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Abstract

We describe the S1-action on the Quot-scheme Quot (En) associated to the trivial
bundle En = CP1×C

n. In particlular, the topology of the S1-fixed-point components
in Quot (En) and the S1-weights of the normal bundle of these components are worked
out. Mirror Principle, as developed by three of the current authors in the series of
work [L-L-Y1, I, II, III, IV], is a method for studying certain intersection numbers on a
stable map moduli space. As an application, in Mirror Principle III, Sec 5.4, an outline
was given in the case of genus zero with target a flag manifold. The results on S1 fixed
points in this paper are used here to do explicit Mirror Principle computations in the
case of Grassmannian manifolds. In fact, Mirror Principle computations involve only
a certain distinguished subcollection of the S1-fixed-point components. These com-
ponents are identified and are labelled by Young tableaus. The S1-equivariant Euler
class eS1 of the normal bundle to these components is computed. A diagrammatic
rule that allows one to write down eS1 directly from the Young tableau is given. From
this, the aforementioned intersection numbers on the moduli space of stable maps can
be worked out. Two examples are given to illustrate our method. Using our method,
the A-model for Calabi-Yau complete intersections in a Grassmannian manifold can
now also be computed explicitly. This work is motivated by the intention to provide
further details of mirror principle and to understand the relation of mirror principle
to physical theory. Some related questions are listed for further study.
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Quot-Schemes and Mirror Principle

0. Introduction and outline.

Introduction.

In Mirror Principle III, Sec. 5.4, in the series of work [L-L-Y1, I, II, III, IV] developed

by three of the current authors, they outlined how Mirror Principle can be used to study

certain intersection numbers on a stable map moduli space for flag manifolds. In this

article, we carry out this computation explicitly in the case of Grassmannian manifolds.

This is our main motivation for studying the S1-action on Quot-schemes. The latter is, of

course, of independent interests from the viewpoint of group actions on manifolds, regard-

less of Mirror Principle. Two of our main results are the topology of the S1-fixed-point

components in Quot (En) (Theorem 2.1.9), and the S1-weights of the normal bundle to

these components (Theorem 2.2.1). Mirror Principle computations involve only a cer-

tain distinguished subcollection of the S1-fixed-point components. These components are

identified and are labelled by Young tableaus. The S1-equivariant Euler class eS1 of the

normal bundle of each of these components is computed (Theorem 3.3.3). A diagrammatic

rule that allows one to write down eS1 directly from the Young tableau is given. From

this, the intersection numbers of the moduli space of stable maps can be easily worked

out. Two sample calculations are given to illustrate the method (Sec. 4). The answers are

self-consistent and is the same as the result computed via the method of Mirror Principle I

in a special case. Using our method, the A-model for Calabi-Yau complete intersections in

a Grassmannian manifold can now also be computed explicitly. This work is motivated by

the intention to provide further details of mirror principle and to understand the relation

of mirror principle to physical theory. Some related questions are listed in the end for

further pursuit.

Outline.

1. Essential backgrounds and notations for physicists.

2. The S1-action on Quot-schemes.

2.1 The S1-fixed-point components.

2.2 The S1-weight system of the tangent space of Quot-scheme at an S1-fixed-point
component.

2.3 Combinatorics of the S1-weight system and the multiplicity of 0.

3. Mirror principle computation for Grassmannian manifolds.

3.1 The distinguished S1-fixed-point components and the hyperplane-induced
class.

3.2 The weight subspace decomposition of the normal bundle to the distinguished
components.

3.3 Structure of the induced bundle and the C
×-equivariant Euler class.

4. Illustrations by two examples.
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1 Essential backgrounds and notations for physicists.

Essential backgrounds or their main references used in this article and notations for objects

involved are collected in this section for the convenience of readers.

• Schemes, coherent sheaves, and Hilbert polynomials. (See Eisenbud-Harris [E-

H], Hartshorne [Ha : Chapter II], and Friedman [Fri : Chapter 2]; also Kempf [Ke] and

Mumford [Mu2].) Let X be a projective variety with a fixed very ample line bundle O(1),

then the Hilbert polynomial of coherent sheaves on X are additive with respect to short

exact sequences. In other words, if 0 → F ′ → F → F ′′ → 0 is an exact sequence of

coherent sheaves on X, then PO(1)(F) = PO(1)(F
′) + PO(1)(F

′′) , where PO(1)( · ) is the

Hilbert polynomial of · . (Cf. [Ha : Ex. III.5.1]).

• Coherent sheaves on a curve and their Hilbert polynomial.

- A coherent sheaf F on a smooth curve C fits into a split exact sequence of OC-

modules: 0 → Ftorsion → F → F
∨∨ → 0, where Ftorsion is the torsion subsheaf of

F and the double dual F∨∨ of F is locally-free. In case C is nodal, then an exact

sequence from the normalization C̃ of C can be used to understand coherent sheaves

on C as well.

- Let F be a coherent sheaf on a smooth curve C, then

deg F = c1(F) = c1(Ftorion) + c1(F
∨∨) = dim C Γ(C,Ftorsion) + c1(F

∨∨) .

- Fix a very ample line bundle O(1) on C, let k be the rank of F and g be the

arithmetic genus of C. Then the Hilbert polynomial for F is given by

P (F , t) = (k deg C) t + degF + k(1− g) .

For C = CP1 with O
CP1(1) , this is P (F , t) = k t + (c1(F) + k) . For F a torsion

sheaf, r = 0 and the polynomial becomes P (F , t) = c1(F) = dim C Γ(C,F) .

Cf. [H-L], [H-M], [Ke], and [LP].

• Quot-scheme. (See Huybrechts-Lehn [H-L : Chapter 2]; also Grothendieck [Gr3],

Kollár [Kol : Sec. I.1], and Mumford [Mu1].) Let S be a projective variety S with a fixed

ample line bundle, and F be a coherent sheaf on S. Then the Quot-scheme Quot P (En) of

Grothendieck is the fine moduli space that parameterizes the set of quotients F → F/V
with P (F/V , t) a given polynomial P = P (t). It is the scheme that represents the Quot -

functor of Grothendieck, cf [Gr3].

• Quot-scheme compactification of Hom (CP1,Grr(C
n)). (Cf. [Str].) Let C = CP1

with the very ample line bundle O
CP1(1), En be a trivialized trivial bundle of rank n

over C, Grr(C
n) be the Grassmannian manifold that parameterizes r-planes in C

n, and
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Hom (CP1,Grr(C)) be the space of morphisms from CP1 to Grr(C
n). Then an element

(f : CP1 → Grr(C
n)) in Hom (CP1,Grr(C)) determines a unique rank-r subbundle V in

En, which corrsponds in turn to the element En → En/V in Quot (En). This gives a natural

embedding of Hom (CP1,Grr(C
n)) in Quot (En). The component of Hom (CP1,Grr(C

n))

that contains degree-d image curves in Grr(C
n) is embedded in Quot P (En) with the

Hilbert polynomial P = P (t) = (n − r)t + d + (n − r). This gives a compactification

of Hom (CP1,Grr(C
n)) via Quot-schemes, other than the moduli space of stable maps.

Recall also that Quot P (En) is a smooth, irreducible, rational projective variety of di-

mension dn + (n − r)r, cf. [Ch] and [Kim]. The S1-action on CP1 induces S1-actions

on Hom (CP1,Grr(C
n)) and Quot (En) respectively. The two actions coincide under the

natural embedding of Hom (CP1,Grr(C
n)) in Quot (En).

•Mirror principle for Grassmannian manifolds. For the details of Mirror Principle,

readers are referred to [L-L-Y1 : I, II, III, IV]. Some survey is given in [L-L-Y2]. To avoid

digressing too far away, here we shall take [L-L-Y1, III : Sec. 5.4] as our starting point and

restrict to the case that the target manifold of stable maps is X = Grr(C
n). Recall first

the Plücker embedding τ : X = Grr(C
n) → Y = CP(n

r ), which induces an isomorphism

between the divisor class groups τ∗ : A1(Y )
∼
→ A1(X).

Recall next the setup of Mirror Principle for X = Grr(C
n). The geometric objects

involved are contained in the following diagram :

V Ud Vd Ud
↓ ↓ ↓ ↓

X
ev
←− M0,1(d,X)

ρ
−→ M0,0(d,X)

π
←− Md

ϕ
−→ Wd

ψ
←− Quot (d)

∪ ∪ ∪

F0
evY

−→ Y0 (⊃ X0 = X)
g
←− E0 = ∪s E0s ,

|≀ |≀

X
τ
−→ Y

where

(1) Moduli spaces : M0,0(d,X) is the moduli space of genus-0 stable maps of degree d

into X, M0,1(d,X) is the moduli space of genus-0, 1-pointed stable maps of degree

d into X, Md = M0,0(CP1 × X, (1, d)), Wd is the linear sigma model at degree d,

which can be chosen to be the projective space P(H0(CP1, OCP1(d)) ⊗ ΛrCn) for

X = Grr(C
n), and Quot (d) = Quot P (En) with P = P (t) = (n− r)t+ d+ (n− r);

(2) Group actions : there are C
×-actions on Md, Wd, and Quot (d) respectively that

are compactible with the morphisms among these moduli spaces; these C
×-actions

induce S1-actions on these moduli spaces by taking the subgroup U(1) ⊂ C
×;

(3) Morphisms : ev is the evaluation map, ρ is the forgetful map, π is the contracting

morphism, ϕ is the collapsing morphism, and ψ is an S1-equivariant resolution of

singularities of ϕ(Md), which will be discuessed in detail in Sec. 3.1;
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(4) Bundles : V is a vector bundle over X, Vd = ρ!ev
∗V , Ud = ρ∗Vd, and Ud = π∗Vd;

(5) Special S1-fixed-point locus : F0 ≃M0,1(d,X) is the special S1-fixed-point component

in Md that corresponds to gluing stable maps (C ′, f ′, x′) to CP1 at x′ ∈ C ′ and

∞ ∈ CP1, Y0 is the special S1-fixed-point component in Wd such that ϕ−1(Y0) = F0,

and E0 is the S1-fixed-point locus in ψ−1(Y0) and is called the distinguished S1-

fixed-point locus or components in Quot P (En).

Associated to each (V, b), where b is a multiplicative characteristic class, is the Euler

series A(t) ∈ A∗(X)(α)[t] :

A(t) = AV,b = e−H·t/α ∑
d Ad e

d·t ,

Ad = i∗0 b(Ud) := evX∗

(
ρ∗b(Vd)∩[M0,1(d,X)]

e
C×(F0/Md)

)
=

(i∗
X0
ϕ∗b(Ud))∩[X0]

e
C×(X0/Wd) , denoted Θd

e
C×(X0/Wd) ,

= g∗

(∑
s

( i∗
E0s

g∗ i∗
X0
ϕ∗b(Ud) )∩ [E0s]

e
C×(E0s/Quot(d))

)
, denoted g∗

(∑
s

Ξd,s

e
C×(E0s/Quot(d))

)
,

where α = c1(OCP∞)(1) is the generator for H∗
C

×(pt). On the other hand, one has the

intersection numbers and their generating function

Kd = KV, b
d =

∫
M0,0(d,X) b(Vd) ,

Φ = ΦV, b =
∑
d Kd e

d·t .

In the good cases, Kd and Φ can be obtained from Ad and A(t) by appropriate integrals

of the form
∫
X e−H·t/αAd, where H is the hyperplane class on Y restricted to X, e.g.

[L-L-Y1, III : Theorem 3.12]. This integral can be turned into an integral on E0 :

∫

X

τ∗ eH·t ∩Ad =

∫

Y0

eH·t ∩ g∗

(∑

s

Ξd,s
eC×(E0s/Quot(d))

)
=
∑

s

∫

E0s

g∗eH·t ∩ Ξ̂d,s
eC×(E0s/Quot(d))

,

where Ξ̂d,s is the Poincaré dual of Ξd,s with respect to [E0,s]. As will be discussed in Sec.

3.1, E0s is a flag manifold fibred over X and, hence, g∗eH·t can be read off from the natural

fibration of flag manifolds E0s → X.

Following [L-L-Y1, III : Sec. 5.4], in the case that b = 1 the above integral is reduced

to the integral
∑

s

∫

E0s

g∗ψ∗eκ·ζ

e
C×(E0s/Quot (d))

,

where κ is the hyperplane class in Wd. In this article, we work out all the equivariant

Euler classes e
C×(E0s/Quot (d)) and hence this integral.

• Conventions and notation.

(1) All the dimensions are complex dimensions unless otherwise noted.
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(2) The S1-actions involved in this article are induced from C
×-actions and both have

the same fixed-point locus. In many places, it is more convenient to phrase things in

term of C
×-action and we will not distinguish the two actions when this ambiguity

causes no harm.

(3) A locally free sheaf and its associated vector bundle are denoted the same.

(4) An I × J matrix whose (i, j)-entry is aij is denoted by (aij)i,j when the position of

an entry is emphasized and by [aij ]I×J when the size of the matrix is emphasized.

(5) From Section 2 on, the smooth curve C will be CP1 unless other noted.

2 The S
1-action on Quot-schemes.

Let En be a trivialized trivial bundle of rank n over C. The S1-action on the Quot-

schemes Quot (En), the topology of the S1-fixed-point components, and the S1-weights of

the normal bundle to these components are studied in this section.

2.1 The S1-fixed-point components.

We recall first two basic facts that will be needed in the discussion.

Fact 2.1.1 [modules over P.I.D.]. (Cf. [Ja].)

(1) Let D be a principal ideal domain and D⊕k be a free module of rank k over D. Then

any submodule of D⊕k is free with basis of ≤ k elements.

(2) If A ∈ Mk×k(D) be an k × k matrix with entries in D, then A is equivalent to a

diagonal matrix Diag { d1, . . . , ds, 0, . . . , 0 } for some s, where di 6= 0 and di|dj if

i ≤ j. (Recall that A1, A2 ∈Mk×k(D) are called equivalent if A2 = PA1Q for some

invertible P, Q ∈Mk×k(D).)

Recall the embedding S1 = U(1) →֒ C
×, which acts on C = C∪{∞} via z → tz. This

lifts to an S1-action (i.e. a linearization) on the trivialized trivial bundle En ≃ OC ⊗ C
n

given by (z, v) 7→ (t · z, v). This induces then an S1-action S 7→ t · S on the set of coherent

subsheaves S in E by pulling back local sections : (t · s)(z) = s(t−1z), where s ∈ S(U) and

t · s ∈ (t · S)(t · U) with U an open subset in C. Since each subsheaf in En corresponds to

a point in the Quot-scheme Quot (En), this gives an S1-action Quot (En). (Cf. [Ak], [Ch],

and [Str].)

When restricted to the set of rank-r subbundles in En, each holomorphic subbundle in

En corresponds to a holomorphic map f from C to a Grassmannian manifold Grr(C
n) and
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the above S1-action is the S1-action on Hom (C,Grr(C
n)) given by f 7→ t · f := f ◦ t−1,

cf. [Ak].

In the following, we first characterize the S1-fixed-point in Quot (En) and then give a

description of the topology of the S1-fixed-point components in Quot (En).

Lemma 2.1.2 [coherent subsheaf of En]. Any coherent subsheaf V of En is locally

free.

Proof. Since any torsion section of V is supported on a divisor, that support must be

contained in an affine chart of the form C − {pt} = Spec C[u]. Since En is globally trivial,

En|U is the sheaf associated to a free C[u]-module MU of rank n. Thus, V|U is the sheaf

associated to a submodule M ′
U of MU . Since C[u] is a principal ideal domain, M ′

U must be

free also. This shows that V|U = (M ′
U )∼, and hence V, is torsion-free. Since a torsion-free

coherent sheaf on a smooth curve must be locally free, this concludes the lemma.

2

Lemma 2.1.3 [S1-fixed-point = C
×-fixed-point]. A coherent subsheaf V of En on C

is S1-invariant if and only if it is C
×-invariant.

Proof. Only need to show the only-if part. Let V be a rank-r S1-invariant subsheaf in

En. Then V is locally free from Lemma 2.1.2 and hence there exists an S1-invariant open

dense subset U ⊂ C−{0,∞} such that V|U is realized as a holomorphic rank-r subbundle

of En|U and hence as a holomorphic map from U into a Grassmannian manifold Grr(C
n).

Since V|U is also S1-invarant, this map factors via U → U/S1 → Grr(C
n). Since U/S1 is

a union of open real line segments, holomorphicity implies then that any such map must

a constant map. This implies that V|C−{0,∞} is indeed a constant subsheaf in En|C−{0,∞}

with respect to the trivialization of En. This shows that V is also C
×-invariant.

2

The following lemma strengthens Statement (2) of Fact 2.1.1 in the case of C
×-invariant

submodules in C[z]⊕k.

Lemma 2.1.4 [C×-invariant submodule]. Let D = C[z], A = A(z) ∈ GL (l,C[z]) be

an invertible l × l-matrix with entries in C[z], in Fact 2.1.1. If, furthermore, the column

vectors of A(tz) generate the same C[z]-module for all t ∈ C
×, then there exist invertible

P ∈ GL (l,C) and Q(z) ∈ GL (l,C[z]) such that di = zαi in Fact 2.1.1 and

A(z) = P Diag { zα1 , . . . , zαl }Q(z) ,

where 0 ≤ α1 ≤ · · · ≤ αl .

Proof. By a sequence of elementary column transformations (e.g. [Ja]), which correspond

to multiplications from the right by a sequence of elementary matrices in GL (l,C[z]),

together with permutations of rows, which corresponds to a multiplication from the left

by a sequence of matrices in GL (l,C), one can render A(z) into a lower triangular form

B(z) = (bij(z))i,j such that
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(1) bij(z) = 0 for all i < j,

(2) deg bii(z) ≤ deg bi+1,i+1(z) for all i, and

(3) deg bij(z) < deg bii(z) for all i > j,

where deg ( · ) is the degree of the polynomial ( · ) with respect to the variable z and

deg (0) = −∞ by convention.

The assumption that the column vectors of A(tz) generate the same C[z]-module for

all t ∈ C
× implies that the column vectors of B(tz) generate the same C[z]-module as the

module generated by the column vectors of B(z) for all t ∈ C
×. In terms of matrices,

this is equivalent to the existence of Q̂(z, t) ∈ GL (k,C[z]) such that B(tz) = B(z)Q̂(z, t),

t ∈ C
×. The fact that both B(tz) and B(z) are lower triangular implies that Q̂(z, t) is

also lower triangular.

On the other hand, deg bij(tz) = deg bij(z) for all i, j. This puts a strong constraint in

the form of B(z) in order that B(tz) = B(z)Q̂(z, t) always admits a solution for Q̂(z, t) in

GL (l,C[z]). Together with the Inequality (3) above: deg bij(tz) < deg bii(z) for all i > j,

and a tedious yet straightforward induction argument, one can shows that B(z) must be

of the form

B(z) = B(1)Diag { zα1 , . . . , zαl }

with 0 ≤ α1 ≤ . . . ≤ αl and B(1)ij = 0 if i < j or αi = αj .

This proves the lemma.

2

Proposition 2.1.5 [S1-fixed coherent subsheaf]. Let V be a rank r coherent subsheaf

of En on C. Then V is a locally free OC-module. When V is in addition S1-invariant,

then V determines a unique enlarged sheaf V̂ such that

(1) V̂ is a constant subsheaf in the globally trivialized En of the same rank r as V, (thus

V̂ ≃ O⊕r
C ).

(2) V is a subsheaf of V̂.

(3) Let {U0 = C − {∞} = Spec C[z] , U∞ = C − {0} = Spec C[w] } be an atlas of affine

charts on C . Then there exists a constant re-trivialization

V̂ |U0 = O| ⊕rU0
= (C[z]⊕r)∼

such that

V|U0 = (C[z] zα1 ⊕ · · · ⊕ C[z] zαr )∼ with 0 ≤ α1 ≤ · · · ≤ αr

with respect to this new trivialization, where ( · )∼ is the sheaf of modules over the

affine scheme U = SpecR in question associated to the R-module ( · ), cf. [Ha].

Similarly for V̂|U∞
and V|U∞

. (Corresponding to 0 ≤ β1 ≤ . . . , ≤ βr.)
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Remark 2.1.6. In other words, the local diagonal form of V on an affine chart can be

made compatible with the fixed trivialization of En. The sheaf V can be thought of as

obtained by gluing the two indenpendent pieces, V|U0 and V|U∞
, on affine charts via an

isomorphism

(V|U0)|U0∩U∞
≃ (C[z, z−1]⊕r)∼

z↔w−1

≃ (C[w−1, w]⊕r)∼ ≃ (V|U∞
)|U0∩U∞

.

Proof of Proposition 2.1.5. For Claim (1) and Claim (2). Since V is an S1-fixed subsheaf

in En, V|C−{0,∞} admits a unique trivial extension to a subsheaf of En on the whole C.

By construction, it has the same rank as V. We shall choose V̂ to be this extension sheaf

of VC−{0,∞}. If V is not contained in V̂ as a subsheaf, then there exists an affine chart

U of C such that V|U has a section s not contained in V̂. Since V̂|U = V|U , this implies

that s must restrict to the zero-section when localized to U − {0,∞}. In other words,

it is a torsion section. This contradicts with Lemma 2.1.2, which says that V must be

torsion-free. Consequently, V must be a subsheaf of V̂ as well.

For Claim (3). Recall Lemma 2.1.4, with l replaced by r. Since the right multiplication

of A(z) by matrices in GL (r,C[z]) does not change the C[z]-module generated by the

column vectors of A(z), while the left multiplication by a constant matrix in GL (r,C) can

by interpreted as a change of coordinates without changing the notion of being a constant

section in the associated sheaf, this concludes Claim (3) and hence the proposition.

2

Remark 2.1.7. Note the above proposition says that both V|U0 and V|U∞
admit diagonal-

izations by constant global sections in En, but in general these two sets of diagonalizing

constant sections are different. This is all right. Indeed for any two such trivializations,

one over U0 and the other over U∞, the localizations of both to C−{0,∞} are isomorphic

to the free C[z, z−1]-module of rank r and hence they glue together to form an C
×-fixed

coherent sheaf on C.

The remaining problem is to decide when two diagonalized forms of OU0-modules

(resp. OU∞
-modules) of rank r determine the same submodule in V|U0 (resp. V|U∞

). To

determine this, let two diagonal forms of C[z]-modules be given by

B1(z) = B1(1)Diag {zα1 , . . . , zαr} and B2(z) = B2(1)Diag {zα1 , . . . , zαr}

respectively. Then B1(z) and B2(z) determine the same C[z]-module if and only if there

exists a Q(z) ∈ GL (r,C[z]) such that B1(z)Q(z) = B2(z). From this, one obtains that

Q(z) = Diag {z−α1 , . . . , z−αr}B1(1)
−1B2(1)Diag {zα1 , . . . , zαr}

= Diag {z−α1 , . . . , z−αr}BDiag {zα1 , . . . , zαr}

= ( z−αi+αj bij )i,j ∈ GL (r,C[z]) ,

where B = B1(1)
−1B2(1) = ( bij )i,j. This implies that bij = 0 if αi > αj. Consequently,

Q(z) is a block upper triangular matrix, whose block form is determined by the multiplicity
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of elements in (α1, . . . , αr). (For example, if this sequence is (1, 1, 4, 4, 4, 7), then the

corresponding block upper triangular matrix will have in the diagonal 2× 2-, 3× 3-, and

1 × 1-blocks.) Rephrased in a more geometric way, B1(z) and B2(z) determine the same

submodule if and only if they correspond to the same flag. Explicitly, the flag associated

to B(z) = B(1)Diag {zα1 , . . . , zαr} is given as follows.

Let B(1) = (u1, . . . , ur) be the column vectors of B(1) and suppose that

α1 = · · · = αj1 < αj1+1 = · · · = αj2 < · · · < αjs+1 = · · · = αr ,

then the flag associated to B(z) is given by

(Span {u1, . . . , uj1} ⊂ Span {u1, . . . , uj2} ⊂ · · · ⊂ Span {u1, . . . , ujs} ⊂ C
r ) ∈ Fl j1, ..., js(C

r) ,

where note that the last C
r should be identified with V̂ ∈ Grr(C

n).

Definition 2.1.8 [admissible pair of sequences]. Recall the Hilbert polynomial

P = P (t) = (n− r)t+ d+ (n− r). Then (α1, . . . , αr ; β1, . . . , βr) is called an admissible

pair of sequences with respect to P (t) if it satisfies

(1) 0 ≤ α1 ≤ . . . ≤ αr, 0 ≤ β1 ≤ . . . ≤ βr, and

(2) (α1 + . . . + αr) + (β1 + . . . + βr) = d .

From the above discussions and the fact that, for any element in Fl j1, ..., js(C
r), one

can always construct a B(z) in the above form such that B(1) is mapped to that flag by

the above correspondence, one concludes the following proposition.

Theorem 2.1.9 [topology of S1-fixed-point locus]. Let (α1, . . . , αr ; β1, . . . , βr) be

an admissible pair of sequences of non-negative integers, Fl j1,..., js,r(C
n) and Fl j′1,..., j

′

s′
,r(C

n)

be the flag manifold associated to the multiplicity of elements in (α1, . . . , αr) and (β1, . . . , βr)

respectively, as discussed above. Let

Fl j1,..., js,r(C
n)→ Grr(C

n) and Fl j′1,..., j
′

s′
,r(C

n)→ Grr(C
n)

be the natural projections. Then the subset Fα1, ..., αr ; β1, ..., βr
of the S1-fixed-point locus that

is associated to (α1, . . . , αr ; β1, . . . , βr) is connected and is given by the fiber product

Fl j1,..., js,r(C
n) ×Grr(Cn) Fl j′1,..., j

′

s′
,r(C

n) .

Remark 2.1.10.

(1) The base Grr(C
n) corresponds to the choices of V̂ . The fiber over a point in

the base is the product of two flag manifolds that gives all possible S1-fixed sub-

sheaves V of V̂ that have the specified Hilbert polynomial of En/V associated to

(α1, . . . , αr ; β1, . . . , βr).
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(2) The dimension of components of S1-fixed-point locus varies from component to com-

ponent. When the S1-fixed-point locus is non-empty, the dimension of each com-

ponent is bounded below by the dimension of the target Grassmannian manifold

Grr(C
n) that one starts with. The above expression implies that the only case that

a fixed-point component has the dimension the same as that of Grr(C
n) is when

that component itself is homeomorphic to Grr(C
n). This happens exactly when

α1 = · · · = αr and β1 = · · · = βr. Such (α1, · · · , αr ; β1, · · · , βr) is admissible only

for special Hilbert polynomials.

2.2 The S1-weight system of the tangent space of Quot-scheme at an

S1-fixed-point component.

After recalling some related facts in the preparatory remarks, we compute the S1-weights

and their multiplicities of the tangent space of the Quot-scheme Quot (En) at an S1-fixed-

point.

Preparatory remarks.

Recall (cf. [Ch], [H-L], and [Kol]) that the tangent space of Quot-scheme at a point is

given by

T(En→En/V)Quot P (En) ≃ HomOC
(V , En/V ) .

When (En → En/V) is an S1-fixed-point, S1 acts both on V and En/V . The S1-action

on T(En→En/V)Quot P (En) is translated to the S1-action on HomOC
(V , En/V ) by conju-

gations: f 7→ t · f · t−1 for t ∈ S1.

Recall the inclusion of S1-invariant subsheaves V ⊂ V̂ in En. One thus has a natural

morphism En/V → E
n/V̂. Since V̂ is a constant rank-r subbundle in En, En/V̂ is a rank-

(n − r) trivial bundle on C. Since (En/V)|C−{0,∞}
∼
→ (En/V̂)|C−{0,∞} from the restriction

of the above morphism and the restriction to the stalks

(En/V)0 → (En/V̂)0 ( resp. (En/V̂)∞ → (En/V̂)∞)

at 0 (resp. ∞) given by
(

C[z]⊕n/(C[z]zα1 ⊕ · · · ⊕ C[z]zαr )
)
⊗OC(U0) OC, 0 −→ C[z]⊕(n−r) ⊗OC(U0) OC, 0

(resp.
(

C[z]⊕n/(C[z]zβ1 ⊕ · · · ⊕ C[z]zβr )
)
⊗OC(U∞) OC,∞ −→ C[z]⊕(n−r) ⊗OC(U∞) OC,∞ )

are surjective, the morphism En/V → E
n/V̂ is surjective and one has the following split

exact sequence of torsion-part/locally-free-part decomposition

0 −→ V̂/V −→ En/V −→ En/V̂ −→ 0 .

Since any constant rank-(n − r) subbundle in En that is transverse to V̂ is S1-invariant

and is mapped isomorphically to En/V̂, the above decomposition is also S1-equivariant.
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The S1-action on HomOC
(V , En/V ) when (En → En/V) is an S1-fixed-point.

The above discussion gives an S1-invariant decomposition of the tangent space to the

Quot-scheme at an S1-fixed-point :

HomOC
(V , En/V ) = HomOC

(V , V̂/V ⊕ E
n/V̂ )

= HomOC
(V , F0 ) ⊕ HomOC

(V , F∞ ) ⊕ HomOC
(V , En/V̂ ) ,

where F0 (resp. F∞) is the torsion subsheaf of En/V supported at 0 (resp. ∞). We shall

now study the three summands in the decomposition and their S1-weight system, denoted

by Wt 1, Wt 2, and Wt 3 respectively. Due to the tediousness of the discussion, we itemize

the argument below.

• The summands HomOC
(V , F0 ) and HomOC

(V , F∞ ) :

(1) These two components can be calculated via the restriction of the former to U0

and the latter to U∞. The problem is reduced then to the study of the group of

homomorphisms of C[z]-modules and the S1-action on it. Explicitly,

HomOC
(V , F0 ) = Hom C[z](⊕

r
j=1 C[z] · zαj , ⊕ri=1 C[z] · e0 i ) ,

where zαi · e0 i = 0 for i = 1, . . . , r , and

HomOC
(V , F∞ ) = Hom C[w](⊕

r
j=1 C[w] · wβj , ⊕ri=1 C[w] · e∞ i ) ,

where wβi · e∞ i = 0 for i = 1, . . . , r.

(2) Computation of the weight systems Wt 1 and Wt 2 :

(2.1) Realize an element in ⊕ri=1 C[z] · e0 i as a column vector and let

f(z) = (fij(z))i,j ∈ HomOC
(V , F0 )

with respect to the local bases (zα1 , . . . , zα
r
) and (e01, . . . , e0r) for V and F0 re-

spectively. Then deg fij(z) < αi and (cf. the similar computation for the weight

system Wt 3 below),

(t · f)(z) = ( tαj fij(t
−1z) )i,j , t ∈ S1 .

Thus, the rank-1 S1-eigen-spaces in HomOC
(V , F0 ) can be chosen to be generated

by

εij [µ
0
ij ] = εij [µ

0
ij](z) := (fkl(z))k,l , where fkl(z) =

{
0 if (k, l) 6= (i, j),

zαj−µ
0
ij if (k, l) = (i, j).
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whose S1-weight is µ0
ij that satisfies

αj − αi < µ0
ij ≤ αj .

From this, one has

Wt 1 =
r⊔

i, j=1

( (αj − αi , αj ] ∩ Z )

with the multiplicity of a given integer in the set being the number of times it appears

in the disjoint union.

(2.2) Rewrite (α1, . . . , αr ) as

0 ≤ a1 (= α1) < · · · < ak (= αr) ,

m1 · · · mk

with the multiplicity indicated. For an interval I ⊂ R, let χI be the characteristic

function χI(x) = 1, if x ∈ I, and = 0, otherwise. Let χA =
∑k
i=1 mi χ(−ai , 0] and

define χAm by χAm(x) =
∑k
j=1 mj χ

A(x − aj). Then the multiplicity for µ ∈ Wt 1 is

given by χAm(µ).

(2.3) Realize an element in ⊕ri=1 C[w] · e∞ i as a column vector and let

g(w) = (gij(w))i,j ∈ HomOC
(V , F∞ ) .

Then deg gij(w) < βi and (cf. the similar computation for the weight system Wt 3

below),

(t · g)(w) = ( t−βj gij(tw) )i,j , t ∈ S1 .

Thus, the rank-1 S1-eigen-spaces in HomOC
(V , F∞ ) can be chosen to be generated

by

εij [µ
∞
ij ] = εij[µ

∞
ij ](z) := (gkl(z))k,l , where gkl(w) =

{
0 if (k, l) 6= (i, j),

wβj+µ
∞

ij if (k, l) = (i, j).

whose S1-weight is µ∞ij that satisfies

−βj ≤ µ∞ij < βi − βj .

From this, one has

Wt 2 =
r⊔

i, j=1

( [−βj , βi − βj ) ∩ Z )

with the same rule of counting multiplicity as for Wt 1.

12



(2.4) Rewrite (β1, . . . , βr) as

0 ≤ b1 (= β1) < · · · < bl (= βr)

n1 · · · nl

with the multiplicity indicated. Let χB =
∑l
i=1 ni χ[ 0 , βi ) and define χBm by

χBm(x) =
∑l
j=1 nj χ

A(x+ bj). Then the multiplicity for µ ∈Wt 2 is given by χBm(µ).

• The summand HomOC
(V , En/V̂ ) :

(1) Since En/V̂ is represented by a rank-(n − r) constant subbundle in En transverse to

V̂ , it can be further decomposed into a direct sum of constant line subbundles in

En. Since all the bundles involved are constant, the decomposition of the quotient

En/V̂ = O
⊕(n−r)
C is S1-invariant. Recall that S1 acts on En and hence on En/V̂ via

the trivial linearization. With respect to this decomposition, one has

HomOC
(V , En/V̂ ) = HomOC

(V , O
⊕(n−r)
C ) = H0(C,V∨)⊕(n−r) .

Remark. A connected component of the fixed-point locus can be stratified by subsets

labelled by the isomorphism classes of vector bundles associated to the S1-invariant

subsheaves V in En. There can be more than one strata for a connected component.

(2) Computation of the weight system Wt 3 :

(2.1) Recall the S1-invariant decompositions

HomOC
(V , En/V̂ ) = HomOC

(V , O
⊕(n−r)
C ) = HomOC

(V , OC )⊕(n−r) .

The existence of such S1-invariant decomposition implies that the sought-for S1-

weight system for HomOC
(V , En/V̂ ) consists of (n−r)-many copies of the S1-weight

system for HomOC
(V , OC ).

(2.2) Let f ∈ HomOC
(V , OC ). Then, as a morphism of sheaves on C, f is described

by a pair

(f0, f∞) ∈ HomOC(U0)(V(U0) , OC(U0) ) × HomOC(U∞)(V(U∞) , OC(U∞) )

= Hom C[z](⊕
r
i=1C[z] · zαi , C[z] ) × Hom C[w](⊕

r
i=1C[w] · wβi , C[w] )

such that f0|U0∩U∞
= f∞|U0∩U∞

.
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(2.3) Recall the proof of Theorem 5.3 in [Ko], which says in our case that the weight

system of the tangent bundle at an S1-fixed-point depends only on the connected

component of the fixed-point locus. Thus, to compute the weight system one can

choose the S1-invariant subsheaf V in En such that the two diagonalized local pieces

on affine charts U0 and U∞ match (i.e. V becomes the direct sum of appropriate ideal

sheaves in constant line subbundles in En). From the previous discussions, there are

many - even continuous families of - such V. However, as will be clear from the

explicit expression that the weight system obtained is indeed independent of which

such V is chosen for the computation, as long as they belong to the same fixed-point

component. This gives a consistency check of the method.

(2.4) Let V be an S1-invariant subsheaf of En such that the two local diagonalizations

match and suppose that αi is matched with βi′ , i = 1, . . . , r. Then V is decomposed

into a direct sum ⊕ri=1Iαi,βi′
, where Iαi,βi′

is a subsheaf in a constant line subbundle

≃ OC in En with the local data as a sheaf of OC -module:

on U0 on U0 ∩ U∞ on U0 ∩ U∞ on U∞

C[z] · zαi → C[z, z−1]
z↔1/w
←→ C[w,w−1] ↔ C[w] · wβi′ .

The vector bundle associated to V is isomorphic to⊕ri=1O(−αi−βi′) and HomOC
(V , OC )

is further decomposed into an S1-invariant direct sum

HomOC
(V , OC ) = ⊕ri=1 HomOC

(Iαi,βi′
, OC ) .

(2.5) For simplicity of notation, we shall drop temporarily the indices i and i′. At the

level of sheaf morphisms, the data that encodes f ∈ HomOC
(Iα,β , OC ) is given by

a pair

(f0, f∞) ∈ Hom C[z](C[z] · zα , C[z]) × Hom C[w](C[w] · wβ , C[w]) ,

( zα
f0
7−→ h0(z) , w

β f∞
7−→ h∞(w) )

such that the following matching condition holds

z−αh0(z) = w−βh∞(w) under z → 1/w .

Consequently,

HomOC
( Iα,β , OC ) = { (h0(z) , h∞(w)) | deg h0(z) ≤ α+ β and h∞(w) = wα+βh0(1/w) }

≃ H0(C, I∨) = H0(C,OC(α+ β)) .

(2.6) The S1-action on HomOC
(Iα,β , OC ) is given by f 7→ t · f , where t · f is the

composition of the following conjugation of f = (h0(z) , h∞(w) ) :

on U0 :

s0(z)zα t−1

−→ s0(tz)(tz)α = tαs0(tz) · zα f
−→ tαs0(tz) h0(z)

t
→ tαs0(tt−1z)h0(t−1z) = tαs0(z)h0(t−1z)

on U∞ :

s∞(w)wβ t−1

−→ s∞(t−1w)(t−1w)β = t−βs∞(t−1w) · wβ f
−→ t−βs∞(t−1w)h∞(w)

t
→ t−βs∞(t−1tw)h∞(tw) = t−βs∞(w)h∞(tw) .
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One can check directly that if (f0, f∞) satisfies the matching condition, then so does

(t · f)0, (t · f)∞). Consequently,

f = (h0(z) , h∞(w) )
t
−→ t·f = ( tα h0(t

−1z) , t−β h∞(tw) ) on HomOC
(Iα,β , OC ) .

If f is an invariant direction of the S1-action on HomOC
(Iα,β , OC ), then t ·f = tµf

for some µ ∈ Z. From the above expression, this means that

( tα h0(t
−1z) , t−β h∞(tw) ) = ( tµ h0(z) , t

µ h∞(w) ) for all t ,

which implies that

f = fµ := (h0(z) , h∞(w) ) = ( c zα−µ , c wβ+µ ) .

From this, one concludes that

−β ≤ µ ≤ α , µ ∈ Z ;

with the associated weight subspace spanned by fµ.

(2.7) Resume the indices (i, i′) for Iαi,βi′
. Then

Lemma [weight subsystem Wt 3].

(1) Let Wt ′
3 be the system of weights of the S1-action on HomOC

(V , OC ). Then

the weight system Wt 3 for the S1-action on

HomOC
(V , En/V̂ )

is given by Wt 3 = (n − r)Wt ′
3, i.e. same set of integers µ as in Wt ′3 but with

multilicity mµ = (n− r)m′
µ,

(2) Wt ′
3 is given by

Wt ′
3 =

r⊔

i=1

( [−βi′ , αi ] ∩ Z ) .

Recall (α1, . . . , αr, ; β1, . . . , βr) rewritten as

0 ≤ a1 < · · · < ak (= αr) ; 0 ≤ b1 < · · · < bl (= βr)

m1 · · · mk n1 · · · nl

with the multiplicity indicated. Then any ν ∈ [−βr , αr ] ∩ Z is in Wt ′
3. Its

multiplicity m′
µ in Wt ′

3 is given by

m′
µ =





nl + · · · + nj if −bj ≤ µ < −bj−1 .

r if −b1 ≤ µ ≤ a1 ,

mk + · · · +mj if aj−1 < µ ≤ aj ,
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From this expression, it is clear that Wt 3 depends only on (α1, . . . , αr ; β1, . . . βr)

and hence only on the connected component of the S1-fixed-point locus, as it should.

Proof of Lemma. Consider the two sets of lattice points in Z⊕ Z ⊂ R
2 :

A = { (αi, r − i+ 1) | i = 1, . . . , r } and B = { (−βi, r − i+ 1) | i = 1, . . . , r } ,

and the r-many line segments connecting (−βi′ , r−i
′+1) and (αi, r−i+1). Let π be

the projection of R
2 to the horizontal axis L ⊃ Z. Then, for an integer µ ∈ Z ⊂ L,

the multiplicity mµ of µ in Wt ′3 is the same as the number of the line segments

above whose projection into L contain µ. Thus, mµ > 0 if and only if µ ∈ [−βr, αr].

To read off mµ, one combs the collection of line segments so that each line segment

becomes a three-edged-path with the first and the third edge horizontal and the

middle one vertical and contained in the vertial axis, cf. Figure 2-2-1. From this,

combing

aka1b1bl aka1b1bl

Figure 2-2-1. The mutiplicity of µ and the combing of the line

segments.

one concludes mµ as stated in the Lemma. This concludes the proof.

2

To summarize :

Theorem 2.2.1 [S1-weight]. The S1-weights on the tangent space

T(En→En/V)Quot P (En) ≃ HomOC
(V , En/V )

of Quot-scheme Quot (En) at an S1-fixed-point (En → En/V) are the disjoint union of Wt 1,

Wt 2, and Wt 3, as given above.

This concludes the computation of the weight system. We now turn to the combina-

torics of this system.
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2.3 Combinatorics of the S1-weight system and the multiplicity of 0.

A generating function for the multiplicity of weights in Wt 3 is immediate, following same

argument as in the counting of the states at various levels in conformal field theory, e.g.

[G-S-W]. An example is given by the following formal function

∞∏

j=0

1

1− qn−r0 · · · qn−rj sj t
.

It remains unclear to us whether the weight systems Wt 1 and Wt 2 also have elegant

generating functions; nevertheless they can be obtained from the following manipulations.

• The weight subsystem Wt 1 :

(1) Consider the formal expansion




∞∏

j=0

1

1− q−j · · · q0 sj t vj



∣∣∣∣∣∣
q0=1

=
∑

k, l, P

A
(1)
k, l, P (q) A

(2)
P (v) sk t l ,

where q and v represent collectively the two sets of variables qi and vi respectively.

Note that both A
(1)
k, l, P (q) and A

(2)
P (v) are monomials.

(2) Do the substitutions

A
(2)
P (v)

vj→A
(1)
k, l, P

(qi→i+j+1)

————→ Â
(2)
P (q) ,

where qi→i+j+1 means that qi is replaced by qi+j+1 for all i. The result Â
(2)
P (q) is a

monomial in q and the multiplicity of j ∈ Z is nj if q
nj

j appears as a primary factor

of Â
(2)
P (q).

(Cf. See Example 2.3.2 below.)

• The weight subsystem Wt 2 :

(1) Consider the formal expansion




∞∏

j=0

1

1− q0 · · · qj sj t vj



∣∣∣∣∣∣
q0=1

=
∑

k, l, P

B
(1)
k, l, P (q)B

(2)
P (v) sk t l .
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(2) Do the substitutions

B
(2)
P (v)

vj→B
(1)
k, l, P

(qi→i−j−1)

————→ B̂
(2)
P (q) ,

where qi→i−j−1 means that qi is replaced by qi−j−1 for all i. The result B̂
(2)
P (q) is a

monomial in q and the multiplicity of j ∈ Z is nj if q
nj

j appears as a primary factor

of B̂
(2)
P (q).

Remark 2.3.1.

(1) The powers k and l and the monomials A
(1)
k, l, P (q) and A

(2)
P (v) are related as follows.

A
(2)
P (v) is the monomial that encodes the partition P of k into the summmation

l-many non-negative integers. Corresponding to P is a conjugate partition P̂ . The

Young diagram associated to P is conjugate to that associated to P̂ . The monomial

A
(1)
k, l, P (q) is determined by the partition P̂ . Similarly for B

(1)
k, l, P (q) and B

(2)
P (v).

(Cf. Example 2.3.2 below.)

(2) Item (1) above implies that for a distinguished S1-fixed-point component Fα1, ..., αr ; 0, ..., 0,

the subweight system Wt 1 is generated completely by the Young diagram associated

to d = α1 + · · · + αr as a partition of d by a “partial tensor” with the conjugate

Young diagram, as illustrated in Figure 2-3-1.

17 = 0 + 0 +0 + 0 + 1 + 2 + 2 + 2 + 5 + 5 

Figure 2-3-1. Generation of Wt 1 from a single Young diagram.

In the final diagram, the vertical scale is only 1/4 of the horizontal

scale.
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Example 2.3.2 [weight computation for Wt 1]. Consider the expansion



∞∏

j=0

1

1− q−j · · · q0 sj t vj



∣∣∣∣∣∣
q0=1

=
∑

k, l, P

A
(1)
k, l, P (q) A

(2)
P (v) sk t l .

Consider, for example, the case r = 10 and d = 17. Then, to determine the weight

subsystem Wt 1 for the normal bundle to the component F0,0,0,0,1,2,2,2,5,5 ; 0, ···, 0 in E0, one

only needs to look at the (unique) term in the expansion with A
(2)
P (v) = v4

0 v1 v
3
2 v

2
5 ,

corresponding to the partition P : 17 = 0 + 0 + 0 + 0 + 1 + 2 + 2 + 2 + 5 + 5 :

(A
(1)
17, 10, P (q)A

(2)
P (v) s17 t10 )|q0=1

= q−1 (q−2 q−1)
3 (q−5 q−4 q−3 q−2 q−1)

2 v4
0 v1 v

3
2 v

2
5 s

17 t10

= q2−5 q
2
−4 q

2
−3 q

5
−2 q

6
−1 v

4
0 v1 v

3
2 v

2
5 s

17 t10 .

Observe that the conjugate partition P̂ : 17 = 0+0+0+0+0+2+2+2+5+6 is encoded

in the monomial in q’s. Now do the substitiution with the rule of shifting the indices as

given above :

v4
0 v

1
1 v

3
2 v

2
5 −→

( q2−4 q
2
−3 q

2
−2 q

5
−1 q

6
0 )4 ( q2−3 q

2
−2 q

2
−1 q

5
0 q

6
1 )1 ( q2−2 q

2
−1 q

2
0 q

5
1 q

6
2 )3 ( q21 q

2
2 q

2
3 q

5
4 q

6
5 )2 | q0=1

= q8−4 q
10
−3 q

16
−2 q

28
−1 q

25
1 q222 q43 q

10
4 q125 ,

where some of the indices are boldfaced to make the pattern manifest. Let α be the genera-

tor of H∗
S1(pt). Then the S1-weights in Wt 1 for the normal bundle to F0,0,0,0,1,2,2,2,5,5 ; 0, ···, 0

is

8(−4α), 10(−3α), 16(−2α), 28(−α), 25(α), 22(2α), 4(3α), 10(4α), 12(5α) .

2

Though it can be obtained also from Sec. 2.2, the following lemma follows immediately

from the combinatorics of the weight system discussed in this subsection.

Lemma 2.3.3 [multiplicity of 0]. The multiplicity of 0 in the S1-weight system Wt to the

restriction of the tangent bundle T∗Quot P (En) to Fα1, ...,αr ;β1, ..., βr
is equal to dimFα1, ...,αr ;β1, ...,βr

.

Consequently, the S1-weight system of the normal bundle to Fα1, ...,αr ;β1, ...,βr
is exactly the

subsystem of non-zero weights in Wt.

Corollary 2.3.4 [ eS1 invertible]. Let E be any of the S1-fixed-point component in

Quot P (En). Then the S1-weights of the normal bundle νE(Quot PE
n) to E are all nonzero.

Consequently eS1(ν/Quot P (En)) is invertible in A∗(E)(α), where α is a generator of the

ring H∗
S1(pt).

Proof of Lemma 2.3.3. Recall the three subsystems Wt = Wt1 +Wt2 +Wt3 from Sec. 2.2.

The multiplicity of 0 in Wt 3 is (n − r)r. For the weight subsystem Wt 1, from the above
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discussion on the Young tableau associated to Wt 1 and also the characteristic function

χAm for Wt 1 defined in Sec. 2.2, one has that the multiplicity of 0 in Wt 1 is given by

mk−1mk +mk−2(mk +mk−1) + · · · + m1(ml + · · ·+m2) .

Similarly the multiplicity of 0 in the weight subsystem Wt 2 is given by

nl−1nl + nl−2(nl + nl−1) + · · · + n1(nl + · · ·+ n2) .

Consequently the multiplicity of 0 in Wt is given by

mk−1ml +mk−2(mk +mk−1) + · · · + m1(ml + · · ·+m2)

+nl−1nl + nl−2(nl + nl−1) + · · · + n1(nl + · · · + n2) + (n− r)r .

On the other hand,

dimFα1, ...,αr ; β1, ... ,β

= dim (Fl m1, m1+m2, ..., m1+···mk−1, r(Cn)) + dim (Fl n1, n1+n2, ..., n1+···+nl−1, r(Cn)) − dim (Grr(Cn))

= (n − r)r + (m1 + · · · + mk−1)mk + (m1 + · · · + mk−2)mk−1 + · · · + (m1 + m2)m3 + m1m2

+ (n − r)r + (n1 + · · · + nl−1)nl + (n1 + · · · + nl−2)nl−1 + · · · + (n1 + n2)n3 + n1n2

− (n − r)r ,

where we have used that fact that m1+ · · · +mk = n1+ · · · +nl = r. By rearrangement

of terms, we see that this is the same as the multiplicity of 0 and hence conclude the lemma.

2

3 Mirror principle computation for Grassmannian mani-

folds.

3.1 The distinguished S1-fixed-point components and the hyperplane-

induced class.

To make the comparison immediate, here we follow the notations in [L-L-Y1 : III, Sec.

5.4]. Recall the following approach ibidem to compute A(t) when there is a commutative

diagram :

F0
eY

−→ Y0
g
←− E0

↓ i ↓ j ↓ k

Md
ϕ
−→ Wd

ψ
←− Qd ,

where Qd is an S1-manifold, ψ : Qd → Wd is an S1-equivariant resolution of singularities

of ϕ(Md), E0 is the set of fixed-points in ψ−1(Y0) and is called the distinguished S1-fixed-

point component, and ϕ∗[Md] = ψ∗[Qd] in AS
1

∗ (Wd) .
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In the current case, X is the Grassmannian manifold Grr(C
n), Qd is the Quot-scheme

Quot P (t)=(n−r)t+(d+n−r)(E
n), and the linear sigma model Wd for X is the projective space

P(H0(C, OC(d))⊗ΛrCn) of ( nr )-tuple of degree-d homogeneous polynomials on C. This

is a linear sigma model for P(ΛrCn) that is turned into a linear sigma model for X via the

Plücker embedding Grr(C
n)→ P(ΛrCn).

An element in Wd can be written as

[
∑

j

c1jz
j
0z
d−j
1 :

∑

j

c2jz
j
0z
d−j
1 : · · · ] ,

where [z0 : z1] is the homogeneous coordinates for C and cij ∈ C with 1 ≤ i ≤ ( nr ) and

0 ≤ j ≤ d. The group S1 acts on Wd by

[
∑

j

c1jz
j
0z
d−j
1 : · · · ] 7−→ [

∑

j

c1j(tz0)
jzd−j1 : · · · ] , t ∈ S1 .

There are (d+1)-many S1-fixed-point components inWd, each of which consists of points of

the form [ c1jz
j
0z
d−j
1 : c2jz

j
0z
d−j
1 : · · · ] for 0 ≤ j ≤ d and is isomorphic to P(Λr(Cn)). From

[L-L-Y1 : II, III], the S1-fixed-point component F0 in Md consists of degree-(1, d) stable

maps (C, f) into C×Grr(C
n) ⊂ C×P(ΛrCn) that is obtained by gluing a degree-(1, 0) sta-

ble map (C1 = CP1, f1,∞) and a degree-(0, d) stable map (C2, f2, x) with f1(∞) = f2(x)

at their marked point. Regard these as stable maps into the projective space P(ΛrCn),

then [L-L-Y1 : I, Sec.2, Example 10 and III, Sec. 3] implies that the S1-fixed-point com-

ponent Yj in Wd consists of point of the form [ c1dz
d−j
0 zj1 : c2dz

d−j
0 zj1 : · · · ]. In particular,

Y0 consists of points of the form [ c1dz
d
0 : c2dz

d
0 : · · · ].

The map

ψ : Qd = Quot P (t)(E
n) −→ Wd = P(H0(C, OC(d))⊗ ΛrCn)

is given as follows. Write C = Proj C[z0, z1], where C[z0, z1] is regarded as a graded ring

with grading given by the total degree. Then En is the sheaf associated to the graded

C[z0, z1]-module M := C[z0, z1]
⊕n, whose grade-d piece Md is given by

Md = { (f1, · · · , fn) | fi homogeneous polynomial of d in z0, z1 } .

A point (En → En/V) ∈ Qd is the same as a subsheaf V →֒ En, which then corresponds to a

graded submodule NV in M of rank r. Let e1, . . . , er ∈M be a basis for NV . Express each

ei as a column vector with entries in C[z0, z1] and consider the matrix AV = [ e1, . . . , er ].

When the quotient sheaf En/V has degree d, all the r×r-minors of AV , if not zero, must be

of degree d as well. The map ψ sends (En → En/V) then to the ( nr )-tuple of r× r-minors

of AV . (Cf. [Ha], [So], [Str], and [S-S].)

Since ψ is S1-equivariant, it sends an S1-fixed-point component in Qd into an S1-fixed-

point component in Wd. To see which S1-fixed-point component in Qd is sent to Y0, one

only needs to check where a single point in Fα1, ..., αr ; β1, ..., βr
is mapped to.
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Lemma 3.1.1. ψ(Fα1, ..., αr ;β1, ..., βr
) ⊂ Yβ1+ ···+βr

.

Proof. Recall that, for a fixed-point (En → En/V) ∈ Fα1, ..., αr ;β1, ..., βr
,

deg En/V = α1 + · · · + αr + β1 + · · · + βr = d .

Observe also that the special fixed-points in Fα1, ..., βr
, for which the two local diagonal-

ization match with αi → βi′ , corresponds to a subsheaf V in En is isomorphic to the

direct sum ⊕i Iαi(0)+βi′ (∞) of ideal sheaves Iαi(0)+βi′ (∞) in OC associated to the degree-d

divisor/subscheme αi(0) + βi′(∞) in C. Its associated matrix AV can be written as




zα1
0 z

β1′

1
. . .

zαr
0 z

βr′

1

0 · · · 0
... · · ·

...
0 · · · 0




with zero entries aij for i 6= j,

after a constant re-trivialization of En. The r× r-minors of this matrix are all zero except

the one from the top r× r-submatrix, whose value is zα1+ ···+αr
0 zβ1+ ···+βr

1 . Thus, ψ maps

such point to some

[ 0 : · · · : 0 : zα1+ ···+αr
0 zβ1+ ···+βr

1 : 0 : · · · : 0 ] ,

which lies in Yβ1+ ···+βr
. This proves the lemma.

2

Since 0 ≤ β1 ≤ · · · ≤ βr, one concludes that

Corollary 3.1.2 [distinguished components]. The distinguished S1-fixed-point locus

E0 is given by

E0 =
∐

0 ≤ α1 ≤ · · · ≤ αr

α1 + · · · + αr = d

Fα1, ···, αr ; 0, ... , 0 ,

a disjoint union of flag manifolds determined by the multiplicities of entries in (α1, . . . , αr)

with α1 + · · · + αr = d. (Cf. Theorem 2.1.9 )

On each distinguished S1-fixed-point component Fα1, ···, αr ; 0, ... , 0, there is the pulled-

back hyperplane class k∗ψ∗κ = g∗j∗κ, where κ is the hyperplane class on Wd. To see what

it is, recall first the multiplicity numbers m1, . . . , mk for 0 ≤ α1 ≤ · · · ≤ αr and the

following fact/definition :

Fact/Definition 3.1.3 [special Schubert cycle]. (Cf. [Fu1], also [Gr2] and [Jo].)

Recall that, over the flag manifold Fl = Flm1,m1+m2, ..., r(C
n), there is a universal flag of
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bundles S1 →֒ S2 →֒ · · · →֒ Sk+1 = Fl × C
n with rankSi = m1 + · · · + mi. Then the

intersection Chow ring A∗(Fl ) is generated by the Chern classes of the quotient bundles

Si/Si−1, 1 ≤ i ≤ k + 1 and S0 = 0, with relations determined by
∏k+1
i=1 c (Si/Si−1) = 1.

The Schubert cycles that represent these special generators are called special Schubert

cycles.

Since Fα1, ···, αr ; 0, ... , 0 ≃ Flm1,m1+m2, ..., r(C
n), this gives A∗(Fα1, ···, αr ; 0, ... , 0). Recall also

from Sec. 2.1 that points in Fα1, ···, αr ; 0, ... , 0 can be represented by n×r-matrices B(z) with

coefficients in C[z]. Since the map g is the Plücher embedding and it sendsB(z) to the tuple

of r× r-minors of B(1) multiplied by the factor zd, the image g(Fα1 , ···, αr ; 0, ... , 0) coincides

with the image of the Grassmannian manifold Grr(C
n) in Y0 via Plücker embedding and

g is indeed the fibration to the base Grassmannian manifold given in Theorem 2.1.9.

Let S →֒ Grr(C
n)×C

n be the universal rank-r bundle over Grr(C
n). Then the Plücker

embedding in the direct bundle language is the section from the projectivization of the

tautological bundle map
∧r S = detS →֒ Grr(C

n) ×
∧r

C
n over Grr(C

n) and, hence,

the hyperplane class on CP(n
r)−1 is pulled back to the Chern class −c1(S) on Grr(C

n)

via the Plücker embedding. On the other hand, the embedding of Y0 ≃ CP(n
r)−1 in

Wd ≃ CP(n
r) d+(n

r)−1 has degree 1 from [L-L-Y1 : I and II]. Together one concludes that :

Corollary 3.1.4 [pulled-back hyperplane class]. Let κ be the hyperplance class in

Wd. Then, with the notation in Fact/Definition 3.1.3, one has

k∗ψ∗κ = g∗j∗κ = − c1(Sk)

on the distinguished S1-fixed-point component Fα1, ···, αr ; 0, ... , 0. Since S1 and C
× act on

these components trivially, these classes lift naturally as to classes on (Fα1, ···, αr ; 0, ... , 0)C×

and will be denoted by the same notation.

Remark 3.1.5 [pulled-back hyperplane in Chern roots ]. In terms of Chern roots to be

discussed in Sec. 3.3, this class is represented by − (y1 + · · · + yr) = yr+1 + · · · + yn.

3.2 The weight subspace decomposition of the normal bundle to the

distinguished components.

In this subsection, we work out an ingredient needed for the computation of the C
×-

equivariant Euler class of the normal bundle to a distinguished S1-fixed-point component

in Quot-scheme.

Reduction of structure group and the S1-weight subspaces in matrix forms.

23



Note that the notation P in this section is for parabolic subgroups. Recall that the

GL (n,C)-action on C
n induces a GL (n,C)-action on the set of local sections in En. Thus,

given a g ∈ GL (n,C), one has a correspondence V 7−→ g · V with a specified isomorphism

from V to g · V. This induces a GL (n,C)-action on Quot P (t)(E
n), which leaves all the

S1-fixed-point component invariant. This GL (n,C)-action on Quot P (t)(E
n) commutes

with the S1-action discussed earlier. In this way, the normal bundle ν to a S1-fixed-point

component E is realized as a homogeneous GL (n,C)-bundle and its structure group is the

stabilizer P of a point p in that component : νEQd = GL (n,C) ×P C
R, where R is the

codimension of E in Qd, C
R is identified with the fiber of νE Qd at p with the P -action

induced from GL (n,C).

The existence of a flag manifold also as a compact quotient implies that one can choose

a compact U(n) in GL (n,C) such that each S1-fixed-point component is also a U(n)-orbit.

Then the new stabilizer at a point becomes

P0 = U(n) ∩ P = U(m1)× · · · × U(mk)× U(n− r)

and

νE Qd = GL (n,C)×P C
R = U(n)×P0 C

R .

In this way, we have reduced the structure group of νEQd to P0 that remains compatible

with the S1-action. Applying this to each of the distinguished S1-fixed-point components

Fα1, ..., αr ; 0, ..., 0, we then realize T∗Quot P (t)(E
n)|Fα1, ..., αr ; 0, ..., 0 as a homogeneous U(n,C)-

bundle, determined by a representation of P0.

Given 0 ≤ α1 ≤ . . . ≤ αr rewritten as

0 ≤ a1 < · · · < ak (= αr)

m1 · · · mk

with the multiplicity indicated, fix a point on Fα1, ..., αr ; 0, ..., 0 represented by the subsheaf

V in En determined by

V(U0) = C[z] · zα1 ⊕ · · · ⊕ C[z] · zαr ⊕ 0⊕(n−r) and V(U∞) = C[w]⊕r ⊕ 0⊕(n−r)

(or equivalently, the graded submodule in M generated by (0, . . . , 0, zαi
0 , 0 . . . , 0) for

1 ≤ i ≤ r, in the notation of Sec. 2.1). Then P is the subgroup of appropriate block upper

triangular matrices in GL (n,C). Fix a Hermitian inner product on C
n, which renders

En a trivialized Hermitain vector bundle, and let U(n) →֒ GL (n,C) be the subgroup

of GL (n,C) with respect to this inner product. Then the induced action of U(n) on

Fα1, ..., αr ; 0, ...,0 is transitive with P0 = P ∩U(n) = U(m1)× · · · ×U(mk)×U(n− r) being

the subgroup of U(n) that consists of m1 ×m1, . . . , mk ×mk, (n − r) × (n − r) unitary

diagonal blocks.

There is an embedding of Hom -groups

HomOC
(V, En/V) →֒ Hom C[z](C[z]·zα1⊕ · · · ⊕C[z]·zαr , C[z]·e1⊕ · · · ⊕C[z]·er⊕C[z]⊕(n−r)) ,
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where the annihilator Ann(ei) of ei is the ideal (zαi) in C[z]. Let m0 be the multiplicity

of 0 in α1, . . . , αr. Then e1 = · · · = em0 = 0 and the image is a submodule of the latter

that consists of matrices of polynomials with degree bounds :

f = [ fij(z) ](n−m0)×r ,

where

deg fij(z) ≤

{
αm0+i − 1 for 1 ≤ i ≤ r −m0 and 1 ≤ j ≤ r ,

αj for r −m0 + 1 ≤ i ≤ n−m0 and 1 ≤ j ≤ r .

The P0-action on HomOC
(V, En/V) is given by

f 7−→ g ⋄ f , for f ∈ HomOC
(V, En/V) and g ∈ P0

with

g ⋄ f := g ⊙ f ⊙ Diag {z−α1 , · · · , z−αr} · g−1 · Diag {zα1 , · · · , zαr} ,

where g in the formula is the lower-right (n −m0) × (n −m0) submatrix of the defining

matrix of g when acting on C
n, g−1 is the r × r upper-left submatrix of the inverse of

the defining matrix for g, the operation · is the usual matrix mutiplication, and the

operation ⊙ is the usual matrix multiplication followed by truncations of terms in an

entry that exceeds the degree bound above. This shows explicitly that the P0-action and

the S1-action on HomOC
(V, En/V) commute.

From the previous discussions on the S1-weight system, each monomial in an entry (a

Laurent polynomial in z) of

f̃ := f ⊙ Diag {z−α1 , · · · , z−αr}

gives an S1-invariant subspace in HomOC
(V, En/V). The degree bound for an entry in f̃

is given by

{
−αj ≤ deg f̃ij(z) ≤ αm0+i − αj − 1 for 1 ≤ i ≤ r −m0 and 1 ≤ j ≤ r ,

−αj ≤ deg f̃ij(z) ≤ 0 for r −m0 + 1 ≤ i ≤ n−m0 and 1 ≤ j ≤ r .

Thus one has a decomposition of the P0-module by the S1-weight subspaces, each of which

is itself a P0-module :

f̃ = z−αr f̃(αr) + · · · + z−1 f̃(1) + f̃(0) + z f̃(−1) + · · · + zαr−α1−1 f̃(−(αr−α1−1) ) ,

where the S1-weight for zµ-component here is −µ, (cf. the expression zαj−µ
0
ij in the discu-

sion of the S1-weight system Wt 1). (Note that here we are assuming the generic situation,

in which α1 < αr and hence αr − α1 − 1 ≥ 0. If α1 = · · · = αr, then αr − α1 − 1 = −1

and f̃ = z−αr f̃(αr) + · · · + z−1 f̃(1) + f̃(0) .)

The P0-module decomposition of S1-weight spaces and the P0-weight system.
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• S1-weight-subspace decomposition.

(1) Recall the multiplicity mi, 1 ≤ i ≤ k, of the sequence 0 ≤ α1 ≤ · · · ≤ αr and m0

the multiplicity of 0 in the sequence. Then the matrices g, g−1, f , f̃ can be put

into a block form. For example, the (I, J)-block for f is an mI ×mJ submatrix if

m0 = 0, or an mI+1 ×mJ submatrix if m0 > 0, or an r ×mJ submatrix if m0 = 0

and I = k + 1 or if m0 > 0 and I = k. (Cf. Figure 3-2-1.)

(2) In terms of the block form, the decomposition of f̃ into a summation of matrices

with only one non-zero block gives the decomposition of HomOC
(V, En/V) into rep-

resentations of P0. Consequently, each such summand is the representation of the

form ρmI
⊗ (ρ−1

mJ
)t = ρmI

⊗ ρmJ
, where ρmI

is the defining representation of U(mI),

(ρ−1)t its inverse transpose, which is the same as its complex conjugate ρ.

(3) This decomposition is compatible with the S1-weight subspace decomposition. In

fact, the block form of the S1-weight summand f̃(s), −αr ≤ s ≤ max{αr−α1−1, 0}, is

determined by the Young diagram corresponding to the partition d = α1 + · · · + αr.

They are all “sparse-lower-triangular” block matrices, (cf. Figure 3-2-1). These

block forms are invariant under the conjugation followed by truncations of terms of

degree higher than the upper degree bounds

f̃(s) 7−→ g ⊙ f̃(s) ⊙ g−1

and hence this gives a decomposition of the homogeneous bundle into the direct sum

of S1-weight homogeneous subbundles. In particular, the lower sub-triangular block

form of f̃(0) corresponds to the tangent bundle T∗Fα1, ..., αr ; 0, ..., 0. The dimension is

consistent with the computation in Lemma 2.3.3.

(4) These sparse-lower-triangular block matrices are determined by the Young diagram

corresponding to the partition d = α1 + · · · + αr. The rule from a Young diagram

to the sparse-lower-triangular block forms can be summarized in three steps :

(4.1) Take the dual of the Young diagram and put the zero-matrix of the same dimen-

sion as f̃ into the same block form. Copy these zero-matrices by multiplying

by a weight factor zν with −αr ≤ ν ≤ max{αr − α1 − 1 , 0} .

(4.2) Recall aI and mI at the beginning of this subsection. Multiply the dual Young

diagram horizontally by the multiplicity mI and fill the block forms with these

multi-strip as indicated in Figure 3-2-1, beginning with the block form with

z−aI -factor. This corresponds to the S1-weight system Wt 1.

(4.3) Add all these matrices and fill in all the blocks in matrices with negative ν

in zν such that some block above it is already filled. For the block form with

factor z0, fill in all the blocks in the rows lower than the last filled row. These

additional filling corresponds to the S1-weight system Wt 3.
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17 = 0 + 0 +0 + 0 + 1 + 2 + 2 + 2 + 5 + 5 

z 4 z 5 z 3 z 2 z 1 

z 3 z 1 z 2 z 4 

+ + + +

+ + + + +

z 4 z 5 z 3 z 2 z 1 

z 3 z 1 z 2 z 4 

+ + + +

+ + + +

z 4 z 5 z 3 z 2 z 1 

z 3 z 1 z 2 z 4 

+ + + +

+ + + +

z 4 z 5 z 3 z 2 z 1 

z 3 z 1 z 2 z 4 

+ + + +

+ + + +

z 4 z 5 z 3 z 2 z 1 

z 3 z 1 z 2 z 4 

+ + + +

+ + + + +

z 4 z 5 z 3 z 2 z 1 

z 3 z 1 z 2 z 4 

+ + + +

+ + + + +

z 0 

+ z 0 

+ z 0 

+ z 0 

Figure 3-2-1. The simultaneous decomposition of HomOC
(V , En/V) by

weight subspaces of S1 and representations of P0. Original entries in the

matrix are divided by light lines while blocks are divided by dark lines. The

think dark line divides the upper (r−m0) rows and the lower (n−r) rows. All

the unshaded blocks are zero. Observe how the block forms are all determined

by the Young diagram - the conjugate Young diagram is horizontally fattened

by the various multiplicities and then distribute into the block forms (cf. the

blocks with the same dark shades) -.
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(5) The block decomposition of each S1-weight subspace into the direct sum of P0-

modules.

(5.1) Definition of diagonal and off-diagonal blocks : When m0 = 0, the diagonal

blocks follow the usual definition. When m0 > 0, the diagonal blocks here are

the blocks that are above and adjacent to the usual diagonal blocks (i.e. the

(I, I + 1)-blocks). All other blocks are called off-diagonal.

- The diagonal blocks corresponds to a representation ρmI
⊗ ρmI

, where ρmI
is

the defining representation of some U(mI).

- The off-diagonal blocks are irreducible representations ρ1 ⊗ ρ
∗
2 of the product

U(mI1)× U(mI2), where ρj is the defining representation of U(mIj), i = 1, 2.

(5.2) Let (λ1, . . . , λI1) be the weight system of the representation ρ1 and (λ′1, . . . , λ
′
I2

)

be the weight system of the representation ρ2 (with multiple weight repeated

correspondingly), then the weight system of ρ1 ⊗ ρ2 is given by

(λi − λ
′
j | 1 ≤ i ≤ I1 , 1 ≤ j ≤ I2 ) .

• The P0-weight system WtP0 of HomOC
(V, En/V).

(1) Recall the fixed maximal torus the diagonal subgroup T = (C×)n in P0. Let Eij
be a (n − m0) × r matrix with 1 in (i, j)-entry and zero elsewhere. Then, every

subspace of an S1-weight subspace in the lower-triangular block that consists of

constant multiples of some Eij is a P0-weight subspace of weight λ i+m0−λj. Conse-

quently, the P0-weight system can be directly read off from the collection of sparse

lower-triangular block forms obtained from the Young diagram corresponding to the

distinguished S1-fixed-point component. In expression,

WtP0(Young diagram ) =
⊔

( triangular block form ∆ )

⊔

( block 2∈∆ )

⊔

(i,j)∈2

(λ i+m0 − λj)

where the Young diagram is the one corresponding to Fα1, ..., αr ; 0, ..., 0 (namely the

partition d = α1 + · · · + αr), ⊔ means the disjoint combination with multiplicity

allowed, 2 ∈ ∆ means that the block is in the triangular block form ∆, and (i, j) ∈ 2

means that the (i, j)-position in the matrix for f̃ lies in the block 2.

(2) In summary :

Young diagram
corresponding to a
distinguished
S1-fixed-point component

=⇒

Collection of sparse
lower-triangular block
forms associated to the
S1-weight subspaces of a
fiber of the normal bundle
to the distinguished
S1-fixed-point component

=⇒ P0-weight system WtP0
of

each S1-weight subspace

Let us now turn to the computation of the C
×-equivariant Euler class of the normal

bundle to a distinguished component in Quot P (t)(E
n).
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3.3 Structure of the induced bundle on BC
× ×C

× Fα1, ..., αr ; 0, ..., 0 and the

C
×-euquvariant Euler class eC

× νFα1, ..., αr ; 0, ..., 0Quot P (t)(E
n).

We compute first the Chern polynomials of the normal bundle νFα1, ..., αr ; 0, ..., 0Quot P (t)(E
n)

of Fα1, ..., αr ; 0, ..., 0 in Quot P (t)(E
n) and then use this to express the C

×-equivariant Euler

class after working out the bundle structure of the induced bundle of νFα1, ..., αr ; 0, ..., 0 over

BC
× × Fα1, ..., αr ; 0, ..., 0.

The following fact is in Borel and Hirzebruch [B-H], with slight modification to fit into

our situation :

Fact 3.3.1 [Chern class and representation]. (Cf. [B-H], [B-T], [Fu1], [Hi], [M-S],

and [Sp].)

(1) Let T be a maximal torus of U(n), h be the corresponding Cartan subalgebra, and

Fl (n) := U(n)/T . Then, there are canonical homomorphisms

{ integral linear functional on h } ≃ H1(T,Z) → H2(Fl (n),Z) ,

where the second homomorphism is surjective and is given by the transgression ho-

momorphism associated to the principal T -bundle U(n) → Fl (n) from the quotient

map. With respect to the defining representation of U(n) on the Hermitian C
n, T

corresponds to a unique orthonormal basis in C
n up to permutations. In terms of this

basis, T is realized as the group of unitary diagonal matrices. Thus, T comes with a

natural product decomposition T = U(1)×n that is invariant under the Weyl group

action and each U(1)-factor of which is canonically oriented. This decomposition

specifies then a distinguished basis x1, . . . , xn for H1(T,Z), unique up permutations.

Regard xi also as elements in the other two groups via the above homomorphism and

let yi = −xi in H2(Fl (n),Z). Up to permutations, yi in H2(Fl (n),Z) are the first

Chern class of the line bundles associated to the tautological flag bundle over Fl (n).

These yi generate H2(Fl (n),Z) and they satisfy

σk(y1, . . . , yn) = 0 , for k = 1, . . . , n ,

where σk is the elementary symmetric polynomial of degree k for n variables.

(2) [Chern root]. Let P0 = U(m1)× · · · × U(mk) × U(mk+1) ⊂ U(n), where

m1 + · · · + mk + mk+1 = n, T be a maximal torus of U(n) contained in P0, and

η : U(n) → B = U(n)/P0 be the principal P0-bundle over B from the quotient map.

Then Fl (n) is a split manifold for η. Let ζ : Fl (n)→ B be the induced map from η,

then ζ∗ : H∗(B,Z)→ H∗(Fl (n),Z) is injective and ζ∗c(η) =
∏n
i=1(1 + yi).

(3) [naturality of Chern class]. Let ρ be an m-dimensional unitary representation of P0

with weights wj = aj1x1 + · · · + ajnxn, j = 1, . . . , m, and V := U(n)×ρ C
m be the

associated homogeneous vector bundle over U(n)/P0. Then

ζ∗c(V ) =
m∏

j=1

(1 + wj) =
m∏

j=1

(1 + aj1y1 + · · · + ajnyn) .
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This expression is invariant under the Weyl group action P0, Symm1
× · · · ×Symmk+1

on the set { y1, . . . , ym1 ; ym1+1, . . . , ym1+m2 ; · · · ; ym1+ ···+mk−1+1, . . . , yn−r } by the

permutations that Symm1
permutes the first m1 letters, Symm2

the next m2 letters,

and so on. The result is an integral polynomial function of symmetric functions

in y1, . . . , ym1 , in ym1+1, . . . , ym1+m2 , and so on respectively. Each of these partial

symmetric products of Chern roots yi can be identified with the special Schubert cycles

in the flag manifold U(n)/P0.

Recall the P0-weight system associated to the Young diagram corresponding to Fα1, ..., αr ; 0, ..., 0

and Corollary 2.3.4, which says that all the S1-weight of a fiber of the normal bundle are

non-zero. Let ν be the normal bundle in consideration. Then the above fact implies that

the Chern polynomial cν(t) of ν is given by

cν(t) =
∏

(
triangular block form ∆w

for non-zero S1-weight

)
∏

( block 2∈∆w )

∏

(i,j)∈2

(t+ y i+m0 − yj) ,

where the first product on the right hand side of the equality ranges over all possible non-

zero S1-weights w. The result is an integral polynomial function of the special Schubert

cycles in A∗(Fα1, ..., αr ; 0, ..., 0), cf. Fact/Definition 3.1.3.

The S1-action on ν = νFα1, ..., αr ; 0, ..., 0Quot P (t)(E
n) induces a bundle

T → CP∞ × Fα1, ..., αr ; 0, ..., 0 .

Let ν = ⊕w νw be the decomposition of the normal bundle as a direct sum of S1-weight

subspace and T = ⊕w Tw be the induced decomposition of T .

Lemma 3.3.2 [induced bundle of S1-weight summand]. Let

CP∞ pr1←− CP∞ × Fα1, ..., αr ; 0, ..., 0
pr2−→ Fα1, ..., αr ; 0, ..., 0

be the projection maps. Then

Tw = pr∗1OCP∞(−w)⊗ pr∗2 νw .

Proof. Let E = EC
× → BC

× = CP∞ be the universal principal C
×-bundle. First notice

that the associated line bundle of EC to the representation of C
× on C by v 7→ tv for

t ∈ C
×, v ∈ C (i.e. the w = 1 representation) is OCP∞(−1). Since C

× acts on νw by

a single weight w, the induced action of C
× on the projectivization Pνw of νw is trivial.

Thus, as bundles over CP∞ × Fα1, ..., αr ; 0, ..., 0,

PTw = P(E ×
C

× νw) = E ×
C

× Pνw = CP∞ × Pνw = Ppr∗2νw .
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Since 1 → C
× → GL(C) → PGL (C) → 1 is a central extension, the above isomorphism

of projective bundles implies that Tw = L ⊗ pr∗2νw for some line bundle L over

CP∞ × Fα1, ..., αr ; 0, ..., 0. By construction,

Tw|CP∞×∗ ≃ pr∗1O(−w)⊗ C
R and Tw|∗×Fα1, ..., αr ; 0, ..., 0 ≃ pr∗2νw ,

where R is the rank of νw. Since line bundles over flag manifolds are determined by their

first Chern class and the second cohomology of flag manifolds are torsion-free, by the

multiplicativity of the Chern character under tensor products and a comparison of first

Chern classes, one concludes that

L|CP∞×∗ ≃ OCP∞(−w) and L|∗×Fα1, ..., αr ; 0, ..., 0 ≃ OFα1, ..., αr ; 0, ..., 0 .

Consider now a finite model CPN for CP∞ with N very large. Then, since

XN := CPN × Fα1, ..., αr ; 0, ..., 0

is simply-connected and Kähler, from the long exact sequence

· · · −→ H1(XN ,Z) −→ H1(XN ,OXN
) −→ H1(XN ,O

∗

XN
)

c1
−→ H2(XN ,Z) −→ · · ·

‖ ‖ ‖ ‖

0 H0,1

∂
(XN ) = 0 Pic (XN ) H2(CPN ,Z) ⊕H2(Fα1, ..., αr ; 0, ..., 0,Z)

associated to the exponential sequence 0 → Z → OXN
→ O∗

XN
→ 0, one concludes that

the Picard variety Pic (XN ) is contained in Pic (CPN ) × Pic (Fα1, ..., αr ; 0, ..., 0) and hence

that every line bundle on XN is of the form pr∗1L1 ⊗ pr∗2L2. Together with the earlier

discussion in the proof, one has in particular that L = pr∗1OCPN (−w) over XN for all

large N . Let N →∞, one then concludes the lemma.

2

Let R(w) be the rank of νw. By the multiplicativity of Euler class and the rule under

the tensor with a line bundle (cf. [Fu1]), we conclude that

Theorem 3.3.3 [Euler class]. The S1 equivariant Euler class of the normal bundle

ν = νFα1, ..., αr ; 0, ..., 0Quot P (t)(E
n) is given by

e
C× ν =

∏

w

e
C×νw =

∏

w

cνw (−wα)

=
∏

(
triangular block form ∆w

associated to nonzero w

)
∏

( block 2∈∆w )

∏

(i,j)∈2

(−wα + yi+m0 − yj ) ,

where α = c1(OCP∞(1)), cνw(t) = tR(w) + c1(νw)tR(w)−1 + · · · is the Chern polynomial

of νw. The triangular block forms ∆w, −αr ≤ w ≤ max{αr − α1 − 1, 0}, associated with

the Young diagram corresponding to the partition d = α1 + · · · + αr are defined by Item

(4) in the subheading “S1-weight-subspace decomposition” of the heading “The P0-module

decomposition of S1-weight spaces and the P0-weight system” in Sec. 3.2.

Here pr∗1, pr∗2 in the formula are omitted for simplicity of notations.
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4 Illustrations by two examples.

In this section, we present two simple examples of the Mirror Principle computation that

are computable by hand to illustrate the discussions in this article. In these examples,

the distinguished S1-fixed-point components in the related components of Quot-schemes

are either Grassmannian manifolds or complete flag manifolds. The Schubert calculus of

these follow from Fulton in [Fu1] and Monk in [Mo]. In particular, for the complete flag

manfold Fl (3) := Fl 1,2(C
3), the cohomology ring H∗(Fl (3),Z) is generated by y1, y2,

(y3 = −(y1 + y2)), where yi are the first Chern class the graded line bundles on Fl (3)

associated to the flag of universal rank-1 and rank-2 subbundles over Fl (3), cf. Fact 3.3.1.

The intergral of the top classes are given by

∫

F l(3)
y3
1 =

∫

F l(3)
y3
2 = 0 and

∫

F l(3)
y2
1y2 = −

∫

F l(3)
y1y

2
2 = −1 ,

following [Mo].

Example 4.1 [Gr2(C
3), degree 3]. In this case, n = 3, r = 2, n − r = 1, and

d = 3. There are two distinguished S1-fixed-point components in the related component

Quot P (t)=t+4(E
3) of Quot-scheme:

• F 0, 3 ; 0,0 ≃ Fl 1, 2(C
3), dim = 3.

3 = 0 + 3 

z z 2 3 z 1 +

S   weight system
block  form

y

1

Wt1 Wt   =3 Wt3

Wt3

+ z 0 + z 1 + z 2 +

1 y2
y2

y3

− Grouping of Chern roots : { y1 ; y2 ; y3 }.

− C
×-equivariant Euler class of normal bundle :

e
C×(ν) = (−3α) (−3α + y3 − y2) (−2α) (−2α + y3 − y2)

· (−α) (−α + y3 − y2) (α + y2 − y1) (2α + y2 − y1) .

− Pulled-back hyperplane class :

k∗ψ∗κ = g∗j∗κ = −(y1 + y2) .
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− The integral over the component :

∫

E

k∗ψ∗eκ·ζ

e
C×(E/Qd)

= −
103

1296

1

α11
−

23

108

ζ

α10
−

29

864

ζ2

α9
.

• F 1, 2 ; 0,0 ≃ Fl 1, 2(C
3), dim = 3.

3 = 1 + 2 

z 2 1 z +

S   weight systemblock  form
y

1

Wt1 Wt   =3 Wt3

Wt3

z 0 +

1 y2

y2

y3

y1

− Grouping of Chern roots : { y1 ; y2 ; y3 }.

− C
×-equivariant Euler class of normal bundle :

e
C×(ν) = (−2α+ y1 − y2) (−2α) (−2α + y3 − y2)

· (−α) (−α + y2 − y1) (−α+ y3 − y1) (−α) (−α + y3 − y2) .

− Pulled-back hyperplane class :

k∗ψ∗κ = g∗j∗κ = −(y1 + y2) .

− The integral over the component :

∫

E

k∗ψ∗eκ·ζ

e
C
×(E/Qd)

=
3

16

ζ

α10
+

1

32

ζ2

α9
.

Total integral = −
103

1296

1

α11
−

11

432

ζ

α10
−

1

432

ζ2

α9
.

2

Example 4.2 [Gr1(C
3), degree 3]. In this case, n = 3, r = 1, n−r = 2, and d = 3. There

is one distinguished S1-fixed-point component in the related component Quot P (t)=2t+5(E
3)

of Quot-scheme:

− F 3 ; 0 ≃ Gr1(C
3), dim = 2.
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3 = 3 

z 2 1 z +

S   weight system

block  form
y

z 3 +

1

Wt1 Wt   =3 Wt3

Wt3

z 0 +

1

y2

y3

y1

2

− Grouping of Chern roots : { y1 ; y2, y3 }.

− C
×-equivariant Euler class of normal bundle :

e
C
×(ν) = (−3α) (−3α + y2 − y1) (−3α + y3 − y1)(−2α) (−2α + y2 − y1)

· (−2α + y3 − y1) (−α) (−α + y2 − y1) (−α+ y3 − y1) .

− Pulled-back hyperplane class :

k∗ψ∗κ = g∗j∗κ = −y1 .

− The integral over the component :

∫

E

k∗ψ∗eκ·ζ

e
C
×(E/Qd)

= −
103

1296

1

α11
−

11

432

ζ

α10
−

1

432

ζ2

α9
,

which is the same as the total integral in Example 4.1, as it should be since

Gr1(C
3) = Gr2(C

3).

2

Remark 4.3. One can check that the integral values are correct, using the result in [L-L-

Y1, I] for the computation for CP2. Simple examples as they are, one observes that the

intermediate details in the computation do depend on the presentation of a Grassmannian

manifold and these details are in general very different. The fact that either presentation

gives an identical answer provides thus a computational check of the theory developed.

Remark 4.4. Now that we can compute the integral that is related to the intersection

numbers on the moduli space of rational stable maps into Grassmannian manifolds, the

A-model for Calabi-Yau complete intersections in a Grassmannian manifold can also be

computed explicitly.

Remark 4.5. Two immediate questions follow from the current work :
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(1) the automatization of the calculations via a computer code, following the diagram-

matic rules discussed, and the computation for more examples and

(2) generalization of the discussion to flag manifolds, which involves hyper-Quot schemes.

The study of them will be reported in another work.

With these remarks, we conclude this paper.
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schémas de Hilbert, Séminaire Bourbaki, (1960/1961), no. 221, pp. 1 - 28.

[G-G-MP-S] I.M. Gel’fand, R.M. Goresky, R.D. MacPherson, and V.V. Serganova, Combinatorial geome-

tries, convex polyhedra, and Schubert cells, Adv. Math. 63 (1987), pp. 301 - 316.

[G-H] P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons, Inc., 1978.

[G-K-MP] M. Goresky, R. Kottwitz, and R. MacPherson, Equivariant cohomology, Koszul duality, and

the localization theorem, Invent. Math. 131 (1998), pp. 25 - 83.

[G-L1] N. Gonciulea and V. Lakshmibai, Degenerations of flag and Schubert varieties to toric varieties,
Transformation Groups, 1 (1996), pp. 215 - 248.

[G-L2] ——–, Schubert varieties, toric varieties, and ladder determinantal varieties, Ann. Inst. Fourier

47 (1997), pp. 1013 - 1064.

[G-MP] I.M. Gel’fand abd R.D. MacPherson, Geometry in Grassmannians and a generalization of the

dilogarithm, Adv. Math. 44 (1982), pp. 279 - 312.

[Gu-S1] V. Guillemin and S. Sternberg, Convexity properties of the moment map, Invent. Math. 67
(1982), pp. 279 - 312.

[Gu-S2] ——–, Supersymmetry and equivariant de Rham theory, Mathematics Past and Present, vol. 2,
Springer-Verlag, 1999.

[G-S-W] M.B. Green, J.H. Schwarz, and E. Witten, Superstring theory, vol. 1 and vol. 2, Cambridge
Univ. Press, 1987.

[G-Z] V. Guillemin and C. Zara, Equivariant de Rham theory and graphs, math.DG/9808135.

37

http://arXiv.org/abs/math/0003077
http://arXiv.org/abs/math/9804043
http://arXiv.org/abs/math/9808135


[Ha] R. Hartshorne, Algebraic geometry, GTM 52, Springer-Verlag, 1977.

[He1] S. Helgason, Differential geometry and symmetric spaces, Academic Press, 1962.

[He2] ——–, Differential geometry, Lie groups, and symmetric spaces, Academic Press, 1978.

[He3] ——–, Groups and geometric analysis - integral geometry, invariant differential operators, and

spherical functions, Academic Press, 1984.

[Hi] F. Hirzebruch, Topological methods in algebraic geometry, Grund. Math. Wiss. Ein. 131,
Springer-Verlag, 1966.

[Ho] R. Hotta, The generalized Schubert cycles and the Poincaré duality, Osaka J. Math. 4 (1967),
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