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Abstract. — Let G be a simple simply connected complex algebraic group and let g∗ be a Z/m-grading
on its Lie algebra g. In a recent series of articles, G. Lusztig and Z. Yun, studied the classification of
simple G0-equivariant perverse sheaves on the nilpotent cone of gi for i ∈ Z/m, where G0 is the
exponentiation of the degree zero piece g0. They proved a decomposition of the equivariant derived
category of ℓ-adic sheaves on the nilpotent cone of gi into blocks, each generated by a certain cuspidal
local system via spiral inductions. We prove a conjecture of them, which predicts the bijectivity of a
map from 1) the set of simple perverse sheaves in a fixed block to 2) the set of simple modules of a
block of a (trigonometric) degenerate double affine Hecke algebra (dDAHA). This is a dDAHA analogue
of the Deligne–Langlands correspondence for affine Hecke algebras proven by Kazhdan–Lusztig. Our
results generalise a previous work of E. Vasserot, where the perverse sheaves in the principal block were
considered.

Résumé (Correspondance de Springer généralisée pour les algèbres de Lie Z/m-graduées)
Soient G un groupe algébrique complexe simple simplement connexe et g∗ une Z/m-graduation sur

g = LieG. Dans une série récente d’articles, G. Lusztig et Z. Yun ont étudié la classification des faisceaux
pervers simples G0-équivariants sur le cône nilpotent de gi pour i ∈ Z/m, où G0 est l’exponentialisé
de la composante de degré nul g0. Ils ont établi une décomposition en blocs de la catégorie dérivée
équivariante des faisceaux ℓ-adiques sur le cône nilpotent de gi; chacun des blocs est engendré par un
certain système local cuspidal via les inductions spirales. Nous démontrons leur conjecture qui prédit la
bijectivité d’une application de 1) l’ensemble des faisceaux pervers simples dans un bloc donné dans 2)
l’ensemble des modules simples d’une algèbre de Hecke doublement affine dégénérée. Ceci est pour les
algèbres de Hecke doublement affines dégénérées un résultat analogue à la correspondance de Deligne–
Langlands, démontrée par Kazhdan–Lusztig et portant sur les algèbres de Hecke affines. Nos résultats
généralisent ceux d’un travail d’E. Vasserot, dans lequel seuls les faisceaux pervers dans le bloc principal
étaient pris en compte.

Introduction

In the present article, we establish a generalised Springer correspondence for Z/m-graded Lie
algebras and (trigonometric) degenerate double affine Hecke algebras, which was conjectured by
Lusztig–Yun [19]. The main result is Theorem 9.12, which confirms the multiplicity-one conjecture
proposed in [19] and can be viewed as a generalised Springer correspondence in the sense of Lusztig [15,
13], for certain degenerate double affine Hecke algebras (dDAHAs) with possibly unequal parameters.

The first version of this work was realised during the author’s doctoral programme of ED 386 hosted in the
Institut Mathématique de Jussieu-Paris Rive Gauche. Later revisions are made during his postdoctoral fellowship in
Max-Planck-Institut für Mathematik in Bonn.
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Generalised Springer correspondence. — G. Lusztig in [15] generalised the classical Springer
correspondence on reductive groups by introducing cuspidal local systems.

Let G be a complex connected reductive group and let g = LieG denote its Lie algebra, on which
G acts by the adjoint action. A cuspidal pair (O,C ) on g consists of a nilpotent G-orbit O ⊂ gnil

together with an irreducible G-equivariant local system C on O such that the following condition
holds: for every strict parabolic subalgebra p ⊊ g with unipotent radical u ⊆ p and for any element
x ∈ O, we have H∗

c((x+ u) ∩O,C ) = 0.

Given the reductive group G, the following statements are proven in [15]:
(i) There is a partition of the set Irr PervG(g

nil) of isomorphism classes of simple G-equivariant
perverse sheaves on the nilpotent cone gnil into series:

Irr PervG(g
nil) =

⊔
ξ

Irr PervG(g
nil)ξ,

where ξ runs over all triples (M,O,C ) up to conjugation, where M ⊂ G is a Levi subgroup and
(O,C ) is a cuspidal pair on the Lie algebra m of M .

(ii) For each triple ξ = (M,O,C ), there is a crystallographic finite Coxeter group Wξ, called relative
Weyl group, with a bijection

Irr PervG(g
nil)ξ

∼−−→ Irr(CWξ -mod).

The series Irr PervG(g
nil)ξ is defined using the Lusztig–Spaltenstein parabolic induction. Given such

a triple ξ = (M,O,C ), let P be a parabolic subgroup of G containing M as Levi factor and let U be
the unipotent radical of P with Lie algebra u = LieU . Consider the following diagram of stacks:

[G\g] a←− [G\(G×P (O⊕ u))]
∼=−→ [P\(O⊕ u)]

b−→ [M\m],

where O⊕u is the image of the addition map O×u +−→ p. The complex Iξ = a∗b
∗C [dimG×P (O⊕u)] is

a G-equivariant semisimple perverse sheaf and Irr PervG
(
gnil

)
ξ

consists of the simple constituents of
Iξ. The bijection in statement (ii) was constructed by means of a ring isomorphism CWξ

∼=−→ End(Iξ).

Equivariant enhancements. — Let Db
G(g

nil) be the equivariant category of Bernstein–Lunts [1].
In the above statements (i) and (ii), the G-equivariance is only a condition on perverse sheaves and
higher extensions between perverse sheaves in Db

G(g
nil) play no rôle there.

In [22], higher extensions are taken into account for the statement (i). It is enhanced into the
following:
(i+) There is an orthogonal decomposition of triangulated category:

Db
G(g

nil) =
⊕
ξ

Db
G(g

nil)ξ,

where Db
G(g

nil)ξ is the thick triangulated subcategory generated by Iξ.
For each triple ξ as above, there is a graded affine Hecke algebra (graded AHA) Hξ : it is a degenerate
version of the affine Hecke algebras introduced by G. Lusztig [9], see §1.1 for the definition of the
graded AHA in our setting. Let C×

q = C× be a one-dimensional torus which acts linearly on the
Lie algebra g by weight −2 and trivially on the group G. The perverse sheaf Iξ acquires a G×C×

q -
equivariant structure. In [3] and [14], statement (ii) above is enhanced into the following:
(ii+) There is an isomorphism of graded rings

Hξ

∼=−→
⊕
k∈Z

HomDb

G×C
×
q
(gnil)(I

ξ, Iξ[k]). (0.1)

The summands of the right-hand side vanish except for k ∈ 2Z≥0. Taking quotient by the graded
radicals of both sides of (0.1), we recover the aforementioned isomorphism CWξ

∼= End(Iξ). One can
also replace G with G×C×

q in statement (i+).
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Perverse sheaves on Z-graded Lie algebras. — Keep the reductive group G as above. If
λ ∈ X∗(G) is a cocharacter, then it gives rise to a Z-grading on g by

g =
⊕
n∈Z

gn, gn =
{
x ∈ g ; λ(t)x = tnx, ∀t ∈ C×} .

Fix η ∈ Z ̸=0. The fixed-point subgroup Gλ acts on the subspace gη by the adjoint action. The
number of Gλ-orbits in gη is finite. The classification of Gλ-equivariant simple perverse sheaves on
gη proven in [13, 14, 16, 3] is the following:

(i’) There is a partition of the set Irr PervGλ(gη) of isomorphism classes of simple Gλ-equivariant
perverse sheaves on the subspace gλη into series:

Irr PervGλ(gη) =
⊔
ξ

Irr PervGλ(gη)ξ,

where ξ runs over all triples (M,O,C ) up to Gλ-conjugation, where M ⊂ G is a λ-stable Levi
subgroup and (O,C ) is a cuspidal pair on m such that O ∩ gη 6= ∅.

(ii’) For each such triple ξ = (M,O,C ), there is a bijection

Irr PervG(gη)ξ
∼−−→ IrrHξ -mod(λ,η/2),

where Hξ -mod(λ,η/2) is a block of the category of finite dimensional Hξ-modules, which depends
on λ and η/2.

The series Irr PervGλ(gη)ξ is defined using a Z-graded version of parabolic induction of the cuspidal
local system C . Statement (ii’) can be derived from the isomorphism (0.1) by the technique of
equivariant localisation. We will review these results in §1 below.

One might want to generalise the above story to loop groups / affine Kac–Moody groups. On the
algebraic side, the affinisation of graded affine Hecke algebra is the degenerate double affine Hecke
algebra (dDAHA). On the geometric side, the affinisation of the Springer resolution is the affine
Springer resolution. However, instead of working on the infinite-dimensional geometry of the loop
groups and affine Springer resolutions, we will consider cyclic gradings on simple Lie algebras, see §2.1
for a heuristic explanation of the relation between Z-gradings on loop Lie algebras and cyclic gradings
on simple Lie algebras.

Perverse sheaves on Z/m-graded Lie algebras and dDAHA. — Suppose that we are given a
simply connected simple complex algebraic group G together with a group homomorphism θ : µm →
Aut(G), where m ∈ Z>0 and µm = {z ∈ C× ; zm = 1}. The map θ gives rise to a Z/m-grading on
the Lie algebra g = LieG by

g =
⊕

k∈Z/m

gk, gk =
{
x ∈ g ; θ(ζ)x = ζkx, ∀ζ ∈ µm

}
.

Also let G0 = Gθ denote the fixed points of θ in G. Fix η ∈ Z̸=0 and let η ∈ Z/m be its congruence
class. In [18], G. Lusztig and Z. Yun addressed the problem of partitioning simple G0-equivariant
perverse sheaves on the nilpotent cone gnilη = gnil∩gη into series by introducing the crucial geometric
tool of spiral induction. The result can be stated as follows:
(i”) There is a partition of the set Irr PervG0

(gnilη ) of isomorphism classes of simple G0-equivariant
perverse sheaves on gnilη into series:

Irr PervG0(g
nil
η ) =

⊔
ξ

Irr PervG0(g
nil
η )ξ,

where ξ runs over all admissible systems (M,m∗,O,C ) on gη, introduced in [18, §3], see §3.4.
Moreover, the orthogonal decomposition also holds:

Db
G0

(gnilη ) =
⊕
ξ

Db
G0

(gnilη )ξ.
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In [19], the authors defined for each admissible system ξ an affine root system and a dDAHA Hξ,
see §5.1. The main result of [19] is the construction of an action of Hξ on an infinite sum of the
spiral induction from various spirals

Iξ =
⊕
p∗

Ind
gη

pη
C .

They constructed an action of Hξ on the perverse cohomology pH Iξ =
⊕

k
pH kIξ and they

conjectured that the multiplicity space of each simple constituent of the perverse cohomology pH Iξ

is a simple Hξ-module and this yields an injection

Irr PervG0
(gη)ξ ↪→ IrrO(Hξ),

where O(Hξ) is the category of integrable Hξ-modules, see §9.4. The main result of this article
confirms this conjecture:
(ii”) Theorem (=Theorem 9.12). — There is a bijection

Irr PervG0
(gη)ξ

∼−−→ IrrOx,η/2m(Hξ),

where IrrOx,η/2m(Hξ) is a block of O(Hξ).

Remark. — It turns out that, in statement (i”), a naive Z/m-graded version of parabolic induction
is not enough to generate the series Irr PervG0

(gη)ξ. This is related to the Gelfand–Kirillov dimension
of simple modules of the dDAHA Hξ: only those simple perverse sheaves whose corresponding simple
Hξ-modules are of maximal GK-dimension appear in the parabolic induction. This phenomenon is
explained in [8]. The spiral induction of the cuspidal local system C introduced in [18] is the right
substitute. The notion of a spiral is closely related to parahoric subalgebras of loop Lie groups. We
refer to §3.3 for its definition.

We achieve the theorem by constructing in Theorem 5.10 a ring homomorphism

Φ : Hξ → Ext∗
G0,⋄×C×

q
(Iξ, Iξ)0 =: Ĥ,

where G0,⋄ is the semi-direct product of G0 with a loop rotation torus (§2) acting on it. The ring Ĥ
is the completion of the extension algebra of Iξ at the augmentation ideal H>0

G0,⋄×C×
q

of equivariant
coefficient ring (§ 5 for the precise statements). We then show in Theorem 8.1 that when Ĥ is
equipped with a suitable topology, the image of Φ is dense. The technique of convolution algebras
of [2] can be applied and yields a correspondence (Proposition 9.7) between simple smooth Ĥ-modules
and simple perverse sheaves. Finally, making use of the density of the image of Φ, we construct
in Theorem 9.10 an equivalence between the category of smooth Ĥ-modules and Ox,η/2m(Hξ), which
provides an bijection of simple objects between both categories. These two bijections provide a
geometric parametrisation of simple modules in Ox,η/2m(Hξ). Our approach to construct Φ is via
inducing the map (0.1) from all parabolic subalgebras of Hξ, which are graded affine Hecke algebras.
The proof of the density of Φ involves analysing the geometry of the Steinberg varieties. We refer
to §2 for an explanation of the strategy.

Related works. — The case where M is a maximal torus and C is trivial has previously been
studied by Vasserot in [25] using equivariant K-homology over Kashiwara’s flag manifold. The double
affine Hecke algebras (DAHA) obtained are those with equal parameters.

In [24], M. Varagnolo and E. Vasserot used the action of DAHA constructed in [25] to classify
the positive slopes for which the spherical simple module of the dDAHA (with equal parameters)
is finite dimensional. The Springer fibres involved are those which are over the regular semisimple
locus of the affine Lie algebra. Our classification result Theorem 9.12 works essentially for negative
slopes, where we consider torus fixed-points of Springer fibres over nilpotent elements of the affine
Lie algebra. Nevertheless, with our construction of the map Φ, which works equally well for positive
slopes, one can hope for a generalisation of the result of [24] to dDAHAs at unequal parameters. We
hope to study the relation between these two opposite cases in a future work.
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In [26], Z. Yun constructed an action of the dDAHA (with equal parameters) using parabolic
Hitchin moduli spaces of principal bundles, which is a global version of the affine Springer resolution.
This result is later used in [20] to further geometrise the results of [24]. One can hope for a
generalisation of these results with cuspidal local systems and dDAHAs with unequal parameters.

Organisation of the article. — The sections §1–§4 are mostly a recollection of previously known
results. We reformulate them in a slightly different language.

In §1, we review the sheaf-theoretic construction of graded AHAs given in [13], [3] and [14]. We
prove in Proposition 1.18 that this construction is compatible with parabolic induction.

In §2, we explain the relation between the loop Lie algebras and Z/m-graded Lie algebra as well
as the relation between affine Springer resolution and the spirals. We sketch the construction of Φ
and the strategy of the proof of the density of Φ.

In §3, we review the geometric setup of Z/m-graded Lie algebras introduced by Lusztig–Yun. We
recall the part of their results that is important for the purpose of this article. In particular, we recall
the notion of spirals and spiral induction.

In § 4, we review the Coxeter complex, relative root system and relative affine Weyl group
introduced in [19]. We discuss their relation with spirals.

In §5, we define the dDAHA Hξ and the completed extension algebra Ĥ. We construct also the
homomorphism Φ : Hξ → Ĥ. This is done by inducing the map Φ from parabolic subalgebras of Hξ

by means of spiral induction.

The sections §6 and §7 are preparation for the proof of the density theorem Theorem 8.1.

In §6, we describe our principal geometric objects: varieties X ν,ν′ , T ν and Zν,ν′ , which play
the role of fixed point components of the product of partial flag variety, the partial affine Springer
resolution and the Steinberg variety, respectively. The filtration by Bruhat order of the varieties Zν,ν′

will be important in the analysis of the convolution algebra. We prove in Proposition 6.18 that the
convolution product on Zν,ν′ respects the Bruhat order and we describe the good Bruhat strata.

In §7, we interpret the algebra Ĥ as a convolution algebra. The main technical results are Propo-
sition 7.12 and Proposition 7.20, which will play crucial rôles in the proof of Theorem 8.1

In §8, making use of the calculations of §7, we show that the image of Φ is dense.

In §9, we derive some consequences of the density of Φ. In particular, we establish the multiplicity-
one conjecture of [19]. Simple integrable Hξ-modules with prescribed eigenvalues are classified
in Theorem 9.12. We also relate simple modules with the cohomology of torus fixed points of affine
Springer fibres in Theorem 9.15.

In §10, we work out the correspondence stated in Theorem 9.12 in a special case.

In §11, we explain the modifications needed for twisted affine root systems.

Acknowledgement. — The author is grateful to E. Vasserot, under whose supervision this article
is written. He feels also indebted to the referees, who have read this paper with great patience and
have made an enormous number of corrections and precious suggestions. He would also like to thank
Oya H., Tsai C.-C. and R. Walker for useful exchanges.
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Convention and notation

All schemes and algebraic stacks concerned will be over the field of complex number C, which can
be replaced by any algebraically closed field of characteristic 0 or of sufficiently large characteristic
(depending on the type of G).

For any algebraic stack X , we denote by Db (X ) the bounded derived category of constructible
Qℓ-sheaves on X defined by Laszlo–Olsson [7]. We denote k = Qℓ.

For any algebraic group G acting on X (on the left), we denote by Db
G (X) = Db ([G\X]) the G-

equivariant bounded derived category of k-sheaves on X, or equivalently bounded derived category
of k-sheaves on the quotient stack [G\X]. We denote PervG(X) ⊆ Db

G (X) the subcategory of
complexes whose image in Db(X) is perverse ; those are perverse sheaves on the stack [G\X] up to a
shift. Denote by H∗

G = H∗(BG,k) the coefficient ring of the G-equivariant cohomology. For objects
F ,G ∈ Db

G(X), we put ExtnG(F ,G ) = HomDb
G(X)(F ,G [n]) and Ext∗G(F ,G ) =

⊕
n∈Z ExtnG(F ,G ).

On these derived categories, the six operations ⊗,H om, f∗, f
∗, f!, f

! will be understood as derived
functors. We suppress the symbols R and L from Rf∗, ⊗L, etc. The bi-duality functor will be denoted
D, the perverse cohomology functors will be denoted pH k for k ∈ Z and for any local system L
supported on some locally closed subset, its intersection complex will be denoted IC(L ) ∈ PervG(X).

When a capital Latin letter (A,B,C, . . .) denote an algebraic group, we usually use the corre-
sponding Fraktur small letter (a, b, c, . . .) to denote its Lie algebra. When G is an algebraic group,
we denote by Z(G) or ZG its centre and by zG or z(g) the centre of its Lie algebra.

For any algebraic group G, the set of one-parameter subgroups (= cocharacters) is denoted by
X∗(G) . We will adopt the notion of fractional cocharacters

X∗(G)Q = {µ/r ; µ ∈ X∗(G), r ∈ Z≥1} / ((µ, r) ∼ (µ′, r′)⇔ r′µ = rµ′) .

We will also consider weight spaces of elements of X∗(G)Q. If ρ : G → Aut(V ) is a rational
representation and if µ ∈ X∗(G)Q, then for each r ∈ Q the weight space of µ of weight r in V is
denoted by µ

rV . Namely, let k ∈ Z≥1 such that kµ ∈ X∗(G) and kr ∈ Z, then
µ
rV =

{
v ∈ V ; Ad(kµ)(t)(v) = tkrv, ∀t ∈ C×} .

Similarly, if G acts on a space X, we let Xµ denote the fixed point of the cocharacter kµ ∈ X∗(G).

For any pair of adjoint functors (L,R), we denote by id→ RL the adjunction unit and by LR→ id
the adjunction co-unit.

1. Z-graded Lie algebras and graded AHAs revisited

We recall the works of Lusztig [15] [14] [16] and Evens–Mirković [3] on cuspidal local systems and
graded affine Hecke algebras. At the end of this section, we prove in Proposition 1.18 that their
constructions are compatible with the parabolic induction.

1.1. Cuspidal local systems and AHAs. — Let G be a connected reductive algebraic group over
C and M ⊂ G a Levi subgroup. Assume that there is a nilpotent M -orbit O ⊂ mnil and a cuspidal
M -equivariant local system C on O in the sense of [15]. The centre ZM of M may be disconnected
but the neutral component Z◦

M is a torus. To such a datum ξ = (M,O,C ), Lusztig associated in [13,
2.4] a relative root system (zM,Q, Rξ) on the space zM,Q = X∗(ZM ) ⊗ Q equipped with the inner
product induced from the Killing form of G. Let R′

ξ ⊂ z∗M,Q be the set of non-zero weights of Z◦
M

which appears in g. The pair (zM,Q, R
′
ξ) is a possibly non-reduced root system. The set of roots Rξ

is the subset of R′
ξ consisting of indivisible roots.
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The relative Weyl group is defined to be Wξ = NG(Z
◦
M )/M . It coincides with the Weyl group of

(zM,Q, Rξ). It is shown in [15, 9.2] that the adjoint action of NG(Z◦
M ) on m preserves the nilpotent

orbit O and the cuspidal local system C has a NG(Z◦
M )-equivariant structure. When M is a maximal

torus of G, the relative root system (zM,Q, Rξ) is reduced to the usual root system of G.

Let C×
q = C× be the multiplicative group which acts on g by weight -2 and trivially on G. For

any group H, we put Hq = H×C×
q unless it is defined otherwise. The M -equivariant local system C

admits a unique Mq-equivariant enhancement. Choose any parabolic subalgebra P ⊂ G containing
M as Levi factor and denote by π : p→ m the projection. Let

ġ = G×P π−1(O)
a−→ gnil, g̈ = ġ×g ġ

(p1,p2)
↪−−−−→ ġ× ġ

be the partial Springer resolution and the Steinberg variety. One extends C to a G×C×
q -equivariant

local system on ġ. The cleanness of cuspidal local systems [17] implies that a!Ċ ∼= a∗Ċ . By the
Verdier duality, there is an isomorphism

Ext∗Gq
(a∗Ċ , a∗Ċ ) ∼= Ext∗Gq

(p∗2Ċ , p
!
1Ċ ).

Using the cleanness of C , in [3] and [14] the authors defined a convolution product on Ext∗Gq
(p∗2Ċ , p

!
1Ċ )

which agrees with the Yoneda product of the left-hand side of the above isomorphism and they
constructed a ring isomorphism

Hξ

∼=−→ Ext∗Gq
(p∗2Ċ , p

!
1Ċ ). (1.2)

Here Hξ is the graded affine Hecke algebra attached to the datum ξ = (M,O,C ) introduced in [13].

We recall here the definition of Hξ. We pick as above a parabolic subgroup P ⊂ G which contains
M as Levi factor. The parabolic P yields a set of positive roots R+,P

ξ = {α ∈ Rξ ; pα 6= ∅} and a
base ∆P

ξ ⊂ R+,P
ξ . The relative Weyl group Wξ becomes a Coxeter group with the set of generators

〈sα ; α ∈ ∆P
ξ 〉. The graded affine Hecke algebra HP

ξ associated with the datum (ξ,∆P
ξ ) is the

associative algebra over the polynomial ring k[u] generated by the sets {xµ}µ∈X∗(Z◦
M ) and {sα}α∈∆P

ξ

subject to the following relations:

xµ + xν = xµ+ν , k[sα ; α ∈ ∆P
ξ ]
∼= kWξ

sαx
µ − xsα(µ)sα = ucα〈µ, α∨〉.

where cα ∈ Z≥2 is a constant defined in [13, 2.10], which depends on ξ (see also § 5.1). In
particular, the set {xµ}µ∈X∗(Z◦

M ) generates in Hξ a polynomial subalgebra k[zM,k] = Sym z∗M,k,
where zM,k = X∗(Z

◦
M ) ⊗ k, z∗M,k = X∗(Z◦

M ) ⊗ k. If P and P ′ are two parabolic subgroups of G
which have M as Levi factor, then there is an element ẇ ∈ NG(Z◦

M ) such that ẇP ẇ−1 = P ′. The
image of ẇ in the quotient Wξ, denoted by w, then yields an isomorphism of based root system
(zM,Q,∆

P
ξ )
∼= (zM,Q,∆

P ′

ξ ) and hence a (canonical) isomorphism of algebras HP
ξ
∼= HP ′

ξ . The graded
affine Hecke algebra attached to ξ is the inverse limit Hξ = lim←−P HP

ξ , so that for each choice of
parabolic P , there is an canonical isomorphism Hξ

∼= HP
ξ .

According to the eigenvalues of the action of the central subalgebra k[zM,k]
Wξ ⊗ k[u] ⊂ Hξ, the

category of finite-dimensional Hξ-modules can be decomposed into blocks:

Hξ -modfd =
⊕
r∈k

⊕
x∈zM,k/Wξ

Hξ -mod(x,r) .

1.3. Simple modules of the graded AHA. — Fix ξ as in §1.1. We shall explain the Deligne–
Langlands–Lusztig parametrisation of simple Hξ-modules.

Let λ0 ∈ X∗(G) and η ∈ Z. Put λq = (λ0, η/2) ∈ X∗(Mq)Q. Assume that mλq ∩O 6= ∅. We have
the following commutative square:
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ġλq ġ

gλq g

a

ρ̇

a

ρ

ġ = G×P π−1(O)
a−→ g : partial Springer resolution

gλq , ġλq : λq-fixed points
ρ, ρ̇: inclusions of λq-fixed points

The following equivariant localisation formula is proven in [3, 4.10]:

Ext∗Gq
(a∗Ċ , a∗Ċ )λq

∼= Ext∗
G

λ0
q

(
a∗ρ̇

∗Ċ , a∗ρ̇
∗Ċ

)
0
,

where the subscript λq means the completion of the extension algebra at λq, equipped with the adic
topology and the subscript 0 means the completion at the augmentation ideal o = H>0

G
λ0
q

. We will
explain in §1.16 about the completion. Combining this with (1.2), we obtain an injective ring map
with dense image

Φ : Hξ → Ext∗
G

λ0
q

(
a∗ρ̇

∗Ċ , a∗ρ̇
∗Ċ

)
0
=: Ĥ. (1.4)

Remark 1.5. — (i) In fact, the formula (1.3) was stated and proven in terms of “quotient by o”
rather than “completion at o”. Nevertheless, its proof can be easily adapted for completion.

(ii) Instead of completion at λq, one can take completion at (λ0/m, η/2m) for any m ∈ k× and
the resulting completions will be isomorphic. In particular, we may take the completion at any
fractional cocharacters.

Choose an sl2-triple φ = (e, h, f) in m with e ∈ mλq ∩O, h ∈ λ0
0m and f ∈ λ0

−ηm and set
ZqM (φ) =

{
(g, q) ∈M ×C×

q ; Adg(e) = q2e, Adg(h) = h, Adg(f) = q−2f
}
. (1.6)

The group ZqM (φ) is commutative and there is an isomorphism
ι : ZM ×C× ∼−→ ZqM (φ)

(g, q) 7→ (gqh, q).

(∗) The image of the cocharacter λq ∈ X∗(Mq)Q lies in ZqM (φ), so we can put (λM , η/2) = ι∗λq with
λM ∈ X∗(ZM )Q. The element λM does not depend on the choice of φ.

By the general theory of extension algebras (see [2, Ch 8]), the simple Ĥ-modules are indexed
by the simple constituents of the perverse cohomology pH a∗ρ̇

∗Ċ . On the other hand, the map Φ

induces an equivalence between Hξ -mod(λM ,η/2) and the category of finite-dimensional Ĥ-modules.
These considerations together yield the following geometric parametrisation:

Theorem 1.7 ([14, 8.14]). — The ring map Φ induces a natural bijection

Irr(Hξ -mod(λM ,η/2))
∼−−→

{
simple perverse sheaf ⊆

⊕
k∈Z

pH ka∗ρ̇
∗Ċ

}
/ ∼ .

1.8. Z-graded Lie algebras. — In [16], Lusztig introduced a geometric framework for studying
the fixed-point variety ġλq and the complex a∗ρ̇∗Ċ that appears in the previous theorem. We briefly
recall the basic constructions.

Let G be a complex connected connected reductive group as above and let λ0 ∈ X∗(G) be a
cocharacter. Then λ0 gives rise to a Z-grading on the Lie algebra :

g =
⊕
n∈Z

gn, gn = λ0
ng =

{
x ∈ g ; Adλ0(t) x = tnx, ∀t ∈ C×} .

∗. This isomorphism is technical but extremely important in the calculation of the equivariant cohomology with
cuspidal local systems. We will invoke it several times.
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Let G0 = Gλ0 denote the subgroup of λ0-fixed points of G. For any subset Σ ⊂ G, we will write
Σ0 = Σ ∩G0 and for any subset Σ ⊂ g, we write Un = U ∩ gn.

Let η ∈ Z̸=0. We have gη ⊂ gnil and the adjoint action of G0 on gη has a finite number of orbits.
Let P ⊂ G be a λ0-stable parabolic subgroup and let P = L⋉U be a λ0-stable Levi decomposition.
The inclusion pη ⊂ gη and the projection pη → pη/uη ∼= lη yield a diagram of algebraic stacks

[L0\lη]
b←− [P0\pη]

a−→ [G0\gη] .

The Z-graded parabolic induction functor is defined by

Ind
gη
pη

= a∗ ◦ b∗ : Db
L0,q

(lη)→ Db
G0,q

(gη).

The induction functor satisfies the transitivity: for every λ0-stable parabolic subgroup Q ⊂ L, there
is an isomorphisms of functors

Ind
gη
pη
◦ Indlηqη

∼= Ind
gη

(q⊕u)η
.

A cuspidal pair (O,C ) on gη is a cuspidal pair on g such that O ∩ gη 6= ∅. If (O,C ) is a cuspidal
pair, it happens that Oη = O∩ gη must be the unique open G0 orbit in gη and for every e ∈ Oη, the
inclusion ZG0(e) ⊂ ZG(e) induces an isomorphism on the component groups, see [16, §4]. It follows
that the restriction Cη := C |O is irreducible, and conversely, C is the unique G-equivariant extension
of Cη on O. An admissible system on gη is a datum (M,O,C ) of a λ0-stable Levi subgroup M ⊂ G
with Lie algebra m = LieM and a cuspidal pair (O,C ) on mη.

We shall analyse the extension algebra in the right-hand side of (1.4). For this sake, we introduce
some combinatorial language for the Coxeter complex of W , so as to handle the varieties of fixed
points ġλq , g̈λq .

1.9. Coxeter complex and canonical relative Weyl group. — Fix a datum ξ = (M,O,C ) as
in §1.1. Choose a maximal torus T ⊂ M0 and set tQ = X∗(T )Q = X∗(T ) ⊗Q. Let R = R(G,T )
denote the set of roots and let W = NG(T )/T denote the Weyl group. The root hyperplanes
decompose tQ into facets and the facets of maximal dimension are the Weyl chambers. Let F denote
the set of facets (more precisely, the root hyperplanes yield a stratification of tR = tQ ⊗Q R into
facets and F is its restriction to tQ ⊂ tR). The Weyl group W acts on the set F. There is a bijection:

F
∼−−→ {parabolic subalgebra p ⊂ g ; t ⊂ p}

σ 7→ pσ =
⊕
r≥0

y
rg =

⊕
α∈X∗(T )
⟨α,y⟩≥0

gα (y ∈ σ).

For every facet σ ∈ F, let Pσ denote the corresponding parabolic subgroup of G such that LiePσ = pσ

and Lσ its Levi factor containing T with lσ = LieLσ.

The subspace zM,Q = X∗(ZM )Q ⊂ tQ is a union of facets in F and its pointwise stabiliser coincides
with the Weyl group WM =W (M,T ) ⊂W . The vanishing locus of each of the relative roots α ∈ Rξ
gives a hyperplane in zM,Q. The root hyperplane arrangement of Rξ coincides with the restriction
to zM,Q of the root hyperplane arrangement of R. The zM,Q-chambers ν are characterised by the
property that lν = m. Let Ξ ⊂ F be the subset of zM,Q-chambers. The normaliser NW (WM ) preserves
zM,Q and the quotient NW (WM )/WM acts on zM,Q. It is shown in [12, 5.9] that Wξ

∼= NW (WM )/WM

and it acts simply transitively on Ξ. Let Ξ′ be the set facets which are W -conjugate to some facet in
Ξ. Consequently, the Weyl group W acts transitively on Ξ′.

Each zM,Q-chamber ν ∈ Ξ gives rise to a base ∆ν
ξ ⊂ Rξ. The base ∆ν

ξ gives a set of Coxeter gen-
erators {sα}α∈∆ν

ξ
for Wξ. We define the canonical relative Weyl group as (Wξ,∆ξ) = lim←−ν(Wξ,∆

ν
ξ ).

The elements of Wξ can written in the form w = (wν)ν∈Ξ, so that for each y ∈ Wξ and ν ∈ Ξ we
have wyν = ywνy−1. It is a Coxeter group canonically attached to the admissible system ξ. We
define also the canonical version of the based root system (hξ,Q,∆ξ) = lim←−ν(zM,Q,∆

ν
ξ ), who has the

Coxeter group (Wξ,∆ξ) as Weyl group. In particular, (Wξ,∆ξ) acts on hξ by orthogonal reflections.
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We define a Wξ-action on Ξ as follows:

Wξ × Ξ→ Ξ, (w, ν) 7→ (wν)−1ν.

This action is simply transitive and commutes with the Wξ-action on Ξ. Recall the point λM ∈ zM,Q.
It can be shown that λM is the image of λ0 under the orthogonal projection tQ → zM,Q with respect
to the Killing form. Let Wξ,λM = StabWξ

(λM ). We denote Ξ = Wξ,λM \Ξ. The Wξ-action on
Ξ descends to Ξ. For every ν ∈ Ξ, let λν ∈ hξ denote the image of λM under the isomorphism
(hξ,∆ξ) ∼= (zM,Q,∆

ν
ξ ). There is a bijection of Wξ-sets:

Ξ
∼−−→ {λν}ν∈Ξ

ν 7→ λν ,
(1.10)

where ν denotes the Wξ,λM -orbit of some ν ∈ Ξ.

The graded Hecke algebra Hξ from §1.1 can also be defined in terms of (hξ,∆ξ) and it contains
the polynomial subalgebra Sξ = k[hξ] = Sym(hξ ⊗ k) as well as the group ring CWξ. It follows
immediately that the possible Sξ-weights of modules in the block Hξ -mod(λM ,η) is {λν}ν∈Ξ, which
is in bijection with Ξ.

1.11. Description of the λq-fixed components. — Recall λq = (λ0, η/2) ∈ X∗(M ×C×
q )Q. We

choose a maximal torus T ⊂ M0. It is easy to see that the λq-fixed point set gλq coincides with the
η-weight space gη = λ0

ηg.

Consider the partial flag variety P = G/P . From §1.9, we know that there exists a unique ν0 ∈ Ξ
such that pν0 = p. For any ν ∈ Ξ′, we have clearly P ν = ẇνPẇ

−1
ν for any ẇν ∈ NG(T ) such that

its image wν ∈ W satisfies wνν0 = ν. By [21], the variety of λ0-fixed points of P has the following
description as disjoint union of connected components:

Pλ0 ∼=
⊔

ν∈Wλ0
\Ξ′

G0/P
ν
0 , gẇνP ←[ gP ν0 for g ∈ G0, (1.12)

where Wλ0
is the stabiliser of λ0 in W , P ν0 = (P ν)λ0 and ẇν ∈ NG(T ) is as above.

For every facet ν ∈ Ξ′, put Oν = Adẇν O ⊂ lν and Oνη = Oν ∩ gη. Using the fibration ġ→ P, we
derive from (1.12) a similar description for the variety of λq-fixed points of ġ:

ġλq ∼=
⊔

ν∈Wλ0
\Ξ′

T ν , T ν = G0 ×P
ν
0 (Oνη ⊕ uνη)

(gẇ,Adẇ−1(z))← [ (g, z) for g ∈ G0, z ∈ Oνη ⊕ uνz .

(1.13)

It is shown in [19] that Oνη = ∅ if ν is not Wλ0
-conjugate to any zM,Q-chamber and Oν = O if ν

is a zM,Q-chamber. In the former case, we have T ν = ∅. Thus we are reduced to consider the subset
Ξ ⊂ Ξ′ of zM,Q-chambers. The formula (1.13) can be rewritten as

ġλq ∼=
⊔
ν∈Ξ

T ν , T ν = G0 ×P
ν
0 (Oη ⊕ uνη). (1.14)

For every facet σ ∈ F, we abbreviate Indσ = Ind
gη

pσ
η

for the parabolic pσ defined in §1.9.

Proposition 1.15. — The complex a∗ρ̇
∗C on gη can be written in terms of parabolic inductions

over graded Lie algebras:
a∗ρ̇

∗Ċ ∼=
⊕
ν∈Ξ

Indν Cη,

where we have identified Cη with its direct image under the inclusion Oη ⊂ mη = lνη for ν ∈ Ξ.
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Proof. It follows from (1.14) that

a∗ρ̇
∗Ċ ∼=

⊕
ν∈Ξ

Indν

(
Ad∗

ẇ−1
ν

Cη
)
,

where Adẇ−1
ν

: O → O is the adjoint action of ẇ−1
ν on m. As mentioned in §1.1, the cuspidal local

system C has a NG(Z
◦
M ) equivariant structure. Since ν ∈ Ξ, we must have ẇν ∈ NG(Z

◦
M ). The

equivariance yields an isomorphism Ad∗
ẇ−1

ν
C ∼= C , which restricts to Ad∗

ẇ−1
ν

Cη ∼= Cη.

1.16. Completion. — Recall that the canonical relative Weyl group (Wξ,∆ξ) acts on the vector
space hξ. We have the classical Chern–Weil isomorphisms

Sym(X∗(T ×C×
q )k)

W ∼= H∗
Gq
, Sym(X∗(T ×C×

q )k)
Wλ0 ∼= H∗

G0,q
.

Let H∗
Gq,λq

(resp. H∗
G0,q,0

) denote the completion of the ring H∗
Gq

(resp. H∗
G0,q

) at the maximal ideal
generated by f −f(λq) for f ∈ Sym(X∗(T ×C×

q )k)
W (resp. at the augmentation ideal H>0

G0,q
). There

is an isomorphism H∗
Gq,λq

∼= H∗
G0,q,0

which respects the adic topology on both sides.

For any coherent H∗
Gq

-module M (resp. coherent H∗
G0,q

-module M ), denote

Mλq = M ⊗H∗
Gq

H∗
Gq,λq

(resp. M0 = M ⊗H∗
G0,q

H∗
G0,q,0).

By Proposition 1.15, the homomorphism (1.4) can be written as

Φ : Hξ →
⊕
ν,ν′∈Ξ

Ext∗G0,q
(Indν′ Cη, Indν Cη)0 =: Ĥ.

This homomorphism satisfies the following remarkable properties:
— If M ∈ Hξ -mod(λM ,η/2), then the Hξ-module structure on M factors through Φ.
— For each ν ∈ Ξ, the composition

Sξ ↪→ Hξ
Φ−→ Ĥ → Ext∗G0,q

(Indν Cη, Indν Cη) /H
>0
G0,q

=: N

makes N into a left (resp. right) Sξ-module supported on eigenvalue (λν , η/2) ∈ hξ,k × k.
The second point gives a geometric meaning to the combinatorial bijection (1.10); in other words, for
each ν ∈ Ξ, the eigenvalue (λν , η/2) of the Sξ-action is accounted for by the connected component
T ν ⊂ ġλq .

1.17. Compatibility with parabolic induction. — Let J ⊂ ∆ξ be a subset. Denote by
Wξ,J ⊂ Wξ the parabolic subgroup generated by {sα}α∈J . For any Wξ,J -orbit S ∈ Ξ/Wξ,J , there is
a unique zM,Q-facet σ such that σ =

⋂
ν∈S ν. Let ΞJ ⊂ F denote the set of facets σ arising in this

way. Then each zM,Q-facet belongs to ΞJ for some J ⊆ ∆ξ. Conversely, for each zM,Q-facet σ ∈ ΞJ ,
we denote by Ξσ ⊂ Ξ the subset of Ξ consisting of zM,Q-chambers whose closure contains σ. Then
Ξσ forms a Wξ,J -orbit in Ξ. This yields a bijection of Wξ-sets Ξ/Wξ,J

∼= ΞJ for each J ⊂ ∆ξ.

As before, we denote ΞJ = Wξ,λM \ΞJ and Ξσ = Wξ,σ,λM \Ξσ, where Wξ,σ,λM = StabWξ
(σ, λM ) is

the pointwise stabiliser of σ and λM . We denote by σ the image of σ in Ξ/Wξ,J .

We define P ν≤σ = Lσ ∩ P ν for any ν ∈ Ξσ, so that P ν≤σ is a parabolic subgroup of Lσ with Levi
factor Lν =M . For simplifying the notation, we abbreviate

Indσν = Ind
lση

p
σ≤ν
η

.

The map (1.4) for the Levi subgroup Lσ and the admissible system ξ on lη is the following:

Φσ : Hξ,J →
⊕

ν,ν′∈Ξσ

Ext∗Lσ
0,q

(Indσν′ Cη, Ind
σ
ν Cη)0 =: Ĥσ,
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where the subscript 0 means the completion at the augmentation ideal H>0
Lσ

0,q
. Taking product over

all classes σ ∈ ΞJ , we obtain a homomorphism:

ΦJ = (Φσ)σ∈ΞJ
: Hξ,J →

∏
σ∈ΞJ

Ĥσ.

On the other hand, the functoriality of the functor Indσ and the transitivity of parabolic inductions
Indσ ◦ Indσν ∼= Indν yields a map

ψJ :
∏
σ

Ĥσ →
∏
σ

⊕
ν,ν′∈Ξσ

Ext∗G0,q
(Indν′ Cη, Indν Cη)0 ⊂ Ĥ.

Proposition 1.18. — The construction of Φ is compatible with parabolic induction in the sense that
Φ |Hξ,J

= ψJ ◦ ΦJ .

Proof. Recall the usual (ungraded) parabolic induction functor: for each parabolic subgroup P ⊆ G
with Levi factor M , the diagram

[m/M ]
b←− [p/P ]

a−→ [g/G]

gives the induction functor Indgp := a∗b
∗ : Db

Mq
(mnil) → Db

Gq
(gnil). By the NG(Z◦

M )-equivariance
(§1.1) of C , for any other parabolic P ′ having M as Levi factor, there is a canonical choice of
isomorphism Indgp′ C ∼= Indgp C ; thus we may write Indgm C := Indgp C . Similarly, for any σ ∈ ΞJ , we
may write Indl

σ

m C := Indl
σ

pσ≤ν C by choosing an arbitrary ν ∈ Ξσ.

Choose any σ ∈ ΞJ and ν ∈ Ξσ. It follows from Lusztig’s construction [13], [14] of isomorphism
Hξ
∼= Ext∗Gq

(a∗Ċ , a∗Ċ ) that the following diagram commutes

Hξ,J Ext∗Lσ
q
(Indl

σ

m C , Indl
σ

m C ) Ext∗Gq
(Indgpσ Indl

σ

m C , Indgpσ Indl
σ

m C )

Hξ Ext∗Gq
(Indgm C , Indgm C )

∼= Ind

∼=
∼=

. (1.19)

Denote the composite map of the top-right corner by

Indgpσ : Ext∗Lσ
q
(Indl

σ

m C , Indl
σ

m C )→ Ext∗Gq
(Indgm C , Indgm C ). (1.20)

For each σ ∈ ΞJ , applying Lemma 1.21 below and taking conjugation by Weyl group elements, we
obtain

Ext∗Lσ
q
(Indl

σ

m C , Indl
σ

m C )⊗H∗
Gq

H∗
Gq,λq

∼=
∏
σ′∈ΞJ

Ext∗Lσ′
q
(Indl

σ′

m C , Indl
σ′

m C )λq
.

Completing the both sides of (1.20) at λq over H∗
Gq

and re-inserting it into (1.19), we obtain the
following commutative diagram:

Hξ,J

∏
σ Ext

∗
Lσ

q
(Indl

σ

m C , Indl
σ

m C )λq

∏
σ Ĥσ

Hξ Ext∗Gq
(Indgm C , Indgm C )λq

Ĥ

ΦJ

(Indg
pσ )

σ

loc

ψJ

Φ

loc
,

where the homomorphisms denoted by loc are the equivariant localisation from [3, 4.10]. This proves
the statement ψJ ◦ ΦJ = Φ |Hξ,J

.
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Lemma 1.21. — For each σ ∈ ΞJ , there is an isomorphism

Ext∗Lσ
q
(Indl

σ

m C , Indl
σ

m C )⊗H∗
Gq

H∗
Gq,λq

∼=
∏
w

Ext∗Lσ
q
(Indl

σ

m C , Indl
σ

m C )w−1λq
,

where w runs over a complete set of representatives for Wξ,λM \Wξ/Wξ,σ in Wξ.

Proof. Since H∗
Lσ
∼= H∗

Pσ
∼= H∗

G(G/P
σ,k), applying the equivariant localisation, we obtain

H∗
Lσ

q
⊗H∗

Gq
H∗
Gq,λq

∼= H∗
G

λ0
q
((G/P σ)λ0 ,k)λq

∼=
∏
w

H∗
G

λ0
q
((Gλ0/(wPσ))λ0 ,k)λq

∼=
∏
w

H∗
(Lwσ

q )λ0 ,λq

∼=
∏
w

H∗
Lwσ

q ,λq
∼=

∏
w

H∗
Lσ

q ,w
−1λq

,
(1.22)

where w runs over a complete set of representatives for Wλ0
\W/Wσ in W =W (G,T ). Taking tensor

product of Ext∗Lσ
q
(Indl

σ

m C , Indl
σ

m C ) with (1.22), we obtain

Ext∗Lσ
q
(Indl

σ

m C , Indl
σ

m C )⊗H∗
Gq

H∗
Gq,λq

∼=
∏
w

Ext∗Lσ
q
(Indl

σ

m C , Indl
σ

m C )w−1λq
.

It remains to show that for each w ∈ W such that Wλ0wWσ ∩ NW (WM ) = ∅, the corresponding
factor in this product vanishes. It is known (see [13, 4.3] or Lemma 7.3 below) that, as H∗

Lσ
q
-module,

the cohomology Ext∗Lσ
q
(Indl

σ

m C , Indl
σ

m C ) is supported on in image of the following map

X∗(Z
q
M (φ))k → X∗(Tq)k/Wσ

∼= SpecH∗
Lσ

q
, (1.23)

where ZqM (φ) ⊂Mq is defined in the same way as in §1.3 for any choice of sl2-triple φ. Thus w−1λq
lies in this support if and only if there exists y ∈Wσ such that yw−1λq ∈ X∗(Z

q
M (φ))Q.

Suppose that w ∈ W is such that w−1λq lies in the image of (1.23). Since Wξ acts transitively
on Ξ, there exists v ∈ Wξ such that vλq = yw−1λq. Since Wξ

∼= NW (WM )/WM , we may choose
any lifting v̇ ∈ NW (WM ) of v, we see that y′ := v̇−1yw−1 ∈ Wλ0 . Therefore in this case v̇−1 =
y′wy−1 ∈Wλ0wWσ ∩NW (WM ) 6= ∅. It follows that the condition Wλ0wWσ ∩NW (WM ) = ∅ implies
Ext∗Lσ

q
(Indl

σ

m C , Indl
σ

m C )w−1λq
= 0, which concludes the proof.

2. Outline of the strategy

In this section, we explain the strategy to prove the main theorem. The discussion here will be
informal and serve as guideline for the sections after.

2.1. Springer correspondence for dDAHAs : heuristics. — Let G be a simply connected
simple algebraic group over C with Lie algebra g. Consider the loop group Gaf = G(($)) and the
loop Lie algebra gaf = g(($)). Let C×

t = C× be the multiplicative group which acts on the ring
of formal Laurent series C(($)) by (t,$) 7→ t$. It induces a C×

t -action on Gaf and on gaf . Let
C×
q = C× be the multiplicative group which acts on gaf by weight −2 and trivially on Gaf . For

any C×
t -stable subgroup G′ ⊂ Gaf , we denote G′

⋄ = G′ ⋊C×
t and G′

⋄,q = G′
⋄ ×C×

q . Hereafter, the
subscript � will indicate the presence of the loop-rotation torus C×

t .

Suppose that we have a C×
t -stable parahoric subgroup P ⊂ Gaf with C×

t -stable Levi factor M ⊂ P
and an M⋄-equivariant cuspidal local system C on a nilpotent M⋄-orbit O ⊂ mnil. Denote by
π : p→ m the projection. One would like to perform the same constructions on the extension algebra
of the induced complex Indgaf

p C on the loop Lie algebra gaf . Imitating the case of graded affine Hecke
algebras, one defines the partial Springer resolution

ġaf = Gaf ×P π−1(O)
a−→ gaf

and extends C to a Gaf,⋄,q-equivariant local system Ċ on ġaf . Fix such a system ξ = (Gaf , P,M,O,C ).
One would hope to carry out the same constructions as §1 in this affine context with ξ.
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Let g̈af = ġaf×gaf
ġaf and let p1, p2 : g̈af → ġaf be the projections. By the Verdier duality, the exten-

sion algebra Ext∗Gaf,⋄,q
(Indgaf

p C , Indgaf
p C ) would then be isomorphic to Ext∗Gaf,⋄,q

(p∗1Ċ , p
!
2Ċ ) equipped

with an appropriate convolution product. One would then need to construct a ring homomorphism
from the dDAHA Hξ (to be defined in §5.1) to the convolution algebra Ext∗Gaf,⋄,q

(p∗1Ċ , p
!
2Ċ ).

Let φ = (e, h, f) be a sl2-triple in m such that e ∈ O and let ZqM⋄
(φ) be the group defined in (1.6)

so that there is an isomorphism
ι : ZM⋄ ×C× ∼= ZqM⋄

(φ)

(g, q) 7→ (gqh, q).

Fix λM ∈ X∗(ZM⋄) and η ∈ Z̸=0. Write λ⋄,q = ι∗(λ
M , η/2) ∈ X∗(Z

q
M⋄

(φ))Q. Let δ ∈ X∗(Gaf,⋄)

denote the projection Gaf,⋄ → C×
t and let m = δ(λM ) ∈ Z. We assume that η 6= 0 and m > 0. (∗)

One considers the following diagram:

ġ
λ⋄,q
af ġaf

g
λ⋄,q
af gaf

a

ρ̇

a

ρ

ġaf = Gaf ×P π−1(O)
a−→ gaf : affine partial

Springer resolution
g
λ⋄,q
af , ġ

λ⋄,q
af : λq-fixed points

ρ, ρ̇: inclusions of λq-fixed points

Finally, one would hope to apply the equivariant localisation to Ext∗Gaf,⋄,q
(p∗1Ċ , p

!
2Ċ ) to show that

Ext∗Gaf,⋄,q
(a∗Ċ , a∗Ċ )λ⋄,q

∼= Ext∗
G

λ⋄,q
af,⋄,q

(
a∗ρ̇

∗Ċ , a∗ρ̇
∗Ċ

)
0

and to obtain a injective ring homomorphism with dense image:

Φ : Hξ → Ext∗
G

λ⋄,q
af,⋄,q

(
a∗ρ̇

∗Ċ , a∗ρ̇
∗Ċ

)
0
. (2.2)

This would yield an analogue of Theorem 1.7 for the dDAHA Hξ.

However, we will not construct the homomorphism Φ in (2.2) from an isomorphism Hξ
∼=

Ext∗Gaf,⋄,q

(
a∗Ċ , a∗Ċ

)
by means of localisation. This is because there is no straightforward implemen-

tation of Gaf,⋄,q-equivariant cohomology for the reason that Gaf is not an algebraic group. Instead,
we shall work directly with the varieties of λ⋄,q-fixed points g

λ⋄,q
af and ġ

λ⋄,q
af . Under the assumptions

that we made about the cocharacter λ⋄,q, these varieties are disjoint unions of algebraic varieties
of finite type, which can be described in terms of cyclic grading on g and spirals and splittings
introduced by Lusztig–Yun in [18]. Moreover, the connected components of ġλ⋄,q

af have a description
similar to the varieties T ν appearing in §1.11.

2.3. Z-graded loop Lie algebras versus Z/m-graded Lie algebras. — We briefly discuss here
how to reduce the problem of the study of nilpotent cone of a Z-graded affine Lie algebra to the one
of a Z/m-graded simple Lie algebra for m = δ(λM ) ∈ Z>0 as above.

Choose a C×
t -stable maximal torus T ⊂ M and denote by R = R(G,T ) the root system. Put

T⋄ = T ×C×
t . The affine Weyl group W of Gaf is given by W = NGaf,⋄(T⋄)/T⋄. It acts linearly on the

cocharacter lattice X∗(T⋄). Write λ⋄,q = (λ0,m, η/2) ∈ X∗(T ×C×
t ×C×

q ) and denote λ⋄ = (λ0,m).
Then the weight spaces of λ⋄ yields a Z-grading on gaf

gaf =
⊕
n∈Z

gaf,n , gaf,n := λ⋄
ngaf =

⊕
k∈Z

{
z ⊗$k ∈ g⊗$k ; λ0(t)z = tn−kmz, ∀t ∈ C×} .

On the other hand, the restriction θ := λ0 |µm
: µm → T yields a Z/m-grading

g =
⊕

n∈Z/m

gn , gn := θ
ng = {z ∈ g ; λ0(ζ)z = ζnz, ∀ζ ∈ µm} .

∗. The condition m ̸= 0 is to ensure that the fixed components are algebraic varieties and is crucial in our approach.
The condition η ̸= 0 is not essential but the case η = 0 cannot be treated uniformly. For this reason we exclude it.
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Then we have an isomorphism on graded pieces induced by the evaluation $ 7→ 1:
gaf,n ∼= gn, ∀n ∈ Z. (2.4)

Similarly, we can deduce that the evaluation $ 7→ 1 yields
Gaf,0

∼= G0, where Gaf,0 := Gλ⋄
af and G0 := Gθ. (2.5)

Moreover for each n ∈ Z, the adjoint action of Gaf,0 on gaf,n is isomorphic to the adjoint action of
G0 on gn.

2.6. Parahorics and spirals. — Let P ⊂ Gaf be a C×
t -stable parahoric subgroup containing T

and denote p = LieP . We can find a cocharacter µ⋄ = (µ,m′) ∈ X∗(T ) ⊕ Z>0 ⊂ X∗(T⋄) such that
p = µ⋄

≥0gaf . Put pn = p ∩ gaf,n and ln = l ∩ gaf,n for n ∈ Z and put P0 = Pλ⋄ and L0 = Lλ⋄ . Via the
isomorphism (2.4), we can describe pn alternatively as subspace of gn:

pn ∼= m′λ0−mµ
≥m′n

gn.

This description gives rise to the notion of a spiral, introduced in [18] as the Z/m-graded counterpart
of a parahoric subalgebra. The cocharacter µ⋄ also gives rise to a C×

t -stable Levi factor of P is
denoted by L = Gµ⋄

af . The Lie algebra l = LieL can be described alternatively by

ln ∼= m′λ0−mµ
m′n

gn.

Similarly, one can regard P0, L0 and L as algebraic subgroups of G such that LieP0 = p0, LieL0 = l0
and LieL = l. The notion of spirals will be reviewed in §3.

2.7. Fixed-point components of ġaf and g̈af . — We suppose that there is a C×
t -stable parahoric

subgroup P ⊂ Gaf with a C×
t -stable Levi factor M ⊂ P which contains T . Suppose also that there

is a nilpotent orbit O ⊂ mnil such that O ∩ mη 6= ∅ which carries an M -equivariant cuspidal local
system C . As before, the Lie algebra m = LieM is Z-graded by the weights of λ⋄. Such a datum
ξ = (M,m∗,O,C ) is called an admissible system on gη, see § 3.4. Given an admissible system
ξ = (M,m∗,O,C ) on gη, just as in the case of reductive group, one can define a relative affine root
system (§4.1) and a relative affine Weyl group Wξ.

The sets ġaf = G×P π−1(O)→ gaf and ġaf have a Gaf,⋄,q-action induced from the actions on Gaf

and gaf . As in the case of finite reductive groups §1.11, the λ⋄,q-fixed points of this action in ġaf can
be described as a disjoint union of connected components

ġ
λ⋄,q
af
∼=

∐
ν∈Wξ,λ\Ξ

T ν → g
λ⋄,q
af
∼= gη,

where Ξ is the affine analogue of the set introduced in §1.9, which carries a Wξ-action and Wξ,λ =
StabWξ

(λM ). We will define the set Ξ in §4.13 and the variety Tη in §6.17. Put Ξ =Wξ,λ\Ξ.

Since we have g̈
λ⋄,q
af = ġ

λ⋄,q
af ×gaf

ġ
λ⋄,q
af , there is a similar description for the Steinberg variety :

g̈
λ⋄,q
af
∼=

∐
ν,ν′∈Ξ

Zν,ν
′
, Zν,ν

′
= T ν ×gη T ν

′
. (2.8)

In consequence, the fixed-point sets g̈
λ⋄,q
af , g̈

λ⋄,q
af and g

λ⋄,q
af are disjoint unions of G0,⋄,q-equivariant

algebraic varieties and the formalism of six operations and perverse sheaves is at our disposition.

2.9. Outline of the proof. — We can now explain the strategy of the construction of the
homomorphism

Φ : Hξ →
∏
ν′∈Ξ

⊕
ν∈Ξ

Ext∗G0,⋄,q

(
Iν

′
, Iν

)
0
.

Step 1. We recall in §3 the basic constructions on a Z/m-graded Lie algebra introduced in [18], such
as the spiral induction functor Ind

gη

pη
and admissible systems on the nilpotent cone. It is a

Z/m-graded analogue of §1.8.
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Step 2. The Z/m-counterpart of §1.9 is introduced in §4. We recall there the affine analogue of the
facet decomposition F of an affine space A and the relative affine hyperplane EM , introduced
in [19]. We can identify EM with the space X∗(ZM⋄)Q of fractional cocharacters. There is a
bijection

Ξ =
{
EM -chamber

} ∼−−→ {p∗ spiral ; m∗ ⊂ p∗ is a splitting}
ν 7→ pν∗

Then, we define the relative affine root system (EM , Rξ) as well as its Weyl group Wξ. Each
element ν ∈ Ξ yields a base ∆ν

ξ ⊂ Rξ. We introduce also the canonical based relative root
system (Eξ,∆ξ) and the canonical relative Weyl group Wξ. These two groups Wξ and Wξ act
simply transitively on Ξ and their action commute. We define also the linearisation Eξ,⋄ of Eξ.

Step 3. We put Ξ = Wξ,λ\Ξ. There is a bijection between Ξ and the set of connected components
of ġ

λ⋄,q
af . Following [19], for each ν ∈ Ξ, consider the corresponding spiral pν∗ and the spiral

induction Iν = Ind
gη

pν
η
C ∈ Db

G0,⋄,q

(
gη
)
. We realise the complex a∗ρ̇

∗Ċ as the infinite sum⊕
ν∈Ξ Iν . Put

Ĥ =
∏
ν′∈Ξ

⊕
ν∈Ξ

Ext∗G0,⋄,q
(Iν

′
, Iν)0.

Step 4. Let J ⊊ ∆ξ and consider the parabolic subalgebra Hξ,J ⊂ Hξ. For each σ ∈ Ξ/Wξ,J , there is
an extension algebra

Ĥσ =
⊕

ν,ν′∈Ξσ

Ext∗H0,⋄,q
(Ind

hη

qν′
η

C , Ind
hη

qν
η

C )0,

where h∗ = lσ∗ is a Z-graded pseudo-Levi subalgebra of g and qν∗ = h∗ ∩ pν∗ ⊂ h∗ is the Z-
graded parabolic subalgebra corresponding to ν. The construction of [13] [14] [3] yields a
homomorphism Φσ : Hξ,J → Ĥσ. Taking product over σ, we obtain

ΦJ = (Φσ)σ∈Ξ/Wξ,J
: Hξ,J → ĤJ =

∏
σ∈Ξ/Wξ,J

Ĥσ

The functoriality of Indgη

pσ
η

yields an homomorphism ĤJ → Ĥ, which is injective.
Step 5 For K ⊂ J ⊊ ∆ξ, the compatibility result Proposition 1.18 implies that there is a commutative

square:
Hξ,K ĤK

Hξ,J ĤJ

ΦK

ΦJ

.

This implies that we can take the direct limit over the partially ordered set of subsets
({J ⊊ ∆ξ},⊆) and obtain

Φ = lim−→
J

ΦJ : lim−→
J

Hξ,J → lim−→
J

ĤJ → Ĥ.

Using the fact that lim−→J
Hξ,J = Hξ, we obtain the map Φ.

In the case where J = ∅, we have the smallest parabolic subalgebra Hξ,∅ ⊂ Hξ, which is equal to a
polynomial ring Sξ = k[Eξ,⋄] ⊗ k[u]. The second objective Theorem 8.1 is to show that the image
of Φ is dense in Ĥ when the latter is equipped with a suitable topology. There are two essential
ingredients:

(i) There is an affine version of the correspondence Ξ←→ {λν}. This will allow to show that the
restriction of Φ to the polynomial part Sξ contains all the idempotents (eν)ν∈Ξ in §1.16. It is
done in Lemma 8.6.

(ii) An analysis of the Steinberg varieties Zν,ν′
:= T ν ×gη T ν

′ by stratification is done in §6.

(iii) A filtration on Ĥ by the Bruhat order is defined in §7.7. The associated quotient of this filtration
can be studied using the stratification on the Steinberg varieties. We deduce a surjectivity result
(Proposition 7.12) which is crucial in the proof of the density theorem (Theorem 8.1).

(iv) For each J , the map ĤJ → Ĥ is studied determined in Proposition 7.20.
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Remark 2.10. — The module category of Hξ in which we are interested is, by convention, the
category O(Hξ,δ=1) consisting of finitely generated Hξ-modules on which the polynomial part Sξ acts
locally finitely and the imaginary root δ ∈ E∗

ξ,⋄ acts by 1. However, we have δ(λM ) = δ(λ⋄) = m. For
this reason we need to renormalise the parameters by setting xM = λM/m, x = λ⋄/m, xν = λν/m. We
will consider the block Oxν ,η/2m(Hξ,δ=1) consisting of modules M ∈ O(Hξ,δ=1) on which Sξ/(δ − 1)
acts with eigenvalues in the orbit Wξxν ⊂ Eξ, see §9.4.

3. Z/m-grading, spirals and splittings

We recall in this section some of the basic constructions over Z/m-graded Lie algebras introduced
in [18] and [19].

3.1. Z/m-grading on G. — Let G be a connected simply connected simple algebraic group over
C. The Lie algebra is denoted g = LieG.

We fix a positive integer m ∈ Z>0. For any integer k ∈ Z, we denote k = k mod m ∈ Z/m. Let

g =
⊕
i∈Z/m

gi

be a Z/m-grading on g such that
[
gi, gj

]
⊆ gi+j for all i, j ∈ Z/m. Let µm ⊂ C× be the group of

m-th roots of unity. We define a homomorphism θ : µm → Aut(g) by setting

θ(ζ) |gj= ζj , ∀ζ ∈ µm ∀j ∈ Z.

The simplicity and the simple connectedness of G imply that Aut(G) ∼= Aut(g), so we can write
θ : µm → Aut(G). The fixed-point subgroup G0 = Gθ ⊂ G is connected by the theorem of
Steinberg [23, 8.1].

We assume that the Z/m-grading is inner (∗) in the sense that θ(µm) ⊂ Gad, where Gad is the
adjoint group of G. Under this assumption, we may assume without loss of generality that θ admits
a lifting µm → G — indeed, we may pre-compose θ with a finite cover [m′] : µm′m → µm, where
m′ = #ZG, so that the resulting homomorphism θ′ : µm′m → Gad lifts to G; under this change, the
grading on g is multiplied by m′. There exists then a cocharacter λ0 ∈ X∗ (G) such that

gi =
⊕
k∈Z
i=k

λ0

kg.

We fix once and for all the choice of such a cocharacter λ0.

Besides, we fix a maximal torus T ⊆ G which centralises λ0 so that λ0 ∈ X∗ (T ). In particular,
T is contained in G0. Fix once and for all an integer η ∈ Z ̸=0. Let gnilη = gη ∩ gnil be the closed
subvariety of nilpotent elements.

3.2. Jacobson–Morosov theorem. — Recall the theorem of Jacobson–Morosov in the Z/m-
graded setting. Let e ∈ gnilη . According to [18, 2.3], we can complete e into an sl2-triple φ = (e, h, f)
with h ∈ g0 and f ∈ g−η. Consequently, there is a cocharacter of G0, the exponentiation of h, which
we denote by exp(h) : t 7→ th. Moreover, the set of such triple φ with a given e forms a principal
homogeneous space under the action of the unipotent part of the stabiliser of e in G0. Using the
Jacobson–Morosov theorem, one can show that the G0-orbits in gnilη are invariant under homothety.

∗. This assumption is made in order to simplify the presentation below. The affine root system Raf that we introduce
in §4.1 below, under this assumption, is untwisted (denoted A

(1)
n , B

(1)
n , . . . in Kac’s notation). We indicate in §11 how

to adjust the construction to the case where θ is not inner.



18 WILLE LIU

3.3. Spirals, nilpotent radical and splittings. — Let µ ∈ X∗
(
G0

)
Q

be a fractional cocharacter
and let ε ∈ {1,−1}. We attach to it a Z-graded Lie algebra εpµ∗ =

⊕
n∈Z

εpµn where
εpµn =

⊕
r∈Q
r≥εn

µ
rgn.

Such a Z-graded Lie algebra εpµ∗ is called an ε-spiral of g. We also define a Z-graded Lie subalgebra
of g

εlµ∗ =
⊕
n∈Z

εlµn,
εlµn = µ

εngn.

Such a Lie subalgebra εlµ∗ is called a splitting of the spiral εpµ∗ . We let εlµ be the same Lie algebra
as εlµ∗ which has the grading forgotten.

We define the Z-graded Lie algebra εuµ∗ with
εuµ∗ =

⊕
n∈Z

εuµn,
εuµn =

⊕
r>εn

µ
rgn

to be the nilpotent radical of the spiral εpµ∗ . Then εuµ∗ forms a homogeneous ideal of the graded
Lie algebra εpµ∗ and that for each n ∈ Z the subspace εlµn ⊆ εpµn is mapped isomorphically onto the
quotient εpµn/

εuµn. Moreover, εlµ is the Lie algebra of a pseudo-Levi subgroup of G, denoted by Lµ,
see [19, 2.2.5].

We will write pµ∗ , lµ∗ and uµ∗ instead of εpµ∗ , εlµ∗ and εuµ∗ when ε is clear from the context.

3.4. Admissible systems. — An admissible system on gη, as defined in [18], is a datum
(M,m∗,O,C ), where M ⊂ G is a subgroup whose Lie algebra is equipped with a Z-grading m∗ =⊕

n∈Z mn arising as splitting lµ∗ of some spiral, O ⊂ mnil is a M -orbit such that O ∩ mη 6= ∅ and
C ∈ LocM (O) is a cuspidal local system in the sense of [15]. We denote Oη = O∩mη and Cη = C |Oη .
It is known that Cη is an irreducible M0-equivariant local system which is clean, see [16, §4].

An isomorphism of admissible systems (M,m∗,O,C ) ∼= (M ′,m′
∗,O

′,C ′) is a pair (g, ϕ) of element
g ∈ G0 such that gMg−1 = M ′, Adg mn = m′

n, Adg O = O′ and an isomorphism ϕ : g∗C ′ ∼= C . Let
T
(
gη
)

denote the groupoid of admissible systems on gη and let T
(
gη
)

denote the set of isomorphism
classes its objects.

3.5. Extra torus actions. — We will consider two one-dimensional tori C×
q = C× and C×

t = C×.
We let C×

q act on gη by weight −2 and we let it acts trivially on G0. The torus C×
t acts (∗) on gη by

(η − λ0)/m and on G0 by −λ0/m. Then the product G0 ⋊C×
t ×C×

q acts on gη in a natural way.

Given any µ ∈ X∗(G0)Q, consider the ε-spiral pµ∗ and the splitting lµ∗ . We let C×
q acts on pµ∗

by weight −2 and trivially on the groups Lµ and Pµ0 . For each n ∈ Z, we let C×
t act on pn by

(n− λ0)/m for each n ∈ Z. This C×
t -action, when restricted to the Lie algebra lµ∗ , can be integrated

to an C×
t -action on the group L. The product L ⋊C×

t ×C×
q acts on lµ (Z-grading forgotten) in a

natural way. Similarly, the group Lµ0 ⋊C×
t ×C×

q (resp. Pµ0 ⋊C×
t ×C×

q ) acts on the Z-graded Lie
algebra lµ∗ (resp. pµ∗ ).

We also want to consider the C×
t -equivariance of sheaves on Lie algebras. However, not every

cuspidal local system admits an extra C×
t -equivariance. For this reason, let C×

t1/2m
→ C×

t be
the 2m-fold cover. Hereafter, for any group H on which C×

t acts by automorphism, we denote (†)

H⋄ = H ⋊C×
t1/2m

and for any group K, we denote Kq = K ×C×
q .

∗. As it is said in the beginning of §2, the torus C×
t acts morally by loop rotation. We will see in Proposition 4.6

why the C×
t -action is defined in this way.

†. The use of the index ⋄ differs slightly from that in §2. We are obliged to take a finite cover of C×
t so as to make

the cuspidal local system equivariant. This technical point was omitted there.
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Proposition 3.6. — Given any admissible system (M,m∗,O,C ) on gη, the cuspidal local system C
can be enhanced to a M⋄,q-equivariant local system on O in a unique way.

Proof. Pick e ∈ Oη. Since we have LocM (O) ∼= Repπ0(ZM (e)), and LocM⋄,q (O) ∼= Repπ0(ZM⋄,q (e))
it suffices to show Lemma 3.7 below.

Lemma 3.7. — Let µ ∈ X∗(G0) and (Lµ, lµ∗ ) the corresponding Z-graded pseudo-Levi. Let e ∈ lµη .
Then the following inclusions

ZLµ(e) ⊆ ZLµ
⋄
(e) ⊆ ZLµ

⋄,q
(e)

induce isomorphisms on the component groups
π0(ZLµ(e)) ∼= π0(ZLµ

⋄
(e)) ∼= π0(ZLµ

⋄,q
(e)).

Proof. Complete e into an sl2-triple φ = (e, h, f) with h ∈ lµ0 and f ∈ lµ−η, which is possible by the
Z-graded Jacobson–Morosov theorem [16, 3.3]. Let ϕ = exp(h) ∈ X∗(L0). Since the map

Lµ ×C× → Lµ ⋊C×
t1/2m

(g, τ) 7→ (gϕ(τ−η)λ0(τ
2), τ)

restricts to an isomorphism
ZLµ(φ)×C× ∼= ZLµ

⋄
(φ),

we obtain isomorphisms on their component groups.
π0(ZLµ(e)) ∼= π0(ZLµ(φ)) ∼= π0(ZLµ

⋄
(φ)) ∼= π0(ZLµ

⋄
(e)),

where the first (resp. the last) isomorphism is due to the fact that ZLµ(φ) ⊂ ZLµ(e) (resp. ZLµ
⋄
(φ) ⊂

ZLµ
⋄
(e)) is a maximal reductive subgroup, see [13, 2.1].

For the C×
q -equivariance, we make use of the group Zq

Lµ
⋄
(φ) introduced in (1.6) and the isomorphism

ZLµ
⋄
(φ)×C× ∼= Zq

Lµ
⋄
(φ)

to show that
π0(ZLµ

⋄
(e)) ∼= π0(ZLµ

⋄
(φ)) ∼= π0(Z

q
Lµ

⋄
(φ)) ∼= π0(ZLµ

⋄,q
(e)).

Remark 3.8. — As explained in § 2, we think of gη as the graded piece gaf,η of the loop group
gaf = g[$±1]. Under this identification, the action of C×

t on gη defined as above coincides with the
loop rotation on gaf,η.

3.9. Spiral induction. — With the datum (p∗, l∗, u∗) = (εpµ∗ ,
εlµ∗ ,

εuµ∗ ) of a spiral together with a
splitting, we can define the functor of induction. Let P0 = exp(p0) and L0 = exp(l0).

Fix a sign ε ∈ {1,−1}. We consider the following diagram

gη
α←− G0 ×P0 pη

β←− pη
γ−→ lη,

where
α(g, x) = Ad(g)x; β(x) = (e, x); γ(x) = x mod uη.

Then, the morphism α is proper whereas γ is a trivial vector bundle. The above sequence gives rise
to a sequence of quotient stacks:

[gη/G0,⋄,q]
a←− [G0 ×P0 pη/G0,⋄,q]

b←− [pη/P0,⋄,q]
c−→ [lη/L0,⋄,q],

where b is an isomorphism and a is proper. The spiral induction is defined as
Ind

gη

pη
= (ab)∗c

∗ : Db
L0,⋄,q

(lη)→ Db
G0,⋄,q

(
gη
)
. (3.10)
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In fact, for the sign ε = η/|η|, it induce functors on the nilpotent cones [18, 7.1(a)]:

Ind
gη

pη
: Db

L0,⋄,q

(
lnilη

)
→ Db

G0,⋄,q

(
gnilη

)
.

The spiral induction functor satisfies the following transitivity property with the parabolic induc-
tion:

Ind
gη

pη
= Ind

gη
qη ◦ Ind

hη

pη
(3.11)

whenever there is a spiral q∗ with splitting h∗ such that p∗ ⊂ q∗ and l∗ ⊂ h∗. Here p∗ = p∗ ∩ h∗ is a
parabolic subalgebra of h∗.

3.12. Block decomposition. — Suppose that ε = η/|η|. Let ξ = (M,m∗,O,C ) ∈ T
(
gη
)

be an
admissible system on gη. By the cleanness of cuspidal local systems [16, §4], the ∗-extension and the
!-extension of Cη are isomorphic to (a shift of) the intersection complex IC(Cη). Therefore, we may
identify Cη with its direct image on mη.

Define Db
G0

(
gnilη

)
ξ

to be the thick triangulated subcategory of Db
G0

(
gnilη

)
generated by the con-

stituents of the perverse cohomology of Indgη

pη
C for all ε-spiral p∗ which has m∗ as splitting. We define

PervG0

(
gnilη

)
ξ

to be the intersection of Db
G0

(
gnilη

)
ξ

with PervG0

(
gnilη

)
. We call these subcategories

and subsets the blocks of ξ.

According to [18, 0.6], there are orthogonal decompositions

PervG0

(
gnilη

)
=

⊕
ξ∈T(gη)

PervG0

(
gnilη

)
ξ
, Db

G0

(
gnilη

)
=

⊕
ξ∈T(gη)

Db
G0

(
gnilη

)
ξ
.

Using the Hochschild–Serre spectral sequence, we can deduce the same decompositions with the extra
torus actions:

PervG0,⋄,q

(
gnilη

)
=

⊕
ξ∈T(gη)

PervG0,⋄,q

(
gnilη

)
ξ
, Db

G0,⋄,q

(
gnilη

)
=

⊕
ξ∈T(gη)

Db
G0,⋄,q

(
gnilη

)
ξ
. (3.13)

4. Relative affine root system and affine Weyl group

This section is a reminder of the affine alcove complex defined in [19] and its relations with spirals
and splittings. We retain the setting of §3.

4.1. Affine root hyperplane arrangement. — From now on, we fix a maximal torus T ⊂ Gλ0

so that λ0 ∈ X∗(T ). Let A⋄ denote the vector space X∗(T⋄)Q = X∗(T⋄)⊗Q. Since

X∗(T⋄) = X∗(T )×X∗(C
×
t1/2m

) = X∗(T )× 2mX∗(C
×
t ),

we let (0, 2m) ∈ A⋄ denote the inclusion of C×
t1/2m

in T⋄ and let δ = (0, 1) ∈ A∗
⋄ denote the character

given by the obvious map T⋄ → C×
t so that δ(µ, 1) = 1 for all µ ∈ X∗(T ). Notice that the defining

character of C×
t1/2m

is (1/2m)δ. Let A = δ−1(1) ⊂ A⋄, which is an affine subspace whose tangent
space is X∗(T )Q.
The root system of G is a subset R(G,T ) ⊂ X∗(T ). We define Raf = R(G,T ) ⊕ Zδ ⊂ A∗

⋄ to be the
set of (real) affine roots.

Each affine root α ∈ Raf restricts to a non-constant affine function on A, whose zero locus is a
hyperplane in A, denoted by Hα and called root hyperplane. Let H = {Hα ; α ∈ Raf} be the
collection of root hyperplanes. These affine hyperplanes yield a stratification of A into facets (i.e.
subsets of A determined by a finite number of equations α = 0 or α > 0 with α ∈ Raf). Let F denote
the collection of facets. The facets of maximal dimension are called alcoves. The set of alcoves is
denoted by A.
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The Killing form on g yields a Euclidean space structure on A. The affine Weyl group (with
respect to T ) is the group W = NG(T )/T ⋉X∗(T ), which acts on A by orthogonal reflections and
translations. This action preserves the set H of root hyperplanes, inducing thus a W -action on F,
whose restriction to A ⊆ F is simply transitive. Since A⋄ is the linearisation of A, the affine W -action
on A extends in a unique way to a linear W -action on A⋄.

Let E be the collection of affine subspaces of A which are non-empty intersection of a finite subset
of H. Elements of E are called relevant subspaces.

4.2. Canonical affine Weyl group. — Given an alcove κ ∈ A, let ∆κ ⊆ Raf be the subset of
affine simple roots α such that α > 0 on κ and Hα ∩κ is a face of the simplex κ. It is known that ∆κ

forms a base for the affine root system (A, Raf). For each α ∈ Raf , let sα ∈W denote the orthogonal
reflection on A with respect to the root hyperplane Hα. Then injective map ∆κ ↪→ W defined by
α 7→ sα yields a Coxeter group (W,∆κ).

Since W acts simply transitively on A, given any two alcoves κ, κ′ ∈ A, there is a unique w ∈ W
such that κ′ = wκ. Then, w yields an isomorphism of Coxeter groups

(W,∆κ) ∼= (W,∆κ′
)

y 7→ wyw−1, sα 7→ wsαw
−1 = swα.

Thus we can define
(W,∆) = lim←−

κ∈A

(W,∆κ)

to be the canonical affine Weyl group: for any κ ∈ A, there is a canonical isomorphism
(W,∆) ∼= (W,∆κ).

For any subset J ⊆ ∆, we denote by (WJ , J) the Coxeter sub-system of (W,∆) generated by J .
For any alcove κ ∈ A, we denote by (WJκ , Jκ) the Coxeter subgroup of (W,∆κ) which is the image
of (WJ , J) in (W,∆κ) under the canonical isomorphism (W,∆) ∼= (W,∆κ).

We define a W-action on A as follows: for w ∈ W and κ ∈ A, put wκ = (wκ)−1κ. This action is
simply transitive and commutes with the W -action on A.

Remark 4.3. — It is useful to keep in mind that W = AutW (A) and that the W-action and the
W -action on A are of different nature. The W -action on A is induced from a reflection action on A,
whereas the W-action on A does not extend continuously to an action on A. Moreover, the W-action
is “local” in the sense that whenever s ∈ W is a simple reflection, sκ and κ are adjacent for every
alcove κ ∈ A.

4.4. Facets and Coxeter subgroups. — We put a partial order ≤ on the set of facets F by the
inclusion of closure : σ ≤ τ if σ ⊆ τ . Given any κ ∈ A and J ⊊ ∆, we define a facet ∂Jκ ∈ F with
∂Jκ ≤ κ by

∂Jκ =

{
y ∈ A ;

α(y) = 0, ∀α ∈ Jκ

α(y) > 0, ∀α ∈ ∆κ \ Jκ

}
.

Then WJκ coincides with the pointwise stabiliser W∂Jκ = StabW (∂Jκ).

Given any facet σ ∈ F, choose an alcove κ ∈ A such that σ ≤ κ. There is a unique subset J ⊊ ∆
such that ∂Jκ = σ and moreover, the subset J is independent of the choice of κ ∈ A. The subset
J ⊊ ∆ is called the type of the facet σ ∈ F. Let FJ = ∂J(A) ⊆ F denote the set of facets of type J .
It follows that F =

⊔
J⊊∆ FJ and F∅ = A. Moreover, each subset FJ ⊂ F is stable by the action of

W and the map ∂J : A→ FJ induces a bijection of W -sets A/WJ
∼= FJ .

For any pair of strict subsets J ⊆ K ⊊ ∆, the boundary map ∂K : A → FK descends to a map
∂JK : FJ → FK such that ∂K = ∂JK ◦ ∂J . By abuse of notation, we will write ∂K = ∂JK .
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4.5. Correspondence between spirals and facets. — We define x = (λ0/m, 1) ∈ A. Let PT

be the set of spirals p∗ such that p∗ = εpµ∗ for some µ ∈ X∗ (T )Q, cf. §3.3.

Given a facet σ ∈ F, we choose a point y ∈ σ. Since both y and x lie in A, the difference x− y is
in X∗(T )Q. Set µy = mε (x− y) ∈ X∗ (T )Q. It gives rise to the spiral εpµy

∗ , which does not depend
on the choice of y ∈ σ, see [19, 3.4.4].

We denote pσ∗ = εp
µy
∗ as well as uσ∗ = εu

µy
∗ and lσ∗ = εl

µy
∗ for any choice of y ∈ σ. We also denote

Pσ0 = exp (pσ0 ), Lσ = exp (lσ), Lσ0 = exp (lσ0 ) and Uσ0 = exp (uσ0 ); those are subgroups of G.

Recall that we have defined in §3.5 a C×
t -action on pσ∗ . The T⋄-weights appearing in pσ∗ can be

characterised as follows:

Proposition 4.6. — An affine root α ∈ Raf appears in pσ∗ if and only if for some (equiv. every)
y ∈ σ, we have

α(y) ≤ 0 in the case ε = 1;
α(y) ≥ 0 in the case ε = −1.

In this case, the α-weight space appears in pσn for n = mα(x) ∈ Z.

This proposition yields a combinatorial parametrisation of the set of T -stable ε-spirals.

Corollary 4.7. — The assignment σ 7→ pσ∗ yields a bijection between F and PT . Moreover, σ ≤ τ
holds if and only if pτ∗ ⊆ pσ∗ .

Remark 4.8. — In other words, pσ∗ recovers the usual notion of parahoric subalgebra of the loop group
G(($−ε)) and pσn is the (n/m)-weight space for the fractional cocharacter x = (λ0/m, 1) ∈ X∗(T⋄)Q.
The space A with the facet structure F is the apartment of the Bruhat–Tits building for G(($−ε))
given by the parahoric subgroups containing T and stabilised by the loop rotation C×

t .

4.9. Pseudo-Levi attached to relevant affine subspaces. — Let MZ−gr
T be the set of quadru-

ples (M,M0,m,m∗) with M a pseudo-Levi subgroup of G containing the maximal torus T and
m∗ a Z-grading on m = LieM which makes m a graded Lie algebra such that T ⊆ M0, where
M0 = exp (m0). There is bijective correspondence

E←→MZ−gr
T

defined as follows: given any relevant subspace E ∈ E, choosing any facet σ ∈ F which spans E as
affine subspace, we set (

ME,ME
0 ,m

E,mE
∗
)
= (Lσ, Lσ0 , l

σ, lσ∗ ) ;

then the splitting
(
ME,ME

0 ,m
E,mE

∗
)

does not depend on the choice of σ, see [19, 3.4.7]. Similarly to
the case of spiral, we can characterise the T⋄-weights appearing in mE

∗ as follows:

Proposition 4.10. — An affine root α ∈ Raf appears in mE
∗ if and only if α |E= 0. In this case, the

α-weight space appears in mE
n for n = mα(x).

We can describe the root system of the reductive group ME
⋄ = ME ⋊C×

t1/2m
with respect to the

maximal torus T⋄ as a subsystem of the affine root system (A, Raf):
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Proposition 4.11. — Given a relevant subspace E ∈ E, we put RE = {α ∈ Raf ; α |E= 0}. Denote
(M,m∗) = (ME,mE

∗). Then the following statements hold:
(i) RE coincides with the root system R(M⋄, T⋄) as subset of X∗(T⋄)Q.

(ii) The vector subspace E⋄ ⊂ A⋄ spanned by E coincides with X∗(Z(M⋄))Q.
(iii) The pointwise stabiliser WE = StabW (E) coincides with the Weyl group WM⋄ =W (M⋄, T⋄).
(iv) The stabiliser WE,x = StabWE(x) coincides with the Weyl group WM0,⋄ =W (M0,⋄, T⋄).

Proof. The statement (i) follows immediately from Proposition 4.10. The statement (ii) follows
from (i) by taking the intersection of the kernels of elements of RE = R(M⋄, T⋄).

Via the reflection action of WM⋄ on X∗ (T⋄), we may consider WM⋄ as subgroup of W . Let
κ ∈ A be an alcove such that κ ∩ E 6= ∅. Then there is a subset Jκ ⊂ ∆κ such that E =
{y ∈ A ; α(y) = 0, ∀α ∈ Jκ}. Consequently, Jκ is a base for the root system RE and the subgroup
WE =WJκ is its Weyl group. We conclude that WE coincides with W (M⋄, T⋄), whence (iii).

Now let E′ be the smallest relevant affine subspace containing both E and x. It follows that
mE′

0 = mE
0 and mE′

n = 0 for n 6= 0. Then (iii) applied to (ME′
,mE′

∗ ) yields (iv).

In particular, if we let E ∈ E be the smallest relevant affine subspace containing x ∈ A, then
by Proposition 4.10 we have mE

0 = g0 and mE
n = 0 for n 6= 0. Hence ME

0 = G0 and Proposition 4.11 (iv)
yields the following:

Corollary 4.12. — The subset Rx = {α ∈ Raf ; α(x) = 0} coincides with the root system R(G0,⋄, T⋄)
and the stabiliser Wx = StabW (x) coincides with the Weyl group W (G0,⋄, T⋄). Moreover, the inclu-
sion of pairs (G0, T ) ↪→ (G0,⋄, T⋄) induces an isomorphism W (G0, T ) ∼=Wx.

4.13. Relative affine root system attached to an admissible system. — Let ξ = (M,m∗,O,C )
be an admissible system on gη as defined in §3.4. In particular, C is a M⋄,q-equivariant cuspidal
local system on O ⊂ m. There exists a relevant hyperplane E = EM such that (M,m∗) = (ME,mE

∗)
as in §4.9. We assume that dimEM > 0.

The restriction of the affine root system (A, Raf) to the subspace EM yields an affine root system
(EM , R′

ξ), where R′
ξ =

{
α |EM

⋄
; α ∈ Raf ; a |EM

⋄
6= 0

}
. The root system (EM , R′

ξ) may not be reduced.
Let Rξ ⊂ R′

ξ be the subset of indivisible roots.

We let Ξ ⊂ F denote the set of facets which span EM as affine subspace of A. The elements of Ξ
are called EM -alcoves. Notice that by Proposition 4.10, an EM -alcove ν ∈ Ξ is characterised by the
property that lν∗ = m∗. Let WM = W (M⋄, T⋄) ⊂ W be the Weyl group of M⋄. By Proposition 4.11,
it is also the pointwise stabiliser of EM . As we have explained in §2.7, the set Ξ will be used to
parametrise the fixed components of the partial affine Springer resolution ġaf .

The main properties, proven in [19, 2.4], are the following:

Proposition 4.14. — The following statements hold:
(i) Rξ is an irreducible affine root system on EM . Let Wξ denote its Weyl group.

(ii) Wξ is isomorphic to NW (WM )/WM .
(iii) Given any EM -facet ν ∈ Ξ, there is a unique base ∆ν

ξ ⊂ Rξ such that the elements of ∆ν
ξ take

positive values on ν.
(iv) Wξ acts simply transitively on Ξ. Consequently, all the EM -alcoves are of the same type.
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By Proposition 4.14 (iv), we can denote the type of EM -facets by Iξ ⊂ ∆, so that Ξ ⊂ FIξ .

4.15. Symmetry of ξ. — We keep the admissible system ξ as in §4.13 and the type Iξ ⊂ ∆.
Let xM ∈ EM denote the image of x under the orthogonal projection A → EM . We denote
Wξ,x = StabWξ

(xM ).

Proposition 4.16. — The following statements hold:
(i) The action of NG0,⋄(ZM⋄) on ZM⋄ by conjugation yields an isomorphism NG0,⋄(ZM⋄)/M0,⋄ ∼=

Wξ,x.
(ii) The adjoint action of NG0,⋄(ZM⋄) on mη preserves the M0,⋄-orbit Oη ⊂ mη.

(iii) The cuspidal local system C has a NG0,⋄(ZM⋄)-equivariant structure.

Proof. Let E′ ∈ E be the smallest relevant affine subspace which contains xM . It follows that E′ ⊆ E
and (M ′,m′

∗) := (ME′
,mE′

∗ ) defined in §4.9 is a Z-graded pseudo-Levi subgroup of G which contains
(M,m∗) as graded Levi subgroup. We may view ξ as an admissible system on m′

⋄ in the sense of [15].
We have the isomorphisms of groups below.

(i) By Corollary 4.12, the Weyl group W (G0,⋄, T⋄) coincides with Wx.
(ii) We can deduce from it that NG0,⋄(ZM⋄)/M0,⋄ is isomorphic to Wξ,x = StabWξ

(xM ).
(iii) Wσ,ξ = NM ′

⋄
(ZM⋄)/M⋄ coincides with the pointwise stabiliser of σ in Wξ;

(iv) Wσ,ξ,x = NM ′
0,⋄

(ZM⋄)/M0,⋄ coincides with the stabiliser of xM ∈ EM in Wσ,ξ.
By the choice of σ, we have Wσ,ξ,x =Wξ,x. Thus we deduce NG0,⋄(ZM⋄) = NM ′

0,⋄
(ZM⋄).

Since (M⋄,O,C ) is an admissible system on m′
⋄, by [15, 9.2] the action of NM ′

⋄
(ZM⋄) by conjugation

on m′
⋄ preserves O ⊂ m⋄ and the cuspidal local system C has a NM ′

⋄
(ZM⋄)-equivariant structure.

The restriction of this action to the subgroup NM ′
0,⋄

(ZM⋄) preserves Oη and induces an action on Cη.
Since NM ′

0,⋄
(ZM⋄) = NG0,⋄(ZM⋄), the results follow.

4.17. Canonical relative affine Weyl group. — By Proposition 4.14, the considerations of §4.2
and §4.4 can be applied to EM with the alcove structure F(EM ) =

{
σ ∈ F ; σ ⊂ EM

}
:

— Each EM -alcove ν ∈ Ξ gives rise to a base ∆ν
ξ ⊂ Rξ and for any pair ν, ν′ ∈ Ξ, the Wξ-action

gives a canonical isomorphism of based affine root systems (∗) (EM⋄ ,∆ν
ξ )
∼= (EM⋄ ,∆ν′

ξ ). We define
the canonical based relative affine root system to be (Eξ,⋄,∆ξ) = lim←−ν∈Ξ

(EM⋄ ,∆ν
ξ ). Set

Eξ = δ−1(1) ⊂ Eξ,⋄, which is a Euclidean affine space.
— We define the canonical relative affine Weyl group (Wξ,∆ξ) to be the Weyl group of

(Eξ,⋄,∆ξ). It acts by orthogonal reflections on Eξ and this action extends linearly to Eξ,⋄. For
each ν ∈ Ξ, there is a canonical isomorphism (Wξ,∆ξ) ∼= (Wξ,∆

ν
ξ ).

— The W-action on A induces a Wξ-action on FIξ
∼= A/WIξ . The latter action restricts to a

simply transitive Wξ-action on the subset Ξ ⊂ FIξ which commutes with the Wξ-action.
— For each subset J ⊊ ∆ξ, there is a boundary map ∂J : Ξ → F(EM ) of relative type J . Put

ΞJ = ∂J(Ξ) (in particular, Ξ = Ξ∅). There is a decomposition F(EM ) =
⊔
J⊊∆ξ

ΞJ .
— For each subset J ⊊ ∆ξ, the map ∂J induces a bijection of Wξ-sets Ξ/WJ

∼= ΞJ .

Proposition 4.18. — Suppose that dimEM > 0. Write I = Iξ. The following statements hold:
(i) Wξ is isomorphic to NW(WI)/WI .

∗. We omit the set of roots Rξ in the datum (Eξ,⋄,∆
ν
ξ ) because it is determined by the Euclidean structure on Eξ

and the base ∆ν ⊂ E∗
ξ,⋄.



GENERALISED SPRINGER CORRESPONDENCE FOR Z/m-GRADED LIE ALGEBRAS 25

(ii) The short exact sequence
1→WI → NW(WI)→Wξ → 1

has a canonical splitting which takes any element w ∈ Wξ to the (unique) shortest element of
the pre-image of w in NW(WI). We may thus regard Wξ as a subgroup of W.

(iii) Let ` :W → N be the length function of the Coxeter group (W,∆) and let `ξ :Wξ → N be that
of (Wξ,∆ξ). If we regard Wξ as a subgroup of W, then for w,w′ ∈ Wξ we have

`(ww′) = `(w) + `(w′)⇐⇒ `ξ(ww
′) = `ξ(w) + `ξ(w

′).

Proof. These statements are proven in [12, 5.9] for finite root systems. However, the same arguments
work for affine root systems and Coxeter groups in general, provided that the parabolic subgroupWI

is finite and satisfies the condition of [12, 5.7.1].

Remark 4.19. — A complete list of the types Iξ ⊂ ∆ with the relative affine root systems (Eξ,∆ξ)
is given in [11, §6–§7] for (A,∆) untwisted and [10, §11] for (A,∆) twisted, where the subset Iξ
is indicated as boxed vertices in the Dynkin diagram of (A,∆) and the relative affine root system
(Eξ,∆ξ) is indicated in the [− ]-diagrams.

5. Construction of Φ

We keep the assumptions of § 3 and § 4. In particular, there is an admissible system ξ =
(M,m∗,O,C ) on gη cf. § 4.13, a cocharacter λ0 ∈ X∗ (T ) which lifts the Z/m-grading on g, a
sign ε ∈ {1,−1} and x = (λ0/m, 1) ∈ A.

Following the strategy of [25] and [19], we will construct a homomorphism Φ : Hξ → Ĥ from the
degenerate double affine Hecke algebra (dDAHA) to the convolution algebra.

5.0. Notation for parabolic and spiral inductions. — In §4.5, we have introduced a bijection
between F and the set of spirals p∗ such that T ⊂ P0. We have attached to each facet σ ∈ F a ε-spiral
pσ∗ and a splitting lσ∗ . In the rest of the article, we will abbreviate the spiral induction (§3.9) by

Indσ = Ind
gη

pσ
η
: Db

Lσ
0,⋄,q

(lση )→ Db
G0,⋄,q

(gη).

By Proposition 4.11 (i), the root system R(Lσ⋄ , T⋄) can be identified with the root subsystem of
α ∈ Raf such that α |σ= 0. Given another facet τ ∈ F such that σ ≤ τ (§4.4), we have pτ∗ ⊆ pσ∗
by Corollary 4.7. Set pσ≤τ∗ = pτ∗ ∩ lσ∗ , so that pσ≤τ∗ is a parabolic subalgebra of lσ∗ . If we pick any
point y ∈ τ , then by Proposition 4.6, the T⋄-weights of pσ≤τ∗ are those roots α ∈ R(Lσ⋄ , T⋄) such that
ε · α(y) ≤ 0. We will abbreviate the Z-graded parabolic induction (§1.8) by

Indστ = Ind
lση

p
σ≤τ
η

: Db
Lτ

0,⋄,q
(lτη)→ Db

Lσ
0,⋄,q

(lση ).

5.1. Degenerate double affine Hecke algebra. — Recall the canonical relative based root
system (Eξ,∆ξ) defined in §4.17. We regard ∆ξ as linear functions on the linearisation Eξ,⋄. The
relative affine Weyl group Wξ acts on Eξ,⋄ by orthogonal reflections. It induces a Wξ-action on the
algebra Sξ in which Wξ acts trivially on u.

For each relative affine simple root α ∈ ∆ξ, we define as in [19] an integer cα ∈ Z≥2. Pick any EM -
alcove ν ∈ Ξ. The canonical isomorphism (Eξ,∆ξ) ∼= (EM ,∆ν

ξ ) sends α to a relative root αν ∈ ∆ν
ξ ,

which cuts out a relative hyperplane H ⊂ EM . Then H ⊂ A, being a relevant subspace, gives rise
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to a pseudo-Levi subalgebra l which contains m as Levi subalgebra. The connected component of
EMR \HR on which αν takes positive values yields a parabolic subalgebra p+ = m⊕ u+ ⊂ l. Pick any
e ∈ O. Then cα is defined to be the biggest integer c ≥ 2 such that (ade)

c−2 6= 0 on u+.

We define the degenerate double affine Hecke algebra (dDAHA) Hξ attached to the admis-
sible system ξ with the based relative affine root system (Eξ,∆ξ). It is the associative algebra over
the polynomial ring k[u] generated by {xµ}µ∈E∗

ξ,⋄
and {sα}α∈∆ξ

subject to the following relations for
µ, ν ∈ E∗

ξ,⋄, r ∈ Q and α ∈ ∆ξ:

rxµ = xrµ, xµ + xν = xµ+ν , k[sα ; α ∈ ∆ξ] ∼= kWξ

sαx
µ − xsα(µ)sα = ucα〈µ, α∨〉.

The family (cα)α∈∆ξ
is usually called the parameters of Hξ.

Let k[Eξ,⋄] be the algebra of k-value polynomial functions on Eξ,⋄. The subalgebra of Hξ generated
by the set {xµ}µ∈E∗

ξ,⋄
is isomorphic to k[Eξ,⋄] in the obvious way. Therefore we may view k[Eξ,⋄] as

a subalgebra of Hξ and denote µ = xµ ∈ Hξ for µ ∈ E∗
ξ,⋄. The dDAHA Hξ, as vector space, can be

written as a tensor product
Hξ = Sξ ⊗ kWξ

of two subalgebras: the polynomial subalgebra Sξ = k[Eξ,⋄]⊗k[u] and the group ring of the canonical
affine Weyl group kWξ. They satisfy the following commutation laws:

sα f − sα(f) sα = ucα
f − sα(f)

α
, α ∈ ∆ξ, f ∈ Sξ

The elements u, δ ∈ Sξ are central in Hξ.

Remark 5.2. — The class of dDAHAs which can be constructed in the present setting is limited
for non-simply laced root systems. Since the constants cα are certain integers determined by the
cuspidal pair (O,C ), only certain integral proportions between parameters can appear. In the list of
G. Lusztig [11, §6–§7] [10, §11], the number cα for α ∈ ∆ξ corresponds to the number A for in the
vertex ]A×B

k or [A×B
k indicated in the [− ]-diagrams.

5.3. Extension algebra Ĥ. — We define the Lusztig sheaf for the EM -alcove ν ∈ Ξ to be
Iν = Indν Cη ∈ Db

G0,⋄,q
(gη),

We define the set of Wξ,x-conjugacy classes Ξ =Wξ,x\Ξ. Where Wξ,x is as in §4.15. We show that
Iν depends only on the class ν in Ξ. By Proposition 4.16 (iii), we may view the cuspidal local system
Cη as Wξ,x-equivariant local system over the stack [Oη/M0,⋄,q]. If ν, ν′ ∈ Ξ are such that ν = ν′

(i.e. if they are in the same Wξ,x-orbit), let w ∈ Wξ,x be such that wν = ν′. Then w gives a stack
automorphism Adw : [mη/M0,⋄,q] ∼= [mη/M0,⋄,q]. The Wξ,x-equivariance of Cη gives an isomorphism
Ad∗w Cη ∼= Cη. Consequently, we have canonical isomorphisms

Iν
′
= Indν′ Cη ∼= Indν Ad∗w Cη ∼= Indν Cη = Iν .

Proposition 5.4. — For ν ∈ Ξ, the following statements hold
(i) We have Iν ∼=

⊕
k∈Z

pH kIν [−k] and each factor pH kIν is a semi-simple perverse sheaf.

(ii) If ε = η/|η|, then the complex Iν is supported on the nilpotent cone, i.e. Iν ∈ Db
G0,⋄,q

(
gnilη

)
.

Proof. The statement (i) follows from the Beĭlinson–Bernstein–Deligne–Gabber decomposition theo-
rem and the purity of C [16, 1.4]. The statement (ii) follows from to the assumption that ε = η/|η|
and (3.10).
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Define the following space
Ĥ =

∏
ν′∈Ξ

⊕
ν∈Ξ

Ext∗G0,⋄,q

(
Iν

′
, Iν

)
0
.

Recall that the index 0 means the completion at the augmentation ideal H>0
G0,⋄,q

cf. §1.16. The
Yoneda product gives a ring structure on the space Ĥ. We will introduce a topology on it in §8.

Remark 5.5. — Although the set Ξ (and hence Ξ) is infinite, there is only a finite number of
possibilities for the subspace pνη for ν ∈ Ξ, on which depends the functor Indν ; therefore, there is only
a finite number of isomorphism classes of the complexes Iν . However, we needed to take the sum
over the infinite set Ξ in order to construct an action of the dDAHA Hξ on it. This phenomenon
was first observed in [24, 3.4] and was used to study to the dimension of simple Hξ-modules.

5.6. Graded affine Hecke algebras and ΦJ . — Let J ⊊ ∆ξ. We have a parabolic subgroup
(Wξ,J , J) of the canonical relative Weyl group (Wξ,∆ξ). We define Hξ,J to the subalgebra of Hξ

generated by Sξ and {sa}a∈J . As vector space, it admits a decomposition Hξ,J
∼= kWξ,J ⊗ Sξ. In

the case where J = ∅, it recovers the polynomial algebra Hξ,∅ = Sξ.

Recall the set ΞJ = ∂JΞ ⊂ F(EM ) of EM -facets of (relative) type J introduced in §4.17. For each
σ ∈ ΞJ , we define Ξσ = {ν ∈ Ξ ; ∂Jν = σ}, so that there is a partition Ξ =

⊔
σ∈ΞJ

Ξσ. In other
words, Ξσ is the subset of Ξ consisting of those EM -alcoves whose closure contains σ. The stabiliser
Wξ,σ = StabWξ

(σ) acts simply transitively on Ξσ. Let Ξσ =Wξ,σ,x\Ξσ, where Wξ,σ,x =Wξ,σ ∩Wξ,x.

With the datum (Lσ⋄ , l
σ
⋄,∗, ξ), we are in the situation of §1.8. The groupWξ,J can be identified with

the canonical relative Weyl group of Lσ⋄ with respect to ξ. Moreover, by Proposition 4.11 (ii), the
vector space EM⋄ coincides with X∗(ZM⋄)Q and Ξσ can be identified with the set denoted by Ξ in §1.9.
Choosing any ν0 ∈ Ξσ, we have an isomorphism (Eξ,⋄,∆ξ) ∼=

(
EM⋄ ,∆

ν0
ξ

)
. Under this isomorphism,

the based root subsystem (Eξ,⋄, J) is sent to a based root system
(
EM⋄ ,∆σ

ξ

)
with ∆σ

ξ ⊂ ∆ν0
ξ . Thus

we can identify the subalgebra Hξ,J ⊂ Hξ with the graded affine Hecke algebra (which was denoted
by Hξ in §1.1) attached to (EM⋄ ,∆σ

ξ ) via the isomorphism (Eξ,⋄,∆ξ) ∼= (EM⋄ ,∆
ν0
ξ ).

For σ ∈ ΞJ , define the parabolic version of Ĥ attached to σ:

Ĥσ =
⊕

ν,ν′∈Ξσ

Ext∗Lσ
⋄,0,q

(Indσν′ Cη, Ind
σ
ν Cη)0 .

Recall the element x = (λ0/m, 1) ∈ A. We consider the equivariant localisation by action of the
fractional cocharacter (x, η/2m) = (2λ0, 2m, η)/2m ∈ X∗(T⋄ × C×

q ). Notice that (lσ)(x,η/2m) =

(lσ)(2λ0,2m,η) = lση . The constructions of §1.1 can thus be applied (∗) to the datum (Lσ⋄ , l
σ
⋄,∗, ξ). In

particular, there is a homomorphism Φσ defined by means of equivariant localisation

Hξ,J

⊕
ν,ν′∈Ξσ Ext∗Lσ

⋄,0,q
(Indσν′ Cη, Ind

σ
ν Cη)0 = Ĥσ

Ext∗Lσ
⋄,q

(Indl
σ

pσ≤ν0 C , Indl
σ

pσ≤ν0 C ) Ext∗Lσ
⋄,q

(Indl
σ

pσ≤ν0 C , Indl
σ

pσ≤ν0 C )(x,η/2m)

∼=

Φσ

∼= loc (5.7)

which is independent of the choice of ν0, see the proof of Proposition 1.18.

We set
ΦJ = (Φσ)σ∈ΞJ

: Hξ,J →
∏
σ∈ΞJ

Ĥσ, where ΞJ =Wξ,x\ΞJ .

∗. Our group is now Lσ
⋄ with maximal torus T⋄. The Z-grading on lσ is given by λ⋄ = (λ0,m) with δ(λ⋄) = m.

Notice that the completion is taken at (x, η/2m) instead of (λ⋄, η/2). It is fine because they are proportional.
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5.8. Construction of Φ. — Let K ⊆ J ⊊ ∆ξ. Given σ ∈ ΞJ , we let ΞσK = {τ ∈ ΞK ; ∂Jτ = σ}.
For each σ ∈ ΞJ , τ ∈ ΞσK and ν, ν′ ∈ Ξτ , there is a homomorphism given by the functoriality of Indστ :

Ext∗Lτ
0,⋄,q

(Indτν′ C , Indτν C )0 → Ext∗Lσ
0,⋄,q

(Indσν′ C , Indσν C )0 .

Summing over ν, ν′ ∈ Ξτ , we get

Ĥτ =
⊕

ν,ν′∈Ξτ

Ext∗Lτ
0,⋄,q

(Indτν′ C , Indτν C )0 →
⊕

ν,ν′∈Ξτ

Ext∗Lσ
0,⋄,q

(Indσν′ C , Indσν C )0 .

On the other hand, the partition Ξσ =
⊔
τ∈Ξσ

K
Ξτ yields an inclusion of subring∏

τ∈Ξσ
K

⊕
ν,ν′∈Ξτ

Ext∗Lσ
0,⋄,q

(Indσν′ C , Indσν C )0 ⊂ Ĥσ.

Combining the above two maps, we obtain an ring homomorphism

ψσK :
∏
τ∈Ξσ

K

Ĥτ → Ĥσ.

Proposition 1.18 can be reformulated as follows:

Lemma 5.9. — The following diagram commutes

Hξ,K

∏
τ∈Ξσ

K
Ĥτ

Hξ,J Ĥσ

(Φτ )τ∈Ξσ
K

ψσ
K

Φσ

.

Taking product over σ ∈ ΞJ , we obtain a commutative square of rings

Hξ,K

∏
τ∈ΞK

Ĥτ

Hξ,J

∏
σ∈ΞJ

Ĥσ

ΦK

∏
σ ψ

σ
K

ΦJ

.

Similarly, using the functoriality of the spiral induction Indσ for σ ∈ ΞJ , we have a ring homomor-
phism

ψJ :
∏
σ∈ΞJ

Ĥσ → Ĥ.

The transitivity of spiral induction with parabolic induction (3.11) implies that ψK = ψJ ◦(∏
σ∈ΞJ

ψσK

)
for K ⊂ J .

Theorem 5.10. — There is a unique ring homomorphism

Φ : Hξ → Ĥ

such that for each J ⊊ ∆ξ, the following diagram commutes

Hξ,J

∏
σ∈ΞJ

Ĥσ

Hξ Ĥ

ΦJ

ψJ

Φ

.
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Proof. Taking inductive limit over the partially ordered set ({J ⊊ ∆ξ} ,⊆), we obtain by Lemma 5.9
a ring homomorphism

lim−→
J

Hξ,J
(ψJ◦ΦJ )J−−−−−−→ Ĥ.

It suffices to show that the natural ring homomorphism induced by inclusion of parabolic subalgebras
ι : lim−→

J⊊∆ξ

Hξ,J → Hξ

is a ring isomorphism. The map ι is surjective because each generator of Hξ lies in a parabolic
subalgebra. Observe the following:

(i) Each of the defining relations of Hξ involves at most two elements from the set of simple
reflections {sa}a∈∆ξ

.
(ii) In the case where #∆ξ = 2, there is no braid relation between the two simple reflections.

Each defining relation of Hξ must therefore lie in the parabolic subalgebra Hξ,J for some J ⊊ ∆ξ.
It follows that ι is also injective.

So far, we have very little information about the maps ψJ and Φ. We will show in Proposition 7.18
that ψJ is injective and we will determine its image.

6. Geometry of the Steinberg varieties

We have explained in §2.7 that ġ
λ⋄,q
af
∼=

⊔
ν∈Ξ T ν is an infinite disjoint union of smooth algebraic

varieties. In this section, we study the fixed points g̈
λ⋄,q
af of the Steinberg variety g̈af = ġaf ×gaf

ġaf .
We describe the stratification of g̈λ⋄,q

af by the relative position of pairs of spirals. The exposition below
will be given purely in terms of finite dimensional varieties and the ind-schemes such as ġaf and g̈af
will only serve heuristically.

The main result Proposition 6.18 states that the filtration by Bruhat order on the Steinberg
varieties is a filtration by closed subvarieties and that the convolution product on the Steinberg variety
respects the filtration by Bruhat order. This will allow us to define a filtration on the convolution
algebra in the next section §7.

We keep the assumptions of the previous sections.

6.1. Double quotient. — Recall that I = Iξ is the type of EM -chambers. We recollect some basic
combinatorial properties about the double quotient WI\W/WI .

Proposition 6.2. — Recall that Wξ acts on Ξ and W acts on FI .
(i) There is a canonical inclusion Wξ ↪→WI\W/WI .

(ii) There is a canonical bijection
W\ (FI × FI) ∼=WI\W/WI

which induces a bijection
Wξ\ (Ξ× Ξ) ∼=Wξ.

Proof. The inclusion in assertion (i) is from Proposition 4.18, given by the shortest representatives.
Choosing any κ ∈ A, we define

WI\W/WI →W\ (FI × FI)

WIwWI 7→W (∂Iκ,w
κ∂Iκ) .

(6.3)

Since FI ∼= A/WI as W -set, the above map is a bijection and does not depend on the choice of κ.
The second statement follows, since both Wξ and Wξ act simply transitively on Ξ.
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Definition 6.4. — The image of any pair (ν, ν′) ∈ FI × FI under the map

FI × FI →W\ (FI × FI) ∼=WI\W/WI

is called the relative position of ν and ν′. The relative position is called good if it is in the image
of the inclusion Wξ ↪→WI\W/WI and bad otherwise.

We introduce a partial order on the double quotient WI\W/WI . For w ∈ W we denote by
[w] =WIwWI ∈ WI\W/WI the double coset containing w.

Proposition 6.5. — The following statements hold:

(i) Each double coset [w] ∈ WI\W/WI has a maximal (resp. minimal) representative in W with
respect to the Bruhat order, denoted by max([w]) ∈ W (resp. min([w])). The map w 7→ max([w])
(resp. w 7→ min([w]) is order-preserving.

(ii) Define partial orders ≤max and ≤min on WI\W/WI by

[w] ≤max [w′]⇔ max([w]) ≤ max([w′])

[w] ≤min [w′]⇔ min([w]) ≤ min([w′]).

Then ≤max and ≤min coincide.

(iii) The restriction of ≤max (resp. ≤min) on Wξ ⊂ WI\W/WI refines the Bruhat order on Wξ.

Proof. For w ∈ W, let p(w) ∈ W be the maximal element in WIw and let q(w) ∈ W be the maximal
element in wWI . It is clear that p :W →W and q :W →W preserve the order.

Fix [w] ∈ WI\W/WI . Replacing w with q(p(w)), we may suppose that p(w) = w = q(w). Given
any w′ ∈ [w], pick v ∈ WIw

′ ∩ wWI 6= ∅. It follows that v ≤ w so w′ ≤ p(w′) = p(v) ≤ p(w) = w.
Hence w is maximal in [w]. Moreover, we see that max([w]) = q(p(w)). Similarly, the minimal
element exists in [w].

Since p and q preserve the Bruhat order, so does the map w 7→ max([w]). Similarly, the map
w 7→ min([w]) also preserves the Bruhat order. Hence ≤min and ≤max coincides.

The last statement follows from Proposition 4.18.

We say that a subset C of a partially ordered set (S,≤) is an ideal if x ∈ C and y ≤ x implies
y ∈ C. The combinatorial results below follow from Proposition 6.5 and are easy to prove.

Corollary 6.6. — The following statements hold

(i) If I ⊂ W satisfies I = WIIWI , then I is an ideal of (W,≤) if and only if WI\I/WI is an
ideal of (WI\W/WI ,≤max).

(ii) If I and J are ideals of (W,≤), then so is IJ .

(iii) If I and J are ideals of (WI\W/WI ,≤max), then so is the product

IJ = {[ww′] ∈ WI\W/WI ; [w] ∈ I , [w′] ∈ J } .
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6.7. The fixed-point components X ν,ν′ . — Consider the space P of spirals which are G0-
conjugate to pν∗ for some ν ∈ Ξ. This space is isomorphic to an infinite disjoint union of partial
flag varieties of G0:

P ∼=
⊔
ν∈Ξ

Pν , Pν = G0/P
ν
0 ↪→ P

given by G0/P
ν
0 3 gP ν0 7→ Adg p

ν
∗ ∈ P.

For ν, ν′ ∈ Ξ, we set
X ν,ν

′
= Pν × Pν

′
.

Recall that by Corollary 4.12, the Weyl group W (G0, T ) is isomorphic to the stabiliser Wx =

StabW (x). Let ν, ν′ ∈ Ξ. By the Bruhat decomposition, the orbits of the G0-action on X ν,ν′ are in
canonical bijection with the orbits of diagonal left translation of Wx on (Wx/Wx,ν) × (Wx/Wx,ν′),
where Wx,ν =Wx ∩Wν .

Define the map of relative position Πν,ν′ : X ν,ν′ →WI\W/WI by

G0\X ν,ν
′ ∼=Wx\ ((Wx/Wx,ν)× (Wx/Wx,ν′))→W\ (FI × FI) ∼=WI\W/WI

Wx · (uWx,ν , vWx,ν′) 7→W · (uν, vν′),

the last isomorphism given by Proposition 6.2 (ii). We define for each w ∈ W and each ν, ν′ ∈ Ξ the
locally closed subvariety

X ν,ν
′

w = Π−1
ν,ν′([w]) ⊂ X ν,ν

′
,

equipped with the reduced subscheme structure. Obviously, X ν,ν′

w = X ν,ν
′

w′ if [w] = [w′]. Similarly,
for each ideal I of (WI\W/WI ,≤max), we put

X ν,ν
′

I = Π−1
ν,ν′(I) =

⋃
[y]∈I

X ν,ν
′

y .

The following statements are analogues of standard results about (B,N)-pairs and convolution on
flag manifolds. The arguments are similar to the classical ones using the Demazure desingularisation.

Lemma 6.8. — The following statements hold:
(i) If I is an ideal of (WI\W/WI ,≤max), then X ν,ν

′

≤I is closed in X ν,ν′ .
(ii) If I and J are ideals of WI\W/WI , then the image of the projection

X ν,ν
′

I ×Pν′ X ν
′,ν′′

J → X ν
′,ν′′

, (gP ν0 , g
′P ν

′

0 , g′′P ν
′′

0 ) 7→ (gP ν0 , g
′′P ν

′′

0 ).

is contained in X ν,ν
′′

IJ , where IJ ⊂ WI\W/WI is the product of I and J .

Proof. Consider first the scheme B which parametrises minimal spirals. For each minimal spiral p∗,
we can find g ∈ G0 such that T ⊂ gP0g

−1. Since by Corollary 4.7, the minimal T -stable spirals are
parametrised by A, it follows that B is isomorphic to an infinite disjoint union of flag varieties of G0:

B ∼=
⊔
κ∈A

Bκ, Bκ = G0/P
κ
0 , A =Wx\A,

given by Bκ 3 gPκ0 7→ Adg p
κ
∗ ∈ B. Define Yκ,κ′

= Bκ×Bκ′ . We can define as above a map of relative
position Πκ,κ′ : Yκ,κ′ →W.

Step 1. Let κ ∈ A be an alcove and w, s ∈ W with `(s) = 1. Denote κ′ = w−1κ and κ′′ = s−1κ′. We
consider the image of the map

Yκ,κ
′

w ×Bκ′ Yκ
′,κ′′

s → Yκ,κ
′′
. (6.9)
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Case 1. Suppose that `(ws) = `(w) + 1. Then we have Pκ′

0 =
(
Pκ0 ∩ Pκ

′

0

)(
Pκ

′

0 ∩ Pκ0
)

and hence

Yκ,κ
′

w ×Bκ′ Yκ
′,κ′′

s
∼= Yκ,κ

′′

ws .

Case 2. Suppose that `(ws) = `(w)−1. By the previous case, we have Yκ,κ′′

ws ×Bκ′′ Yκ′′,κ′

s
∼= Yκ,κ

′

w .
Hence

Yκ,κ
′

w ×Bκ′ Yκ
′,κ′′

s
∼= Yκ,κ

′′

ws ×Bκ′′ Yκ
′′,κ′

s ×Bκ′ Yκ
′,κ′′

s

Using the fact that image of Yκ′′,κ′

s ×Bκ′ Yκ′,κ′′

s → Yκ′′,κ′′ lies in Yκ′′,κ′′

e ∪ Yκ′′,κ′′

s , we
deduce

Yκ,κ
′′

ws ×Bκ′′ Yκ
′′,κ′

s ×Bκ′ Yκ
′,κ′′

s → Yκ,κ
′′

ws ×Bκ′′

(
Yκ

′′,κ′′

e ∪ Yκ
′′,κ′′

s

)
∼= Yκ,κ

′′

ws ∪ Yκ,κ
′′

w .

Thus, the image of (6.9) lies in Yκ,κ′′

ws ∪ Yκ,κ′′

w in both cases.

Now we show that if I ⊂ W is an ideal and κ, κ′ ∈ A are alcoves, then Yκ,κ
′

I = Π−1
κ,κ′(I) is a proper

algebraic variety. Let y ∈ I be such that κ′ = y−1κ and pick a reduced decomposition y = s1 · · · sr.
For each i, put κi = si · · · s1κ ∈ A and consider Di = Yκi−1,κi

e ∪ Yκi−1,κi
si .

Step 2. We show that Di is a proper variety for each i.
Case 1. If κi−1 6= κi, then Yκi−1,κi

e = ∅ and

Yκi−1,κi
si = G0 ·

(
P
κi−1

0 , Pκi
0

)
⊂ Yκi−1,κi .

However, since κi−1 and κi are adjacent in A, the condition κi−1 6= κi implies that the
hyperplane separating κi−1 and κi does not contain x ∈ A. Since by Corollary 4.12, the
root systemR(G0, T ) can be identified with the set of affine roots which vanish at x, we see
that Pκi−1

0 = Pκi
0 as subgroup of G0. Therefore, we have StabG0

(
P
κi−1

0 , Pκi
0

)
= P

κi−1

0 .
It follows that Di = Yκi−1,κi

si
∼= G0/P

κi−1

0 is a proper variety.
Case 2. If κi−1 = κi, then s

κi−1

i lies in Wx, so there is an isomorphism Yκi−1,κi ∼= Yκi,κi . Let
ṡκi
i ∈ NG0

(T ) be a lifting of sκi−1

i . Then Di can be described by
Di
∼= Yκi,κi

e ∪ Yκi,κi
si = G0 · (Pκi

0 , Pκi
0 ) ∪G0 · (Pκi

0 , ṡκi
i P

κi
0 ) .

We see that the projection Di
pr1−−→ Bκi is a P1-bundle. Hence Di is proper.

Step 3. Now consider the convolution product
D1 ×Bκ1 · · · ×Bκr−1 Dr → Yκ0,κr

(g1P
κ0
0 , g2P

κ1
0 , . . . , gr+1P

κr
0 ) 7→ (g1P

κ0
0 , gr+1P

κr
0 )

We show by induction on i that the image of D1 ×Bκ1 · · · ×Bκi−1 Di → Yκ0,κi contains Yκ0,κi
s1···si

and lies in Yκ0,κi

≤s1···si . It is trivial for i = 0. Suppose i > 0 and that the statement is proven for
i− 1, so that we have D1 ×Bκ1 · · · ×Bκi−2 Di−1 → Yκ0,κi−1

≤s1···si−1
. Applying Step 1, we have

Yκ0,κi−1

≤s1···si−1
×Bκi−1 Di =

⋃
w′≤s1···si−1

Yκ0,κi−1

w′ ×Bκi−1 Di →
⋃

w′≤s1···si−1

(Yκ0,κi

w′ ∪ Yκ0,κi

w′si
).

Since w′ ≤ s1 · · · si−1 implies w′ ≤ s1 · · · si and w′si ≤ s1 · · · si, the image of the composition
D1 ×Bκ1 · · · ×Bκi−1 Di → Yκ0,κi−1

≤s1···si−1
×Bκi−1 Di → Yκ0,κi

lies in Yκ0,κi

≤s1···si . The case 1 of Step 1 also implies that Yκ0,κi
s1···si lies in the image.

Step 4. Since D1 ×Bκ1 · · · ×Bκr−1 Dr is a proper variety, its image in Yκ0,κr

≤s1···sr is also proper. We see
that, Yκ0,κr

y is contained in a G0-invariant proper subvariety of Yκ0,κr

≤y . Letting y run over all
elements of I with yκ′ = κ, we see that Yκ,κ

′

I is covered by a finite number of proper subvarieties
of Yκ,κ′ . Hence Yκ,κ

′

I is proper.
Step 5. Applying Step 1, standard arguments of (B,N)-pairs show that the image of

Yκ,κ
′

I ×Bκ′ ×Yκ
′,κ′′

J → Yκ,κ
′′

is contained in Yκ,κ
′

IJ .
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Step 6. We prove the statement (i). For ν, ν′ ∈ Ξ, pick alcoves κ, κ′ ∈ A such that ∂Iκ = ν and ∂Iκ′ = ν′.
The projection f : Yκ,κ′ → X ν,ν′ satisfies the property that f−1(X ν,ν′

w ) =
⋃
y∈[w] Yκ,κ

′

y for
each [w] ∈ WI\W/WI . Since I is an ideal of (WI\W/WI ,≤max), by Corollary 6.6, the set
Ĩ = {w ∈ W ; [w] ∈ I} is an ideal of W. Thus f−1(X ν,ν

′

I ) = Yκ,κ
′

Ĩ
is proper by Step 4 and so

is the image X ν,ν
′

I = f(Yκ,κ
′

Ĩ
) proper. Hence X ν,ν

′

I is closed in X ν,ν′ .
Similarly, one can prove (ii) by descending the corresponding statement about Y in Step 5.

6.10. Good strata of X ν,ν′ . — For general [w] ∈ WI\W/WI , the stratum X ν,ν′

w = Π−1
ν,ν′ [w] may

not be a single G0-orbit. However, the following lemma shows that it is the case for those strata
X ν,ν′

w with w ∈ Wξ and wν′ = ν. As we will see in §7, only these strata will have contribution to the
extension algebra Ĥ.

Lemma 6.11. — Let [w] ∈ WI\W/WI and ν, ν′ ∈ Ξ.
(i) The stratum X ν,ν′

w contains a finite number of G0-orbits.

(ii) If w ∈ Wξ, then we have #
(
G0\Π−1

ν,ν′ [w]
)
≤ 1. Moreover, the equality holds if and only if

ν = wν′.

Proof. The assertion (i) follows from the fact that G0\X ν,ν
′ is finite.

We prove (ii). Suppose that w ∈ Wξ and ν, ν′ ∈ Ξ such that ν = wν′. We may assume that
ν = wν′ since X ν,ν′ and Πν,ν′ depends only on the Wξ,x-orbits ν and ν′. Let wν ∈Wξ be the image
of w under the isomorphism (Wξ,∆ξ) ∼=

(
Wξ,∆

ν
ξ

)
so that ν′ = wνν cf. §6.1. It suffices to show that

the map
ϕ :Wx\ ((Wx/Wx,ν)× (Wx/Wx,ν′))→W\ (FI × FI)

Wx · (u, u′) 7→W · (uν, u′wνν)
is injective over W · (ν, wνν) ∈W\ (FI × FI). Assume we have u, u′ ∈Wx such that (uWx,ν , u

′Wx,ν′)
is sent to W · (ν, wνν), in other words

W · (uν, u′wνν) =W · (ν, wνν) .

We shall prove that Wx · (uν, u′wνν) =Wx · (ν, wνν).

Indeed, as
W · (ν, wνν) =W · (uν, u′wνν) =W ·

(
ν, u−1u′wνν

)
there exists q ∈Wν =WM such that qwνν = u−1u′wνν, or equivalently

(wν)
−1
q−1u−1u′wν ∈Wν .

Since wν normalises Wν , we obtain (wν)−1u−1u′wν ∈Wν and hence
Wx · (uν, u′wνν) =Wx ·

(
ν, u−1u′wνν

)
=Wx ·

(
ν, wν((wν)−1u−1u′wν)ν

)
=Wx · (ν, wνν),

which concludes the proof.

Lemma 6.12. — For each ν, ν′ ∈ Ξ and each w ∈ Wξ such that wν′ = ν, there is an isomorphism
of G0,⋄,q-schemes

G0/P
ν
0 ∩ Pw

−1ν
0 X ν,w−1ν

w X ν,ν′

w

g ·
(
P ν0 ∩ Pw

−1ν
0

) (
gP ν0 , gP

w−1ν
0

)
∼= ∼=

.
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Proof. By Lemma 6.11, X ν,ν′

w is a G0-orbit. The proposition results from the fact that the G0-action
on X ν,w−1ν

w satisfies
StabG0

(
P ν0 , P

w−1ν
0

)
= P ν0 ∩ Pw

−1ν
0 .

There is a canonical bijection

P ν0 \G0/P
ν′

0
∼= G0\X ν,ν

′
, P ν0 gP

ν′

0 7→ G0 · (P ν0 , gP ν
′

0 ).

The following technical lemma will be used in the proof of Proposition 7.5 to show that bad orbits
do not contribute to the extension algebra Ĥ.

Proposition 6.13. — Let Ω ∈ P ν0 \G0/P
ν′

0 be a double coset and let OΩ ∈ G0\X ν,ν
′ be the

corresponding orbit. Then Πν,ν′ (OΩ) ∈ Wξ if and only if for any g ∈ Ω, the following natural
inclusion (

pνN ∩Adg p
ν′

N

)
/
(
uνN ∩Adg u

ν′

N

)
→ Adg p

ν′

N/Adg u
ν′

N

is an isomorphism for each N ∈ Z.

Proof. Let g ∈ Ω. According to [18, 5.1], there is a splitting l∗ of pν∗ and a splitting l′∗ of Adg p
ν′

∗ such
that Lν0 = exp (l0) and Lν

′

0 = exp (l′0) contain a common maximal torus T ′ of G0.

Let g′ ∈ G0 be such that g′T ′g′−1 = T . Choose any alcove κ ∈ A such that ∂Iκ = ν. Then Adg′ p
ν
∗

and Adg′g p
ν′

∗ are in PT and there exist y, w ∈ W such that Adg′ p
ν
∗ = py

κν
∗ and Adg′g p

ν′

∗ = py
κwκν

∗ .
From the definition of Πν,ν′ , we see that Πν,ν′ (OΩ) = [w]. Moreover, [w] ∈ Wξ if and only if yκν
and yκwκν span the same affine subspace, which is equivalent to that ly

κν
∗ = ly

κwκν
∗ . Using the Levi

decomposition py
κν

∗ = ly
κν

∗ ⊕ uy
κν

∗ and py
κwκν

∗ = ly
κwκν

∗ ⊕ uy
κwκν

∗ , we see that ly
κν

∗ = ly
κwκν

∗ if and
only if the obvious map(

py
κν
N ∩ py

κwκν
N

)
/
(
uy

κν
N ∩ uy

κwκν
N

)
→ py

κwκν
N /uy

κwκν
N (6.14)

is an isomorphism for all N ∈ Z. Taking into account that Adg′ p
ν
∗ = py

κν
∗ and Adg′g p

ν′

∗ = py
κwκν

∗ ,
the condition that the map (6.14) is an isomorphism is equivalent to that the map(

Adg′ p
ν
N ∩Adg′g p

ν′

N

)
/
(
Adg′ u

ν
N ∩Adg′g u

ν′

N

)
→ Adg′g p

ν′

N/Adg′g u
ν′

N (6.15)

is an isomorphism for all N ∈ Z. We obtain the desired equivalent condition by applying Adg′−1 to
the map (6.15).

Remark 6.16. — In the terminology of [18, 5.2], if a double coset Ω ∈ P ν0 \G0/P
ν′

0 satisfies the
condition of Proposition 6.13, it is called good. It is called bad otherwise.

6.17. Steinberg varieties. — For each ν ∈ Ξ, we introduce a variety
T ν = G0 ×P

ν
0
(
Oη ⊕ uνη

)
.

It is a smooth variety equipped with an action of G0,⋄,q, where the factor G0 acts by multiplication
on the left, and is, up to G0,⋄,q-equivariant isomorphism, independent of the choice of ν in its Wx-
conjugacy class. There is a stack morphism

f : [T ν/G0,⋄,q] ∼= [Oη ⊕ uνη/P
ν
0,⋄,q]→ [Oη/M0,⋄,q] .

Let Cη = C |Oη . Define Ċν = f∗Cη. It is a G0,⋄,q-equivariant local system on T ν . If we put

aν : T ν = G0 ×P
ν
0
(
Oη ⊕ uνη

)
→ gη, aν(g, z) = Adg z,

then we recover the induced complex aν∗Ċν = Indν C = Iν introduced in §5.3.
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For ν, ν′ ∈ Ξ, we take the fibred product of aν and aν
′ :

Zν,ν
′
= T ν ×gη

T ν
′
.

There is a canonical G0,⋄,q-equivariant map which forgets the Lie algebra component

g : Zν,ν
′
→ X ν,ν

′
.

For w ∈ W, we set Zν,ν′

w = g−1(X ν,ν′

w ). Similarly, for any ideal I of (WI\W/WI ,≤max), we put
Zν,ν

′

I = g−1(X ν,ν
′

I ). The following lemma summarises the geometric properties of the Steinberg
varieties Zν,ν′ that are necessary for our analysis of the extension algebra Ĥ.

Proposition 6.18. — Let ν, ν′, ν′′ ∈ Ξ.
(i) For every ideal I ⊂ WI\W/WI , the subvariety Zν,ν

′

I ⊂ Zν,ν′ is closed.
(ii) For every pair of ideals I,J ⊂ WI\W/WI , the image of the projection

Zν,ν
′

I ×T ν′ Zν
′,ν′′

J → Zν,ν
′′

lies in Zν,ν
′′

IJ .
(iii) For every w ∈ Wξ such that wν′ = ν, there is an equivariant isomorphism of G0,⋄,q-schemes

G0 ×P
ν
0 ∩Pw−1ν

0

(
Oη ⊕

(
uνη ∩ uw

−1ν
η

))
Zν,w−1ν
w Zν,ν′

w

(g, x) ((g, x) , (g, x))

∼= ∼=

.

Proof. The first two statements follow from Lemma 6.8 and the last one follows from Lemma 6.12.

7. Convolution algebra

We keep the assumptions of the previous sections.

In this section, we study the extension algebra Ĥ in terms of convolution algebras. We deduce
some properties of convolution algebras from the geometry of Steinberg varieties Zν,ν′ studied in the
previous section.

7.1. Convolution product. — Let ν, ν′ ∈ Ξ. We have two projections q1 : Zν,ν′ → T ν and
q2 : Zν,ν′ → T ν′ . We set

Hν,ν
′
= Ext∗G0,⋄,q

(
Iν

′
, Iν

)
.

We put K = H om(q∗2Ċν′ , q!1Ċν). The Verdier duality yields

Hν,ν
′ ∼= Ext∗G0,⋄,q

(
q∗2Ċν′ , q!1Ċν

)
∼= H∗

G0,⋄,q
(Zν,ν

′
,K ).

For the reason explained in §5.3, the definition of Hν,ν′ is, up to canonical isomorphism, independent
of ν and ν′ in their respective Wx-conjugacy classes.

By the formalism of [14] and [3], for ν, ν′, ν′′ ∈ Ξ, the Yoneda product

Hν,ν
′
⊗Hν

′,ν′′
→ Hν,ν

′′

can be described in terms of Zν,ν′ and K . It is called the convolution product. One subtlety of it is
that the maps q1 and q2 are not proper and a priori cohomological convolution product cannot be
defined for non-proper maps.

We recall the construction of this convolution product. Since the orbit O is distinguished, Oη
must be open and dense in mη cf. [16, 4.4a]. We set T̂ ν = G0 ×P

ν
0 pνη and Ẑν,ν′

= T̂ ν ×gη T̂ ν . Let
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uν : T ν ↪→ T̂ ν and uν,ν′
: Zν,ν′

↪→ Ẑν,ν′ be the open embeddings. We remark that T̂ ν is smooth and
is proper over gη. Let q1 : Zν,ν′ → T ν , q2 : Zν,ν′ → T ν′ , q̂1 : Ẑν,ν′ → T̂ ν and q̂2 : Ẑν,ν′ → T̂ ν′ be
the canonical projections.

By the cleanness of Cη ([16, §4]), we have uν! Ċν = uν∗Ċν . Put K̂ = H om
(
q̂∗2u

ν′

∗ Ċν′ , q̂!1u
ν
∗Ċν

)
,

which is a complex on Ẑν,ν′ . We have

K̂ ∼= H om
(
q̂∗2u

ν′

! Ċν′ , q̂!1u
ν
∗Ċν

)
∼= H om

(
uν,ν

′

! q∗2Ċν′ , uν,ν
′

∗ q!1Ċν
)

∼= uν,ν
′

∗ H om
(
q∗2Ċν′ , q!1Ċν

)
∼= uν,ν

′

∗ K .

Therefore
Hν,ν

′
= H∗

G0,⋄,q

(
Zν,ν

′
,K

)
∼= H∗

G0,⋄,q

(
Ẑν,ν

′
, K̂

)
.

It follows that the cleanness of the cuspidal local system C assures that we can safely work on the
non-proper version T ν , Zν,ν′ and K .

Now we describe the convolution product. Given ν, ν′, ν′′ ∈ Ξ, we consider the following diagram

Zν,ν′ ×Zν′,ν′′ Zν,ν′ ×T ν′ Zν′,ν′′ Zν,ν′′

(
T ν × T ν′

)
×

(
T ν′ × T ν′′

)
T ν × T ν′ × T ν′′ T ν × T ν′′

t

µ

r s

γ u

There is a sequence of maps

H∗
G0,⋄,q

(
Zν,ν

′
,K

)
⊗H∗

G0,⋄,q

(
Zν

′,ν′′
,K

)
→ H∗

G0,⋄,q

(
Zν,ν

′
×Zν

′,ν′′
, t!

(
Ċν ⊠DĊν′ ⊠ Ċν′ ⊠DĊν′′

))
t!(id→γ∗γ

∗)−−−−−−−−→ H∗
G0,⋄,q

(
Zν,ν

′
×Zν

′,ν′′
, t!γ∗

(
Ċν ⊠

(
DĊν′ ⊗ Ċν′

)
⊠DĊν′′

))
∼= H∗

G0,⋄,q

(
Zν,ν

′
×T ν′ Zν

′,ν′′
, r!

(
Ċν ⊠

(
DĊν′ ⊗ Ċν′

)
⊠DĊν′′

))
DĊν⊗Ċν→Dk−−−−−−−−−→ H∗

G0,⋄,q

(
Zν,ν

′
×T ν′ Zν

′,ν′′
, r!

(
Ċν ⊠Dk⊠DĊν′′

))
∼= H∗

G0,⋄,q

(
Zν,ν

′
×T ν′ Zν

′,ν′′
, r!u!

(
Ċν ⊠DĊν′′

))
∼= H∗

G0,⋄,q

(
Zν,ν

′
×T ν′ Zν

′,ν′′
, µ!K

)
→ H∗

G0,⋄,q

(
Zν,ν

′′
,K

)
.

The convolution product Hν,ν′ ⊗Hν′,ν′′ → Hν,ν′′ is then defined to be the composite.

Later on, it will be crucial for us to be able to analyse the convolution algebra by the Bruhat
filtration Zν,ν

′

I introduced in §6.17. Let I,J be ideals of WI\W/WI . By Proposition 6.18 (ii), we
have the map

Zν,ν
′

I ×T ν′ Zν
′,ν′′

J → Zν,ν
′′

IJ .

We define similarly the convolution product of them so that the following diagram commutes

H∗
G0,⋄,q

(
Zν,ν

′

I , i!IK
)
⊗H∗

G0,⋄,q

(
Zν

′,ν′′

J , i!J K
)

H∗
G0,⋄,q

(
Zν,ν

′′

IJ , i!IJ K
)

Hν,ν′ ⊗Hν′,ν′′ Hν,ν′′

,

where the vertical arrows are given by adjunction co-units iI!i!I → id.
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7.2. Polynomial action. — We define the polynomial algebra SM = H∗
M0,⋄,q

(Oη,k), graded by
the cohomological degree.

Lemma 7.3. — There is a graded ring isomorphism
SM ∼= k[EM⋄ ]⊗ k[u],

where the linear functions (EM⋄ )∗ ⊂ k[EM⋄ ] and u ∈ k[u] are of degree 2.

Proof. If we choose e ∈ Oη and complete it into a sl2-triple φ = (e, h, f) as in §3.2, then we have

SM = H∗
M0,⋄,q

(Oη,k) ∼= H∗
ZM0,⋄,q (e)

.

As the orbit O support a cuspidal local system, by [16, 4.2, 4.3] we have ZM⋄,q (e) = ZM0,⋄,q (e). With
the group ZqM⋄

(φ) as in (1.6), we have an isomorphism

ι : ZM⋄(φ)×C× ∼= ZqM⋄
(φ), ι(g, q) = (gqh, q).

Since ZM⋄,q (e) ⊂ Z
q
M⋄

(φ) is a maximal reductive subgroup [13, 2.1], we deduce that

H∗
ZM⋄,q (e)

∼= H∗
Zq

M⋄ (ϕ)
∼= H∗

ZM⋄×C×
∼= k[EM⋄ ]⊗ k[u].

Now we define a (SM ,SM )-bimodule structure on various cohomology groups. For any ν ∈ Ξ,
the stack morphism [T ν/G0,⋄,q] → [Oη/M0,⋄,q] induces by pull-back an isomorphism of equivariant
cohomology rings:

SM ∼= H∗
P ν

0,⋄,q
(Oη,k) ∼= H∗

P ν
0,⋄,q

(Oη ⊕ uνη ,k)
∼= H∗

G0,⋄,q
(T ν ,k).

Let ν, ν′ ∈ Ξ and suppose that iV : V ↪→ Zν,ν′ is a G0,⋄,q-stable subvariety. Then the two projections
q1 : Zν,ν′ → T ν and q2 : Zν,ν′ → T ν′ induce two stack morphisms

[T ν/G0,⋄,q]
q1←− [V/G0,⋄,q]

q2−→ [T ν
′
/G0,⋄,q].

The diagonal (q1, q2) yields a ring homomorphism

SM ⊗ SM ∼= H∗
G0,⋄,q×G0,⋄,q

(T ν × T ν ,k) (q1,q2)
∗

−−−−−→ H∗
G0,⋄,q

(V,k),

which defines a graded (SM ,SM )-bimodule structure on H∗
G0,⋄,q

(V, i!V K ) by cup product via (q1, q2)
∗.

7.4. Cohomology of strata. — We put for ν, ν′ ∈ Ξ and [w] ∈ WI\W/WI

Hν,ν
′

w = H∗
G0,⋄,q

(
Zν,ν

′

w , i!wK
)
,

where iw : Zν,ν′

w → Zν,ν′ is the locally closed immersion. The following lemma determines the “size”
of the extension space Hν,ν′ and is crucial in our calculation of extension algebra.

Proposition 7.5. — Let ν, ν′ ∈ Ξ and [w] ∈ WI\W/WI .
(i) If [w] is bad, i.e. [w] /∈ Wξ, then Hν,ν′

w = 0.
(ii) If [w] is good, i.e. [w] ∈ Wξ, and if wν′ = ν, then Hν,ν′

w is a free of rank 1 as left (resp. right)
graded SM -module, vanishing in odd degrees.

(iii) If [w] is good but wν′ 6= ν, then Hν,ν′

w = 0.

Proof. We prove (i). Suppose that [w] /∈ Wξ. Recall that there is a left G0-action on X ν,ν′

w with a
finite number of orbits. Let

X ν,ν
′

w =
⊔
Ω

XΩ
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be the stratification by G0-orbits, where Ω is taken over a finite subset of P ν0 \G0/P
ν′

0 . We define
ZΩ ⊆ Zν,ν

′ to be the pre-image of XΩ under the projection Zν,ν′ → X ν,ν′ . Notice that all double
cosets Ω that appear in this stratification are bad in the sense of [18, 5.2] since [w] is not in Wξ.

Put
ṗνη =

(
Oνη ⊕ uνη

)
×gη
T ν

′

so that Zν,ν′ ∼= G0 ×P
ν′′
0 ṗν

′

η . Moreover, for each Ω we put

ṗνη,Ω =
(
Oνη ⊕ uνη

)
×gη

(
Ω×P

ν′
0

(
Oν

′

η ⊕ uν
′

η

))
⊆ ṗνη

then there is a diagram of Cartesian squares

ṗνη,Ω ZΩ T ν′

Oη ⊕ uνη T ν gη

r′

q′1

q2

q1

r

Let i : ZΩ ↪→ Zν,ν
′ be the inclusion. Now

H∗
G0,⋄,q

(
ZΩ, i

!K
) ∼= Ext∗G0,⋄,q

(
q∗2Ċν′ , q!1Ċν

)
∼= Ext∗G0,⋄,q

(
q1!q

∗
2Ċν′ , Ċν

)
∼= Ext∗P ν

0,⋄,q

(
r∗q1!q

∗
2Ċν′ , r∗Ċν

)
∼= Ext∗P ν

0,⋄,q

(
q′1!r

′∗q∗2Ċν′ , r∗Ċν
)
.

Taking into account the cuspidality of Cη and the fact that Ω is bad, cf. Proposition 6.13 and Re-
mark 6.16, it is shown in [18, 5.3] that q′1!r′∗q∗2Ċν′ = 0. Thus H∗

G0,⋄,q

(
ZΩ, i

!K
)
= 0 for each Ω. By

an argument of long exact sequence of cohomology, we conclude that

Hν,ν
′

w = H∗
G0,⋄,q

(
Zν,ν

′

w , i!wK
)
= 0.

This proves (i).

We turn to (ii). The arguments follow [13, 4.2]. Suppose that wν′ = ν with w ∈ Wξ. Proposi-
tion 6.18 gives an isomorphism

G0 ×P
ν
0 ∩P ν′

0 (Oη ⊕ uνη ∩ uν
′

η ) ∼= Zν,ν
′

w .

Let
p1 : G0 ×P

ν
0 ∩P ν′

0 (Oη ⊕ uνη ∩ uν
′

η )→ T ν , p2 : G0 ×P
ν
0 ∩P ν′

0 (Oη ⊕ uνη ∩ uν
′

η )→ T ν
′

be the two projections. Since Ċν is a local system and since T ν and G0 ×P
ν
0 ∩P ν′

0 (Oη ⊕ uνη ∩ uν
′

η ) are
smooth varieties, we have p!1Ċν ∼= p∗1Ċν [2dν,ν′ ] by the Verdier duality, where

dν,ν′ = dimP ν
′

0 /P ν0 ∩ P ν
′

0 − dim uν
′

η /u
ν
η ∩ uν

′

η ∈ Z.

Denote by f : Oη ⊕ uνη ∩ uν
′

η → Oη the projection. Then

Hν,ν
′

w
∼= Ext

∗+2dν,ν′

G0,⋄,q
(p∗2Ċν′ , p∗1Ċν)

∼= Ext
∗+2dν,ν′

(P ν
0 ∩P ν′

0 )⋄,q
(f∗Cη, f

∗Cη) ∼= Ext
∗+2dν,ν′

M0,⋄,q
(Cη,Cη).

Since Cη is irreducible, the last term is isomorphic to H
∗+2dν,ν′

M0,⋄,q
(Oη,k), which is a graded-free left

(resp. right) SM -module of rank 1 shifted by an even degree. By Lemma 7.3, it vanishes in odd
degrees, whence (ii).

Finally, if w ∈ Wξ but wν′ 6= ν, then X ν,ν′

w = ∅ and Zν,ν′

w = ∅ by Lemma 6.11 (ii), so Hν,ν′

w = 0,
whence (iii).

Remark 7.6. — The special feature of convolution algebra with a cuspidal local system as coefficient
is that not every Bruhat cell on the partial flag variety contributes to the cohomology, but only those
corresponding to the subset Wξ ⊂ WI\W/WI do. Proposition 7.5 roughly says that the convolution
algebra Ĥ and the dDAHA Hξ are of the same size. The proof is adapted from [13, 4.7].
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7.7. Filtration by Bruhat order. — Recall that by Proposition 6.18, Zν,ν
′

I is a closed subvariety
of Zν,ν′ . Denote by iI : Zν,ν

′

I ↪→ Zν,ν′ the inclusion.

Proposition 7.8. — For each ideal I ⊂ WI\W/WI , the space

Hν,ν
′

I = H∗
G0,⋄,q

(
Zν,ν

′

I , i!IK
)

is a graded (SM ,SM )-bimodule which vanishes in odd degrees and is graded-free as one-sided SM -
module. Moreover, if J ⊂ I is a sub-ideal, then the inclusion Zν,ν

′

J ⊆ Zν,ν
′

I induces an injective map
of graded (SM ,SM )-bimodules

Hν,ν
′

J ↪→ Hν,ν
′

I .

Proof. We may assume that I is finite because there is only a finite number of [w] ∈ WI\W/WI such
that Zν,ν′

w 6= ∅. The first statement is proven by induction on #I and Proposition 7.5. The second
statement is a direct consequence of the first one.

Consequently, we may view Hν,ν
′

J as subspace of Hν,ν′ by taking I =WI\W/WI .

Proposition 7.9. — For any pair of ideals I,J ⊂ WI\W/WI , let IJ ⊂ WI\W/WI be the product
ideal introduced in Corollary 6.6. Then the convolution product

Hν,ν
′

I ⊗Hν
′,ν′′

J → Hν,ν
′′

factorises through the subspace Hν,ν
′′

IJ ⊂ Hν,ν′′ .

Proof. It follows from Lemma 6.8 that the projection

X ν,ν
′

I ×Pν′ X ν
′,ν′′

J → X ν,ν
′′

lies in X ν,ν
′′

IJ . It follows that the image of

Zν,ν
′

I ×T ν′ Zν
′,ν′′

J → Zν,ν
′′

lies in Zν,ν
′′

IJ .

7.10. Convolution product over good strata. — For each y ∈ Wξ, we have two ideals Iy =
{[w] ; w ≤ y} and Jy = Iy \ [y] of WI\W/WI . Denote

Hν,ν
′

≤y = Hν,ν
′

Iy
, Hν,ν

′

<y = Hν,ν
′

Jy
.

There is a short exact sequence of (SM ,SM )-bimodules

0→ Hν,ν
′

<y → H
ν,ν′

≤y → H
ν,ν′

y → 0.

If w,w′ ∈ Wξ are such that `ξ(ww′) = `ξ(w) + `ξ(w
′), then `(ww′) = `(w) + `(w′) by Proposi-

tion 4.18 (iii) and therefore there are inclusions
Iw · Iw′ ⊂ Iww′ , Iw · Jw′ ⊂ Jww′ , Jw · Iw′ ⊂ Jww′ .

Thus Proposition 7.9 yields a map

Hν,ν
′

w ⊗Hν
′,ν′′

w′
∼= (Hν,ν

′

≤w /H
ν,ν′

<w )⊗ (Hν
′,ν′′

≤w′ /Hν
′,ν′′

<w′ )→ Hν,ν
′′

≤ww′/Hν,ν
′′

<ww′ = Hν,ν
′′

ww′ . (7.11)

Proposition 7.12. — Given ν ∈ Ξ, w,w′ ∈ Wξ such that `ξ(ww′) = `ξ(w) + `ξ(w
′), let ν′ = w−1ν

and ν′′ = w′−1ν′.
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(i) The map
Hν,ν

′

w ⊗Hν
′,ν′′

w′ → Hν,ν
′′

ww′

from (7.11) is surjective.
(ii) There is an isomorphism of algebras SM ∼= Hν,νe which is at the same time an (SM ,SM )-

bimodule isomorphism.

Remark 7.13. — More generally, one can show that the associated graded algebra of the Bruhat
filtration on the sum

⊕
ν,ν′ Hν,ν

′ is isomorphic to a certain skew tensor product of the nil-Hecke
algebra of Wξ with the “polynomial part”

⊕
ν Hν,νe . However, we will not need it.

Proof. We proceed in steps.
Step 1. We show that the projection Zν,ν′ ×T ν′ Zν′,ν′′ → Zν,ν′′ induces an isomorphism

µ : Zν,ν
′

w ×T ν′ Zν
′,ν′′

w′
∼= Zν,ν

′′

ww′ .

Let κ ∈ A be an alcove such that ∂Iξκ = ν. We view w and w′ as elements ofW via the splitting
of shortest representative Wξ ↪→ NW(WI) of Proposition 4.18 (ii). From Proposition 4.6, we
deduce the following formula∑

n∈Z

dim(pνn/p
ν
n ∩ pw

−1ν
n ) = # (w∆κ ∩ −∆κ) = `(w),

from which we get inequalities

`(ww′) =
∑
n∈Z

dim(pνn/p
ν
n ∩ pν

′′

n ) ≤
∑
n∈Z

dim(pνn/p
ν
n ∩ pν

′

n ∩ pν
′′

n )

=
∑
n∈Z

dim(pνn/p
ν
n ∩ pν

′

n ) +
∑
n∈Z

dim(pνn ∩ pν
′

n /p
ν
n ∩ pν

′

n ∩ pν
′′

n ) ≤ `(w) + `(w′).

By Proposition 4.18 (iii), we have `(ww′) = `(w)+`(w′), from which we deduce P ν0 ∩P ν
′

0 ∩P ν
′′

0 =

P ν0 ∩ P ν
′′

0 as well as pνη ∩ pν
′

η ∩ pν
′′

η = pνη ∩ pν
′′

η . By Proposition 6.18, we see that

Zν,ν
′

w ×T ν′ Zν
′,ν′′

w′
∼= G0 ×P

ν
0 ∩P ν′

0 ∩P ν′′
0

(
Oη ⊕ uνη ∩ uν

′

η ∩ uν
′′

η

)
∼= G0 ×P

ν
0 ∩P ν′′

0

(
Oη ⊕ uνη ∩ uν

′′

η

)
∼= Zν,ν

′′

ww′ ,

which proves the claim.
Step 2. We show that the map (7.11) agrees with the Gysin map of the closed embedding

Zν,ν
′′

ww′
∼= Zν,ν

′

w ×T ν′ Zν
′,ν′′

w′ ↪→ Zν,ν
′

w ×Zν
′,ν′′

w′ .

It is a consequence of the transversality proven in Step 1 (∗), see also the proof of [2, 7.6.12].
Consider the Cartesian square

Zν,ν′

w ×Zν
′,ν′′

w′ Zν,ν′

w ×T ν′ Zν
′,ν′′

w′ Zν,ν
′′

ww′

(
T ν × T ν′

)
×
(
T ν′ × T ν′′

)
T ν × T ν′ × T ν′′

k=(q1,q2)×(q1,q2)

γ

k′

µ

∼=

γ

.

All the varieties appeared are smooth, all the morphisms are immersions. By dimension count,
the immersions k and γ intersect transversally. It gives rise to a commutative triangle in

∗. It is a cohomological analogue of the well-known property in the intersection theory that “refined Gysin map =
Gysin map” in the case of transversal intersection. Indeed, the convolution product that we have defined makes use of
the refined Gysin map from the diagonal embedding of T ν′ , which is a regular embedding, see [4, 6.3.2]
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Db
G0,⋄,q

(Zν,ν′

w ×Zν
′,ν′′

w′ ):

γ∗γ
∗k!Dk

k!Dk k!γ∗γ
∗Dk

∼=

k!(id→γ∗γ
∗)

id→γ∗γ
∗ . (7.14)

Let G = Ċν ⊠DĊν′ ⊠ Ċν′ ⊠DĊν′′ be on T ν × T ν′ × T ν′ × T ν′′ . Applying H om(k∗DG ,−) to
the commutative triangle (7.14), we obtain another commutative triangle

γ∗γ
∗k!G

k!G k!γ∗γ
∗G

∼=

k!(id→γ∗γ
∗)

id→γ∗γ
∗ . (7.15)

We apply the functor H∗
G0,⋄,q×G0,⋄,q

(Zν,ν′

w × Zν,ν
′

w′ ,−) on (7.15). The morphism k!(id → γ∗γ
∗)

yields the convolution product introduced in §7 and the morphism id→ γ∗γ
∗ yields the Gysin

map. The commutativity of (7.15) implies that these two products coincide, whence the claim.
Step 3. We prove (i). Step 2 allows us to compute the map (7.11) on graded pieces with the following

commutative diagram:[
Zν,ν′

w /G0,⋄,q

]
× [Zν

′,ν′′

w′ /G0,⋄,q] [Zν,ν
′′

ww′ /G0,⋄,q]

[Oη/M0,⋄,q]× [Oη/M0,⋄,q] [Oη/M0,⋄,q]

γµ−1

∆

.

The arguments in the proof of Proposition 7.5 (ii) shows that the vertical arrows induce
isomorphisms on cohomology groups, so that we have:

H∗
G0,⋄,q

(
Zν,ν′

w , i!wK
)
⊗H∗

G0,⋄,q

(
Zν

′,ν′′

w′ , i!w′K
)

H∗
G0,⋄,q

(
Zν,ν

′′

ww′ , i!ww′K
)

H
∗+2dν,ν′

M0,⋄,q
(Oη,k)⊗H

∗+2dν′,ν′′

M0,⋄,q
(Oη,k) H

∗+2dν,ν′′

M0,⋄,q
(Oη,k)

id→(γµ−1)∗(γµ
−1)∗

id→∆∗∆
∗

∼= ∼= , (7.16)

where the bottom row is identified with the cup product of SM = H∗
M0,⋄,q

(Oη,k) shifted by
appropriate degrees, which is surjective. This proves (i). Setting ν = ν′ = ν′′ in (7.16), we
get (ii).

7.17. Parabolic subalgebras. — In §5.6, we have introduced an algebra

Ĥσ =
⊕

ν,ν′∈Ξσ

Ext∗Lσ
0,⋄,q

(Indσν′ C , Indσν C )0

for each EM -facet σ. This algebra can be thought of as parabolic subalgebra of Ĥ associated to the
facet σ. The analysis of Zν,ν′ and Hν,ν′ in §6 and in §7 can equally be done for σ. In Proposition 7.20,
we will use the geometry of Steinberg varieties to study the map ψJ appearing in Theorem 5.10.

Let σ ∈ F(EM ) be an EM -facet and let J ⊂ ∆ denote its type (§4.4) so that σ ∈ FJ . By Proposi-
tion 4.14 (iv), we have I = Iξ ⊂ J . For ν, ν′ ∈ Ξσ = {ν ∈ Ξ ; σ ≤ ν}, put

X ν,ν
′

σ = (Lσ0/P
ν≤σ
0 )× (Lσ0/P

ν′≤σ
0 ),

T νσ = Lσ0 ×P
σ≤ν
0 (Oη ⊕ uσ≤νη )→ lση , Zν,ν

′

σ = T νσ ×lση
T ν

′

σ .

There are Lσ0 -stable stratifications

X ν,ν
′

σ =
⋃

[w]∈WI\WJ/WI

X ν,ν
′

σ,w , Zν,ν
′

σ =
⋃

[w]∈WI\WJ/WI

Zν,ν
′

σ,w
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so that (Pσ≤ν0 , P σ≤ν
′

0 ) ∈ X ν,ν′

σ,w for w ∈ NWJ
(WI) such that wν′ = ν.

Proposition 7.18. — The statements below hold for ν, ν′, ν′′ ∈ Ξσ and for ideals I,J ⊂ WI\WJ/WI .
(i) The subvarieties X ν,ν

′

σ,I ⊂ X ν,ν
′

σ and Zν,ν
′

σ,I ⊂ Zν,ν
′

σ are closed.
(ii) We have

X ν,ν
′

σ,I ×Lσ
0 /P

σ≤ν′
0

X ν
′,ν′′

σ,J → X ν
′,ν′′

σ,IJ , Zν,ν
′

σ,I ×Lσ
0 /P

σ≤ν′
0

Zν
′,ν′′

σ,J → Zν
′,ν′′

σ,IJ .

(iii) For each w ∈ Wξ,J such that wν′ = ν, there are isomorphisms

X ν,ν
′

σ,w
∼= Lσ0/P

σ≤ν
0 ∩ Pσ≤w

−1ν
0 , Zν,ν

′

σ,w
∼= Lσ0 ×P

σ≤ν
0 ∩Pσ≤w−1ν

0 (Oη ⊕ uσ≤νη ∩ uσ≤w
−1ν

η ).

Proof. See Lemma 6.8 and Proposition 6.18.

For ν ∈ Ξσ, the inverse image of Cη under the stack morphism f : [T νσ /Lσ0,⋄,q] → [Oη/M0,⋄,q] is
denoted by Ċ . We have similarly a complex Kσ on Zν,ν′

σ such that

Hν,ν
′

σ := Ext∗Lσ
0,⋄,q

(Indσν′ C , Indσν C ) ∼= H∗
Lσ

0,⋄,q
(Zν,ν

′

σ ,Kσ).

As in §7.7, we put a filtration on Hν,ν′

σ by defining for each ideal I ⊂ WI\WJ/WI the following space

Hν,ν
′

σ,I = H∗
Lσ

0,⋄,q
(Zν,ν

′

σ,I , i
!
IKσ), iI : Zν,ν

′

σ,I ↪→ Zν,ν
′

σ .

For each [w] ∈ WI\WJ/WI , we set

H∗
Lσ

0,⋄,q
(Zν,ν

′

σ,w , i
!
wKσ), iw : Zν,ν

′

σ,w ↪→ Zν,ν
′

σ .

Then Proposition 7.5 and Proposition 7.12 also have analogues for Hν,ν′

σ,w and Hν,ν
′

σ,I .

Now we consider the spiral induction Indσ, the functoriality of which yields a map ψσ for ν, ν′ ∈ Ξσ:

Hν,ν
′

σ = Ext∗Lσ
0,⋄,q

(Indσν′ C , Indσν′ C )
ψσ−−→ Ext∗G0,⋄,q

(Indσ Ind
σ
ν′ C , Indσ Ind

σ
ν′ C ) ∼= Hν,ν

′
. (7.19)

Proposition 7.20. — The map ψσ is injective and for each ideal I ⊂ WI\WJ/WI , we have

ψσ(Hν,ν
′

σ,I ) = Hν,ν
′

I .

In particular, ψσ induces an isomorphism Hν,ν′

σ
∼= Hν,ν

′

≤wJ
0
, where wJ0 is the longest element of the

finite Coxeter subgroup (WJ , J) ⊂ (W,∆).

Proof. Set
π∗T νσ = Lσ0 ×P

σ≤ν
0 (Oη ⊕ uνη)→ pση , π∗Zν,ν

′

σ = T νσ ×pσ
η
T ν

′

σ .

We have the following two Cartesian squares

Zν,ν′

σ π∗Zν,ν′

σ

lση pση

π̃

π

G0 ×P
σ
0 π∗Zν,ν′

σ Zν,ν′

G0 ×P
σ
0 X ν,ν′

σ X ν,ν′

µ

µ

, (7.21)

where
µ : G0 ×P

σ
0 X ν,ν

′

σ → X ν,ν
′

(h, (gP σ≤ν0 , g′Pσ≤ν
′

0 )) 7→ (hgP ν0 , hg
′P ν

′

0 ).

Observe the following:
(i) The complex π̃∗Kσ on the stack [π∗Zσ/Pσ0,⋄,q] ∼= [G0×P

σ
0 π∗Zσ/G0,⋄,q] is canonically isomorphic

to µ!K .
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(ii) The map ψσ can be described in terms of the Z-varieties:

Hν,ν
′

σ = H∗
Lσ

0,⋄,q
(Zν,ν

′

σ ,Kσ)
π̃∗

−→ H∗
Pσ

0,⋄,q
(π∗Zν,ν

′

σ , π̃∗Kσ)

∼= H∗
G0,⋄,q

(G0 ×P
σ
0 π∗Zν,ν

′

σ , µ!K )
µ!−→ H∗

G0,⋄,q
(Zν,ν

′
,K ) = Hν,ν

′
.

The map π̃∗ is an isomorphism since π̃ is a vector bundle. Thus it remains to examine the image of
map µ!. Observe also that:
(iii) The map µ preserves the stratification on X ν,ν′

σ and X ν,ν′ . In other words, for each [w] ∈
WI\WJ/WI , we have

µ(G0 ×P
σ
0 X ν,ν

′

σ,w ) ⊆ X ν,ν
′

w .

Using the Cartesian square in the right of (7.21), we deduce that

µ(G0 ×P
σ
0 Zν,ν

′

σ,w ) ⊆ Zν,ν
′

w .

Consequently, we see that ψσ(Hν,ν
′

σ,I ) ⊂ Hν,ν
′

I .
(iv) For each w ∈ Wξ,J , the map µ induces an isomorphism by restriction

G0 ×P
σ
0 π∗Zν,ν

′

σ,w = µ−1(Zν,ν
′

w )
∼=−→ Zν,ν

′

w .

Indeed, it follows immediately from the descriptions Proposition 6.18 (iii) and Proposition 7.18 (iii).
For each ideal I ⊂ WI\WJ/WI , we show that µ! induces an isomorphism

Hν,ν
′

σ,I = H∗
G0,⋄,q

(G0 ×P
σ
0 π∗Zν,ν

′

σ,I , µ
!i!IK )

∼=−→ H∗
G0,⋄,q

(Zν,ν
′

I , i!IK ) = Hν,ν
′

I .

We may suppose that I is finite and prove this by induction on #I. Let J ⊂ I be a subideal such
that #(I \ J ) = 1. Denote [w] = I \ J . There are two cases:

— if [w] /∈ Wξ,J , then Hν,ν′

σ,w = 0 = Hν,ν′

w by Proposition 7.5 (ii) and its analogue for Hν,ν′

σ ;
— if [w] ∈ Wξ,J , then by (iv) above, µ! yields an isomorphism

H∗
G0,⋄,q

(G0 ×P
σ
0 Zν,ν

′

σ,w , µ
!i!wKσ)

∼=−→ H∗
G0,⋄,q

(Zν,ν
′

w , i!wKσ).

Hence ψσ induces an isomorphism on the graded pieces

Hν,ν
′

I /Hν,ν
′

J
∼= Hν,ν

′

w , Hν,ν
′

σ,I /H
ν,ν′

σ,J
∼= Hν,ν

′

σ,w .

The claim follows from this and the induction hypothesis. This completes the proof.

8. Density of the image of Φ

Recall that we have defined the following completed extension algebra in §5.3:

Ĥ =
∏
ν′∈Ξ

⊕
ν∈Ξ

Ĥν,ν
′
, Ĥν,ν

′
= Ext∗G0,⋄,q

(Indν′ C , Indν C )0

and we have studied the space Hν,ν′
= Ext∗G0,⋄,q

(Indν′ C , Indν C ) in §7. The completion Ĥν,ν′ is
equipped with the o-adic topology, where o = H>0

G0,⋄,q
, and Ĥ is a topological ring with the product

(with respect to ν′) of the coproduct (with respect to ν) topology of the factors Ĥν,ν′ .

Following the lines of [25, 4.8, 4.9], we prove the following result in this section, which is the key
instrument in the proof of the classification theorem Theorem 9.12:

Theorem 8.1. — The map Φ : Hξ → Ĥ defined in Theorem 5.10 is injective with dense image.
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Recall that for each ideal I ⊂ WI\W/WI and each ν, ν′ ∈ Ξ, we have defined in §7.7 a subspace
Hν,ν

′

I ⊂ Hν,ν′ . Define the o-adic completion:

Ĥν,ν
′

I = Hν,ν
′

I ⊗H∗
G0,⋄,q

H∗
G0,⋄,q,0, ĤI =

∏
ν′∈Ξ

⊕
ν∈Ξ

Ĥν,ν
′

I ,

so that ĤI ⊂ Ĥ is a closed subspace. The parabolic version Ĥν,ν
′

σ,I and Ĥσ,I are defined in the same
way.

8.2. Preparatory lemmas. — We first examine the restriction of Φ : Hξ → Ĥ to the polynomial
subalgebra Sξ.

Recall the point xM ∈ EM is defined in §4.15 as the image of x under the orthogonal projection
A → EM . For each ν ∈ Ξ, let xν ∈ Eξ be the image of xM under the canonical isomorphism
(EM⋄ ,∆ν

ξ )
∼= (Eξ,⋄,∆ξ) from §4.17. Let (Sξ)(xν ,η/2m) denote the completion of Sξ = k[Eξ,⋄]⊗ k[u] at

the point (xν , η/2m) ∈ E⋄ ×Q.

Lemma 8.3. — For each ν ∈ Ξ. The map Φν : Sξ → Ĥν factors through the completion Sξ ↪→
(Sξ)(xν ,η/2m) and induces an isomorphism of topological rings (Sξ)(xν ,η/2m)

∼= Ĥν .

Proof. By the definition of Φν in §5.6 in the case J = ∅, we should examine the composition

Sξ
∼=−→ Ext∗M⋄,q

(C ,C ) ↪→ Ext∗M⋄,q
(C ,C )(x,η/2m). (8.4)

Let φ = (e, h, f) be an Z-graded sl2-triple in m∗ with e ∈ Oη. The arguments in the proof of
Lemma 7.3 yields

Ext∗M⋄,q
(C ,C ) ∼= H∗

M⋄,q
(O,k) ∼= H∗

Zq
M⋄ (e)

∼= H∗
ZM⋄ (e)

⊗ k[u] ∼= k[EM⋄ ]⊗ k[u]. (8.5)

Let ϕ = exp(h) ∈ X∗(M0). The second-to-last isomorphism in (8.5) is induced by the following group
isomorphism from (1.6):

ι : ZM⋄ ×C× ∼=−→ ZqM⋄
(φ), (g, q) 7→ (gϕ(q), q)

and under this isomorphism, the cocharacter (x, η/2m) ∈ X∗(Z
q
M⋄

(φ))Q is sent to

ι∗(x, η/2m) = (x− (η/2m)ϕ, η/2m) ∈ X∗(ZM⋄)Q ⊕Q.

We see that x − (η/2m)ϕ = xM because (η/2m)ϕ is orthogonal to EM⋄ — indeed, it is because
X∗(T⋄ ∩ [M⋄,M⋄])Q and EM⋄ = X∗(ZM⋄)Q are orthogonal with respect to the Killing form (by the
WM⋄ -invariance) and because ϕ lies in X∗(T⋄ ∩ [M⋄,M⋄]). Hence the isomorphisms in (8.5) induce

Ext∗M⋄,q
(C ,C )(x,η/2m)

∼= (k[EM⋄ ]⊗ k[u])(xM ,η/2m).

On the other hand, it follows from the construction of polynomial action on graded AHAs of
Lusztig [13, §4] that the first isomorphism in (8.4) is given by the composition of (8.5) with the
isomorphism k[EM⋄ ] ⊗ k[u] ∼= k[Eξ,⋄] ⊗ k[u] induced by the canonical isomorphism (Eξ,⋄,∆ξ) ∼=
(EM⋄ ,∆ν

ξ ). Therefore (8.4) induces

(Sξ)(xν ,η/2m)
∼= (k[EM⋄ ]⊗ k[u])(xM ,η/2m)

∼= Ext∗M⋄,q
(C ,C )(x,η/2m) = Ĥν ,

which concludes the proof.

Lemma 8.6. — The restriction Φ |Sξ
is injective and its image is a dense subring of Ĥe =∏

ν∈Ξ Ĥν,νe ⊂ Ĥ.
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Proof. By Theorem 5.10, the restriction Φ |Sξ
coincides with the composition

Sξ
Φ∅−−→

∏
ν∈Ξ

Ext∗M0,⋄,q
(Cη,Cη)0

∏
ν∈Ξ ψν

−−−−−−→
∏
ν∈Ξ

Ext∗G0,⋄,q
(Indν Cη, Indν Cη)0 ⊂ Ĥ,

where ψν as defined in (7.19) by the functoriality of Indν . Applying Proposition 7.20 to the case
I = {[e]}, we obtain an isomorphism∏

ν∈Ξ

ψν :
∏
ν∈Ξ

Ext∗M0,⋄,q
(Cη,Cη)0 ∼= Ĥe.

Thus it suffices to show that Φ∅ is injective with dense image.

By Lemma 8.3, the map Φν can be factorised as

Sξ ↪→ (Sξ)(xν ,η/2m)

∼=−→ Ĥν .
Therefore the map Φν has dense image for each ν ∈ Ξ.

For every pair ν, ν′ ∈ Ξ, the quality xν = xν′ holds if and only if ν and ν′ are Wξ,x-conjugate,
which means that ν = ν′ ∈ Ξ. Therefore for any finite subset Σ ⊂ Ξ, the map

(Φν)ν∈Σ : Sξ →
∏
ν∈Σ

(Sξ)(xν ,η/2m)

is injective and its image is dense by the Chinese remainder theorem. Hence, by the definition of
product topology, the image of Φ∅ = (Φν)ν∈Ξ is dense.

Lemma 8.7. — Let w ∈ Wξ. The following statements hold:
(i) The element Φ(w) lies in the subspace Ĥ≤w.

(ii) The image of Φ(w) in the quotient Ĥw ∼= Ĥ≤w/Ĥ<w generates the latter as free left (resp.
right) Ĥe-module.

Proof. Notice that Hν,ν′

w is a free left Hν,νe -module of rank one by Proposition 7.12 (ii) and Proposi-
tion 7.5 (ii), and so is Ĥw a free left Ĥe-module of rank one. We prove the assertions by induction
on `ξ(w), where `ξ :Wξ → N is the length function of (Wξ,∆), see Proposition 4.18.

When `ξ(w) = 0, the assertions are trivial. When `ξ(w) = 1, we have w = sα ∈ Wξ for some
α ∈ ∆ξ. Let J = {α} ⊂ ∆ξ and denote s = sα. Let σ ∈ ΞJ . The isomorphism of [3] and [14] reads:

Hξ,J
∼= Ext∗Lσ

⋄,q

(
Indl

σ
⋄
m⋄

C , Indl
σ
⋄
m⋄

C
)
.

The map Φσ : Hξ,J → Ĥσ (§5.6), obtained from this isomorphism by passing to completion at
(x, η/2m), is injective and has dense image. By the decomposition Hξ,J = Sξ ⊕ Sξs as left (resp.
right) Sξ-module and the fact that Φσ(Sξ) ⊂ Ĥσ,e, we have

Φσ(Hξ,J) = Φσ(Sξ ⊕ Sξs) = Φσ(Sξ) + Φσ(Sξ)Φσ(s) ⊆ Ĥσ,e + Ĥσ,eΦσ(s).
The short exact sequence

0→ Ĥσ,e → Ĥσ
p−→ Ĥσ,s → 0

shows that p(Φσ(s)) ∈ Ĥσ,s must be a Ĥσ,e-module generator, since otherwise the image Φσ(Hξ,J)

would not be dense in Ĥσ. Taking product over σ ∈ ΞJ , we see that the image of ΦJ(s) generates∏
σ Ĥσ,s over

∏
σ Ĥσ,e. Proposition 7.20 implies that the image of ψJ : ĤJ → Ĥ is equal to Ĥ≤s. We

see that Φ(s) = (ψJ ◦ ΦJ)(s) lies in Ĥ≤s and generates the quotient Ĥs.

Suppose now that `ξ(w) ≥ 2. We choose s ∈ Wξ such that `ξ(s) = 1 and `ξ(ws) = `ξ(w)− 1. By
induction hypothesis, the element Φ(ws) (resp. Φ(s)) lies in Ĥ≤ws (resp. Ĥ≤s). By Proposition 7.9
and the fact that `ξ(ws) + `ξ(s) = `ξ(w), the product Φ(w) = Φ(ws)Φ(s) lies in Ĥ≤w. Since the
image of Φ(ws) in Ĥws and the image of Φ(s) in Ĥs are free generators by induction hypothesis, the
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surjectivity Proposition 7.12 (i) implies that Φ(w) = Φ(ws)Φ(s) is in turn a generator of Ĥw as free
left (resp. right) Ĥe-module.

8.8. Proof of Theorem 8.1. —

Proof. For each finite ideal I ⊂ WI\W/WI , we put

Hξ,I =
⊕

w∈Wξ∩I
Sξw ⊂ Hξ.

We show that
(i) Φ restricts to an injective map Φ |Hξ,I : Hξ,I ↪→ ĤI and

(ii) the subspace Φ(Hξ,I) is dense in ĤI .
We proceed by induction on #I. When I = ∅, it is trivial. Suppose that #I ≥ 1. Let J ⊂ I be
a sub-ideal such that #(I \ J ) = 1 and write I \ J = {[w]} for some w ∈ Wξ. If [w] is bad (i.e.
[w] /∈ Wξ), then Hξ,I = Hξ,J and Proposition 7.5 (i) implies that Ĥw = 0, so ĤI = ĤJ and the
claim follows from induction hypothesis.

Suppose therefore that [w] ∈ Wξ. We let w = min([w]) be the minimal representative of [w] in W
(see Proposition 6.5). By Lemma 8.7 (i), the image Φ(Hξ,I) lies in Ĥξ,I . By induction hypothesis,
Φ(Hξ,J ) is dense in ĤJ . Consider following diagram of short exact sequences:

0 Hξ,J Hξ,I Sξw 0

0 ĤJ ĤI Ĥw 0

Φ|Hξ,J Φ|Hξ,I .

The image of the right vertical arrow, denoted by V , is a Φ(Sξ)-submodule. By Lemma 8.6, the
image Φ(Sξ) ⊆ Ĥe is dense, so the closure V is a Ĥe-submodule of Ĥw. By Lemma 8.7 (ii), we have
V = Ĥw and the right vertical arrow is injective. Since the left arrow is also injective with dense
image by induction hypothesis, so is the middle arrow. The claim is proven.

The injectivity of Φ follows immediately from the claim because Hξ =
⋃

I Hξ,I . As the union⋃
I ĤI is dense in Ĥ, so is the image of Φ. This completes the proof.

9. Simple and proper standard modules

9.1. Specialisation δ = 1. — Recall the linear function δ ∈ E∗
ξ,⋄ (§4.17) is such that δ−1(1) = Eξ.

Notice that δ is central in Hξ. Set H′
ξ = Hξ/(δ − 1). There is a vector space decomposition :

H′
ξ = kWξ ⊗ k[Eξ]⊗ k[u].

On the other hand, recall the extension algebra Ĥ defined in §5.3. We can get rid of the redundant
C×
t1/2m

-equivariance: let γ = (2λ0, 2m, η) ∈ X∗(T ×C×
t ×C×

q ). Then γ acts trivially on gη and G0

according to the definition of C×
t -action (§3.5). Since the complexes Iν are semisimple, making use

of the isomorphism G0,q ×C×
γ
∼= G0,⋄,q, we have

Ext∗G0,⋄,q
(Iν

′
, Iν) ∼= Ext∗G0,q

(Iν
′
, Iν)⊗H∗

C×
γ
.

Set
Ĥ′ = Ĥ/Ĥ ·H>0

C×
γ

∼=
∏
ν′∈Ξ

⊕
ν∈Ξ

Ext∗G0,q
(Iν

′
, Iν)0.

We define similarly Ĥ′ν,ν′ and Ĥ′ν,ν′

w by forgetting the C×
t1/2m

-equivariance.
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Arguing as in the proof of Lemma 8.3, we can show that the image Φ(δ) ∈ Ĥe generates the same
ideal as H>0

C×
γ

does and therefore the map Φ : Hξ → Ĥ descends to a map Φ′ : H′
ξ → Ĥ′. We obtain

the following corollary of Theorem 8.1:

Corollary 9.2. — The map Φ′ is injective with dense image.

Remark 9.3. — The case δ = 0 cannot be treated with our approach. In the case where δ 6= 0, the
fraction η/2m, called slope, has capital importance in the behaviour of the block Ox,η/2m(H′

ξ) defined
below. In the case δ 6= 0, it is conventional to set δ = 1.

9.4. The category O(H′
ξ). — We refer to [24, 2.2] for an exposition of the category O of the

dDAHA H′
ξ.

Let S′
ξ = k[Eξ]⊗ k[u] be the polynomial part of H′

ξ. For each point x ∈ Eξ,k = Eξ ⊗Q k and each
r ∈ k, let ox,r ⊂ S′

ξ be the maximal ideal generated by u − r and f − f(x) for all f ∈ k[Eξ]. Given
any module M ∈ H′

ξ -Mod, consider for each x ∈ Eξ,k and each r ∈ k, the generalised (x, r)-weight
space in M :

Mx,r =
⋃
N≥0

{
a ∈M ; oNx,ra = 0

}
.

The category of integrable H′
ξ-modules O(H′

ξ) ⊂ H′
ξ -mod is defined to be the full subcategory

of finitely generated H′
ξ-modules M which satisfy the following condition:

M =
⊕
r∈k

⊕
x∈Eξ,k

Mx,r.

It is known that if M ∈ O(H′
ξ), then dimk Mx,r <∞ for each x and r, see [24, 2.1.5(b)].

For any x ∈ Eξ,k and r ∈ k, we define Ox,r(H′
ξ) ⊂ O(H′

ξ) to be the full subcategory consisting of
those modules M ∈ H′

ξ -mod satisfying

M =
⊕

x′∈Wξx

Mx,r.

In other words, the polynomial subalgebra k[Eξ] acts locally finitely on M with eigenvalues in the
Wξ-orbit of x ∈ Eξ,k and u acts with eigenvalue r ∈ k. These subcategories form the blocks of O(H′

ξ),
so that we have

O(H′
ξ) =

⊕
r∈k

Wξx∈Eξ,k/Wξ

Ox,r(H′
ξ).

9.5. Simple Ĥ-modules. — We recall the notion of smooth modules:

Definition 9.6. — Let A be a topological ring. A left A-module M is called smooth if the action
of A on M is continuous when M is equipped with the discrete topology. Equivalently, M is smooth
if for each m ∈M , the annihilator

annA(m) = {x ∈ A ; xm = 0}

is open in A.

Finitely generated smooth Ĥ′-modules form a Serre subcategory of Ĥ′ -mod, denoted by Ĥ′ -modsm.
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Recall that the Lusztig sheaf Iν = Indν C is a semisimple complex by Proposition 5.4 (ii). Let
I =

⊕
ν∈Ξ Iν be the (infinite) sum.

Proposition 9.7. — There is a canonical bijection between the set of isomorphism classes of smooth
simple modules of Ĥ′ and the set of simple constituents of pH as follows: given F ∈ Irr PervG0(gη),
the associated simple smooth Ĥ′-module is given by the multiplicity space:

[I : F ] =
⊕
ν∈Ξ

⊕
k∈Z

HomPervG0 (gη)(F , pH kIν).

Proof. This is a standard property of extension algebras modulo the fact that I is an infinite sum.
See [25, 6.1] for a proof in this case.

Notice that the perverse sheaves pH kIν are G0,q-equivariant. We regard them as G0-equivariant
perverse sheaves by forgetting the C×

q -equivariance. The multiplicity space is not influenced by the
change of equivariance because the forgetful functor

PervG0,q
(gη)→ PervG0

(gη)

is fully faithful.

In particular, for the sign ε = η/|η|, the simple constituents of pH I =
⊕

ν∈Ξ

⊕
k∈Z

pH kIν

coincide with the series Irr PervG0
(gnilη )ξ (3.12) because I is, by definition, the sum of all possible

spiral inductions from ξ modulo the Wξ,x-conjugation. Hence we have the following corollary:

Corollary 9.8. — When ε = η/|η|. The assignment F 7→ [I : F ] yields a bijection

Irr Ĥ′ -modsm
∼−−→ Irr PervG0(g

nil
η )ξ.

9.9. Comparison. — Denote Ox,η/2m(H′
ξ) = Oxν ,η/2m(H′

ξ) for any choice of ν ∈ Ξ. It is the block
of the category O(H′

ξ) associated to the Wξ-orbits {xν}ν∈Ξ in Eξ, as defined in §9.4.

For each ν ∈ Ξ, let eν ∈ Ĥ′ be the identity element of the factor Ĥ′ν,ν . Then the set {eν}ν∈Ξ

satisfies eνeν′ = δν,ν′eν . The following theorem allows us to transfer informations about smooth
Ĥ′-modules to the category Ox,η/2m(H′

ξ).

Theorem 9.10. — The pull-back via the homomorphism Φ′ defined in §9 yields an equivalence of
category

Φ′∗ : Ĥ′ -modsm ∼= Ox,η/2m(H′
ξ).

Moreover, we have
(Φ′∗M )xν ,η/2m = eνM , ∀ν ∈ Ξ.

Proof. See also [25, 7.6].
Step 1. For M ∈ Ĥ′ -modsm, we show that Φ′∗M ∈ Ox,η/2m(H′

ξ).
We first show that Φ′∗M is finitely generated. Since M is finitely generated, there is a

surjective Ĥ′-module morphism

(Ĥ′)⊕r
f=(fj)

r
j=1−−−−−−−→M , fj : Ĥ′ →M .

The smoothness of M implies that f is continuous. Consequently, Corollary 9.2 implies that
the map

(fj ◦ Φ′)rj=1 : (H′
ξ)

⊕r →M
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has dense image, which implies that it is surjective because M is discrete. Therefore Φ′∗M is
finitely generated.

Next, we show that the polynomial part S′
ξ = k[Eξ] ⊗ k[u] acts with eigenvalues in the set

{(xν , η/2m)}ν∈Ξ. The smoothness of M implies that

M =
⊕
ν∈Ξ

eνM .

By Lemma 8.3, it follows that via Φν , the action of S′
ξ on eνM factorises through the com-

pletion (S′
ξ)(xν ,η/2m). By the smoothness of M , this action must factorise through a quo-

tient of (S′
ξ)(xν ,η/2m) of finite length. Hence S′

ξ acts locally finitely on eνM with eigenvalue
(xν , η/2m) ∈ Eξ,k × k. It follows that Φ′∗M ∈ Ox,η/2m(H′

ξ).
Step 2. We show that Φ′∗ is essentially surjective.

Observe first that by Lemma 8.7, there is a decomposition for each ν, ν′ ∈ Ξ

Ĥ′ν,ν′
=

⊕
w∈Wξ

ν=wν′

Ĥ′ν,ν
e eνΦ(w)eν′ .

Let N ∈ Ox,η/2m(H′
ξ). There is a decomposition into generalised weight spaces of S′

ξ:

N =
⊕
ν∈Ξ

Nxν ,η/2m, dimk Nxν ,η/2m <∞ ∀ν ∈ Ξ.

Denote Nν = Nxν ,η/2m. For each ν ∈ Ξ, the S′
ξ-action on Nν extends to an (S′

ξ)(xν ,η/2m)-
action. Let Φ−1

ν : Ĥ′
ν
∼= (S′

ξ)(xν ,η/2m) denote the inverse of the isomorphism of Lemma 8.3 and
let ψ−1

ν : Ĥ′ν,ν ∼= Ĥ′
ν be the inverse of the isomorphism of Proposition 7.20 in the case σ = ν.

For each ν, ν′ ∈ Ξ and w ∈ Wξ such that ν = wν′, we define a map

Ĥ′ν,ν
e eνΦ(w)eν′ ×Nν′ → Nν

(feνΦ(w)eν′ ,m) 7→ (Φ−1
ν ψ−1

ν f)(wm)ν , f ∈ Ĥ′ν,ν
e , m ∈ Nν′ ,

where (wm)ν is the projection of wm ∈ N onto the generalised weight space Nν . Taking
summation over w, we obtain a k-bilinear map Ĥ′ν,ν′ ×Nν′ → Nν , which turns into a k-linear
map Ĥ′ν,ν′ → Homk(Nν′ ,Nν) by adjunction. Taking sum over ν and product over ν′, we get
a linear map

αN : Ĥ′ →
∏
ν′∈Ξ

⊕
ν∈Ξ

Homk (Nν′ ,Nν) .

By the finite dimensionality of Homk (Nν′ ,Nν), the map αN is continuous when the right-hand
side is equipped with the product with respect to ν′ of discrete topology. It is easy to see that
the composition

αN ◦ Φ′ : H′
ξ →

∏
ν′∈Ξ

⊕
ν∈Ξ

Homk (Nν′ ,Nν)

recovers the H′
ξ-module structure on N . In particular αN ◦ Φ is a ring homomorphism. By

continuity and the density of the image of Φ′ (Corollary 9.2), the map αN is also a ring
homomorphism and defines a Ĥ′-module structure on N , which is obviously smooth. This
proves the essential surjectivity of Φ′∗.

Step 3. Finally, the injectivity and the density of the image of Φ′ (Corollary 9.2) implies immediately
that Φ′∗ is fully faithful. This completes the proof.

9.11. Geometric parametrisation of simple modules. — In the rest of §9, we suppose that the
sign ε is given by ε = η/|η|, so that Iν is supported in the nilpotent cone gnilη by Proposition 5.4 (ii).

For z ∈ gnilη , put G0,z = StabG0(z).
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Theorem 9.12. — (i) For any z ∈ gnilη and χ ∈ IrrRep
(
π0

(
G0,z

))
, the H′

ξ-module
Lz,χ = Φ′∗ [I : IC (χ)]

is simple if it is non-zero. This happens precisely when IC(χ) ∈ PervG0
(gnilη )ξ.

(ii) The simple objects in Ox,η/2m(H′
ξ) are given by {Lz,χ}(z,χ), where (z, χ) runs over the G0-

conjugacy classes of pairs, where z ∈ gnilη and χ is a irreducible G0-equivariant local system on
the G0-orbit of z such that IC(χ) ∈ PervG0

(gnilη )ξ.
(iii) For each parameter (z, χ) as above and each ν ∈ Ξ, the generalised (xν , η/2m)-weight space of

Lz,χ is given by:

(Lz,χ)xν ,η/2m
= [Iν : IC(χ)] =

⊕
k∈Z

HomPervG0 (gη)(IC(χ),
pH kIν).

Remark 9.13. — (i) The assertion (i) confirms the multiplicity-one conjecture in [19].
(ii) We have supposed that the points xν are rational in Eξ. However, the non-rational case can be

easily reduced to the rational case.
(iii) The hypothesis that the grading on g is inner, made in §3.1, can be removed, see §11.

Proof. The assertion (i) follows from Theorem 9.10 together with Corollary 9.8.

Now let L ∈ Ox,η/2m(H′
ξ) be a simple object. Using (i), L can be equipped with a smooth Ĥ′-

module structure, which is simple. By Proposition 9.7, it must be isomorphic to the multiplicity
space of some simple constituent of I, thus one of the Lz,χ’s. This proves (ii).

The assertion (iii) follows from the second statement of Theorem 9.10.

9.14. Proper standard modules. — We keep the assumption that ε = η/|η|. Let z ∈ gnilη be
a nilpotent element. For each ν ∈ Ξ, let T νz be the fibre of αν : T ν → gη (§6.17) at z and let
iz : T νz → T ν be the closed inclusion. Consider the following cohomology of Springer fibres:

∆z =
⊕
ν∈Ξ

H∗
(
T νz , i!zĊν

)
.

Notice that the k-vector space H∗
(
T νz , i!zĊν

)
is finite-dimensional for each ν ∈ Ξ. By the formalism

of convolution algebras, for each ν, ν′ ∈ Ξ there is a natural map

Ĥ′ν,ν′
→ Hom

(
H∗

(
T ν

′

z , i!zĊν′

)
,H∗

(
T νz , i!zĊν

))
.

Taking summation over ν ∈ Ξ and product over ν′ ∈ Ξ, we obtain a smooth Ĥ′-module structure on
∆z. Besides, there is a natural π0

(
G0,z

)
-action on ∆z, which commutes with the Ĥ′-action. For any

χ ∈ IrrRep
(
π0

(
G0,z

))
, we define

∆z,χ = Homπ0(G0,z)
(
χ,∆z

)
to be the χ-isotypic component, which is a Ĥ′-submodule of ∆z. We view ∆z as a H′

ξ-module via
Φ′ : H′

ξ → Ĥ′. We call ∆z,χ the proper standard module of Hξ with parameter (z, χ).

Theorem 9.15. — For each pair (z, χ) as above, the following holds.
(i) ∆z,χ ∈ Ox,η/2m(H′

ξ).
(ii) ∆z,χ 6= 0 if and only if Lz,χ 6= 0.

(iii) For any pair (z′, χ′) as above, the Jordan–Hölder multiplicity of Lz′,χ′ in ∆z,χ is given by[
∆z,χ : Lz′,χ′

]
=

∑
k

dimHomπ0(G0,z)
(
χ,Hk

(
z!IC(χ′)

))
.
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Proof. The assertion (i) results from the smoothness of the Ĥ′-action and Theorem 9.10.

The assertion (ii) can be proven with the same arguments as [16, 8.17], using the orthogonal
decomposition (3.13) of the equivariant category of gnilη (§3.12). The assertion (iii) is standard, see [2,
8.6.23].

Remark 9.16. — The term of “proper standard modules” comes from the theory of quasi-hereditary
categories and its generalisations. Retrospectively speaking, the results of [5] show that the graded
version of the completed extension algebra Ĥ′ is “affine properly stratified” in the sense of [6].

10. Example: G = Sp(4) untwisted

We calculate an example to illustrate Theorem 9.12. Retain the notations of §3 and §4.

10.1. Affine root system. — Put V = C4 with standard basis {e1, e2, e3, e4}. Let ω : V ×V → C
be the symplectic form defined by

(ω(ei, ej))
4
i,j=1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 .

Let {θ1, θ2, θ3, θ4} ⊂ V ∗ denote the dual basis. Let G = Sp(V, ω) and g = sp(V, ω). Choose the
maximal torus T ⊂ G given by diagonal matrices

T =



a 0 0 0
0 b 0 0
0 0 b−1 0
0 0 0 a−1

 ; a, b ∈ C×

 .

Let tQ = X∗(T )Q. Denote εi = ei ⊗ θi − e5−i ⊗ θ5−i ∈ tQ for i ∈ {1, 2}. Then {ε1, ε2} is a basis for
tQ. We use 1/2 times the trace pairing on t∗Q to make the identification t∗Q

∼= tQ, so that
〈εi, εj〉 = δi,j .

Then the finite root system is given by
R(G,T ) = {±(ε1 − ε2),±(ε1 + ε2),±2ε1,±2ε2} .

The set of real affine roots is
Raf = {±(ε1 − ε2) + nδ,±(ε1 + ε2) + nδ,±2ε1 + nδ,±2ε2 + nδ ; n ∈ Z} ⊂ A∗

⋄ = X∗(T⋄)Q.

Choose the base ∆κ0 = {α0 = δ − 2ε1, α1 = ε1 − ε2, α2 = 2ε2}, which corresponds to the usual
fundamental alcove κ0.

10.2. Pseudo-Levi and admissible systems. — Now consider the possible admissible systems
(without Z-grading) ξ = (M,O,C ), where M is a pseudo-Levi subgroup containing T , O ⊂ mnil is a
nilpotent orbit and C is a cuspidal local system on O. Let I ⊂ ∆κ0 denote the parabolic type of M .
Up to conjugation by the affine Weyl group, there are four possibilities for M :

(i) I = ∅; in this case M = T , EM = A, Rξ = Raf
∼= C̃2;

(ii) I = {α2}; in this case

M =


∗ 0 0 0
0 ∗ ∗ 0
0 ∗ ∗ 0
0 0 0 ∗

 = C× × Sp(Ce2 ⊕Ce3), EM = (Q ε1, 1) ⊂ A,

R′
ξ = {±ε1 + nδ,±2ε1 + nδ; ; n ∈ Z} , Rξ = {±ε1 + nδ,±2ε1 + (2n+ 1)δ ; n ∈ Z} ∼= B̃C1;
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(iii) I = {α0}; in this case

M =


∗ 0 0 ∗
0 ∗ 0 0
0 0 ∗ 0
∗ 0 0 ∗

 = Sp(Ce1 ⊕Ce4) = C×, EM = ((1/2)ε1 +Q ε2, 1) ⊂ A,

R′
ξ = {±ε2 + nδ,±2ε2 + nδ; ; n ∈ Z} , Rξ = {±ε2 + nδ,±2ε2 + (2n+ 1)δ ; n ∈ Z} ∼= B̃C1;

(iv) I = {α0, α2}; in this case

M =


∗ 0 0 ∗
0 ∗ ∗ 0
0 ∗ ∗ 0
∗ 0 0 ∗

 = Sp(Ce1 ⊕Ce4)× Sp(Ce2 ⊕Ce3), EM = {(1/2)ε1, 1} , R′
ξ = ∅.

Case (i) is the principal series case, already treated in [25]. Case (iv) is empty. Case (ii) and Case
(iii) are conjugate by the extended affine Weyl group. Thus we consider Case (ii) only.

10.3. Relative root system and dDAHA. — In Case (ii), M = C× × Sp(Ce2 ⊕ Ce3) =
C× × SL(Ce2 ⊕ Ce3), there is a unique cuspidal local system Cχ on the regular nilpotent orbit
mnil,reg with non-trivial central character χ : µ2 ↪→ k×. There is a unique EM -alcove ν0 contained in
κ0 ∩ EM , which yields a base for Rξ:

∆ν0
ξ =

{
αξ0 := δ − 2ε1, α

ξ
1 := ε1

}
⊂ Rξ.

The subspace EM is equipped with the Euclidean structure restricted from A so that ‖ε1‖ = 1.
The relative affine Weyl group Wξ is generated by s0 (reflection w.r.t. ((1/2)ε1, 1) ∈ EM ) and s1
(reflection w.r.t. (0, 1) ∈ EM ). We have the constants c0 = 2, c1 = 3 for the relative simple affine
roots αξ0 and αξ1, respectively. The dDAHA Hξ attached to the based affine root system (EM ,∆ν0

ξ )

is the generated by the set {x, s0, s1} (xαξ
1 = x and xα

ξ
0 = δ − 2x in the notation of §5.1) over the

polynomial ring k[u, δ] modulo the following relations

s20 = s21 = 1, s1x+ xs1 = 6u, s0x− (δ − x)s0 = −2u.

The most interesting cases are when u acts by a rational number with denominator 4 or 8 (there are
finite-dimensional simple modules in these two cases).

Case (ii-1) Suppose r = −1/8 (other numbers with denominator 8 are similar). Consider the following
block of integrable Hξ/(δ − 1)-modules

OxM ,−1/8(Hξ/(δ − 1)), xM ∈ EM , x(xM ) = 3/8.

The orbit Wξx
M is equal to {x = ±3/8 + k ; k ∈ Z}. There are three simple objects in this

block:
L0 = Hξ/Hξ · 〈δ − 1, u+ 1/8, x− 3/8, s0 + 1, s1 + 1〉, dimL0 = 1

L+ = Hξ/Hξ · 〈δ − 1, u+ 1/8, x− 5/8, s0 − 1〉, dimL+ =∞
L− = Hξ/Hξ · 〈δ − 1, u+ 1/8, x+ 3/8, s1 − 1〉, dimL− =∞.

Case (ii-2) Suppose r = −1/4. Consider the block

OxM ,−1/4(Hξ/(δ − 1)), xM ∈ EM , x(xM ) = 3/4.

The orbit Wξx
M is equal to {x = ±1/4 + k ; k ∈ Z}. There are three simple objects in this

block:
L′
0 = Hξ/Hξ · 〈δ − 1, u+ 1/4, x− 3/4, s0 − 1, s1 + 1〉, dimL′

0 = 1

L′
+ = Hξ/Hξ · 〈δ − 1, u+ 1/4, x− 1/4, s0 + 1〉, dimL′

+ =∞
L′
− = Hξ/Hξ · 〈δ − 1, u+ 1/4, x+ 3/4, s1 − 1〉, dimL′

− =∞.
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10.4. Perverse sheaves. — We can choose the Z/m-grading on g according to the block that we
are interested in. We shall only work out Case (ii-1) in detail. Case (ii-2) is interesting but it would
take longer paragraphs to analyse.

Consider the adjoint action of G = Sp(V, ω) on g = sp(V, ω). Set m = 8 and η = −2 so that
η/2m = −1/8 is the eigenvalue of u. Fix the sign ε = η/|η| = −1. Following (1.6), the cocharacter
λ0 ∈ X∗(T ) is determined by the formula λ0/m = x = xM+(η/2m)ϕ, where ϕ = exp(h) and (e, h, f)
forms an sl2-triple in m with e ∈ O, h ∈ t. We set

ϕ(t) =


0 0 0 0
0 t 0 0
0 0 t−1 0
0 0 0 0

 , λ0 = mxM + (η/2)ϕ, λ0(t) =


t3 0 0 0
0 t−1 0 0
0 0 t 0
0 0 0 t−3

 .

It follows that G0 = Gλ0 = T and

gnil−2 =




0 0 0 z2
0 0 z1 0
z3 0 0 0
0 −z3 0 0

 ; z1, z2, z3 ∈ C, z1z2z3 = 0

 .

For z1, z2, z3 ∈ C with z1z2z3 = 0, we let O(z1,z2,z3) ⊂ gnil−2 denote the corresponding T -orbit. There
are 7 nilpotent T -orbits : {O(a,b,c)}a,b,c∈{0,1},abc=0. The centralisers of orbits are 1, µ2 or µ2 × µ2

depending on how many among z1 and z2 are non-zero. We can induce the cuspidal local system
Cχ on O(1,0,0) to O(1,1,0) and O(1,0,1) by pulling back via the obvious projection O(1,b,c) → O(1,0,0).
Denote them by L(1,1,0) and L(1,0,1). Then the perverse sheaves

IC(Cχ), IC(L(1,1,0)), IC(L(1,0,1))

generate the block Db
G0

(
gnil−2

)
ξ
. The correspondence Theorem 9.12 (ii) reads:

Cχ ←→ L0, L(1,1,0) ←→ L+, L(1,0,1) ←→ L−.

This correspondence can be deduced from the description of generalised weight spaces Theo-
rem 9.12 (iii) by an examination of the spirals corresponding to EM -alcoves by Proposition 4.6.

11. Twisted case

In §3.1, we have assumed that the grading on g is inner for the sake of simplicity. In that case,
the affine root system Raf is untwisted. We explain here the modifications needed to accommodate
the constructions in §3 and §4 to the twisted case. Those parts which are not mentioned are intact.
The exposition below follows closely [19].

11.1. Choice of maximal torus. — We retain the setting of §3 without the assumption that the
image of θ lies in the adjoint group Gad. Fix a pinning E = (B0, T0, U0/[U0, U0] → C) for G. This
yields an identification of Out(G) = Aut(G)/Gad with AutE(G), the group of automorphisms of G
fixing E. It also yields a splitting Aut(G) = Gad ⋊AutE(G).

Consider the composition
θOut : µm

θ−→ Aut(G)→ Out(G)

and suppose that µe = µm/ ker θOut. Then θOut induces a monomorphism ς : µe ↪→ Out(G). Since
Out(G) is isomorphic to the automorphism group of the Dynkin diagram of G, we have e ∈ {1, 2, 3}.

Let µ∗
e ⊂ µe be the set of primitive e-th roots of unity. The following statements are proven in [19,

2.2.2]:
(i) Every element τ ∈ Gad ⋊ ς(µ∗

e) can be conjugated to an element in T ad
0 × ς(µ∗

e), where
T ad
0 = T0/ZG.

(ii) If M = Gτ for any element τ ∈ T ad
0 × ς(µ∗

e), then T ς0 is a maximal torus of M .



We may choose ζ ∈ µ∗
m and apply (i) to the automorphism θ(ζ) ∈ Gad ⋊ ς(µ∗

e). Therefore, we may
suppose without loss of generality that θ : µm → T ad

0 × ς(µ∗
e). Let T = T ς0 be the fixed points of

ς(µe). By (ii), T is a maximal torus of Gς .

11.2. Twisted affine root system. — The action of ς yields a Z/e-grading on g:

g =
⊕
i∈Z/e

gi, gi =
{
z ∈ g ; ς(ζ)z = ζiz, ∀ζ ∈ µe

}
.

The finite root system R(G,T0) acquires a Z/e-grading:
R̃(G,T ) =

{
(α, i) ∈ R(G,T )× Z/e ; giα 6= 0

}
.

Let C×
t be a maximal torus with fundamental character δ. The affine root system attached to (G,T, ς)

is defined to be
Raf =

{
α+ (k/e)δ ∈ X∗(T ×C×

t )Q ; (α, k mod e) ∈ R̃(G,T )
}
.

When e 6= 1, the affine root system Raf is a twisted affine root system (∗).

The projection of θ : µm → T ad × ς(µe) to the first factor is a homomorphism θ : µm → T ad, so
that θ = (θ, θOut). Up to composing θ with a finite cover µm′m

[m′]−−→ µm for some m′ ∈ Z>0, there
exists a cocharacter λ0 ∈ X∗(T ) such that λ0 |µm

= θ. We may assume such λ0 exists and we fix a
choice for λ0.

11.3. Action of C×
t . — The action of C×

t defined in §3.5 in the untwisted case also need some
modifications. We let C×

t act on a root space giα in g0 (resp. in gη) by weight −e〈α, λ0〉/m (resp. by
weight e(η − 〈α, λ0〉)/m). Notice that these weights are integers.

Set T⋄ = T ×C×
t1/2m

and A⋄ = X∗(T⋄)Q as before. The fundamental character of C×
t1/2m

is still
(1/2m)δ.

Given any spiral p∗, we let C×
t acts on pn by e(n− λ0)/m for n ∈ Z.

11.4. Spirals and facets. — The point x is defined to be (eλ0/m, 1) ∈ A so that δ(x) = 1.

The correspondence between spirals and facets is unchanged. Given a facet τ ∈ F, we choose a
point y ∈ τ . Set µy = mε (x− y) ∈ X∗ (T )Q. Then the spiral attached to τ is εpτ∗ given by

εpµy
n =

µy

≥nεgn,

see [19, 3.4.4]. The characterisation Proposition 4.6 of T⋄-weights appearing in a spiral remains true.

Index of notation. —
(M,m∗,O,C ), 23

[I : F ], 48
G0,⋄,q, G0,⋄,Mq,M⋄,q,M0,⋄,q,

18
∂J , 21
µ
rV , 6
A,A⋄, 20
A, 20
C×
q , 13, 18

C×
t , 13, 18

C×
t1/2m

, 18
Ċν , 34

Db (X), 6
∆, 21
∆κ, 21
∆ξ, 24
∆z,χ, 50
δ, 20
EM , 23
Eξ,Eξ,⋄, 24
E, 21
ε, 18
F, 20
FJ , 21
G, 17

G0, 17
g, 17
gi, 17
H′
ξ, 46

Hξ,J , 27
Hξ, 26
Ĥ′ -modsm, 47
Hν,ν′ , 35
Hν,ν′

w , 37
Hν,ν

′

I , 39
H, 20
Ĥ, 27
Ĥ′, 46

∗. They are denoted by A
(2)
k , D

(2)
k , D

(3)
4 , E

(2)
6 in Kac’s notation with the superscript (e) for e ∈ {2, 3}.
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Ĥσ, 27
pH k, 6
Hξ, 7
H∗
Gq,λq

, 11
H∗
G0,q,0

, 11
Iν , 26
IC(L ), 6
Ind

gη
pη

, 9
Ind

gη

pη
, 20

Indστ , 11, 25
Indσ, 10, 25
K , 35
Lz,χ, 50
`ξ, 25
lσ∗ , 22
εlµ∗ , 18
λM , 8
λ0, 17
Mx,r, 47
µm, 17
Ox,η/2m(H′

ξ), 47
Πν,ν′ , 31
Pν , 31

pµ∗ , 18
pσ≤ν∗ , 25
pσ∗ , 22
PervG(X), 6
Φ, 28
Φ′, 47
ΦJ , 27
Φσ, 27
ψσK , 28
ψJ , 28
ψσ, 42
Raf , 20
SM , 37
Sξ, 26
T , 17
T ν , 34
θ, 17
uµ∗ , 18
uσ∗ , 22
W , 21
WM , 23
Wξ,x, 24
W, 21

WJ , 21
Wξ, 24
[w], 30
X∗(G), 6
X∗(G)Q, 6
X ν,ν′ , 31
X ν,ν′

w , 31
X ν,ν

′

I , 31
x, 22
xM , 24
xν , 44
Ξ, 23
Ξσ, 27
ΞJ , 24
ΞσJ , 28
Ξ, 26
Z(G), ZG, 6
ZqM (φ), 8
Zν,ν′ , 35
Zν,ν′

w , 35
Zν,ν

′

I , 35
(z, χ), 50
zG, z(g), 6
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