i ⊗ ιξi)(0) = −

∑

n≥0

γξ
′
i(−n− 1)ιξi(n).

where the expression for d makes use of a choice of local coordinates on M . This is an

analogue of the double complex structure in the classical Cartan model (see Chap. 6 [18]).

Note however that in the classical case, the double complex structure is on the Cartan

complex itself, whereas in our case, it is on a much smaller subcomplex of the Cartan

complex. It is also clear that the weight zero piece of the small complex coincides with the

classical Cartan complex.
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As usual, associated to the double complex structure on the small Cartan complex,

there are two filtrations and two spectral sequences [19]. We shall consider the following

one:

Fnk = ⊕p+q=n, p≥k Cp,qT , Cp,qT = 〈γ〉p ⊗ (Q(M)q−p)t≥ .

Here p denotes the γ-number on 〈γ〉, and q− p is the bc-number on Q(M). Let (Er, δr) be

the spectral sequence associated with this filtration.

Theorem 6.6. In each weight, the spectral sequence (Er, δr) converges to the graded

object associated with H∗(CT (Q(M)), d+ δ). In fact, in each weight, the spectral sequence

collapses at Er for some r.

Proof: The first statement follows immediately from the fact that both d, δ are operators

of weight zero, and the filtering spaces Fk and the terms in the spectral sequence are all

graded by the weight. In a given weight m, we have Q(M)q−p[m] = 0 for |q−p| >> 0. For

if |q − p| is not bounded then either the vertex operators ∂kci or the ∂kbi would have to

be present on some coordinate open set of M , with unbounded k, because these operators

are fermionic. But wt ∂kci = k and wt ∂kbi = k + 1, violating that m is fixed and that

the weights in CT are bounded below by zero. This shows that Er[m] = Er+1[m] = · · · for

all r >> 0 (cf. p66 [18]).

Note that

Ep,q1 = Hq(Cp,∗T , d), δ1 = δ : Ep,q1 → Ep+1,q
1 .

7. Non-Abelian Case

We shall now proceed to construct cohomology classes in the chiral equivariant co-

homology of the trivial O(sg)-algebra C. As before, g is the complexified Lie algebra of

the compact group G. We also choose an orthonormal basis ξi with respect to a fixed

G-invariant pairing on g. We shall often identify g, g∗ via this pairing, for convenience

Theorem 7.1. For any (connected) compact group G, the vertex operator γξi∂γξi repre-

sents a nonzero class in H4
G(C)[1].

Proof: It is straightforward to show that this vertex operator is basic and closed. Since

the basic complex Wbas contains no vertex operators involving the cξi , for any given ho-

mogeneous element µ ∈ Wbas, K(0)µ = (γξibξi)(0)µ is either zero or it will contain some

bξi . Thus if

(K(0) + J(0))µ = γξi∂γξi ,
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then J(0)µ must have components (in the standard basis) of the form γξi∂γξi . We will

show that this leads to a contradiction.

First note that for B = βξiβξi , we have

J(z)B(w) ∼ (cξiβ[ξi,ξj ]βξj )(w)(z − w)−1 = 0

because β[ξ,ξi]βξi = 0. In particular B(2) commutes with J(0). Hence

J(0)B(2)µ = B(2)J(0)µ = B(2)(γξi∂γξi −K(0)µ) = dim g −B(2)K(0)µ.

But since K(0)µ is either zero or contains some bξ, the same is true of the second term in

the last expression above. But since that second term has weight zero and bξ has weight

one, this forces that second term to be zero. Since J(0) has bc# 1 and weight zero, and

dim g has bc# 0 and weight zero, there must be a component of B(2)µ having bc# -1 and

weight zero. This is absurd because weight zero elements cannot have negative bc#.

Remark 7.2. The vertex operator B = βξiβξi ∈ W(g)bas turns out to be part of a current

algebra O(sl2,−
dim(g)

8
κ)-structure which plays a fundamental role in the description of the

full chiral equivariant cohomology of C. This will be explained in a future follow-up paper.

7.1. Weight one classes

Theorem 5.20 gives a complete description of H∗
G(C)[0], i.e. it coincides with the

classical equivariant cohomologyH∗
G(C). We now give a complete description of the weight

one piece.

Notations. We identify Sym(g) with the algebra C[γξ1 , ..., γξn], n = dim g. For

P ∈ Homg(g, Sym(g)), we write P : ξ 7→ Pξ. Throughout this subsection, P shall denote

such a map.

Lemma 7.3. Let Q : g → Sym(g), ξ 7→ Qξ, be any linear map such that Qξib
ξi ∈ W[1] is

g-invariant. Then Q is a g-module map. Likewise the same is true under the assumption

that Qξiβ
ξi or Qξi∂γ

ξi is g-invariant.

Proof: We will prove one case, the other two being similar. We have

0 = Θξ
W(0)Qξib

ξi = (Θξ
S(0)Qξi)b

ξi +Qξib
[ξi,ξ].

But the second term on the right is equal to −Q[ξ,ξj ]b
ξj . By linear independence of the

bξi , it follows that Θξ
S(0)Qξi = Q[ξ,ξj ]. This says that Q is a g-module map.
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Lemma 7.4. For ω ∈ S(g), ω is g≥ invariant iff J(0)ω = 0.

Proof: Since ω has no b, c,

J(0)ω = (cξiΘξi
S )(0)ω =

∑

n≥0

1

n!
∂ncξiΘξi

S (n)ω.

Since all nonzero terms on the right side are independent, J(0)ω = 0 iff Θξi
S (n)ω = 0 for

n ≥ 0.

Lemma 7.5. Pξib
ξi ∈ Wbas.

Proof: The vertex operator Pξib
ξi is clearly g-invariant, i.e. killed by the Θξ

W (0). Since

it has weight one, it suffices to show that it is killed by Θξ
W (1). Now Θξ

W (1)Pξib
ξi is the

term with second order pole in the OPE of Θξ
W(z)(Pξib

ξi)(w). Since Θξ
W(z) has the shape

βγ + bc, there is no double contraction by Wick’s theorem. So there is no second order

pole in the OPE.

Lemma 7.6. Pξi∂γ
ξi ∈ Wbas, hence it lies in Ker J(0).

Proof: Again, it is clear that Pξi∂γ
ξi is horizontal and g-invariant. We have

Θξ
W (1)Pξi∂γ

ξi = Θξ
S(1)Pξi∂γ

ξi = γξiP[ξi,ξ] = γξi(−γξjβ[ξi,ξj ])(0)Pξ = 0.

Since Pξi∂γ
ξi has weight one, this shows that it is g≥-invariant, hence basic.

Lemma 7.7. Pξiβ
ξi ∈ Wbas, hence it lies in Ker J(0).

Proof: Recall that B = βξjβξj commutes with J . Thus by the preceding lemma, we have

0 = B(1)J(0)Pξi∂γ
ξi = J(0)B(1)Pξi∂γ

ξi = J(0)(B(1)Pξi)∂γ
ξi + 2J(0)Pξiβ

ξi .

For the last equality, we have used the second identity in Lemma 2.9, and the fact that

B(1)∂γξi = 2βξi and (B(0)Pξi)(0)∂γξi = 0, which follow from Wick’s theorem. Since B is

g-invariant, it follows that the B(1)Pξi transform in the adjoint module, i.e. ξ 7→ B(1)Pξ

defines element of Homg(g, Sym(g)). By the preceding lemma, J(0)(B(1)Pξi)∂γ
ξi = 0.

This shows that J(0)Pξiβ
ξi = 0.

Lemma 7.8. J(0)Pξib
ξi = 0.

Proof: Note that K(0)Pξiβ
ξi = Pξib

ξi . Since J(0), K(0) commute, it follows from the

preceding lemma that J(0)Pξib
ξi = 0.
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Theorem 7.9. The weight one subspace H∗
G(C)[1] is canonically isomorphic to

HomG(g, Sym(g)).

Proof: Any element a ∈ Whor[1] can be uniquely written as

a = Pξib
ξi +Qξiβ

ξi +Rξi∂γ
ξi (7.1)

where P,Q,R are linear maps g → Sym(g). Suppose a is g-invariant. Since the βξ, γξ, bξ

form three copies of the adjoint module, each of the three terms in a above must be

separately g-invariant. By Lemma 7.3, it follows that P,Q,R are g-module maps. By the

preceding four lemmas, the three terms in (7.1) are separately basic and killed by J(0).

We have

D(0)Pξiβ
ξi = Pξib

ξi .

It follows that the first term in (7.1) is D(0)-exact. Suppose, in addition, that a is D(0)-

closed, i.e. a represents a class in H∗
G(C)[1]. Then (7.1) represents the same class if we

drop the first term, so we may assume that P = 0. Then

0 = D(0)a = Qξib
ξi +D(0)Rξi∂γ

ξi .

The second term is zero because Rξi∂γ
ξi is obviously killed by K(0) and is killed by J(0)

by Lemma 7.6. It follows that Q = 0. This shows that we have a canonical surjective

linear map

Homg(g, Sym(g)) → H∗
G(C)[1], R 7→ [Rξi∂γ

ξi ]. (7.2)

Suppose a given R is killed by this map. Then for some P ′, Q′, R′ ∈ Homg(g, Sym(g)),

we have

Rξi∂γ
ξi = D(0)(P ′

ξi
bξ

′
i +Q′

ξi
βξi +R′

ξi
∂γξi) = Q′

ξi
bξ.

This implies that R = Q′ = 0. This shows that (7.2) is injective.

7.2. Weight two classes

For simplicity, we shall assume that G is simple throughout this subsection. The

Virasoro algebra will be playing a crucial role here.

Lemma 7.10. Let A be a vertex algebra in which L1, L2 ∈ A are Virasoro elements of

central charges c1, c2. Suppose that L2 is quasi-primary of conformal weight 2 with respect

to L1, i.e.

L1(z)L2(w) ∼
1

2
c3(z − w)−4 + 2L2(w)(z − w)−2 + ∂L2(w)(z − w)−1
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for some scalar c3. Then L1 − L2 is a Virasoro element of central charge c1 + c2 − 2c3.

Proof: This is a well-known trick borrowed from physics [17][33]. By Lemma 2.4 again, we

find

L2(z)L1(w) ∼
1

2
c3(z − w)−4 + 2L2(w)(z − w)−2 + ∂L2(w)(z − w)−1.

Now combining the four OPEs of Li(z)Lj(w), i, j = 1, 2, we get the desired OPE of L1−L2

with itself.

Since S(g) is an O(g,−κ)-module, by Lemma 5.10, it has a Virasoro element given by

the Sugawara-Sommerfield formula

LS = − : Θξi
S Θξi

S :

where ξi is an orthonormal basis of (g, κ), as in Example 2.18.

Lemma 7.11. LS is a quasi-primary of conformal weight 2 with respect to ωS . In fact,

ωS(z)LS(w) ∼ dim g (z − w)−4 + 2LS(w) (z − w)−2 + ∂LS(w)(z − w)−1.

Proof: By Lemma 2.9, we find that if a, b are primary of conformal weight 1 with respect

to a Virasoro element ω, then we have

ω(z)c(w) ∼
∑

k≥0

(a ◦k b)(w)(z − w)−k−3 + 2c(w)(z − w)−2 + ∂c(w)(z − w)−1.

where c =: ab :. By Lemma 5.9, the Θξ
S are primary of conformal weight 1 with respect to

ωS , and so we can apply this to the case ω = ωS , a = −b = Θξi
S , in S(g), so that c = LS

when we sum over i. We find that a ◦k b = δk,1 κ(ξi, ξi). Summing over i, this becomes

δk,1dim g, which yields the desired OPE of ωS(z)LS(w).

Corollary 7.12. ωS − LS is a Virasoro element in W(g) of central charge 0.

Proof: By Lemma 5.4, ωS has central charge 2dim g. By Example 2.18, LS has central

charge 2dim g also. Now our assertion follows from the two preceding lemmas.

Lemma 7.13. ωS −LS commutes with the Θξ
S , and lives in the basic subalgebra W(g)bas.

Proof: By Lemma 5.9, the Θξ
S are primary of conformal weight 1 with respect to ωS . By

Example 2.18, the same is true with respect to LS . It follows that (ωS(z)−LS(z))Θξ
S(w) ∼
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0. Now Lemma 2.4 implies our first assertion. Since ωS − LS ∈ S(g), it also commutes

with the bξ ∈ E(g).

Note however that ωS − LS is not D(0)-closed. The idea is to try to “correct” it,

so that it becomes D(0)-closed without destroying its basic property. Since ωS − LS is

basic, any correction would need to be basic as well. In particular, it must be G-invariant

and horizontal. We examine the simplest nontrivial case first: G = SU(2). Let’s ask:

what is the simplest possible (say, lowest degree as a polynomial in 〈b〉 ⊗ S(g)) horizontal

G-invariant vertex operator C such that ωS −LS +C is D(0)-closed? Choose the standard

basis x, h, y for the complexified Lie algebra g = sl2.

Lemma 7.14. C = −γh
′

bxby + 1
2γ

x′

bxbh − 1
2γ

h′

bybh is the unique homogeneous lowest

degree element which is G-invariant and horizontal, and makes L = ωS − LS + C, D(0)-

closed. Moreover, this L is also a Virasoro element with central charge 0.

Proof: Note that all the vertex operators appearing in C commute with each other. It

is clear that C is horizontal since it does not depend on the cξ. Note also that C comes

from a cubic trace polynomial in g∗ ⊗ g ⊗ g, hence is G-invariant [34]. We have verified

the uniqueness assertion and D(0)-closed condition by direct computations.

Clearly C(z)C(w) ∼ 0 and C is primary of conformal weight 0 with respect to ωS .

By Lemmas 5.8, 2.9, we find that

−LS(z)γξ
′

(w) = (: Θξi
S Θξi

S :)(z)γξ
′

(w) ∼ γad
∗(ξi)ad

∗(ξi)ξ
′

(w)(z−w)−2+· · · = γξ
′

(w)(z−w)−2+· · ·

where · · · are lower order poles, and the ξi form an orthonormal basis of g. Hence

−LS(z)C(w) ∼ C(w)(z − w)−2 + · · ·. This shows that (ωS − LS)(z)C(w) ∼ C(w)(z −

w)−2 + · · ·. That L is Virasoro element with central charge 0 now follows from the next

lemma.

Lemma 7.15. Let A be a vertex algebra and L ∈ A be a Virasoro element. Suppose that

a, b ∈ A are vertex operators with the property that

a(z)a(w) ∼ 0, L(z)a(w) ∼ a(w)(z − w)−2 + b(w)(z − w)−1.

Then L+ a is Virasoro element with the same central charge.

Proof: By (2.4), we find that a(z)L(w) ∼ a(w)(z − w)−2 + (∂a(w) + b(w))(z − w)−1. It

follows that

(L(z) + a(z))(L(w) + a(w)) ∼
1

2
c(z − w)−4 + 2L(w)(z − w)−2 + ∂L(w)(z − w)−1

+ a(w)(z − w)−2 + (∂a(w)− b(w))(z − w)−1 + a(w)(z − w)−2 + b(w)(z − w)−1
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This shows that L+a has the OPE of a Virasoro element of the same central charge c.

Now comes a crucial observation. A computation using Wick’s theorem shows that

C = K(0)(Θξi
S b

ξi) = (K(0)Θξi
S )bξi

where the ξi is an orthonormal basis of (g, κ). This computation suggests that for a general

G, we should consider the vertex operator

L
def
= ωS − LS + (K(0)Θξi

S )bξi .

From the shape of the vertex operator K and the Θξ
S , one finds that the last term of the

right side above is a priori a G-invariant vertex operator having the shape bbγ.

Theorem 7.16. L is a Virasoro element with central charge 0, which is basic, D(0)-closed,

and satisfies

L(0)a = ∂a, L(1)a = (wt a)a

for any homogeneous element a ∈ 〈γ〉 ∩W(g)bas, where 〈γ〉 is the vertex algebra generated

by the γξ
′

.

Proof: Applying Wick’s theorem, we find that the last term of L is

C = (K(0)Θξi
S )bξi = bξibξjγad

∗(ξi)ξ
′
j .

This implies that C(z)C(w) ∼ 0. To apply the preceding lemma to show the Virasoro

property for L, it remains to verify the OPE

(ωS − LS)(z) γξ
′

(w) ∼ γξ
′

(w)(z − w)−2 + · · ·

where · · · means lower order poles. This is verbatim as in Lemma 7.14.

To show the basic property, by Lemma 7.13, it suffices to check it for C. Clearly C

commutes with the bξ. Applying Wick’s theorem again, we get easily (Θξ
S +Θξ

E )(z) C(w) ∼

0. This shows that C is basic.

Next, we claim that

L = D(0)(Θξi
S b

ξi + βξi∂cξ
′
i),
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hence it is automatically D(0)-closed. By Wick’s theorem, we get

K(0)(βξj∂cξ
′
j ) = − : bξi∂cξ

′
i : + : βξi∂γξ

′
i := ωW

J(0)(βξi∂cξ
′
i) = 0

(Θξi
S c

ξ′i)(0)(Θ
ξj
S b

ξj ) =: (Θξi
S c

ξ′i ◦0 Θ
ξj
S )bξj : + : Θ

ξj
S (Θξi

S c
ξ′i ◦0 b

ξj ) :

=: (Θ
[ξi,ξj ]
S cξ

′
i)bξj : − : ∂cξjbξj : + : Θξi

S Θξi
S :, Lemma 2.9

=: Θ
[ξi,ξj ]
S cξ

′
ibξj : + : Θξi

S Θξi
S : −ωE

= − : Θξi
S Θξi

E : + : Θξi
S Θξi

S : −ωE

1

2
(: Θξi

E c
ξ′i :)(0)(Θ

ξj
S b

ξj ) =:
1

2
: Θ

ξj
S (Θξi

E c
ξ′i ◦0 b

ξj ) :=: Θξi
S Θξi

E :

Applying Lemma 5.14, we find that the sum of the four left sides plus K(0)(Θξi
S b

ξi) = C

yields D(0)(Θξi
S b

ξi + βξi∂cξ
′
i) on the one hand, and L on the other hand.

Finally, let a ∈ 〈γ〉 ∩ W(g)bas. Then in terms of the generators of W, a does not

depend on the vertex operators bξ, cξ
′

, βξ. In particular a commutes with C above and

with the Θξ
E . Since a is assumed basic, it commutes with the Θξ

W , hence with the Θξ
S as

well. In particular, a commutes with LS . It follows that

L(z)a(w) ∼ ωS(z)a(w) ∼ · · · + (wt a)a(w)(z − w)−2 + ∂a(w)(z − w)−1

where · · · here means terms with higher order poles. Here we have used Lemma 5.4 to get

the left side. This completes the proof.

Corollary 7.17. L represents a nontrivial weight two class in H0
G(C).

Proof: It is easy to verify that L has cohomology degree zero and weight two. Since

a = γξ
′
i∂γξ

′
i is a nonzero weight one class by Theorem 7.1, it follows that L(1)a = L◦1a = a

by the preceding theorem. Since circle products are cohomological operations, it follows

that L cannot represent the zero class.

Corollary 7.18. H∗
G(C) is a non-abelian vertex algebra.

Proof: Since L represents a nonzero Virasoro element in the vertex algebra H∗
G(C), it does

not commute with itself.
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Remark 7.19. This indicates that the departure of the chiral theory from the classical

theory in the non-abelian case is quite dramatic.

Lemma 7.20. Let A be any vertex algebra and a ∈ A such that a(m) = 0 for some m < 0.

Then a commutes with A.

Proof: By Lemma 2.4 we have

[a(m), b(q)] =
∑

p

(

m
p

)

(a ◦p b)(m+ q − p).

Consider the maximum m < 0 such that a(m) = 0. Suppose a does not commute with b,

so that there exists a largest N ≥ 0 such that a ◦N b 6= 0. Pick q = N −m− 1. Then

0 = [a(m), b(q)]1l =
N

∑

p=0

(

m
p

)

(a ◦p b)(m+ q − p)1l

=

(

m
N

)

(a ◦N b)(−1)1l =

(

m
N

)

a ◦N b 6= 0

a contradiction.

Corollary 7.21. Any positive weight nonzero class a ∈ H∗
G(C) with L(1)a = (wt a)a

cannot be killed by ∂.

Proof: If a is killed by ∂, then a(m) = 0 for some m < 0. The preceding lemma says that

a must be in the center of H∗
G(C). But L(1)a = (wt a)a and wt a > 0 imply that a does

not commute with L, a contradiction.

7.3. A general spectral sequence in the Cartan model

We now generalize the spectral sequence for computing H∗
G(A) to non-abelian G in

the Cartan model. In a future paper, we will give an example to show that unlike in the

classical case, the spectral sequence in the chiral case does not collapse at E1, in general.

Recall that the chiral Cartan model for a O(sg)-algebra (A, dA) is

CG(A) = (Whor ⊗A)g≥

equipped with the chiral Cartan differential

dG = D(0) ⊗ 1 + 1 ⊗ dQ − (γξ
′
i ⊗ ιξi)(0) + (cξ

′
i ⊗ Lξi)(0).
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f The key observation here is that dG can be broken up into two commuting differentials

as follows. Write D(0) = K(0) + J(0) as before, and put

d = K(0) ⊗ 1 + 1 ⊗ dA, δ = J(0) ⊗ 1 − (γξ
′
i ⊗ ιξi)(0) + (cξ

′
i ⊗ Lξi)(0)

so that dG = d+ δ. As usual, As denotes the subspace of A consisting of elements a with

degAa = s. Let CG(A)p,q be the subspace of CG(A) consisting of elements with

βγ# + degA = q, βγ# − b# = p.

Note that the vertex operators Θξ
S ⊗ 1 + 1 ⊗ Lξ ∈ Whor ⊗A are homogeneous of degrees

(p, q) = (0, 0), and the bξ ⊗ 1 have degree (−1, 0). It follows that CG(A) is graded by the

number (p, q).

Lemma 7.22. We have that

a. d, δ are O(sg)-invariant;

b. d, δ preserve CG(A);

c. d2 = δ2 = [d, δ] = 0;

d. d : CG(A)p,q → CG(A)p,q+1, δ : CG(A)p,q → CG(A)p+1,q.

Proof: a. Recall that [J(0), bξ] = Θξ
W . Since J(0)2 = 0, it follows that [J(0),Θξ

W ] = 0.

Likewise [D(0),Θξ
W ] = 0, hence [K(0),Θξ

W ] = 0. Likewise [dA, Lξ] = 0. It follows that

[d,Θξ
W ⊗ 1 + 1 ⊗ Lξ] = 0. Since dG = d+ δ is O(sg)-invariant, so is δ.

b. K = γξ
′
ibξi obviously preserves Whor = 〈b, β, γ〉. Since K(0), dA are both O(sg)-

invariant, it follows that they both, and hence d too, preserve CG(A).

c. Since d2
G = d2 + [d, δ] + δ2, assertion c. follows from d., which we show next.

d. Recall that J =: cξ
′
i(Θξi

S + 1
2
Θξi

E ) :. Thus we can further break up J(0) into two

terms, the first being (cξ
′
iΘξi

S )(0). If we add to this the term (cξ
′
i ⊗Lξi)(0) appearing in δ,

the sum acting on CG(A) takes the form

(cξiLtotξ )(0) =
∑

n≥0

cξ
′
i(n)Ltotξ (−n− 1)

where Ltotξ = Θξ
S ⊗1+1⊗Lξ , because CG(A) is g≥-invariant. (This is also consistent with

the fact that CG(A) has no cξ
′

.) We now list the effects of all terms appearing in dG on

the various gradings on CG(A):

operators b# βγ# degA
K(0) ⊗ 1 =

∑

n≥0 γ
ξ′i(n)bξi(−n− 1) +1 +1 0

1 ⊗ dA 0 0 +1
−(γξ

′
i ⊗ ιξi)(0) 0 +1 −1

(cξ
′
i ⊗ Ltotξi )(0) −1 0 0

1
2 (cξ

′
iΘξi

E )(0) −1 0 0.

(7.3)
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The first two operators add up to d and the rest add up to δ. From the table, it follows

that d, δ have the right effects on CG(A)p,q as claimed.

It is also clear that the weight zero piece of the complex coincides with the classical

Cartan complex with differentials reduced to d = 1 ⊗ dA and δ = −γξ
′
i(−1) ⊗ ιξi(0). In

particular in weight zero, the double complex structure above agrees with the classical one.

As usual, associated to the double complex structure on the chiral Cartan complex,

there are two filtrations and two spectral sequences. We shall consider the following one:

Fnk = ⊕p+q=n, p≥k CG(A)p,q.

Let (Er, δr) be the spectral sequence associated with this filtration. Let’s specialize to the

case

A = Q(M).

Theorem 7.23. In each weight, the spectral sequence (Er, δr) converges to the graded

object associated with H∗(CG(Q(M)), d+ δ). In fact, in each weight, the spectral sequence

collapses at Er for some r.

Proof: The first statement follows immediately from the fact that both d, δ are operators

of weight zero, and the filtering spaces Fk and the terms in the spectral sequence are all

graded by the weight. In a given weight m, we claim that there are no nonzero elements

in Cp,qG for |q − p| >> 0. Note that |q − p| = |degQ + b#|. So if |q − p| is not bounded

then either the vertex operators ∂kbξi , or the ∂kci, or the ∂kbi would have to be present on

some coordinate open set of M , with unbounded k, because these operators are fermionic.

But wt ∂kbξi = wt ∂kci = k and wt ∂kbi = k + 1, violating that m is fixed and that the

weights in CG(Q(M)) are bounded below by zero. This shows that for a given weight m,

Er[m] = Er+1[m] = · · · for all r >> 0.

Note that

Ep,q1 = Hq(CG(Q(M))p,∗, d), δ1 = δ : Ep,q1 → Ep+1,q
1 .

7.4. A general spectral sequence in the Weil model

Let (A, dA) be a O(sg)-algebra. The Weil model for the chiral equivariant cohomology

of (A, dA) is the cohomology of the complex

DG(A) = ((W(g) ⊗A)bas, K(0) ⊗ 1 + J(0) ⊗ 1 + 1 ⊗ dA).
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The three terms in the differential have the following gradings:

operators bc# βγ# degA
K(0) ⊗ 1 −1 +1 0
J(0) ⊗ 1 +1 0 0
1 ⊗ dA 0 0 +1.

(7.4)

Let DG(A)p,q be the subspace of DG(A) of homogeneous degree

p = bc# + βγ# + degA, q = βγ#.

The vertex operators Θξ
W ⊗ 1 + 1⊗Lξ are homogeneous of degrees (p, q) = (0, 0), and the

bξ ⊗ 1 + 1 ⊗ ιξ have degrees (p, q) = (−1, 0). The operators

d = K(0) ⊗ 1, δ = J(0) ⊗ 1 + 1 ⊗ dA

have degrees (p, q) = (0, 1) and (p, q) = (1, 0) respectively.

Lemma 7.24. We have that

a. d, δ preserve DG(A);

b. d2 = δ2 = [d, δ] = 0;

c. d : DG(A)p,q → DG(A)p,q+1, δ : DG(A)p,q → DG(A)p+1,q.

Proof: a. We have seen that [K(0),Θξ
W ] = 0, implying that d commutes with Θξ

W ⊗ 1 +

1⊗Lξ . We also have that K(0) commute with bξ⊗1+1⊗ιξ . Thus K(0) preserves DG(A).

Since d+ δ preserves DG(A), so does δ.

b. Since 0 = (d + δ)2 = d2 + [d, δ] + δ2, assertion b. follows from c., which we have

shown above.

As in the Cartan model, we have the filtration

Fnk = ⊕p+q=n, p≥k DG(A)p,q.

Let (Er, δr) be the spectral sequence associated with this filtration. Let’s specialize to the

case

A = Q(M).

Theorem 7.25. In each weight, the spectral sequence (Er, δr) converges to the graded

object associated with H∗(DG(Q(M)), d+ δ). In fact, in each weight, the spectral sequence

collapses at Er for some r.

Proof: The argument is similar to the case of the Cartan model above. The only difference

is that we now have |q − p| = |degQ + bc#|. So if |q − p| is not bounded then either the
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vertex operators ∂kbξi , or the ∂kcξ
′
i , or the ∂kci, or the ∂kbi would have to be present on

some coordinate open set of M , with unbounded k, because these operators are fermionic.

The rest of the argument is verbatim.

Note that

Ep,q1 = Hq(DG(Q(M))p,∗, d), δ1 = δ : Ep,q1 → Ep+1,q
1 .

7.5. Abelianization?

Recall that classically if T is a closed subgroup of G then g∗ → t∗ induces a map

W (g∗) → W (t∗). Since every G∗-algebra is canonically a T ∗-algebra, it follows that for

any given G∗-algebra A one has a canonical map

A⊗W (g∗) → A⊗W (t∗).

This induces on cohomology a map H∗
G(A) → H∗

T (A). In fact, when T is a maximal torus

of G, then a spectral sequence argument shows that this map yields an isomorphism

H∗
G(A) ∼= H∗

T (A)W

where W = N(T )/T is the Weyl group of G. See Chap. 6 [18].

One might expect that there would be a similar construction in the vertex algebra

setting. Unfortunately, this cannot be expected to go through, at least not in a naive way.

Here is why.

Lemma 7.26. W(g) is simple. In other words, it has no nontrivial ideal.

Proof: As before, we can regard W(g) as a polynomial (super) algebra with generators given

by the negative Fourier modes bξ(n), cξ
′

(n) (odd) and βξ(n), γξ
′

(n) (even), n < 0, which

are linear in ξ ∈ g and ξ′ ∈ g∗. In this polynomial representation, each of the non-negative

Fourier modes act by formal differentiation; for example bξ(m)cξ
′

(−n) = 〈ξ′, ξ〉δm−n+1,0

form ≥ 0, n > 0. From this, it is clear that any nonzero polynomial in W(g) can be reduced

to a nonzero scalar by a suitable repeated application of these derivations. Translated into

vertex algebra operations, it says that any nonzero vertex operator in W(g) can be reduced

to a nonzero multiple of 1 by taking suitable repeated circle products with the generators

of W(g). In other words, any nonzero ideal of the circle algebra W(g) contains 1.
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Warning. It is not true that a positive Fourier mode of a generator of W acts as a

derivation of the circle products in W. For example βξ(1) : W → W is not a derivation of

circle products. But if we represent W as a polynomial space, then this is a derivation with

respect to the usual polynomial products. This follows immediately from the construction

of E ,S as induced modules over a Lie algebra. See Example 2.15.

The preceding lemma shows that there exists a vertex algebra homomorphism W(g) →

W(t) extending the classical map W (g∗) → W (t∗) only if t = g. Next, suppose T ⊂ G is

a maximal torus. Is there a vertex algebra homomorphism H∗
G(C) → H∗

T (C) that extends

the classical map H∗
G(C) → H∗

T (C)?

Theorem 7.27. The answer is negative.

Proof: Suppose there were such a map f : H∗
G(C) → H∗

T (C). Since H∗
T (C) is an abelian

vertex algebra by Theorem 6.1, it follows that f must kill L ∈ H∗
G(C), hence the ideal

generated by L. In particular by Theorem 7.16, the image of ∂ on H∗
G(C)[0] = H∗

G(C) =

S(g∗)g ⊂ 〈γ〉 must also be killed. On the other hand, since ∂ is a vertex algebra operation,

it follows that

0 = f(∂a) = ∂f(a). (7.5)

By assumption, the restriction f : H∗
G(C) → H∗

T (C) is the classical map. Consider for

example a = γξ
′
iγξ

′
i ∈ H∗

G(C) which is obviously nonzero, so that f(a) is nonzero. In

fact f(a) has the same shape as a but we sum over only an orthonormal basis of t. But

according to the description of H∗
T (C) given by Theorem 6.1, we have that ∂f(a) 6= 0,

contradicting (7.5).

This shows that one cannot hope to get new information via an abelianization that

extends the classical isomorphism H∗
G(C) ∼= H∗

T (C)W , at least in the case of a point. This

suggests that in the new theory, the chiral equivariant cohomology for non-abelian groups

may be far more interesting that in the classical case.

8. Concluding Remarks

We have constructed a cohomology theory H∗
G(A) for O(sg)-algebras A, which is the

vertex algebra analogue of the classical equivariant cohomology of G∗-algebras. A principal

example we give is when A = Q(M), the chiral de Rham complex of a G-manifold M .

It turns out that there are other similar differential vertex algebras associated to a G-

manifold which give rise to interesting chiral equivariant cohomology. For example, we
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can consider the vertex subalgebra Q′(M) generated by the weight zero subspace Ω(M)

of Q(M). It turns out that Q′(M) is an abelian differential vertex algebra that belongs

to an appropriate category on which the functor H∗
G is defined. Moreover, H∗

G(Q′(M)) is

also a degree-weight graded vertex algebra containing the classical equivariant cohomology

H∗
G(M) as the weight zero subspace. We can prove the following

Theorem 8.1. If the G-action on M has a fixed point, then the chiral Chern-Weil map

κG : H∗
G(C) → H∗

G(Q′(M)) is injective. If, furthermore, G is simple, then H∗
G(Q′(M)) is

a conformal vertex algebra with the Virasoro element κG(L).

Details of this and other related results will appear in a forthcoming paper.
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Colloque de Topologie, C.B.R.M., Bruxelles 57-71 (1950).

[7] T. Eguchi and S.K. Yang, N=2 superconformal models as topological field theories,

Mod. Phys. Lett. A5 (1990) 1693-1701.

[8] M. Duflo, S. Kumar, and M. Vergne, Sur la Cohomologie Équivariante des Variétés
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