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Abstract

The computations that are suggested by String Theory in the B model
requires the existence of degenerations of CY manifolds with maximum
unipotent monodromy. In String Theory such a point in the moduli space
is called a large radius limit (or large complex structure limit). In this
paper we are going to construct one parameter families of n dimensional
Calabi-Yau manifolds, which are complete intersections in toric varieties
and which have a monodromy operator T such that (TN − id)n+1 = 0 but
(TN − id)n 6= 0, i.e the monodromy operator is maximal unipotent.
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1 Introduction

1.1 General Remarks

One of the most important problems in algebraic geometry is the study of fam-
ilies of algebraic varieties parameterized by a variety. Of special interest is the
subvariety in the parameter space that parameterizes the singular fibers. This
subvariety is called the discriminant locus. One of the main invariants of the
discriminant locus is the so called monodromy group. The monodromy group
is defined by the action of fundamental group of the complement of the dis-
criminant locus on the cohomology ring of a fixed non-singular fiber. Of special
interest is the action of the monodromy group on the middle cohomology group.
The structure of such actions is of profound importance. In number theory, the
counterpart is the action of Galois group on ètale cohomology.

2



In this paper we are going to study the simplest case of the above described
setting, namely we are going to study families of algebraic manifolds over the
unit disk D. We will assume that the only singular fiber is over the center of
the disk, i.e. over 0 ∈ D. From the discussion above it follows that we obtain a
representation of the fundamental group π1(D \0) = Z in the middle homology,
i.e. in Hn(Xt,Z)/Tor. The finite dimensional representations of Z are classified
by the Jordan blocks of the linear operator corresponding to 1 ∈ Z. We will give
a complete answer to the structure of the monodromy operator in terms of the
topology of the singular fiber. Our method of proof is based on Clemens’ theory
of monodromy and the theory of mixed Hodge structures. We find a simple
criterium for the monodromy operator to have a Jordan block of maximal rank.
This criterium is based on Leray’s theory of residues. We will apply this simple
criterium to very concrete examples of complete intersections in CP

N and toric
varieties.

The existence of such degenerations is of prime importance in mirror ge-
ometry and in string theory. The computations that were suggested by String
Theory in the B model required the existence of degenerations of CY mani-
folds with maximal unipotent monodromy. In String Theory such a point in
the moduli space is called a large radius (complex structure) limit. The case
of hypersurfaces in toric varieties was treated in [10], where the construction of
a point of maximal degeneracy is done by studying the GKZ hypergeometric
system governing periods of the hypersurfaces.

For recent important developments in mirror geometry see [11], [12] and
references therein. The results of this paper are closely related to Strominger-
Yau-Zaslow conjecture.

1.2 Description of the Paper

In Section 2 we introduce the basic notions and review some results stated in
[8].

In Section 3 we review the generalization of Lefschetz’s theory of vanishing
cycles due to Clemens. We describe Clemens’ method for constructing Jordan
blocks in the monodromy operator.

In Section 4 we prove a general formula for the number of Jordan blocks
in the monodromy operator in terms of some invariants of the singular fiber of
one parameter family of Kähler manifolds.

In Section 5 we prove a simple criterium for the existence of a Jordan
block of maximum size in the monodromy operator in terms of Leray’s residue
calculus. We also construct families of complete intersections of CY manifolds
in CP

N whose monodromy operators contain Jordan block of maximum size.
In Section 6 we review some basic facts in toric geometry and construct

families of complete intersections of CY manifolds in toric varieties whose mon-
odromy operators contain Jordan block of maximum size generalizing the con-
struction in section 5.

In Section 7 we briefly discuss the connection between the present approach
and a previous approach which uses hypergeometric functions. We also discuss
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an interesting relationship between maximal unipotent monodromy and the SYZ
conjecture, and illustrate this in the case of polarized K3 surfaces.

In the Appendix, we give a complete description of Clemen’s cell complex
for hypersurfaces in a toric variety.

Acknowledgements: B.H.L.’s research is supported by NSF grant DMS-
0072158. S.T.Y.’s research is supported by DOE grant DE-FG02-88ER25065
and NSF grant DMS-9803347.

2 Basic Definitions and Notations

2.1 Mumford’s Semi-Stable Reduction Theorem

In this article we study one-parameter families of n dimensional Kähler mani-
folds

π : X → D

over a disk D. We assume that X is a smooth algebraic manifold and that
for each t 6= 0 π−1(t) = Xt is a non-singular n dimensional Kähler manifold.
From Hironaka’s theorem on the resolution of singularities, we may assume that
the singular fibre X0 = π−1(0) is a divisor with normal crossings X0 = ∪Ci.

We will choose local coordinates in the following manner. Let xn+1 ∈ Ci1 ∩
... ∩ Cin+1

⊂ X0. Let Uxn+1
be an open polycylinder in X containing the point

xn+1. Let zij
= 0 be the defining equation of the divisor Cij

in Uxn+1
. It is easy

to see that after shrinking the disk D, the fibers of the map π : X ∩Uxn+1
→ D

are locally given by

zm1

i1
...z

mn+1

in+1
= t, mj ≥ 1 & mj ∈ Z.

In the same manner, let xk ∈ X0 and let Ci1 , .., Cik
be those components of

X0 containing xk. Let Uxk
be an open polycylinder in X containing xk but not

intersecting Cj with j 6= i1, .., ik. Then the fibers of the map π : X ∩ Uxk
→ D

are locally given by

zm1

i1
...zmk

ik
= t, mj ≥ 1 & mj ∈ Z.

In [8] Mumford proved that after taking a finite covering of the disk D, lifting
the family and resolving the singularities, we may assume that the the fibres of

the map π:X → D are given locally by zk1

1 ...z
kn+1

n+1 = t, where kj is either 0 or 1.
From now on we are going to assume that we are in the above setting justified
by Mumford’s theorem.

2.2 Geometric and Homological Monodromy (Basic Prop-
erties)

If we restrict our family π : X → D to the circle S1 := ∂D then we get a
representation of π1(S

1) = Z in the group of diffeomorphisms of Xt. Indeed if
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we remove a point from S1,and restrict our family to S1 \ s, π1 : X|S1 → S1

where s ∈ S1, we will get a trivial C∞ family
(
S1\s

)
× Xt → S1 \ s. Our

family π1 : X|S1 → S1 is obtained from the trivial family
(
S1\s

)
× Xt → S1

\ s by ”gluing” it by φ ∈ Diff(Xt). The diffeomorphism φ is the generator of
π1(S

1) = Z. We will call φ the geometric monodromy. The induced action of φ
on Hn(Xt,Z) will be called the monodromy operator and will be denoted by T.
The main result about the operator T is that we have always:

(
TN − id

)n+1
= 0

for some positive integer N . Here n is the complex dimension of Xt. This
theorem was proved by many mathematicians including Griffiths, N. Katz,
Clemens, Landesman, Deligne and so on.

From Mumford’s result, we can assume that the following conditions hold
for the family π : X → D :

1. π−1(0) = X0 = ∪m
i=0Ci is a divisor of normal crossings and for k = 0, .., n,

Ci0∩..∩Cik
, i0 < ... < ik, is a non-singular irreducible subvariety of Singn−k(X0)

if non-empty.
2. The fibers of the map π : X → D are locally given in the open policylin-

ders {U} defined above by zk1

i1
...z

kn+1

in+1
= t, where kj is either 0 or 1.

Definition 1 If the family π : X → D satisfies the above conditions we will say
that it is in normal form.

From now on we will consider only families π : X → D in normal form.

Notation 2 Given X0 = C0 ∪ ... ∪ Cm we shall use the following notations:

I = {i0, ...ik} is an index set with i0 < ... < ik
CI = Ci0 ∩ ... ∩ Cik

, |I| = k + 1; and
C [k] = ∪

|I|=k+1
CI .

3 Review of Clemens’ Theory of Geometric Mon-
odromy

3.1 Construction of Clemens’ retraction map

Let π : X → D be a family of Kähler manifolds as defined in Definition 1. We
will construct a contraction map:

C : X → X0.
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3.1.1 Construction of Clemens’ Vector Field

The local description of our family π : X → D is given in Cn+1 by the equation:

z1...zk = t

For some k = 1, .., n+ 1. Without loss of generality we may assume that t is a
real number.

Let zi = rie
2π

√
−1φi ,then the equation z1...zk = t for k = 1, .., n + 1 is

equivalent to the equations:

r1...rk = t and
∑k

i=1 φi = 0 for k = 1, .., n+ 1.

We will construct first a local vector field which will define the retraction
map in this local situation and then using partition of unity we will construct
a global vector field and thus the retraction map. It is easy to see that it is
enough to construct a retraction of hyperbola in Rn+1

+ given by

r1...rn+1 = t

to the union of coordinate hyperplanes r1 = 0, ..., rn+1 = 0, where ri > 0
and t > 0. Let us suppose that we will consider only hyperbolas r1...rn+1 = t
for 0 < t < 1

2 . We will construct special vector field in Rn+1
+ . We will need to

define some notions.
We will denote by Q the following set in Rn+1

+

Q:={r = (r1, .., rn+1) | ri ≥ 0 and there exists 1 ≤ i ≤ n+ 1 such that 0<ri < 1} .
Q(1) will be the unit cube in Rn+1

+ , i.e.

Q(1) := {r = (r1, .., rn+1) |0 ≤ ri ≤ 1 for all 1 ≤ i ≤ n+ 1}
It is clear that for 0 < t < 1

2 the hyperbolas r1...rn+1 = t are contained in
Q.

3.1.2 Construction of the Vector Field in Rn+1
+

Let us suppose that r = (r1, .., rn+1) ∈ Q is a point such that 0 ≤ ri1 ≤
1, ..., 0 ≤ rik

≤ 1. To the point r ∈ Q we will assign a point r(i1, .., ik) =
(r1, ..., rn+1) ∈ Rn+1

+ ri1 = ... = rik
= 1 and the rest of the coordinates of

r(i1, .., ik) are the same as the point r ∈ Q. Let l(r) be the line that joints the
point r ∈ Q ⊂Rn+1

+ r(i1, .., ik) ∈ Rn+1
+ with the point r(i1, .., ik) ∈ Rn+1

+ . In this

way we define a vector field in Q ⊂Rn+1
+ . Using a partition of unity and using

the vector field in Q that we have just defined, we obtain a global vector field
on π : X → D.

When we integrate this vector field, we obtain the Clemens’ contraction map
C : X →X0. Thus we obtain a map for each t ∈ D \ 0 : Ct : Xt → X0.

Definition 3 The map Ct as defined above will be called Clemens map.

For details of the construction see [4].
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3.2 Properties of the Clemens’ map

It is easy to prove the Ct has the following properties:

Lemma 4 The Clemens’ map Ct has the following properties: (i) Suppose z ∈
CI , then C−1

t (z) =
(
S1

)k
is a k dimensional real torus and (ii) Ct defines a

diffeomorphism between Xt \C−1
t (Sing(X0)) and X0 \Sing(X0).

Proof of Lemma 4: For the proof of Lemma 4 see [4]. �.

Definition 5 Let T (i1, .., ik) be the tubular neighborhood of Ci0 ∩ .. ∩ Cik
in

Ci1 ∩ .. ∩ Cik
. We will denote by p(i1, .., ik) : T (i1, .., ik) → Ci0 ∩ Ci1 ∩ ... ∩ Cik

the projection maps for any i1, .., ik.

Definition 6 Given an (n−k)-cycle γ ∈ Hn−k(Ci0 ∩ ...∩Cik
,Q), we define an

n-cycle p−1
k (γ) ∈ Hn(X0\Sing(X0)) as follows. Let

p−1
1 (γ) := ∂(p(i1, .., ik)−1(γ)).

This is the boundary of p(i1, .., ik)−1(γ), hence it is cycle of dimension n−k+1
in Ci1 ∩ ... ∩ Cik

\Ci0 ∩ ... ∩Cik
. Let

p−1
2 (γ) = ∂(p(i2, .., ik)−1p−1

1 (γ)).

This is a cycle of dimension n − k + 2 in Ci2 ∩ ... ∩ Cik
\Ci1 ∩ ... ∩ Cik

. By
continuing this way, we define at the end

p−1
k (γ) = ∂(p(ik)−1p−1

k−1(γ)).

This is a cycle of dimension n in Cik
\Cik−1

∩Cik
. We denote by πk : p−1

k (γ) → γ
the natural projection.

Proposition 7 For any point z ∈ γ ∈ Hn−k(Ci0 ∩..∩Cik
,Q) we have π−1

k (z) =(
S1

)k
, where πk : p−1

k (γ) → γ is defined above. In other words the preimage of
a point is a k dimensional real torus.

Proof of Proposition 7: Proposition 7 follows directly from Definition 6
of the cycle p−1

k (γ) ∈ Hn(X0\Sing(X0)) . �.

Definition 8 Given γ ∈ Hn−k(Ci0 ∩ .. ∩ Cik
,Q), we denote γt := C−1

t (γ) and
γt(j) := C−1

t

(
p−1

j (γ)
)
, which are n-cycles representing elements in Hn(Xt,Q).

Lemma 9 The cycles γt and γt(j) above are homological to each other for 1≤
j ≤ k.
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Proof of Lemma 9: We will prove first that γt(j) and γt(j + 1) are ho-
mological to each other for 1 ≤ j ≤ k, i.e. there exists a n + 1 chains Γ0(j)
in Cij+1

∩ .. ∩ Cik
\Cij

∩ .. ∩ Cik
⊂ X0 as follows using Definitions 5 and 6:

Γ0(j) := p(ij , .., ik)−1(p−1
j (γ))\(p−1

j (γ)). Let us define the n + 1 dimensional

chain Γt,γ (j) in Xt as follows: Γt,γ (j) := C−1
t (Γ0(j)). Lemma 4 implies directly

that

∂ (Γt,γ (j)) = C−1
t (p−1

j (γ)) − C−1
t (p−1

j−1(γ)) = γt(j) − γt(j − 1).

Lemma 9 is proved. �.
In [4] the following result was proved:

Theorem 10 Let γ ∈ Hn−k(Singk(X0),Z) be such that C−1
t (γ) = γt ∈ Hn(Xt,Z)

is a non-zero. Then there exists cycles α1, .., αk ∈ Hn(Xt,Z) such that T (αj) =

γt +
∑j

i=1 αi for 1≤ j ≤ k.

We sketch the construction here. (See [4] for details.)
Clemens’ construction of Jordan block by Picard-Lefschetz Duality. Let γ ∈

Hn−k(Ci0 ∩ ... ∩ Cik
,Z) be a cycle such that C−1

t (γ) be a non-zero element in

Hn(Xt,Z)̇. In Definition 6 we defined a cycle p−1
1 (γ) in Ci2∩...∩Cik

\Ci1∩...∩Cik
.

It is easy to see by using the fact that C−1
t (γ) ∈ Hn(Xt,Z)̇ is nonzero and Lemma

9 that

p−1
1 (γ) ∈ Hn−k+1(Ci2 ∩ ... ∩ Cik

\Ci1 ∩ ... ∩Cik
,Z) & p−1

1 (γ) 6= 0.

Let us denote by γ1 ∈ Hn−k+1(Ci2 ∩ ... ∩ Cik
;Ci1 ∩ ... ∩ Cik

,Z) the Picard
Lefschetz dual cycle of p−1

1 (γ). Let Ti3,...,ik
(γ1) be the tubular neighborhood of

the closure of γ1 in Ci3 ∩ ... ∩ Cik
\Ci2 ∩ ... ∩ Cik

. Let us denote by p−1
2 (γ1) the

boundary of Ti3,...,ik
(γ1), i.e.

p−1
2 (γ1) = ∂Ti3,...,ik

(γ1)

It is easy to see that

p−1
2 (γ1) ∈ Hn−k+2(Ci3,...,ik

\Ci2,...,ik
,Z).

Let us denote by γ3 ∈ Hn−k+2(Ci3,...,ik
;Ci2,...,ik

,Z) the Picard-Lefschetz
dual to p−1

2 (γ1). We can continue this process and thus we will define cycles
γ, γ1, ..., γk, where γj ∈ Hn−k+2(Cij ,...,ik

;Cij−1,...,ik
,Z). Clemens proved in [4]

that the monodromy operator T acts as follows on C−1
t (γ), C−1

t (γ1), ..., C−1
t (γk) :

T(C−1
t (γ)) = C−1

t (γ), ...,T(C−1
t (γk)) = C−1

t (γ) +
∑k

j=1 C−1
t (γj).

Corollary 11 Let π : X → D be a family of Kähler manifolds over the disk
such that:

1. For t 6= 0, π−1(t) := Xt is a non singular variety of complex dimension
n ≥ 1.
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2. π−1(0) = X0 = ∪m
i=0Ci is a divisor of normal crossing and π is locally

given by zn1

1 × ...× znk

k = t, where ni are positive integers.

3. Suppose C0 ∩ .. ∩Cn is a point and C−1
t (C0 ∩ .. ∩Cn) = γt is a non zero

cycle in Hn(Xt,Q),

then the monodromy operator of the family π : X → D has a Jordan block
of size n+ 1. (See [4].)

4 The Jordan Normal Form of the Monodromy
Operator

We begin by introducing the following combinatorial invariant of a family of
algebraic varieties π : X → D put in a Mumford form. This will be needed
later.

Definition 12 We will define Clemens’ simplicial complex of the family π :
X → D as follows: To each divisor Ci we attached a point pi in Rd, where
d is a large enough integer. We will assume that the points pi are in general
position, i.e. they do not lie in a hyperplane. If Ci intersects Cj then we attach
to the points pi and pj one dimensional simplex. If Ci, Cj and Ck intersect then
we attached a two dimensional simplex on pi, pj and pk. We continue in that
manner and we obtain a simplicial complex Π(X0) which we will call Clemens’
simplicial complex.

4.1 Definition of the Gysin Map

Definition 13 Let X be a compact complex manifold, and C be a divisor of
normal crossing. The map Gk : Hk+2(X,Z) → Hk(C,Z) defined by Gk(γ) :=
γ ∩ [C], where γ ∩ [C] means intersection of class of cohomology in X, is called
the Gysin map.

Remark 14 We will use the Gysin map in case Ci0 ∩ ... ∩Cik
⊂ Ci1 ∩ .. ∩Cik

and will denote by

Gk : ⊕
i1,..,ik

Hn−k+2(Ci1 ∩ .. ∩ Cik
,Q) → Hn−k(Ci0 ∩ ... ∩ Cik

,Q)

where Gk(γ) is the image of the cycle [γ ∩ [Ci0 ∩ .. ∩Cik
]] in Hn−k(Singn−1(X0),Q)).

Definition 15 The dual G∗
k of the Gysin map using Poincare duality is defined

as follows for the pair (X,C)

G∗
k : Hk(C,Z) → Hk+2(X,Z),

where G∗
k(α) = α∧c1[C] and c1[C] is the first Chern class of the line bundle

defined by the normal crossing divisor C.

9



4.2 Review of Deligne’s Theory of Mixed Hodge Struc-
tures

The cohomology of X0 \Sing(X0) can be computed as the cohomology of the
de Rham log complex A∗(X0, log <Sing(X0) >).

Definition 16 We will say that a form ω on one of the components Ci of
X0 had a logarithmic singularities if for each point z ∈ X0 and some open
neighborhood U ⊂ Ci of the point z we have

ω|U = αdz1

z1 ∧ ... ∧ dzk

zk ,

where α is a C∞ form in U e and locally on X0 is defined by the equations
z1 × ...× zk = 0.

Definition 17 We define the de Rham log complex as follows:

A∗(X0, log <Sing(X0) >)
= {ω ∈ C∞ (X0\Sing(X0),Ω

∗) |ω and dω are C∞ forms on X0\Sing(X0)
which have log singularities on Sing(X0)}.

Remark 18 It is easy to see that if ω ∈ Am(X0, log <Sing(X0) >) then ω
locally around a point z ∈ U ⊂ Ci in each of the components of X0 and
z ∈Sing(X0) is given by

ω|U = ω1 ∧ dzi1

zi1

∧ ... ∧ dzik

zik

,

where ω1 is a C∞ a (m− k) form on U ⊂ Ci; and Sing(X0) ∩ U is given
by zi1 · · · zik

= 0 in U.
Deligne proved that there exists a mixed Hodge structure on X0\Sing(X0).

The existence of Mixed Hodge Structure is based on the following filtration:

Definition 19 On the complex A∗(X0, log <Sing(X0) >) we define the weight
filtration Wl to be those forms φ that locally around Sing (X0)

φ ∈ A∗(U)
{

dzi1

zi1
∧ ... ∧ dzik

ik

}
.

Definition 20 The Poincare Residue Operator R[k] : Wk → A∗−k(C [k]) is de-
fined by

R[k]
(
α ∧ dzi1

zi1

∧ ... ∧ dzik

ik

)
= α|CI

.

Definition 21 Let us consider the decreasing filtration... ⊃ W−l ⊃ W−l+1 ⊃
...where W−l = Wl. Accordingly there is a spectral sequence {Er} such that E∞
is the associated graded to the weight filtration in H∗(X0\Sing(X0),C).
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The filtration was reversed by Deligne so that we can form a spectral se-
quence of the filtered de Rham logarithmic complex. By using the Poincare
residue map Deligne proved the following Theorems:

Theorem 22 The cohomology of X0\Sing(X0) are equal to the cohomology of
the De Rham log complex A∗(X0, log <Sing(X0) >).

(For the proof of Theorem 22 see [6].)

Theorem 23 i. The spectral sequence defined as above degenerates at the
second step. ii. E1 ⋍ ⊕H∗(CI) and the mapping d1 : E1 → E1 is a morphism
of Hodge structures given by the Gysin map (See Definition 13.)

H∗(Ci0 ∩ ... ∩Cil
) → H∗(Ci1 ∩ ... ∩ Cil

).

4.3 Jordan Normal Form of the Monodromy Operator

In this section we will prove the following Theorem:

Theorem 24 i. The number of Jordan blocks of rank k ≤ n is equal to the
rank of the group

Hn−k(Singk(X0),Q)/Im (Gk) ,

where Gk is the Gysin map.
ii.The number of Jordan blocks of rank n+ 1 is equal to dimHn(Π(X0),Q),

where Π(X0) is the Clemens’ polyhedra defined in Definition 12.
Proof of Theorem 24:The proof of both part is based on Corollary 11.

Part i of Theorem 24 follows directly from the following three Lemmas and
Theorem 10:

Lemma 25 . Let γ ∈ ImGk ⊆ Hn−k(Singk(X0),Q), then γt = C−1
t (γ) is

homological to zero in Xt.

Lemma 26 Suppose that γ ∈ Hn−k(Singk(X0),Q)/ImGk and γ /∈ ImGk , then
there exists a non zero class of cohomology ω̃ ∈ Hn(X0\Sing(X0)) such that

∫
p−1

k
(γ)
ω̃ 6= 0.

where the cycle p−1
k (γ) ∈ Hn(X0\Sing(X0),Q) is defined in Definition 6.

Lemma 27 Let γ ∈ Hn−k(Singk(X0),Q)/ImGk and γ /∈ ImGk , then γt is a
non zero element in Hn(Xt,Q).

Proof of Lemma 25:We will prove part i. Suppose that

γ ∈ ImGk ⊆ Hn−k(Singk(X0),Q).
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From the Definition 13 of the Gysin map it follows that there exists a cycle

Γ ∈ ⊕
i1,..,ik

Hn−k+2(Ci1 ∩ .. ∩ Cik
,Q)

such that Γ∩ ⊕
i0,..,ik

[Ci0 ∩ ..∩Cik
] = γ. The definition 3 of the Clemens map it

follows that the boundary of C−1
t (Γ\γ) is exactly C−1

t (γ). Lemma 25 is proved.
�.

Proof of Lemma 26: The construction of the form ω is based on the
following fact about the cohomology (homology) of (X0 \Sing(X0)), where X0

is a Kähler variety and Sing(X0) is a divisor with normal crossings in X0.
Suppose that γ ∈ Hn−k(Singk(X0),Q) and γ /∈ ImGk . Let γ ∈ Hn−k(Ci0 ∩

...∩Cik
,Q). In order to construct the form ω we will need to recall the how the

dual G∗
kto the Gysin map Gk : Hk+2(X,Z) → Hk(C,Z) is defined in Definition

15 as follows:

G∗
k : Hk(C,Z) → Hk+2(X,Z), where G∗

k(α) = α ∧ c1[C].

c1[C] is the Chern class of the line bundle defined by the divisor with normal
crossings C in X.

We will need the following Proposition:

Proposition 28 Let γ ∈ Hn−k(Ci0 ∩ ... ∩ Cik
,Q) and γ /∈ ImGk. Let ωn−k ∈

Hn−k(Ci0 ∩ ... ∩ Cik
,Q) and

∫
γ ωn−k 6= 0

then ωn−k can not be represent as follows ωn−k =
(
c1[Ci0 ∩ ... ∩ Cik

]|Ci0
∩...∩Cik

)
∧

ω1 on Ci0 ∩ ... ∩ Cik
, where ω1 ∈ Hn−k−2(Ci0 ∩ ... ∩ Cik

,Q).
Proof of Proposition 28: Suppose that ωn−k ∈ Hn−k(Ci0 ∩ ... ∩ Cik

,Q),

∫
γ ωn−k 6= 0.

and ωn−k =
(
c1[Ci0 ∩ ... ∩ Cik

]|Ci0
∩...∩Cik

)
∧ ω1 on Ci1 ∩ ... ∩Cik

. Let η be

anon zero section of the line bundle O([Ci0 ∩ ... ∩ Cik
]) on Ci1 ∩ ... ∩ Cik

such
that the zero set of η is exactly Ci0 ∩ ... ∩ Cik

. Let us consider the form

(d log(η)) ∧
(
c1[Ci0 ∩ ... ∩ Cik

]|Ci0
∩...∩Cik

)
∧ ω1

on Ci1∩...∩Cik
\Ci0∩...∩Cik

. Let us consider the cycle p−1
1 (γ) ∈ Hn−k+1(Ci1∩

... ∩ Cik
\Ci0 ∩ ... ∩ Cik

,Q) as defined in Definition 6. Let us compute

∫
p−1

1
(γ)

(d log(η)) ∧
(
c1[Ci0 ∩ ... ∩ Cik

]|Ci0
∩...∩Cik

)
∧ ω1.

Since locally around a point w ∈ Ci0 ∩ ... ∩ Cik
the divisor Ci0 ∩ ... ∩ Cik

in
Ci1 ∩ ... ∩ Cik

is given by z = 0, where w ∈ U ⊂ Ci1 ∩ ... ∩ Cik
, we see that

12



d log(η)|U = dz
z .

From this local expression of d log(η) and the definition of p−1
1 (γ) we deduce

that

∫
p−1

1
(γ)

(d log(η)) ∧ (c1[Ci0 ∩ ... ∩ Cik
]) ∧ ω̃1 = 2π

∫
γ
ωn−k

where ωn−k =
(
c1[Ci0 ∩ ... ∩Cik

]|Ci0
∩...∩Cik

)
∧ ω1 and ω̃1 is a closed form

in then tubular neighborhood of Ci0 ∩ ... ∩ Cik
in Cii

∩ ... ∩ Cik
such that the

restriction of ω̃1 on Ci0 ∩ ...∩Cik
is ω1. On the other hand since the restriction

of the line bundle O([Ci0 ∩ ...∩Cik
]) on Ci1 ∩ ...∩Cik

\Ci0 ∩ ...∩Cik
is the trivial

line bundle, we deduce that the form c1[Ci0 ∩ ...∩Cik
] will be an exact form on

Ci1 ∩ ... ∩ Cik
\Ci0 ∩ ... ∩ Cik

, i.e. c1[Ci0 ∩ ... ∩ Cik
] = dβ. This implies that

(d log(η))∧(c1[Ci0 ∩ ... ∩ Cik
])∧ ω̃1 = (d log(η))∧dβ∧ ω̃1 = d(d log(η))∧β∧ ω̃1).

So Stoke’s Theorem implies that

∫
p−1

1
(γ)(d log(η)) ∧ (c1[Ci0 ∩ ... ∩ Cik

]) ∧ ω̃1 =
∫

p−1

1
(γ) d ((d log(η)) ∧ β ∧ ω̃1) =∫

∂(p−1

1
(γ))(d log(η)) ∧ β ∧ ω̃1 = 0

The last equality follows from the fact that ∂
(
p−1
1 (γ)

)
= ∅. So we can

conclude that

∫
p−1

1
(γ)(d log(η)) ∧ (c1[Ci0 ∩ ... ∩ Cik

]) ∧ ω̃1 = 2π
∫

γ ωn−k = 0.

On the other hand we know that

∫
γ ωn−k 6= 0.

So we got a contradiction. Proposition 28 is proved. �.
In order to finish the proof of our Theorem we will need some facts from the

Theory of Mixed Hodge Structures.
It is easy to see that γ /∈ ImGk implies that there exists ωn−k ∈ Hn−k(Ci0 ∩

... ∩ Cik
,Q) such that

∫
γ ωn−k 6= 0.

We may assume that ωn−k is the Poincare dual of γ. The condition γ /∈
ImGk implies that ωn−k /∈ ImG∗

k. So from here, Theorem 23 and Proposition
28 we conclude that we can find a form ω̃ on X0\Sing(X0) such that R[k](ω̃) =
ωn−k. From the theory of Leray residues it follows that

∫
p−1

k
(γ) ω̃ =

∫
γ ωn−k 6= 0.

13



Lemma 26 is proved. �.
Proof of Lemma 27:We need to prove that if γ /∈ ImGk, then γt = C−1

t (γ)
represent a non zero class of cohomology in Hn(Xt,Q). Let ωt=C∗

t (ω̃). It is
easy to see from the definition of the Clemenc map that ωt is a well defined
closed n−form on Xt. On the other hand since Ct is a diffeomorphism between
Xt\C−1

t (Sing(X0)) and X0\Sing(X0) we deduce that

∫
p−1

k
(γ) ω̃ =

∫
γτ
ωt =

∫
γ ωn−k 6= 0.

The last inequality implies Lemma 27. Lemma 27 is proved. �.
Proof of Theorem 24 i:Theorem 24 follows directly from Theorem 10 and

Lemma 27. Theorem 24 part i is proved. �.
Proof of Theorem 24 ii:Let α1, .., αk be a basis of cycles of Hn(Π(X0),Q),

where Π(X0) is defined in Definition 12. From the definition of Π(X0) we can
assume that the cycle αk consists of the n-dimensional simplices S1k

, ..., SNk

such that the boundary of the cycle αk is zero. Each n dimensional simplex Si

corresponds to a point qi = Cj0,k
∩ ... ∩ Cjn,k

according to Definition 12. The
fact that the n-dimensional simplexes S1k

, ..., SNk
form a cycle means say that

any singular points qi and qj can be joint by Riemann surface, which means
that they lie on some Cj1,k

∩ ... ∩Cjn,k
. This follows directly from the fact that

the boundary of the cycle formed from S1k
, ..., SNk

is zero. So on each Riemann
surface of the form Cj1,k

∩ ... ∩ Cjn,k
that contains the points qi and qj we can

find a meromorphic form of the third kind ωij which has poles only at the points
qi and qj with residues say +1 at qi and −1 at qj . From the spectral sequence
defined in Definition 21, Theorem 22 and Theorem 23 we deduce that there is
a holomorphic form ωk in X0\Sing(X0) such that Poincare residue of this form
on each Riemann surface of the form Cj1,k

∩ ... ∩Cjn,k
that contains the points

qi and qj is equal to ωij . Let the meromorphic form ωk will be non-zero on the
component Cj0,k

of Sing(X0), where qi = Cj0,k
∩ ... ∩ Cjn,k

and qi was defined
as above. Suppose that the divisors Cj0,i

∩ Cjm,i
are given by the equation

zm = 0 in Cj0,i
. Let us consider the cycle p−1

n (qi) defined by |z1| = ε, ..., |zn| = ε
in Cj0\(Sing(X0) ∩ Cj0). It is easy to see that the form ωk locally around the
point qi = Cj0,k

∩ ... ∩ Cjn,k
will be given by

ωk|U = dz1∧...∧dzn

z1×...×zn
.

So we can conclude that

∫
p−1

n (qi)
ωk = (2π 2

√
−1)n 6= 0.

From Lemma 9 we deduce that the cycles C−1
t (p−1

n (qi)) and C−1
t (qi) are ho-

mological to each other inXt. From the fact that all direct imagesRiπ∗ωX/D(log(X0))
of the sheaf ωX/D(log(X0)) are locally free sheaves on D, we deduce from the
exact sequence

0 → ωX/D(log(X0))
⊗t→ ωX/D(log(X0)) → ωX/D(log(X0))|X0

→ 0

14



that we have the following exact sequence:

0 → H0(X , ωX/D(log(X0)))
⊗t→ H0(X , ωX/D(log(X0))) → H0(X0, ωX/D(log(X0))|X0

) → 0

It is easy to see that the theory of mixed Hodge structures implies that as a
free module overH0(D,OD) the moduleH0(X , ωX/D(log(X0))) is of rank bigger
or equal to dimQHn(Π(X0),Q). So we can find ω ∈ H0(X , ωX/D(log(X0))) such
that

ω|Dj0,k
= ωk.

Let us define ωt = ω|Xt
. So we get a holomorphic family of holomorphic

n-forms ωt,k on Xt such that

lim
t→0

ωt = ω0 and ω0|Dj0,k
= ωk.

From here we deduce that for small enouph t and Lemma 9 we have that

∫
C−1

t (qi)
ωt 6= 0.

From the last inequality we derive that the cycle C−1
t (qi) is a non zero ele-

ment of Hn(Xt,Q). Now Theorem 24 part ii follows directly from Corollary 11.
Theorem 24 part ii is proved. �.

Definition 29 Let us define the geometric genus of Xt as follows:

pg(Xt) = dimC H
0(Xt,Ω

n
t ) for t 6= 0

Corollary 30 We have the following formula for the geometric genus:

pg(Xt) =∑m
i=0 pg(Ci) +

∑n−1
k=0

∑
|I|=k+1 dimC H

0(CI ,Ω
n−k) + dimC Hn(Π(X0),Q).

5 Applications of Clemens’ Theory to Complete

Intersections

5.1 A Simple Criteria for the Existence of Jordan Block
of Maximal Dimension

In this paragraph we will prove the following Theorem, which we will apply
later to complete intersections in toric varieties:

Theorem 31 Let π : X → D be a family of Kähler varieties over the disk such
that:

15



1. For t 6= 0, π−1(t) := Xt is a non singular variety of complex dimension
n ≥ 1.

2. dimC H
0(Xt,Ω

n) ≥ 1 for t 6= 0.

3. π−1(0) = X0 = ∪m
i=0Ci is a divisor of normal crossing and each C i is

irreducible.

4. C0 ∩ .. ∩Cn = q is a point .

5. There exists a holomorphic section ω ∈ H0(X ,Ωn
X/D < logX0 >) such

that the restriction of ω to C 0, ω0 := ω |C0
has the following expression

in an open set U around the singular point q := C0 ∩ .. ∩Cn :

ω0 |C0∩U := ω |C0∩U = dz1∧...∧dzn

z1×...×zn

Then the monodromy operator of the family π : X → D has a Jordan block
of size n+ 1.

Proof of Theorem 31: Let z0, ..., zn be local coordinates near q such that
zi = 0 local equation of for Ci, for i = 1, .., n. Then z1, .., zn can be regarded as
coordinates on C0 near q. Let T0 be the n dimensional real torus in C0\ (Ci ∩ C0)
defined by |zi| = ε for i = 1, .., n.

In the notations of Definition 5, T0 is just pn(γ)−1(q), where γ is the homol-
ogy class of the point q. From the properties of the Clemens map Ct it follows
Lemma 9 that the real n cycle C−1

t (T0) = Tt is homological to γt := C−1
t (γ). Let

ωt = ω|Xt
. The idea of the proof is to show that for t small enough, Tt is not

homological to zero, by showing that
∫

Tt
ωt 6= 0.

This fact together with Corollary 11 implies Theorem 31. So we need to
prove the following Proposition:

Proposition 32 The real cycle Tt is not homological to zero on Xt.

Proof of Proposition 32: Condition 5 implies that lim
t→0

ωt = ω0 exists and

locally around the singular point q ∈ C0 of X0, ω0 is given by the following
expression:

ω0 |C0∩U = dz1∧...∧dzn

z1×...×zn
.

From this expression we obtain that
∫

T0
ω0 =

∫
T0

dz1∧...∧dzn

z1×...×zn
=

(
2πε

√
−1

)n 6= 0.

From the fact that

lim
t→0

∫
Tt
ωt =

∫
T0
ω0 6= 0

we obtain that small t we have:
∫

Tt
ωt 6= 0

This proves Proposition 32. �. Theorem 31 is proved. �.
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5.2 Families of Complete Intersection CY Manifolds in
Projective Space with Maximal Unipotent Monodromy

Definition 33 We will consider the following one parameter family of complete
intersections of CY manifolds in Pn+k for n ≥ 4 and k ≥ 1 defined by the
following equations:

G1,t = tF1 −
∏n1

i=0 xi = 0, .., Gk,t = tFk − ∏nk

j=n1+..+nk−1
xj = 0,

where the system F1 = .. = Fk = 0 defines a non singular CY manifolds,

ni = degFi ≥ 2 and
∑
ni = n+ k + 1

and x i are the standard homogeneous coordinates in Pn+k.
The condition

∑
ni = n+k+1 implies that the fibers π−1(t) = Xt for t 6= 0

are CY manifolds of complex dimension n.
Let us denote the family defined in Definition 33 by

X → D, where X ⊂PN ×D.

Theorem 34 The family π : X → D has a monodromy T of maximal unipotent
index, i.e. (TM − id)n+1 = 0 and (TM − id)n 6= 0.

Proof of Theorem 34: Our proof is based on checking the conditions of
Theorem 31 for this particular family. First we will check that the singular fiber
X0 := π−1(0) consists of linear subspaces Ci isomorphic to Pn. We will prove
that there exists a component say C0 such that another n linear spaces Ci inter-
sect C0 transversely along Pn−1. First we will prove the following Proposition:

Proposition 35 The singular fiber of the family X → D consists of exactly∏k
i=1(ni − 1) n dimensional linear subspaces isomorphic to Pn.

Proof of Proposition 35: From the Definition 33 it follows that X0 :=
π−1(0) is defined by the equations:

∏n1

i=0 xi = 0, ..,
∏nk

j=n1+..+nk−1
xj = 0

and thus X0 is a union of linear subspaces of dimension n defined by the
equations:

xj1 = 0, .., xjk
= 0,

where 0 ≤ xj1 ≤ n1, .., n1 + .. + nk−1 < xjk
≤ N. From these equations

Proposition 35 follows directly. �.

Proposition 36 There exists a component C0 of the singular fiber X0 of the
family π : X → D such that C0 is isomorphic to Pn. Let (z0 : .. : zn) be the
homogeneous coordinates in Pn, then there exists n components of the singular
fiber X0 say C1, .., Cn such that Ci ∩ C0 is defined in D0 ≅ Pn by the equation
zi = 0.
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Proof of Proposition 36: Let us denote by

d1 = n1, d2 := n1 + n2, .., dj := n1 + ...+ nj, .., dk = n1 + ...+ nk.

We already proved that each component ofX0 is a linear subspace isomorphic
to Pn. Let D0 be the subspace defined by the equations:

x0 = xd1
= xd2

= ... = xdk−1
= 0.

The coordinates (xi1 : xi2 : ... : xn+k) define a homogeneous coordinates on
C0 if all xim

are different from the xdj
that define C0. Let us define Cim

for
1 ≤ m ≤ n by the following system of equations: xj1 = .. = xjk

= 0, where all
the indexes (j1, .., jk) with an exception of one is equal to indexes (0, d1, .., dk−1).
These equations define a component of the singular fiber. Indeed the necessary
and sufficient condition for a system of linea equations xj1 = .. = xjk

= 0
to define a component of the singular fiber X0 of the family π : X → D is
0 ≤ j1 ≤ d1, d1 < j2 ≤ d3, .., dk−1 < jk ≤ dk. Here we are using the conditions
that ni ≥ 2 and n1+ ...+nk = n+k. Clearly Cim

∩C0 will be a n−1 dimensional
linear subspace in C0 ≅ Pn−1. From here it follows that we constructed Ci for
i = 1, .., n such that C0 ∩ ... ∩ Cn = (0 : ... : 1) = q. So we proved Proposition
36. �.

Proposition 37 There exists a section ω ∈ H0(X ,Ωn
X/D log < X0 >) such

that if ω|Xt
= ωt for t 6= 0 then:

lim
t→0

ωt = ω0

where when we restrict ω0 on C0 ≅ Pn, then ω0 |Ui
is given by the formula:

ω0|Ui
= dz1∧..∧dzn

z1...zn .

where Ui is the standard covering of Pn.
Proof of Proposition 37: Since we choose p = (0, 0, .., 1) we will work

in the open set Un+k := {(x0 : .. : xn+k)|xn+k 6= 0}. Let us consider the
meromorphic form

Ωt := dz1∧..∧dzn+k

G̃t,1..G̃t,k
, where G̃t,i := Gt,i(

x0

xn+k
, ..,

xn+k−1

xn+k
, 1) and zi = xi

xn+k
.

on Un+k × D. By taking k times the Leray residue of Ωt we define the
holomorphic n-form ωt on Xt. Suppose that C0 in Un+k × D is given by the
equations (by suitably reordering the coordinates):

zn+1 = .. = zn+k = 0 and t = 0.

(See [9].) Let z1, .., zn be the rest of the coordinates in Un+k. Let us choose
an open set W in X ⊂PN × D∗ where z1, .., zn, t are local coordinates of W ,
then from the definition of the Leray residue it follows that on W we have:
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ωt|W := dz1∧..∧dzn

∂n+1...∂n+k(G̃t,1×..×G̃t,N−n)
, where ∂i = ∂

∂zi .

From the last formulas we get that

lim
t→0

∂n+1...∂n+k(G̃t,1 × ..× G̃t,k) = z1 × ..× zn.

So we deduce that

lim
t→0

ωt|W = ω0 = dz1..∧dzn

z1×..×zn .

Proposition 37 is proved. �.
Propositions 36 and 37 imply that the conditions of Theorem 31 are satisfied

by the family π : X → D. So Theorem 31 implies Theorem 34. Theorem 34 is
proved. �.

Remark 38 It is not at all difficult to generalized the contsruction of the one
parameter family of complete intersections of CY manifold in CP

N with maximal
unipotent element in the monodromy group to the case of of complete intersec-
tions of general type. More precisely it is very easy to prove that there exists a
family π : Y → D of complete intersections in CPN of general type such that if
the dimension of the fiber is n, then the monodromy operator T contains exactly
pg(Yt) Jordan blocks of dimension n+ 1, where pg = dimC H

0(Yt,Ω
n
Yt

).

6 Construction of a Family of CY Manifolds in

Toric Varieties with Maximal Unipotent Mon-
odromy

6.1 Introduction to Toric Varieties

Let T = (C∗)N . Let N be a rank N lattice, and Σ be a complete fan relative to
N. (See [14].)

Notations:

PΣ = V : toric variety defined by Σ.

N∨ : lattice dual to N.

Σ(k) : the set of k-cones in Σ.

τ∨ : the dual of a cone τ.

Dρ : the toric divisor corresponding to ρ ∈ Σ(1).

O(D) = OV (D) : the line bundle (invertible sheaf) associated to the divisor
D.

19



We follow the usual combinatorial description of a cone τ in Σ, and often
use the set of edges of τ or its primitive generators to denote the cone. Let
Oρ, ρ ∈ Σ(1), be the codimension 1 T -orbit and Dρ be their respective closures.
Thus they are irreducible T -invariant Weil divisors in V. Let R be the polynomial
ring C[xρ, ρ ∈ Σ(1)]. If we declare that deg xρ = [Dρ] ∈ AN−1(V ), then R
becomes a AN−1(V )-graded ring, where AN−1(V ) is the Picard group of V. We
denote the degree [D] subspace in R by R[D]. It is known that (see [1][5] [13]):

R[D] ≅ H0(V,OV (D)).

The graded ring R is called the homogeneous coordinate ring of V. The iso-
morphism above can be described as follows. The dual lattice N∨ can be viewed
as the lattice of characters of the group T.We denote a character multiplicatively
corresponding to ν ∈ N∨ by χν . Then

H0(V,OV (D)) = ⊕ν∈PD∩N∨C · χν

where

PD = {ν ∈ N∨ ⊗Z R| 〈ν, ρ〉 ≥ −aρ ∀ρ}.
Here ρ denotes the primitive generators of the 1-cones, and D =

∑
aρDρ is

the Weil divisor defining the line bundle OV (D). The isomorphism φD above is

given by φD : χν → ∏
ρ x

〈ν,ρ〉+1
ρ . The assertion above gives a description of the

space of sections of all equivariant line bundles over V.
Let us consider the section xρ. Note that ν = 0 is in PDρ

, hence by the
isomorphism above φDρ

(χ0) = xρ is a section of OV (D). In fact the zero set of
xρ = 0 is exactly the divisor Dρ.

For mirror symmetry, the most interesting case is when the convex hull of
the 1-cone generators ρ ∈ N∨ ⊗Z R form a reflexive polytope ∆, and that D is
the anticanonical divisor. (See [2] and [3].) In this case PD is the polar dual of
∆. Here are some examples:

1. V = P2, D = D1 +D2 +D3, Di being the ith−hyperplane. The homoge-
neous coordinate ring of V is the usual C[x1, x2, x3]. If we identify A1(V )
with Z such that [H ] → 1, then xi has degree 1. The polytope ∆ is gener-
ated by the 1-cone generators ρi is the triangle with vertices (1,0), (0,1),
(-1,-1). Its dual ∇ is the triangle with vertices (2,-1), (-1,2), (-1,-1). It
is easy to check that ∇ has exactly 10 lattice points m. They are in 1-1
correspondence with the degree 3 monomials in xi.

2. Let ξ be a primitive third root of unity. Let Z3 acts on P2 by [x1, x2, x3] 7→
[ξx1, ξ

−1x2, x3]. Resolve all the singularities in P2/Z3 ”minimally”. The
result is a toric variety V with 9 hyperplanes Di all together (with two
linear relations). The anticanonical divisor in V is D = D1 + ...+D9. The
polytope ∆ generated by the 1-cone generators nρ is now the triangle with
vertices (2,-1), (-1,2), (-1,-1). Its dual ∇ is the triangle with vertices (1,0),
(0,1), (-1,-1). Since ∇ has exactly 4 lattice points, K−1

V has 4 sections –
one of them being x1 · · ·x9.
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6.2 Construction of One Parameter Family of CY Com-
plete Intersection in a Toric Variety with Maximal
Jordan Block in the Monodromy Operator

Let π1, ..., πk be a partition of the set Σ(1).We assume that Fi ∈ H0(V,OV (
∑

ρ∈πi
Dρ))

together define a nonsingular subvariety X of codimension k:

F1 = ... = Fk = 0.

Put n = N − k. Since the anticanonical class is

[K−1
V ] =

∑
ρ
Dρ,

by adjunction X is a Calabi-Yau manifold. We consider the following 1-
parameter family of complete intersections Xt defined by

Gi,t = tFi −
∏

ρ∈πi

xρ = 0, i = 1, ..., k.

Let us denote this family when |t| < 1 by π : X → D. The fiber X0 is the
union of toric subvarieties

Cσ := ∩ρ∈σDρ

where σ is any subset of Σ(1) such that |σ ∩ πi| = 1 for all i. It turns out
that (see Appendix) Cσ is nonempty iff the 1-cones in σ generate a cone in Σ. In
this case, Cσ is a nonsingular irreducible toric subvariety in V of codimension k
corresponding to the k-cone σ ∈ Σ(k). Thus such a nonempty Cσ is a component
in X0.

Remark 39 The assumption that the Fi defines a codimension k subvariety is
important. This put a strong constraint on the kind of partitions π1, ..., πk that
are allowed. A general partition of Σ(1) will fail to satisfy this condition. Here is
an example. Take the 4-dimensional weight projective space P[9, 6, 1, 1, 1]. After
a minimal desingularization, the resulting toric variety has 9 1-cones ρ1, ..., ρ9

in its fan Σ. After suitable ordering, it is easy to find a partition of the form
π1 = {ρ1, ρ2}, π2 = {ρ3, ρ4}, π3 = {ρ5, ..., ρ9} such that {ρ1, ρ3}, {ρ1, ρ4},
{ρ2, ρ3}, {ρ2, ρ4}, are all primitive collections. In this case, X0 would be empty
because the Cσ = Dρi

∩ Dρj
∩ Dρk

, for ρi ∈ π1, ρj ∈ π2, ρk ∈ π3, will all be
empty.

Throughout this section, we shall make the following additional assumption:
that the convex hull of the set of primitive generators ρ of the 1-cones in Σ is
a reflexive polytope, which we shall denote by ∆.

Theorem 40 The monodromy operator of the family X → D has one Jordan
block of dimension n+ 1.
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6.3 Proof of Theorem 40

Lemma 41 Let Cσ0
be a fixed component in X0. Then there exists n other

components Cσ1
, ..., Cσn

with the property that Cσ0
∩Cσi

is a codimension k+1
toric subvariety, and that

Cσ0
∩ ... ∩ Cσn

is a toric fixed point.
Proof: Since the fan Σ is complete, we can find an N− cone, say τ , contan-

ing σ0 as a k-face. Write σ0 = 〈ρ1, ..., ρk〉 , where the ρi ∈ πi are the canonical
generators of σ0. Similarly, write τ in terms of its 1-cone generators:

τ =
〈
ρ1, ..., ρk, ρ

′

1, ..., ρ
′

n

〉
.

Then each ρ
′

j lies in a unique say πij
. Since V is non-singular, τ is a simplicial

cone, so that any k of its generators generate a k-cone in Σ. In particular we
have the k-cones

σj :=
〈
ρ1, ..., ρ̂ij

, ..., ρk, ρ
′

j

〉
, j = 1, ..., n.

That is, σj is obtained from σ0 by replacing the generator ρij
of σ0 by ρ

′

j .

Since both ρij
and ρ

′

j live in the same πij
, it follows that Cσj

, as defined above,
is a component in X0. By construction,

Cσ0
∩ Cσj

= ∩ρ∈σ0∪σj
Dρ.

But σ0 ∪σj is the list σ0 adjoint with ρ
′

j , hence gives a (k+1)-cone in Σ. So
Cσ0

∩Cσj
is a codimension (k + 1) toric subvariety in V. Moreover,

Cτ = ∩ρ∈σ0∪...∪σn
Dρ = ∩ρ∈τDρ

which is codimension k + n = N toric subvariety of V. Hence it is a fixed
point.�.

Note that the nonsingular toric subvariety Cσ0
comes with a standard affine

coordinates on the affine patch containing fixed point above. Namely, they are
obtained from restricting the standard affine coordinates on the patch

Uτ = Homsg(τ
∨,C∗) ≅ (C∗)N .

Here the isomorphism is determined by the choice of ordering of the set of
primitive generators of the cone τ∨.

Lemma 42 There exists a meromorphic form on V = PΣ with simple poles
along each hypersurface Fi = 0.
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Proof: First let X be a complex N -fold, and KX its canonical bundle. Let
{Uσ} be a covering of charts on X, whose coordinates Uσ → CN we denote
zσ = (zσ

1 , ..., z
σ
N). From this data, we get a frame dzσ = dzσ

1 ∧ ... ∧ zσ
N on each

Uσ for the bundle KX , hence a dual frame for the dual bundle K−1
X . Suppose

f is a nonzero global section of K−1
X . Then relative to a dual frame above,

f is represented as a holomorphic function fσ(zσ). Note that on any overlap
Uσ ∩ Uτ 6= ∅, the functions fσ, fτ transform by the same transition function as
the frame dzσ and dzτ . It follows that the local expressions

dzσ

fσ(zσ)

together define a global meromorphic N -form on X with poles along the
zero locus f = 0. We now assume that X is an algebraic variety and the Uσ are
affine patches. We now apply this to an N -dimensional complete toric variety
V = PΣ, as before.

Recall that PΣ is covered by the affine subvarieties Uσ ≅ CN , labelled by
N -cones σ in Σ. Here the isomorphism is determined by an ordering of the
set of N integral generators of the cone σ. We denote by zσ = (zσ

1 , ..., z
σ
N ) the

coordinates of this isomorphism. Let

∇ := {ν ∈ N∨ ⊗ R| 〈ν, x〉 ≥ −1, ∀x ∈ ∆}.

This is the dual of the reflexive polytope ∆.
The global sections of the anticanonical bundle K−1

V on V = PΣ has the
following description. There is a basis of H0(V,K−1

V ) which corresponds 1-
1 with the set ∇ ∩ N∨. Let’s fix an ordering of the set Σ(1) and denote the
generators by ρ1, ..., ρS ∈ N. Let L be the kernel of the natural map

ZS → N, m→ ∑
miρi.

Let L⊥ be the orthogonal complement of L in ZS with respect to the standard
inner product l · l′. Then N ≅ ZS/L, and the natural pairing L⊥ × ZS/L→ Z,
(l, l

′

+ L) 7→ l · l′ , defines a canonical isomorphism L⊥ ≅ N∨. Then a general
section of K−1

V is of the form

f = x1...xS

∑
ν∈∇∩N∨

cνx
ν .

(See [1], [5] and [13].) Here the cν are arbitrary complex numbers, xi are
the homogeneous coordinates of V, viewed as a section of O(Dρi

), and xν is the
monomial in the xi with exponents ν ∈ L⊥ ⊂ ZS .

As an example, when V = PN , we have K−1
V = OPN (N + 1), and xi are the

usual homogeneous coordinates. In this case a general section of K−1
V above is

exactly a degree N + 1 homogeneous polynomial in the xi.
We now return to the general case. Let e1, ..., eN denotes the standard basis

of ZN . Let σ be any N -cone in the fan Σ, and fix an ordering ν1, ..., νN for the
primitive generators of the dual cone σ∨.
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Proposition 43 Relative to the frame dual to dzσ above, sections of K−1
V are

represented by polynomial functions of the form

fσ(z) = z1...zN

∑
v∈∇σ

cvz
v.

Here zi = zσ
i , cv are arbitrary numbers, ∇σ ⊂ ZN is the image of ∇ ∩ N∨

under the isomorphism N∨ → ZN determined by νi → ei.
Proof:A priori, fσ(z) given above is a Laurent poly nomial in z.We will first

show that it is in fact a polynomial. Recall that every element ν ∈ ∇ satisfies
〈ν, x〉 ≥ −1 for all x ∈ ∆. Let v be the image of ν under the isomorphism
N∨ → ZN determined by νi → ei, and let a be the preimage of x ∈ ∆ under
the dual map ZN → N. Then v · a = 〈ν, x〉 ≥ −1. In particular if x is then
preimage generator of the cone σ, then 〈νk, x〉 = 1 for one k and zero otherwise.
This means that the preimage a of x is such that ei · a = 1 if i = k and zero
otherwise, i.e. a = ek. Clearly, every ek can be realized as the preimage of
some primitive generator x ∈ ∆ of σ. This shows that for any v ∈ ∇σ, we
have v · ek = 〈ν, x〉 ≥ −1 for all k. It follows that every Laurent monomial
z1...zN · zv appearing in fσ(z) has a nonnegative exponent, i.e. fσ(z) is a
polynomial function on CN .

Let τ be any other N -cone in the fan Σ, and fix an ordering µ1, ..., µN for the
primitive generators of τ∨. Clearly the respective generators νi, µj for σ∨, τ∨,
determine an A ∈ (aij) ∈ GL(N,Z) such that

νi =
∑
j

aijµj .

For simplicity, we write z = zσ, w = zτ . The coordinates transition function
is then given by

zi = wAi , Ai = (ai1, ..., aiN ).

We consider the region of overlap of Uσ ∩ Uτ where zi 6= 0 and wj 6= 0 for
all i, j. First we show that the frames dz, dw of N -forms are related by the
transformation law

dz = det(A) z1...zN

w1...wn
dw.

We have

dz
z1...zN

= d log z1 ∧ ...d log zN .

Now log zi =
∑

j aij logwj on the overlap. So the transformation law above
follows immediately.

It remains to show that there is a polynomial function fτ (w) such that

fσ(z) = det(A) z1...zN

w1...wN
fτ (w).

The matrix A defines an isomorphism B : RN → RN , Bv =
∑

j aijvi. Then
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zv = wBv .

Moreover the image of ∇σ ⊂ RN under B is ∇τ . It follows that

fσ(z) = z1...zN · ∑
v∈∇σ

cvz
v = z1...zN

∑
u∈∇τ

cB−1uw
u.

So if we set

fτ (w) := w1...wN · ∑
u∈∇τ

det(A)−1cB−1uw
u,

then we obtain the desired function. �.
Proposition 43 implies Lemma 42. �.
As an example, when V = PN , we can choose the fan Σ in ZN , so that the

1-cone primitive generators are e0 = −e1 − · · · − eN , e1, .., eN . In this case, we
have N + 1 standard affine patches Uσi

, where σi is the N -cone generated by
e0, .., êi, ..., eN . The affine coordinate are zσi = (x0

xi
, ..., 1i, ...

xN

xi
). For simplicity,

we label each cone σi simply by the integer i. Then the coordinate transition
functions are given by

zσ
i = zτ

j
xτ

xσ
, i 6= σ, τ ; zσ

τ = 1
zτ

σ
.

The transition functions for coordinate N -forms are given by

dzσ = (−1)σ+τ xτ

xσ
dzτ .

We now prove the general toric version of Proposition 37.

Proposition 44 There exists a family of holomorphic n-forms ωt on Xt for
t 6= 0 such that

lim
t→0

ωt = ω0

where ω0 is a section on X0 with the following properties: restricted to the
component Cσ0

, ω0 has the form:

ω0|Uε
= dz1∧...dzn

z1...zn

where ( z1, ..., zn) are coordinates on the affine patch Uε ⊂ Cσ0
.

Proof: Let Uτ ≅ CN be the affine patch in V = PΣ as given in the proof
of Proposition 43. Let zτ = z = (z1, ..., zN ) be the affine coordinates. Here we
choose the coordinates so that the affine subvariety Uε = Uτ ∩Cσ0

is defined by

zn+1 = ... = zN = 0

and the z1, ..., zn are affine coordinates of Uε. Choose a small analytic neigh-
borhood W ⊂ X ∩ Uτ × D so that z1, ..., zn, t are coordinates on Xt ∩W for
small t.

Clearly
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f := Gt,1...Gt,k ∈ H0(V,O(
∑

ρ∈Σ(1)

Dρ)) = H0(V,K−1
V ).

By Lemma 42, we have a meromorphic N -form given by

Ωt = dz
gt(z)

where

gt(z) = z1...zN (1 − tf1(z))...(1 − tfk(z)).

Here fi(z) is a Laurent polynomial representing the section Fi of O(
∑

ρ∈πi
Dρ)

on the algebraic torus z1...zN 6= 0. Note that for all t, gt is polynomial in the z
by construction. Integrating the form Ωt via Leray residue k times, the result
is a section ωt of the sheaf of n-forms, whose restriction on Xt ∩W is given by

ωt = dz1∧...∧dzn
∂

∂zn+1
... ∂

∂zN
gt(z)

.

It is clear that the dominator of ωt goes to z1...zn as t→ 0. This proved our
assertion. �.

Theorem 40 now follows directly from Theorem 31. �.

Remark 45 One can generalize the same constructions to the case of compete
intersections of general type in toric varieties for which the canonical class is
very ample. Namely one can prove that there exists one parameter family of
complete intersections of general type Y → D for which the generic fibers is of
dimension n and the canonical class is very ample, such that the monodromy
operator contains exactly pg(Yt) Jordan blocks of dimension n+ 1.

7 Comparisons

7.1 Relationship with Hypergeometric Functions

In [10], the construction of the point of maximal unipotent monodromy has been
done for the family of CY hypersurfaces consisting of all anticanonical hyper-
surfaces modulo equivalence under T in a fixed toric variety. The construction
there uses an entirely different approach. Namely, one exploits the fact that the
periods of the family are solutions to a system of linear partial differential equa-
tions, known as a GKZ hypergeometric system and its generalization. (See [10]
and the references there.) The construction is then done by carefully analyzing
the structure of certain singularities of the PDE system. Explicit computation
of certain period is also necessary in that approach.

We now briefly compare the approach of [10] with the present approach.
For simplicity, we consider the case of hypersurfaces in an N dimensional toric
variety V = PΣ. Recall that in order to apply Theorem 31, we must construct
a meromorphic N -form Ωt on V with a simple pole along the CY hypersurface
Xt :
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Gt := tF − ∏
ρ
xρ = 0.

Here F ∈ H0(V,K−1
V ) is a fixed section. In the affine coordinates zσ =

(z1, ..., zN) on an affine patch Uσ ≅ CN , Ωt takes the form:

Ωt = dz1∧...∧dzN

z1...zN (1−tf(z))

where f(z) is a Laurent polynomial representing the section F. The Leray
residue of Ωt gives a holomorphic n-form on Xt. We then integrate ωt over a real
n-torus, giving a holomorphic function of t bounded near t = 0. This function is
a period of the CY manifold Xt near t = 0. It is easy to see that this period can
also be obtained by integrating Ωt over a real N -torus α0, |z1| = ... = |zN | = ε,
in T :

∫
α0

Ωt.

But this is precisely a special value of the holomorphic solution of GKZ
system given in [10]. In fact, in [10], Gt is replaced by a general section, and
the special Laurent polynomial 1− tf(z) is replaced by its general counterpart.
The result is a multi-variable holomorphic function (the variables being the
coefficients of the general Laurent polynomial). A power series expansion of
this function can be easily computed. (See [10].) The period

∫
α0

Ωt above can
be obtained by specializing the multi-variable function to 1-variable function by
restricting it to the one-parameter family Gt = 0.

7.2 Comparison of Maximal Unipotent Monodromy and
the SYZ Conjecture

Clemens’ theorem 10 and our construction of the maximal unipotent mon-
odromy operator T for complete intersection CY manifolds in a toric variety
show that there exist special cycles, namely the invariant cycle γ and the cycles
α1, ..., αn, such that

T (αn) = γ + α1 + ...+ αn.

From Clemens’ theory, we know that the cycle γ can be realized as a n
dimensional torus. The cycle αn can probably be realized as an n dimensional
sphere. A theorem of Clemens says that γ and αn have intersection number 1.

On the other hand, the SYZ conjecture asserts that a CY n-fold should admit
the structure of a fibration over an n-sphere with generic fibers given by special
Lagrangian n-tori. Moreover this fibration admits a canonical section. Thus the
section is an n-cycle having intersection number 1 with the fiber cycle. It is quite
clear that the cycle γ and αn above should be realized precisely as the n-sphere
section and the n-torus fiber respectively. This general relation deserves further
investigation. For families of polarized K3 surfaces having maximal unipotent
monodromy, this can be verified by using isometric deformation (relative to the
Calabi-Yau metric) of the surface, as we will discuss next.
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Theorem 46 Let π : X → D be a family of polarized K3 surfaces with polar-
ization class e ∈ H2(X,Z) such that < e, e >= 2n for a fixed positive integer
n. Suppose that π−1(0) = X0 is a singular surface. Fix t 6= 0 and suppose the
monodromy operator T acting on the second homology group of X = π−1(t) is
such that (T − id)3 = 0 and (T − id)2 6= 0. Let gt be the Calabi-Yau metrics on
X = Xt such that [Im gt] = e. Let γ, α1 and α2 be cycles such that

T (γ) = γ, T (α1) = γ + α1, T (α2) = γ + α1 + α2,

< e, γ >=< γ, γ >=< α2, α2 >= 0, < γ, α2 >= 1.

Then there exists a torus fibration ψ : X → S2 such that the generic fiber ψ−1(s)
is a Lagrangian 2-torus with respect to Re gt representing the homology class γ.
Moreover, there is a section σ : S2 → X such that σ(S2) ⊂ X is a Lagrangian
submanifold representing the homology class α2 − γ.

Before we prove the theorem, let’s construct a family of polarized K3 surface
that fulfills the conditions stated in Theorem 46. Let Et : y2 = x(x − 1)(x − t)
be a family of elliptic curves when t ∈ D, where D := {t ∈ C| |t| < 1} and
Et ⊂ CP

2 ×D. Then Et ×D Et → D is a family of abelian surfaces over the unit
disc. Let π : Kt → D be the family of Kummer surfaces associated with this
family of abelian surfaces. In [7] it was proved that the family π : Kt → D
satisfies the conditions of Theorem 46. See page 252-253 in 46. On page 252 an
explicit construction of the cycles γ and α2 is given and moreover from Clemens’
theory it follows that

< γ, γ >=< α2, α2 >= 0 and < γ, α2 >= 1.

In particular, γ and α2 span a hyperbolic lattice

H =

(
0 1
1 0

)
.

It is a well known fact that for a K3 surface X H2(X,Z) is a lattice isomor-
phic to ΛK3 := H3 ⊕ (−E8)

2. Let us define (transcendental lattice)

Te := {v ∈ ΛK3| < e, v >= 0}.

We know also that Te ≅ Ze∗ ⊕ H2⊕(−E8)
2, where < e∗, e∗ >= − < e, e > .

So we may suppose that Te = Ze∗ ⊕ {γ, α2}⊕H⊕(−E8)
2. See [7]. In [7] it is

shown that the cycles γ and α2 ∈ Te.
PROOF of Theorem 46: We will use isometric deformation with respect

to the CY metric gt on a K3 surface whose class of cohomology [Imgt] = e and
the epimorphism of the period map for K3 surfaces to prove that K3 surafce can
be realized as a Lagrangian fibration with respect to each CY metric gt. The
Lagrangian fibration that we will construct will have the properties that the
homology class of the generic fibre will be γ and the homology class of the base
will be δ = α2−γ. For the description and applications of isometric deformations
see [15]. Theorem 46 will follow directly from the following Lemma:
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Lemma 47 i. Let Y be a K3 surface whose Neron-Severi group NS(Y ) spanned
by a cycle γ and such that < γ, γ >= 0, then γ can be realized as a non singu-
lar elliptic curve C on Y and the linear system |C| defines an elliptic fibration
|C| : Y → CP

1. ii Let Y be a K3 surface whose Neron Severi group NS(Y )
spanned by a cycle δ and such that < δ, δ >= −2, then either δ or −δ can be
realized as an embedded complex line CP1 ⊂ Y.

PROOF: First we will prove part i of Lemma 47. From the condition that
Neron Severi group NS(Y ) is spanned by cycles γ such that < γ, γ >= 0, we
deduce that there exists a line bundle Lγ , whose Chern class c1(Lγ) = γ. From
Riemann-Roch theorem we deduce that

dimH0(Y,Lγ) + dimH2(Y,Lγ) ≥ 2.

Serre’s duality implies that dimH2(Y,Lγ) = dimH2(Y,L∗
γ), where L∗

γ is the
dual line bundle of Lγ . From here we obtain that either dimH0(Y,Lγ) > 1 or
dimH0(Y,L∗

γ) > 1. So either γ or −γ can be realized as an effective divisor on
Y. Recall

Theorem 48 ([16] p559.) If an effective divisor D > 0 on a K3 surface Y
satisfies the conditions < D,D >= 0 and < D,E >≥ 0 for any effective divisor
E > 0, then the linear system |D| contains a divisor of the form mC, where
m > 0 and C is an elliptic curve.

Since NS(Y ) is spanned by a cycle γ such that < γ, γ >= 0, it follows that that
γ or −γ can be realized a non sigular elliptic curve C. From the standard exact
sequence on C:

0 → OY (−C) → OY → OC → 0,

we have, in the associated long exact sequence,

H0(OY ) → H0(OC) → H1(OY (−C)) → H1(OY ) = 0.

Since the restriction map H0(OY ) = C → H0(OC) = C is an isomorphism,
we have H1(OY (−C)) = 0. From Serre’s duality applied to K3 surafces we get
H1(OY (−C)) = H1(OY (C)) = 0 and H2(OY (C)) = 0. It is a standard fact
that the linear system |C| defines a map φ : Y → CP

1. For details see page 560
of [16]. Part i of Lemma 47 is proved.

Part ii of Lemma 47 follows directly from Corollary 3 on page 560 of [16].
Lemma 47 is proved. �.

One of the main consequences of the existence of a Calabi Yau metric on a K3
surface X with a holomorphic form ωX is the fact that the covariant derivative of
the holomorphic form ωX is zero, i.e. ∇ωX = 0. This implies that the following
three forms {ReωX , ImωX and Im(g)} are parallel, closed and non degenerate
forms on X . It is easy to see that:

〈ReωX , ImωX〉 = 〈ReωX , Img〉 = 〈Img, ImωX〉 = 0.
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Here Im(g) is the imaginary part of the Calabi Yau metric onX. If ‖ReωX‖2
=

‖ImωX‖2 = ‖Im(g)‖2 = 1, then these three forms define three integrable
complex structures I, J and K on X such that I2 = J2 = K2 = −id and
IJ +JI = IK+KI = JK+KJ = 0. For all these facts see [15]. The isometric
deformation is defined as a new integrable complex structure aI + bJ + cK on
X, where a2 + b2 + c2 = 1. We’ll denote this new complex structure on X by
Y . In [15] it was proved that ReωY = A(ReωX), ImωY = A(ImωX), where
A ∈ SO(3). The class A(Img) will be a class of cohomology of type (1, 1) on Y
and will define a new Calabi Yau metric on Y which is isometric to the Calabi
Yau metric on X as a Riemannian metrics. In [15] we proved that there exists
A ∈ SO(3) such that

∫
γ A(ReωX) =

∫
γ A(ImωX) = 0.

Let Y and C be defined as in Lemma 47. Notice that when we do an isometric
deformation, we are not changing either the C∞ structure or the Riemannian
structure on Y. So we may consider that C realizes the cycle γ as an embedded
two dimensional torus in X.

Lemma 49 C is a Lagrangian cycle on X

PROOF: We need to prove the following two facts: 1. The volume form of
the restriction of the CY metric gX on C is given by the following expression:

V ol(gX |C) = aRe(ωX) + bIm(ωX) (1)

and 2. that

Im(gX |C) = 0 . (2)

Since C is an elliptic curve in Y , it follows that ωY |C = 0, so that ReωY |C =
ImωY |C = 0. The volume form of the restriction of the Ricci flat Riemannian
metric on C is equal to Im(gY )|C , ie.

V ol(gX |C) = Im(gY )|C . (3)

So from (3) and the general facts about isometric deformation we deduce that

V ol(gX |C) = aRe(ωX)|C + bIm(ωX)|C + cIm(gX)|C . (4)

where a, b, c are some real numbers given by

a =

∫

C

Re(ωX), b =

∫

C

Im(ωX), c =

∫

C

Im(gX) . (5)

Since γ ∈ Te and the cohomology class [Im gX ] = e we can conclude that:

0 =

∫

γ

e =

∫

C

Im(gX) = c. (6)
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This proves fact 1. We now prove fact 2, i.e. that the restriction of the
form Im(gX) on C is identically zero. This follows directly from the following
formula, proved in [15]:

Im(gX)|C = cIm(gX)|C and c =

∫

C

ImgX . (7)

So Lemma 49 is proved. �.

Remark 50 Exactly in the same way we can prove that the cycle δ = α2 − γ
can be realized as a Lagrangian sphere. Indeed we can deform isometrically the
complex structure on X to Z with respect to the CY metric gX so that δ will be
realized as a complex projective line P1 embedded in Z. Repeating the arguments
from Lemma 49 we deduce that P1 is a Lagrangian sphere embedded in X.

The End of the Proof of Theorem 46: Indeed we realized the cycles
γ and α2 − γ as complex analytic curves on Y and on Z. Then we know from
Theorem 48 that Y is an elliptic fibration whose ”generic” fibre is an elliptic
curve. Lemma 49 implies that the fibres of this fibration are Lagrangian sub-
manifolds. Since we know that 〈γ, δ〉 = 1, we can conclude that the basis of the
Lagrangian fibration is the Lagrangian sphere that realizes the cycle δ. �.

8 Appendix: Clemens’ Cell Complex for Toric

Hypersurfaces

As before let ∆ be the convex hull of generators ρ of the 1-cones in Σ. This is an
N dimensional polytope. But it has more. It comes equipped with a canonical
simplicial decomposition induced by Σ. In particular the boundary ∂∆ is topo-
logically an N -sphere which comes equipped with a simplicial decomposition.

Lemma 51 Let τ be a set of primitive generators of 1-cones in Σ. Put k = |τ |.
The following are equivalent:

i. ∩ρ∈τDρis non empty.
ii. the cone is generated by τ is a k-cone in Σ.
iii. the convex hull of τ is a (k − 1)-cell in ∂∆.
Proof:(ii)⇔(iii) is obvious. We will show that (i) and (ii) are equivalent.

Recall that there is an order reversing 1-1 correspondence between T-orbits Oσ

and cones σ in Σ, and that the closure of V(σ) of Oσ is given by

V(σ)=
∐

γ⊃σ
Oγ .

Note that Dρ = V (ρ) for ρ ∈ Σ(1). Thus

∩ρ∈τDρ =
∐

γ⊃τ
Oγ .
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If this is nonempty, then we have some cone γ ∈ Σ containing τ. Since the
toric variety V is nonsingular, γ is a simplicial cone. this implies that any
collection of k edges of γ generates a k-face of γ. So τ generates a k-face, which
we also call τ, of γ. In particular τ ∈ Σ. Conversely, if τ generates a cone in Σ,
obviously every Dρ, ρ ∈ τ, contains Oρ. In this case, ∩ρ∈τDρ is nonempty. �.

Note that if the intersection ∩ρ∈τDρ is nonempty, then it has dimension
N − |τ |. Moreover, the correspondence above between nonempty intersections
of the Dρ’s and the cells of ∂∆ is order reversing. Namely, if two sets τ, τ ′ of
primitive generators yield nonempty intersections, then ∩ρ∈τDρ ⊂ ∩ρ∈τ ′Dρ iff
the conv(τ) ⊃ conv(τ ′).

We now specialize our family X → D to the case of hypersurfaces

tF − ∏
ρ
xρ = 0.

Thus N = n+ 1.

Theorem 52 The Clemens polytope Π(X0) is a simplicial complex which is
naturally isomorphic to ∂∆.

Proof: Recall thatX0 = ∪ρDρ. By definition of Π(X0), eachDρ corresponds
to a vertex in Π(X0). For ρ 6= ρ′, Dρ ∩ Dρ′ corresponds to 1-cell if Dρ ∩ Dρ′

has dimension n − 1 = N − 2, and so on. Thus given a set τ of 1-cones with
|τ | = k,∩ρ∈τDρ corresponds to (k − 1)-cell in Π(X0) iff ∩ρ∈τDρ has dimension
n−k+1.This is an order reversing correspondence between n−k+1 dimensional
intersections ∩ρ∈τDρ of Dρ’s and (k − 1)-cells of the simplicial complex ∂∆ as
simplicial complex. �.

Corollary 53 Hn(Π(X0),Q) ≅ Q.

In the case when X is a family of complete intersections in PΣ, one can still
define a cell complex Π(X0) similar to the definition of Clemens’ complex. It
is expected that the cell complex Π(X0) will again be isomorphic to n-sphere.
We have verified this for many examples. It turns out that the complex is
typically non-simplicial, unlike in the case of hypersurfaces. It is an interesting
combinatorial problem to describe the complex Π(X0) in simple terms.
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