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Richard Schoen and Shing-Tung Yau 

Abstract. Let M be a space-time whose local mass density is non-negative 
everywhere. Then we prove that the total mass of M as viewed from spatial 
infinity (the ADM mass) must be positive unless M is the fiat Minkowski 
space-time. (So far we are making the reasonable assumption of the existence of 
a maximal spacelike hypersurface. We will treat this topic separately.) We can 
generalize our result to admit wormholes in the initial-data set. In fact, we 
show that the total mass associated with each asymptotic regime is non- 
negative with equality only if the space-time :is fiat. 

O. Introduction 

This is the second part of our paper on scalar curvature of a three-dimensional 
manifold and its relation to general relativity. The problem in general relativity 
that we address is the following: An isolated gravitating system having non- 
negative local mass density must have non-negative total mass, measured 
gravitationally at spatial infinity. 

Mathematically, the positive mass conjecture can be described as follows : Let 
N be a three dimensional Riemannian manifold with metric tensor gi~. Then an 

initial set consists of N and a symmetric tensor field hi~ so that /~> ~aJaJa 1/2 
where/~ and J are defined by 

[~=½(R--Ehabhab+(~ahaa)2) a,b 

where R is the scalar curvature of our metric. 

If N is a spacelike hypersurface in a space time so that gi~ is the induced metric 
and hlj is the second fundamental form, then the above condition says that the 
apparent energy-momentum of the matter be timelike. 
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An initial-data set will be said to be asymptotically flat if for some compact C, 
N\C  consists of a finite number of components N 1 ..... N k such that each N~ is 
diffeomorphic to the complement of a compact set in R 3. Under such diffeo- 
morphism, the metric tensor will be required to be written in the following form 

M)~(Z(dxi)2) + 2pijdxldx ~ ds2= l + ~ r  \ i / i , j  

where 

p~j = O , 

O 1 

and 

The components of h,j will also be required to be of order O ( 1 ) 
7 "  

The number M (Arnowitt, Deser and Misner [ t ] ,  Geroch [9]) is called the 
mass of the end N i. This definition is motivated by the observation that the spatial 
Schwarzschild metric can be written asymptotically in the previous form so that 
the number M is precisely the Schwarzschild mass. From now on, we shall call N i 
an "end" of N and we denote the total mass of N~ by Mi. 

In this formulation, the (generalized) positive mass conjecture (Arnowitt et al. 
[1], Brill and Deser [3], Geroch [2]) states that for an asymptotically fiat initial 
data set, each end has non-negative total mass. If one of the ends has zero total 
mass, then the initial data set is fiat in the sense that the curvature tensor vanishes 
and the second fundamental form h~j is trivial. 

In this paper, we will settle the major case of the conjecture assuming ~, h~"--0. 
a 

The most general case will be discussed in a forthcoming paper. 
There have been several contributions on this problem prior to our work. (We 

learned most of these from the excellent survey articles of Geroch [-2] and 
Choquet-Bruhat, Fisher and Marsden [4].) In 1959, Brill settled the problem in 

case ~ h~ = 0  and the data respect an axial symmetry. In 1968, Brill and Deser [3] 
a 

showed the conjecture is true up to second order perturbations from fiat data. This 
last result was greatly improved by Choquet-Bruhat and Marsden [-5] to the effect 
that the conjecture is true if the data is close enough to the fiat data in a certain 
smooth norm. In the Stanford conference in differential geometry, Geroch divided 
the conjecture into several special cases. One case had a direct appeal to the 
geometers. This case says that if a metric has non-negative scalar curvature in R 3 
and if the metric is euclidean outside a compact set, then the metric is flat. In her 
thesis in 1977, Leite was able to settle this case under the assumption that the 
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manifold can be isometrically embedded into R 4. In t976, Jang [6] was also able 
to settle the conjecture if the metric g~j is flat. Finally the conjecture was also 
known if the data is sperically symmetric (Leibovitz and Israel [7], Misner [SJ, 
Jang [6]). However, none of these methods had been carried out to cover the case 
that we deal witK (It should also be mentioned that Deser had a proof  for the 
supergravity setting and Geroch had an argument to settle the conjecture 
assuming some statement that remains to be proved.) 

The basic idea of our proof  is quite simple. It is basically geometric in nature 
which enables us to deal with the case where the manifold is not diffeomorphic to 
R 3. While there are more details to be carried out in this paper, the basic ideas are 
already in our previous paper. 

For simplicity, let us assume the manifold is diffeomorphic to R 3. Then 
assuming the mass is negative we construct a complete surface embedded in R 3 
whose area is minimal among all compactly supported deformations of the 
surface. By using the second variation formula, we prove that the surface is 
topologically the plane. As in the previous paper, we plan to use the Gauss-Bonnet 
theorem to arrive at a contradiction. However, as the surface is non-compact,  
there are technical troubles involved which we are able to overcome. These 
arguments provide a proof  that the total mass is non-negative. If the total mass is 
zero, then we have a way to reduce it to the previous case unless the Ricci tensor is 
identically zero. Since M is three-dimensional, Ricci flat implies flat and the 
reduction finishes the proof  of the theorem. 

1. Statement of Results 

The theorems in this paper deal with asymptotically fiat metrics on 3-manifolds. 
Let N be an oriented three-dimensional manifold (with or without boundary) 
which has the property that there exists a compact subset K of N so that N \ K  
consists of a finite number of components N ~ , N  2 . . . . .  N r with each N k being 
diffeomorphic to IR 3 minus a ball. We call the N k ends of N. We suppose that N is a 
manifold of smoothness class C 6. Let ds 2 be a C 5 positive definite metric on N. 
We say that ds 2 is asymptotical ly  f i a t  if each boundary component  of N has 
positive mean curvature with respect to the outward unit normal, and on each N k 
there is a coordinate system x 1, x 2, x 3 in which ds 2 has the expansion 

3 
ds 2 = ~ g~flxidx ~ with the gi~ satisfying the following inequalities for some k 1, k 2, 

i , j  = 1 

k 3 positive constants. 

gij = l + ~ r  5 i j + h i j ,  lhi;[ < l + r  2 , 
(1.1) 

k2 100hij ] < k3 
]ahi~[ < 1 + r  3 ' 1 + r  ~ 

)1/2 
where r = (xi) 2 and 0 is the Euclidean gradient. The number M - - M  k is the 

\ i =  1 

total mass of Nk. We note that (1.1) implies that the Christoffel symbols 
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F~k=O(1/r 2) and the curvature tensor is O(1/r 3) as r-*oo. Let R be the scalar 
curvature function for ds 2. We now state our first theorem. 

Theorem 1. Let ds 2 be an asymptotically f lat  metric on an oriented 3-manifold N. I f  
R > 0 on N, then the total mass of each end is nonnegative. 

Our next result concerns the case when total mass on one end is zero. In this 
case we wish to show that N is flat. In order to prove this we need to add the 
following assumption to (1.1) 

k,  (1.2) ]&gcgh~l + IO~hi~ I + [~&3&?h~jt < 1 + r 5 

for a positive constant k 4. 

Theorem 2. Let N be an oriented 3-manfold having an asymptotically f lat  metric 
ds 2. Suppose for some end N k, (1.2) is satisfied and the total mass of  N k is zero. I f  
R >O on N, then ds 2 is flat. In fact, N is isometric to IR 3 with the standard metric. 

2. Proof  of Theorem 1 

Throughout  this section we work on a fixed end Nk, and suppose that x 1, x 2, x 3 are 
asymptotically flat coordinates on N k. Suppose these coordinates describe N k on 

]RB\B,o(0), where B,o(0)={[x[<O-o} and r=[x[ denotes the Euclidean length of 
x = ( x  1, x 2, x3). We denote the total mass of N k by M, omitting reference to k. We 
will suppose that M < 0  and R__>0 in contradiction to Theorem 1. The proof  then 
involves three steps, the first allowing us to assume R > 0 outside a compact subset 
of IR3\B,o(0), the second is to use the assumption M < 0  to prove the existence of a 
complete area minimizing surface, and third to use second variation arguments to 
show that this is impossible if R __> 0. 

Step 1. If ds 2 is asymptotically fiat on N with R =>0, and with the total mass of N k 
negative, then there is an asymptotically fiat metric d~ 2 conformally equivalent to 
ds z having/~ > 0  on N,/~ > 0  outside a compact subset of Nk, and having negative 
total mass for Nk. 

Proof Let IR3\B~o(0) represent N k as described above. Let A be the Laplace 
operator on functions, so that for a function ~0 on IR3\B~o(0) 

where as usual, g=det(gi) and (giJ)=(gi)-l. We calculate the asymptotic 
expansion of Air on IRS\B~o(0) using (t.1). We see that 

r =  =1 0x ~ 1 + ~  ~?-xV 

= 1 + ~  7z+O(~/r~) (2.1) 

M 
- r4 + O ( 1 / r 5 )  - 
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It follows that there is a number cr > a o so that 

A I < 0  for r>o- 
F 

M 
Choose t o = - - - ,  and let ~(t) be a C 5 function which satisfies 

8~ o 

(2.2) 
~(t) = o for t > 2 t o ,  

ff '(t)>0, U( t )<0  for te(0, oo). 

Define a C s function (o:N~,1R by 

, 3t0 
( p = l ± ~  on N\N k, 

( p ( x ) = l + ~ ( - M )  on IR3\B~o(0)=N~. 

F rom (2.1) and (2.2) we see that 

A~0__<0 on N ,  and Aq0<0 for r > 2 a .  (2.3) 

We now define a new metric 

d~ 2 = (f" ds 2 . 

The metric d~ 2 is asymptotically flat since on all ends other than N k it is a constant 
multiple of ds z, and on N k we have 

9~J= ( 1 -  M~t4 (I + M)  461~+ 4rJ 

= 1 + ~  aij+O(1/r2). 

M 
Thus the new mass of N k is ~ / =  ~-  <0. The well-known formula for the scalar 

curvature/~ is 

/~ = (p- 5 [ -  8Aep + e ~ o ] .  

Thus (2.3) implies t h a t / ~ > 0  on N a n d / ~ > 0  for r > 2 a  on N k. This concludes the 
proof  of Step 1. 

We replace our original metric ds 2 by d~ 2 but maintain the notation ds 2, so that 
we are assuming R > 0  on N, R > 0  outside a compact  subset of N k, and M < 0 .  

Step 2. There exists a complete area minimizing (relative to ds 2) surface S properly 
imbedded in N so that Sc~(N\Nk) is compact, and ScaN k lies between two parallel 
Euclidean 2-planes in the 3-space defined by x 1, x 2, x 3. 
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Proof. Let cr > 2~0, and let C o be the circle of Euclidean radius cr centered at 0 in 
the xlx2-plane. Let S o be the smooth imbedded oriented surface of least ds2-area 
among all competing surfaces regardless of topological type having boundary 
curve C o. A discussion of this known existence result is given in the Appendix to 
this paper. We wish to extract a sequence ~r~--+co so that Sos converges to the 
required surface S. 

We first show that there is a compact subset K o c N so that we have 

S f ~ ( N \ N k ) C K  o for every a > 2 a  0 . (2.4) 

That is, we show that the S~ cannot run to infinity in an end other than N k. To see 
this, let N k, be another end, with asymptotically flat coordinate system yl, yZ, y3 
associating N k, with IR3\B~o(0) where B~o(O)={y:lyl<Zo}.  In this coordinate 

3 

system, the metric ds e has the form ds 2 = ~ g ' i jy idy  j with 9'ij satisfying (1.1). We 
i , j= 1 

calculate the covariant hessian of the function lyf z, that is Dijfyl 2 - 02tYl2 
Oyic~y ~ 

2 - D ~  b-}7 (lyl). By (1.1) we see 
Oy i 

D~lyl2--2cS~j+O(1/lyl) as lyl~oc 

where ~ is the Kronecker delta. In particular, we see that there exists z t > %  so 
that the function lyl 2 is a convex function for lY] >za. Since #S o = C o which lies in 
N k, we may apply the maximum principle to conclude that 

S ~ N ~ ,  c= B~(O) . 

Since N k, was any end of N other than Nk, we have established (2.4). 
We now analyze the behavior of S j ~ N  k. In fact, we bound the height of S o ~ N  k 

in the x 3 direction. For  any" h>0 ,  we let 

E~ = {xe  IR3 : Ix31 _< h } .  

We show that there exists a number h > a  0 so that 

NkC~SoCEh for all ~r>2o- o . (2.5) 

To accomplish this, we again use a maximum principle, this time for the function 
x 3 restricted on S~c~N k. We must first compute the asymptotic behavior of the 
covariant hessian of x 3 on N k. If D is the Riemannian connection for ds 2, define Uij 
by 

D ~  ~ = Z FIj (?x' '  
/ = 1  

Then Flij has the following expression in terms of ds 2 

Fi t = ½gt~.  + c~x i c~xm/. (2.6) 

The hessian of any function ~p is given by 

~2q) Dg~ ~xj(g °) D~/p = t3x~x i 
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By direct calculation using (1.1) and (2.6) we have 

M x  J M x  ~ M x  3 
D i j x 3 = - - F 3 = ~ ( ~ i 3 4 - - - ~ 3  (}j3 r 3 (}U-t-O(1/r3) • (2.7) 

Let h be the maximum for x 3 on Soc~N k, and suppose this maximum occurs at the 
point xo~S  ~. If h<cro, we have established (2.5). So s u p p o s e / 7 > a  o. The tangent 

space to S~ at x 0 is then spanned by 0@(Xo), ~x2 (Xo). Let v 1 v 2 be tangent vector 

fields to So defined in a neighborhood of x 0 and satisfying vi(Xo)= ~-~(xo) for 

i=  1, 2. Let (qi~)~ =<i3__< 2 be the restriction of ds 2 to S in terms of the base field v~, v 2. 
Let V be the induced connection on S~, and note 

ViV jX 3 -- Vv v j(X 3) = viv jx 3 -- D~iv j(x 3) 

+ (D~vj,  v>v(x 3) 

where v is the unit normal field of S~. Evaluating at the point x o we have 

gijX 3 = D~jX 3 + hijv(x 3) 

where h~j = (D~vj,  v>(Xo) is the second fundamental form. Contracting with respect 
to (qi~) we have 

2 2 2 
2 q i J ~ j X 3 =  2 q q D u  x 3 +  Z q ~ J h o v ( x 3 )  " 

i,j = 1 i,j = 1 i,j = 1 

2 
Since S. is minimal we have ~ q%~j = O, so applying (2.7) we see 

i , j -  1 

2 2Mh  
qiJVijx3- r 3 +O(1/r3) " 

i,j = 1 
2 

2 qq~ij x3>O at x o 
i,j= 1 

Since M <0,  we see that /7 sufficiently large implies that 

contradicting the fact that x 3 attains a maximum there. A similar argument gives a 
lower bound on X31S~Nk, and we have established (2.5) 

Now, let ~ > 2% and define the set 

AQ = (N\Nk)w  {x : Ix[ > cr o, (X1) 2 At" (X2) 2 ~ 0 2 } - 

For any a > 0 ,  (2.4) and (2.5) imply 

S ~ n A  ° c__ (K o WEh) C~A ~ (2.8) 

which is a compact subset of N. We now quote a local interior regularity estimate 
for area minimizing surfaces which is discussed in the Appendix. 

(2.1) Regularity Estimate. Let Ur(X) denote the geodesic ball of radius r about  
x e N .  There exists a number  r o > 0  so that for any point xoES ~ with 
Uro(Xo)C~C~=O, it is true that Sj~Uro(X o) can be written as the graph of a C a 
function f~ over the tangent plane to S~ in a normal coordinate system on U,o(Xo). 
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Moreover ,  there is a constant  c t depending only on (N, ds 2) which bounds  all 
derivatives of  f~ up to order  three in U~o(Xo). (Note that  both  r o and c 1 are 
independent  of  a.) 

It  then follows f rom (2.8) and  the Regular i ty  Est imate that  we can choose a 
sequence o-IQ~-~ ~ so that  S~{~ c~A~ converges in C a topology.  Since this can be 
done for any 0 > 2a0, we can take a sequence 0 j ~  ~ and by extracting a diagonal  
sequence we find a sequence a i ~ o e  so that  S~-~S, an imbedded  C2-surface, 
uniformly in C 2 no rm on compac t  subsets of  N. The surface S is proper ly  
imbedded  by (2.8), and is clearly area  minimizing on any  compac t  subset of  N. 
F r o m  (2.4) we have Sc~(N\Nk)CK o and hence Sc~(N\Nk) is compact .  F r o m  (2.5) we 
have Sc~N~C__E h which is the region between two parallel 2-plane in IR 3. This 
completes  the p roof  of  Step 2. 

The final step in the p roof  of Theorem 1 is to use the condit ion on the scalar 
curvature  to derive a contradiction.  

Step 3. The surface S constructed in Step 2 cannot  exist. 

Proof For  any a > ao, let S(~) be the set 

S(~) = [Sm(U\Uk) ] w [SnBo(0)]  . 

The  S(~) form an exhaust ion of S, and we can see 

Area (S(~)) < Czcr 2 (2.9) 

for a constant  C 2 independent  of  a>=%. To prove  (2.9), we note that  if S has 
transverse intersection with 0B~(0) then this intersection is a union of oriented C 2 
Jo rdan  curves on 0Bo(0) which bound  S(o). It  follows that  these curves bound  a 
domain  O__c 3B~(0). Thus  we have ~?S(~)= 0~2, so we can apply  the area minimizing 
proper ty  of  S to conclude that  

Area (S(o)) < Area (O) < Area (SB~(0)). 

Since (1.1) implies that  ds 2 is uniformly equivalent  to the Euclidean metric  on 
IR3\B~o(0), (2.9) follows for those a > % for which Sc~OB~(O) is transverse. Since this 
is true except for G in a set of measure  zero, (2.9) follows for any a > a  o by 
approximat ion .  

We can use (2.9) to bound  the integrals of certain functions on S. Fo r  a > 0 we 
have 

! 1+ o- t a7 
S(~o) 60  

< Area (S(~o~) + ~o Area (Sin) dt .  

If  a > 2, we can integrate by parts  and apply  (2.9) to get 

1 ~o t ~ -  1 

! 1~+~  < c2~r2 + a 5 (t + t~) 2 Area (Sin)dr 
O" O 

co ~ a +  1 

~C2 G2-}-c2a f ; ~ d t  . 
6o k ~  
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It follows that we have 

1 ! ~ <c(~ whenever a > 2 .  (2.10) 

Applying similar reasoning, we have for a o < a 1 < aa, 

j" ~ <2C2 loga2/a  1 . (2.11) 
S(~ 2)\S(~) 

We now introduce the second variation inequality for S. This inequality 
expresses the fact that up to second order S has smallest area in a one-parameter  
compactly supported deformation of S. Let ea, e 2, e 3 be orthonormal (with respect 
to ds 2) vector fields defined locally on N. We use the notation 

K~j = sectional curvature of the section {e~, ei}. 

The Ricci tensor can then be written 
3 

Ric(ei)= ~ Kij 
j = l  

where we let Ki~--=O. The scalar curvature R is then given by 

R = K12 + Kt3  + K23 . 

Let v be the unit normal vector field of S, and choose a frame el, ez, e 3 = v adapted 
to S. Let A denote the second fundamental form of S, i.e. the matrix in terms of 
e l ,  e 2 is  

hij=(De~v,e j )  . 

It is well-known that A is a symmetric quadratic tensor on S. We let [[A [] 2 denote 
the length of A with respect t o  ds 2, i.e. 

2 
]IAtl 2 ~ h 2 

= i t "  
i , j  = a 

The condition that S is a minimal surface is 

Trace (A) = h a 1 + h22 = 0 . (2.12) 

The second variation inequality (see [10]) for S is 

f [ A f  + (Ric (v) + II A II 2)f] < 0 
s 

for any C 2 function f with compact support  on S. After integration by parts we see 

(Ric (v) + il A {i 2)f2 < ~ II Vf  II 2 (2.13) 
S S 

for any C 2 function f with compact support  on S. By approximation we see easily 
that (2.13) holds for any Lipschitz function f with compact  support on S. The 
Gauss curvature equation expresses the Gauss curvature K of S as 

K = K 12 q- h i  l h 2 2  - h22 • (2.14) 
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Applying (2.12) and the symmetry of A gives 

½11AIIZ=K12-K . 

Putting this into (2.13) gives 

S(R ic (v )+K~a-K+ lllAll2)fz < j~ [I Vfll 2 
S S 

That is, we have 

~ ( R - K +  ll[Allz)fe =< ~ ]l viii 2 .  (2.1.5) 
S S 

We now choose a suitable cutoff function for f in our inequalities. For cr > a o 
define a function (p by 

1 on S(~) 
0-2 

log~- 

I ~ On S( O_ 2) \S(o. ) 

l 0 outside S(~2) 

Let g be a Lipschitz function on S satisfying ]91 < 1 and g-- 1 outside a compact 
subset of S. Setting f = q)g in (2.13) and applying the Schwarz inequality gives 

j'(Ric (v)+ ItAI[ 2)~oege < 2 562 II V~o[12 + 2 ff cp2 [117g[l= 
S S S 

2 I[Vrl[ 2 
--< (log o_)2 5 r ~ +2~°2]lVgll 2 . 

S(~)\S(o.) S 

Because of {1.1), there is a constant C 3 with fIVrl[2<=C3. Thus our inequality 
implies by rearranging and using the definition of ~0 and g 

t[AIIZ92 < 2C 3 1 j" ~- + 2 (  II Vgll 2 + ~ IRic (v)lg 2. 
(log 0-)-----~ S(¢,) S(.2)\S(a) S S 

Applying (2.11) we have 

NAII2g 2 52C2C 3 (log 0-)-1 +2~ II veil 2 + ~ IRic (v)lg 2. 
S(~) S S 

Letting 0-~ oe we conclude 

t11Ii292 =<2 S II Vgll 2+ ~ tRic(v)Ig z (2.16) 
S S S 

for any Lipschitz g with Igl < 1, g - 1  outside a compact subset of S. By (1.1), we 
have Ric(v)=O(1/r3), so choosing g =  1 on S and applying (2.10) and a = 3  we 

conclude from (2.16) that ~ IlAtlZ < oe. (The formula (2.16) with g~g 1 will be used 
s 

later.) 
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Formula (2.14)implies that IKI _-<IK121 + NAIIL By (1.1) we have K12=O(1/r 3) so 

(2.10) implies ~ IKlz I < oo. Thus we have 
S 

J'IKI < c~. (2.17) 
S 

We now use the function f=~o  in inequality (2.t5) and let c~--+oo as above to 
conclude 

~ ( R - - K  + ½1IAI[2)~O . 
S 

Since R> 0 ,  and R > 0  outside a compact subset of S, we conclude 

j K > 0 .  (2.18) 
S 

Remark 2.1. The Cohn-Vossen inequality says that ~ K ~ 2nz(S), where z(S) is the 
S 

Euler characteristic of S. Combining this with (2.18) we see immediately that S is 
homeomorphic to IR 2. 

In light of (2.18), the proof of Step 3 will be finished if we can show y K < 0 .  
s 

Since this is a very important part of our proof of Theorem 1, we give two proofs of 
this inequality. The first proof is conceptually very clear, and has the advantage of 
being more general than the second. The first proof, however, uses a deep theorem 
of R. Finn [11] and A. Huber [12] concerning the Gauss-Bonnet theorem on open 
Riemann surfaces, while the second uses no outside results and is special to our 
situation. 

Claim S K <=O. 
S 

First Proof We first note that inequality (2.17) and Remark 2.1 imply, by a result 
of A. Huber [13], that S is conformally equivalent to the complex plane. Thus 
there is a conformal diffeomorphism F:IE-~S. Let D a denote the disk of radius a in 
~, and let C~ be the circle of radius o-. For  i = 1, 2,... let L i = length (F(Ci)), and let 
Ai = Area (F(D~)). The simply connected case of the theorem of R. Finn [1 t ]  and A. 
Huber [12] says that 

S K = 2 n -  lim L? (2.19) 
s i~oo 2A i " 

Thus to show ~ K < 0 ,  it suffices to show 
S 

lira L~ > 1 .  (2.20) 
i ~  4hA i - 

Since S is properly imbedded in N with Sc~(N\N k) compact, we see that F(Ci) lies 
outside any compact subset of N k for i sufficiently large. Thus for large i, we let/~i 
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be the Euclidean length of F(Ci). Inequality (t.1) implies 

/~{__<(l+o(1))L~ as i ~ o o .  (2.21) 

For the immersed disk r l  of least Euclidean area with boundary curve F(C~), we 
have the well-known inequality whose proof can be found in [14] 

/i(z,) < L~ = ~  

where 4(- ) is Euclidean area. Let 21 be an oriented surface of least Euclidean area 
among all surfaces., of boundary F(C~) regardless of topological type (see 
Appendix). Since A(ZI)< A(Xi), we have 

~ ~ L 2 

A(Z,) < - '  (2.22) 

Because F(C~) lies outside any compact set for i sufficiently large, we can find a 
sequence a i~oo with Zf~B~,(0)__c ~fl~'(Ci)_ Since from Step 2 we know that F(Ci) 
CEh={x~IR3:lxal<h}, it follows that ZiCE h by the convex hull property of 
minimal surfaces. Since ~i does not retract onto its boundary circle, there is a point 
X o~Zic~{(0,0,x3):x 3elR}. A well-known inequality (see [15]) implies 
A(2i,mB~(xo) ) > nr 2. Thus we clearly have 

/t(X,c~B~,(0)) > (1 + o(1))na 2 . (2.23) 

We wish to compare the ds2-area of 2 i with the Euclidean area, but we cannot do 
it directly since Z/~B,o(0) may be nonempty, and ds 2 is not defined on this part of 
Z~. We get aroundthis problem by modifying 2~ i near 0. Let ~e [%, a o + 1] be such 
that aBa(0) and ~ have transverse (or empty) intersection. We can then find a 
domain f2~ on 0B~(0) so that 

(?fa~ = 2 f~c~ B~(O) . 

We then define a new surface 2~ by 

2,=(£,\B~(0))~&. 

Now (2.23) implies A(2~i)--* 0% so we let Ai=A(Zi), and conclude 

~__< (1 + o(1))~i(~) 

which combines with (2.22) to give 

A i < (1 + o(1)) ~-~. (2.24) 

By the area minimizing property of 2i, we also have A(2i)<yii, so A~-~oo. By 
choosing a~ smaller if necessary, we take 

A(~_,ic~B.~(O)) <= ~ (2.24a) 

and A(~_,ic~B~,,(O))~ oo. This can be done because of (2.23) and (1.1). If the cr i remain 
bounded, say ~i < Q for all i, then by comparison as in the proof of (2.9) we would 
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have  

which would imply that A(~,inBo,(O)) is a bounded sequence. Thus we must have 
a i ~  oo. It then tbllows by asymptotic flatness 

A(2i\B~i(O)) =< (1 + o(1))/t~. 

Combining this with (2.24a) we have 

A(2i)<(1+o(1))7t i as i--+oo. (2.25) 

Using the area minimizing property of S and inequalities (2.21), (2.24), and (2.25) 
we have 

A~ < A(2~) < (1 + o(1 ))Ai < (1 + o(1)) ~!- 

=<(1 + o(~)) L2 ~ -  as i--+oo. 

We thus conclude ~in 1 L'2" > 1 establishing (2.20). This completes the first proof 

of our claim. 

Second Proof We now give a proof of the claim in which we directly apply the 
Gauss-Bonnet theorem with boundary, and estimate the boundary terms. For any 
xelR 3, let x' =(x 1, x2,0), and let r '=  [x'[ =((xl) 2 q- (X2)2) 1/2. Consider the cylinder 

P~= {x~IR 3 : r '<a}  . 

For any a > % for which ~Poc~S is transverse, we have by Remark 2.1, at least one 
circle in this intersection which is not homologous to zero in IR3\P~o . Choose one 
of these circles, and let D~ be the connected component of this circle in 
S~[(N\Nk)voP~J. We claim that for a sufficiently large, D~ is a disk. To see this, 
recall from the first proof that S is conformally equivalent to ~7, so we have a 
conformal diffeomorphism F :II2~S. Now F -  1(Do) is a bounded, connected region 
in C. By transversality, the function r' changes sign across each boundary 
component o f F -  I(D¢). If F -  ~(D¢) is not simply connected, then there is a bounded 
domain (9 contained in II;\F- I(D~). Thus on 3F(~O) we have r' = o-, and inside F((9) 
at some points we have r' > o-. Thus r' takes a maximum at some point of F((9). We 
claim that (/)2 is a subharmonic function on S for r' sufficiently large, which will 
give a contradiction. We calculate 

2 
Ax i= ~ e~ejx i -  V~,e~x i . 

j= l  

Now ejxi = (ed, ~-~) +O(1/r), so 

Axi=j~=l[(gefJ'~--xr)+hjj(V'~--xf)-(gejej'~@)]q-O(1/r2) 
= O(1/r 2) 
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2 

since ~ h j j =  0. Thus we have 
j = l  

A(r')2 = 2  el, ~Tx j +O(1/r) .  
i , j  = 1 

Since both {e I, e2} and ~-x-i, ~7x2 span 2-dimensional subspace oflR 3, they must 

intersect in at least a line, so the norm of their projection is asymptotically 

bounded below, i.e. ~ ei,~Txj > l - O ( 1 / r ) .  So we have 
i , j =  1 

A(r')2>_2-O(1/r) as r-~oQ. 

Thus for r sufficiently large, in particular for r' sufficiently large we have A(r') 2 >0. 
Thus it follows that D~ is a disk for a large. 

We may choose the D~ to be increasing, so that D~ D D~ when ~ > o-. Since S is 
connected, the D~ form an exhaustion of S, and we apply the Gauss-Bonnet 
theorem on D~, so that 

De 8D,~ 

where k is the geodesic curvature of 8D~ relative to the inner normal. Thus, our 
proof will be complete if we can find a sequence ai-~oo so that 

k > 2 ~ - o ( 1 )  as i ~ o o .  (2.26) 

In a neighborhood of 8Do, we choose a frame e~, e 2, e 3 where e~ the positively 
oriented unit tangent vector of 8D~, e 2 is the inner normal to D,, and e 3 = v is the 
unit normal of S in ]R 3 relative to ds e. The geodesic curvature k is given by 

k = ( D ~ e l ,  e2) . 

Since r ' =  a on 8D~, we have (e~, D r ' ) =  0 on (?D~. Differentiating this with respect 
to e~ gives 

( D etel, Dr')  + @1, De,Dr') = 0 .  

X ~ 
Now (1.1) implies that Dr'= - -  + O(1/a) and 

0" 

el, + 0(1/6 2) 
O" 0" ~ X  3 ~" 

so we have 

( D ~ e l , ~ )  i / a -  1/a ( e l ,~x32)  2 + = O(1/a) llD~e a I1 + O ( 1 / ~ z )  • 

Since D~ e~ = ke 2 - h 1 iv, this gives 

_ _ el, =O(l/a)liDe,el[[ +0(t /o  -2) k e~,--~- + l / a - h l l  v, a ~ 

(2.27) 
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Suppose a~[8,2ff]. We now apply the divergence theorem for the vector field 
0 

on the volume enclosed by D2~\D ~, OPz~, ~?P~, and the plane annulus 0x 3 
Oe={x:x3 = -h,~<_r'<28} where h is a bound on Ix3l for x~Sc~N k (see Step 2). 

By (1.1), d i v ~ x  3 =0(1/~2), so we have 

wherewehaveusedthefact that(~,n)=O(1/a)wherenistheunitnormalof  

~P2~ and OP~. Applying the area minimizing property of S on D2~\D ~ as compared 
with the union of Q~ and the part of OPz~u~P ~ between S and O~, we have 

A(D2~\De) __< A(F2~) + O(~). (2.28) 

Combined with the above inequality this gives 

DzN\D~ 

The coarea formula (see [16, p. 258]) gives 

where ds is arclength on D2ac~c~P ,. Since 

Dza ~(p2e\p~) C Daa\Da , 

we can combine these inequalities 

!e o~oe~(1- (v ,~ )dsd t<=O(8  ) . (2.29) 

Again using the coarea formula we have 
2~ 

L(D2~c~Pt)dt= ~ IIVr'/I . 
o D2~n(P27~\P~) 

Combined with (2.28) this gives 
2~ 

L(D2j~aPt)dt = O(~21. (2.30) 

We must now bound the second fundamental form of S on 0D~. To do this, we 
apply inequality (2.16) with the following choice of g 

g(x)=. 

0 lbr xeS~[(N\Nk)uPw~] 

log - 
1/~{¢ for xeSn(P~\Pv~) 

log ~ 

1 for x~Sc~[(N\Nk)wP~]. 
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This implies 

IIAIt2 < 2 ~ IIVr'll 2 
s\f(N\N,,)uF~j -- (log 1/@-) 2 s~(P~\e~) (r') ~ + s\tN\.,v,,)'I ~ve~jlRic(v)l . 

This implies by (1.1) 

2C 1 
ItAII 2< J" + ~, O(1/r 3) 

D~(V~.\P.) = (log ]/~)2 (r,)2 Sra(Po\Vv~) S\[(N\Nk)uPI/~ ] 

Similar reasoning as that used in deriving (2.10) and (2.11) using r' in place of r and 
the fact that x 3 is bounded on ScaN k implies 

1 = O(log V~) 
s~(v~\vv~) (r') 2 

~ o(1/~ ~) = o ( 1 / ~ / ~ ) .  
S\[(N\Nk) uPv'~ ] 

It therefore follows that 
IlAlt2=o(1) . 

D2~(P2~\P~) 

The coarea formula gives 
2~ 

~ IfAlfZdt = ~ tfAN2IiVr'll. 
D2~n~Pt Dx~c.,(p2~\pg. ) 

This then implies 
2~ 

~_ ~ IlAItZdt=o(1) . (2.31) 
a D2~n~Pt 

Now (2.29), (2.30), and (2.31) imply that there exists o-~[8, 2~] satisfying 

( 1 -  (v, ~5x03))~ O(1), L(D2~c~c)P~)=O(ff), 
Dz~C';aPa 

IlAll2=o(1/a) as o-~oo.  
DzwnOP~ 

Applying the Schwarz inequality and the condition on boundary length we have 

(D2~!~P~ ff A F[ ) 2 <= L(D z~C~S p ~). o(1/o) = o(1). 

Since 8D~ is one component  of Dzj~OP~, we have shown 

L(OD ~)=O(cr) (2.32) 

I]All =o(1)).  
OD~ 
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We use (2.32) to estimate the terms in (2.27). Note that (2.27) and (2.32) imply 

~ k e2, =O(1)+O(1/a) S ItDeie, II+ ...... el,~Sx3 - (2.33) 
g OD~ O" 0 ,r 

To bound the last term, we note that by (1.1) we have 

(e>~)z-b(e2,~-~X)2=l--(v,~g)2"t-O(1/ff) 

which implies by (2.32) that 
2 ~ 2 

o~,(e~,~-Xx3) +~e2,~x3 ) =O(1). (2.34) 

We now give a pointwise lower bound on e2,~x3 . In fact we show that 

seup (1 + ( ~ ,  e2)) :o,1) . (2.35) 

We first note that by (1.1) 

1-- X',e 2 = ,v +O(1/o-)= ,v-- +O(1/ff) 

0 2 
v -  ~x3 + O(1/a) 

= 2 ( 1 - ( v , ~ ) ) + O ( 1 / ~ ) .  

Then applying (2.32) gives 

( / 1 -  x' =0(1) (2.36) 
7 ~ e 2 

cTD= 

X v 

Now since e 2 is the inner normal to Do, and Dr'= -- + O(1/a) is the outer normal, 
O" 

we have Ix '  ) <_O(1/a), so ~ - ,  e 2 _ 

1 -  ( ~ ,  e2)2 = ( 1 -  ( ~ ,  e2)) (1 + (-~-, e;))  

>(1-O(1/a)) 1+ 7 ,  e2 +O(1/(r). 

Combining with (2.36) then gives 

1+ ~-,e 2 =0(1).  (2.37) 
8 D a  
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Since 0Do is not homologous to zero in IR2\Poo, its projection onto the xlxZ-plane 
must be the circle of radius a centered at zero. We therefore have 

L(SDo) _>_ 2rc0-- 0(1).  (2.38) 

Now (2.37) and (2.38) together imply that there is a point Xoe 8D~ with 

1+ ~- ,e  2 (Xo)=O(1/0-) . (2.39) 

¢ )  Differentiating 1 + ~ ,  e 2 along 8D~ gives 

e 1 1+ \ ; ,  2/)1 = ~- 7\~Tx3,e , \ ~ x 3 , e 2  

- h i 2  { ~ ,  v ) ÷  O(1/o') 2 

< - -  , el + , e 2 + HAl[ + 0 ( 1 / 0 - 2 )  . 
= 2a 

Applying {2.32) and (2.34) we see 

, e Ii+ ¢ )]  240, -, e 2 

We now write for any xe ~?D~, 

X* X' x 
l + ( ~ - , e e ) ( x ) = l + { ~ - , e 2 ) ( X o ) + S x o e l i l + { ~ - , e 2 ) j  . 

Thus combining this with (2.39) and (2.40) we have established (2.35). 
Now (2.33), (2.34) and (2.35) together imply 

5 Ikl=O(1)+O(1/(y) J" [IDe,el[I • (2.41) 
~Da 8D~ 

Since De le i : ke 2 - h 11 v we have 

fiDe,el II < Ikl + 111 II, 

so integrating and applying (2.32) we have 

J" [IDelelll <= f Ikl+o(1). 
8D,, ODe, 

Combining this with (2.41) gives 

IIDe,e, ll =O(1) 
ODor 

lkl=O0). 

(2.42) 
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We may now rewrite (2.27) using (2.32), (2.34), and (2.42) 

k__> .[ k 1+ ~- ,e  +I/GL(OD~)--o(1). 
ODe, OD~ 

Applying (2.35), (2.38), and (2.42) then gives 

y k>=2n-o(a) .  
c~D,~ 

Since this holds for a arbitrarily large (in any interval [if, 2~], 8 sufficiently large), 
we can choose a sequence ai--+ oo for which (2.26) holds. This completes the second 
proof of our claim. 

This finishes the proof of Theorem 1. 

3. Proof of Theorem 2 

In this section we prove Theorem 2 which says that if for some end N k, (1.2) holds, 
the total mass of M k is zero, and R =>0, then ds 2 is fiat. We first note that by 
throwing away the other ends outside a convex ball, we may assume that N has 
only one end, so that N \ N  k is compact. 

We will need the following Sobolev inequality for functions with compact 
support on N. 

Lemma 3.1. There is a constant cl >0  depending on N and the constants k~, k2, k 3 
of (1.t) so that for any function ( with compact support on N, we have the inequality 

Note that we do not require ~ = 0 on aN, 

Proof We prove the inequality by contradiction. If it were not true, we could find 
a sequence of functions f~ with compact support and with 

S J; 6=1 , ~ 1]Of~tl2<t/i. (3.1) 
N N 

Since N k is identified with IR3\B,o(0) and ds 2 is uniformly equivalent to the 
Euclidean metric, we have the inequality which follows from the Euclidean 
inequality (see proof in [-17, p. 80-81]). 

Thus by (3.1) we have S fl 6~0, so we have fi---,0 in L6-norm on N k. If we choose a 
Nk 

precompact coordinate neighborhood (9__ON, for any C 1 function g defined on (9 
we have the following inequality which comes directly from the Euclidean 
inequality of the same form 

iof (! (co. t  s 2 
t~slR 
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Applying this inequality and (3.1) to the functions f,.le, we find a sequence fii so that 

Since ~ fi6=1, the sequence fi~ is a bounded sequence, and by extracting a 
N 

subsequence we may assume fli~fl. Thus we have f i l l ?  in L6-norm on (9. Since 
f ~ 0  in L6-norm on N k, we must have f i=0  on each coordinate neighborhood C, 
so we have f<--,0 in L6-norm on N in contradiction to (3.1). This proves Lemma 
3.1. 

We will have need to study equations of the form 

A v - f v = h  on N (3.2) 

where f, h are functions which satisfy 

[fl<kT(l +r+5) -1,  [hl<=kT(l +rS) -1, 

10f[ < ks(1 + r s)-~, tOhl < ks(t + r 5)- ~ (3.3) 

Oil N k. Let f+, f_  be the positive and negative parts o f f ,  so that f = f +  - f _  and 

I f l=f+ + f_. 

Lemma 3.2. Suppose (i.1) holds and N k has zero total mass. There is a number ~o >0  
depending only on N and kl, k2, k 3 of (1.1) so that if 

( YN(f- )3/2)2/3 ~'~O , 

then (3.2) has a unique solution v defined on N satisfying v=O(1/r) as r~oo and 
Ov 
0n =0  on ON, where n is the outward unit normal vector to ON. Moreover, the 

solution v has the properties 

A 
V =  ---  + 6 9 ,  109[ = < k 9 ( 1  + r 2 )  - 1 , 

r 

[&ol_-<klo(1 + r3 ) -1 ,  ]~&ol__<kll(1 +r4)-1 

1 ~fv+h,  and the constants k9, kao, k l l  dependonly on ks, k2, on Nk, where A -  4~ u 

k 3 • 

Proof Throughout  the proof we use c a, c2, c3... to denote constants depending 
only on kl, kz, k 3. 

To prove the existence of v we solve the problem for o-> % 

[ A v ~ - f v ~ = h  on g~=(X\gk)U(B~(O)~gk) 

vo=0 on #B~(0) 

0v =0 On on ON. 

(3.4) 
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If v¢ satisfies (3.4), we can multiply by v~ and integrate by parts to obtain an 
integral bound on vo as follows 

[IDv~ll2=- ~ fv 2 -  y hv~ 
N °- N~ N ~- 

< ~ v ~ 

< (~ f3/2)2/3 (~ v6),/3 + (j~ [h[6/5)s/6 (~ v6~1/6.~] 

We note that if h=0,  we can apply Lemma (3.1) to obtain 

S IIDvll2~oq S ]/DvaTI z- 
N ~ N~ 

Thus if we choose e 0 < 1/q, we see that Av- fv  has trivial kernel for problem (3.4), 
and hence standard linear elliptic theory (see [18, p. 262]) implies the existence of a 
unique smooth solution v~ of (3.4). By (3.3)we have (~ lh[6/5)5/6<=c2, a constant 

independent of a. Applying this, Lemma 3.1, and the hypotheses we have 

1 
Choosing e o = - - ,  and using the inequality lab[ < ½a 2 + ¼b 2 we have 

3Cl 

(~a n6~l/3<2"-L / ) 6 ) 1 / 3 - } - {  f V6"~l/3-L 3~C C "12 

which gives 

I v6 <c~ 
Na 

where c 3 = (9(clcz)2)3. Standard linear elliptic estimates (see [17, p. 161] for the 
interior estimate and [17, p. 242] for the estimate on ON) now imply that 
{v, :a > % }  is equicontinuous in C 2 topology on compact subsets of N. Thus we 
may choose a sequence o-i--* oo so that v,--*v uniformly in C-norm on compact 
subsets of N. Thus v is a solution of (3.2) defined on N satisfying 

0v 
- - = 0  on ON, and 
On 

(3.5) 
j" V 6 ~ C 3 ,  sup  I/)l ~ C  4 . 
N N 

(The supremum estimate follows from the L 6 estimate and standard linear theory 
[17, p. 161].) 
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To  analyze the asymptot ic  behavior  of  v, we derive a potential  theoretic 
expression for v. For  x, yaNk let 

= [ 
] t i 2  

(y~-  x')/ . 
ki,j = 1 J 

By direct calculation we have 

Ar[Qx(y)] - x = - 47zb~(y) +,b,~(y) 

where a~(y) is a point  mass at x, and by (1.1) tG(y) satisfies 

IWx(y)l < c51x- yl- 21x[ - 3 .for Y~ Bl(X ) . (3.6) 

Again by (1.1) we see that  for y~Bl(x) we have 

t 
IG(Y)l~c6 (1 +lYl)elx-yl 3 + Ixl2lx-yl 3 + (1 + [yi)31x-ylZ - (3.7) 

Also we have 

c~ l l x -y l_ -<e~ (y )=c71x -y l ,  

lim Ixl [G(Y)J - 1 = 1 . 

c~ ~ ~ =< IOyG(y)l =<c8, 
(3.8) 

Multiplying (3.2) by 
= {Ye Nk :G(Y) < 8} where 8~ (a/2, a) and G/2 >> Txi, and applying (3.6) 

4roy(x) = ~ tG(y)v0, ) ]/-~y-)dy- ~ (fv+h)(yl[GO,)] -~ ~ y ) d y  
DMx) Dr.(x) 

1 8v 8 
+ = (q (.f;) ~} ~n dAO;)- ~ v(y) 8n [G(Y)] - idA(y) 

(7  ~ = -  {q~,(y) = 5} 

- y ~ n ( y ) [ G 0 ' ) ] - ~ d A 0 0 +  y vO')  [G(y)]-JdA(y) 
OB~o(O) 8B~ o (0) 

[G(Y)]-1,  integrating by parts twice on the set D~(x) 

(3.9) 

where ~/gdy is the volume element of ds 2 and dA is surface area with respect to 
ds 2. Applying Stokes' theorem we see from (3.2) 

~(y)dA(y)  
{ex (y )  = ~ }  

8v 8v 
= ~ -~n + ~ Av= ~ (~n + ~ ( fv+h) .  

~B~ o ( 0 )  D~(x) OBo.o(O) D~(x) 

F r o m  (3.3) and (3.5) we have 

o;~x)f v+h <c9" 
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Therefore, 

s 
{ox(y)=~} oB (0) 0n  1 .  

From (3.8), Area {O~(y)=8} ~-----C1282, SO we may apply (3.8) 

(3.1o) 

{e~(>') =~} 

\{dx(y) =5} 

S  6)1 o 
\(o~(y) =~} 

By (3.5) and the coarea formula we may choose 5e(a/2 ,  a) so that 

f /)6 ~C150._ 1 
{ex(y) =~} 

Thus we have 

S v ~- [Qx(y)]- -_<q6 ,<1j2  . 
{e~o , ) :~}  e n  I 

We now let a ~  and apply (3.10) and (3.11) in (3.9) to get 

(3.11) 

4roy(x) = ~ ~px(y)v(y) V~(y)dy 
Nk 

-- ~ (fv+h)(y)[Q~(y)] -a ]~,q(y)dy 
Nk 

Ov 
- .[ -~n[O~(Y)]-ldA(y) 

~Bao (0) 

+ ~ v ~n[~(Y)] - ldA(y) '  
aB,,o(O) 

From (3.5), (3.6), and (3.7) we have 

~C181X1_31_C19( ~ ( 1 1 
\~3wl(:, ) (1 + [yl) z Ix _y[3 + (1 + lyl) 3 Ix - y[2 

1 ~6/5 \5/6 
"t I X l 2 I x _ y I 3  ) dy) . 

(3.12) 

(3.13) 
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The following inequalities are easily checked 

dy t 5/6 
(a~\!~(~) (1-I-[y[)lz/5[x--y118/5] 

d y  )5/6 
--< f (1 + b , i ) ~ /~ lx_y l~S /5  ] B~x[ (x)\BI(X) 

+ ~ (l+tyl)a2/51x-yl a8/s Blxl(O) -7 

dy ~5/6 

< C20(ix I-  2 + iX I - 5/2 + iX I - 5/2) < clxl- 2 . 

Similarly 

( dy ~ 5/6 
-[ (l+lyl)la/Slx_yl~2/5 / <c211x1-2 

~I~.3\B1 (X) 

S dy a~\B~(~) Ix-y[ 18/5 <c22 '  

Thus it follows from (3.13) that 

~ktpx(y)v(y) ~ d y  < c231x I - z (3.14) 

It follows from (3.3), (3.5), and (3.8) that 

B,~(x) (fv + h)(y) [0x(Y)] -1 ~/9~dy < c241x[--3 

5- 
Ixl'[ox(y)t -~<c25 fo r  yCBtxl(X). 

2 

We may thus apply (3.8), (3.3) and the dominated convergence theorem to the 
functions (fv + h)(y)lxl [e~(Y)]- 1 ~ZNk\~tx,(~ where ZA denotes 

2 
the characteristic function of A to conclude that 

t!m Ixl I (fv + h)(y) IOn(Y)]-1 9]/~dy 
Nk 

= j' (fv+h)O~)19/-~dY. (3.15) 
Nk 

Then by (3.12), (3.14), (3.8), and (3.15) we have 

A = lim 4Nxlv(x ) = - ~ (fv + h)(y) ~/gdy 
Ix[ ~ oo Nk 

Ov 
- ~" 0-n ( 3 . 1 6 )  ,~B~o(O) 
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so we may write 

A 
V ......... q - ~  

F 

where 

4~(~(x) = J ~x(y)v(y) 9]/~)dy- ~ ( f  v + h)(y) [~o~(y)- '  - I x l -  ' ]  ~ d y  
N~ Nk 

Ov ) 1 c~ 
- j ~nn[G(Y - Ix l -~]dA(y)+ j v~n[G(Y)]-]dA(y) . 

gB~ o (0) OB~o(O) 

We see directly that 

lyJ 
LG(Y)- ~ - t x l -  ~t ~<---C26 IX l ]x__y I 

(3.17) 

which combined with (3.17), (3.3), and (3.8) shows that 

[ ( D ( X ) [ < C 2 7 ( l - l - F 2 )  - 1  for x f f N  k . (3.18) 

To estimate the derivatives of m we record the following Schauder estimate 
whose proof can be found in [17, p. 161]. Let L be an elliptic operator on the unit 
ball of IR 3 of the form 

3 
Lu= j~=laij(~) ~2u t?u + ~ bfl~) ~ + c(~)u(~) 

' , ' =  j = l  

where ~=(~1, 42, 43) is the Cartesian coordinate in the ball. For  any function (p(~) 
defined on an open set ~2 and real number 2 with 0 < 2 < 1, define the following 
norms 

leto,~= sup le(C)l 
Ce.O 

ko(~)- q,(~)l 
lq~lo,,,z= sup 

¢ , ~  I ~ -  ¢I ~' 

lq~t 1,,,r~ = sup I~q~(~)l + lOq~to, x,e 

kolz,,,~ = sup I&o(~)t + sup laOel(d)t + t&~elo,,,~. 

Let B , =  {4 :l~t <r}. Suppose there is a positive number A so that 

3 

laiflo,;.,B, + ~ lbilo,x,~,-l-tCto,;.B, ~ A ,  
i , j = l  i=1  

3 

A-~ltl 2< ~ au(~)fltJVt~IRS\{O}, V ~ B  1 . 
i , j= 1 

(3.19) 
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It then follows that for any C 2'~ function u on B~ we have 

luI2,a,B,/~ < C(ILuIo,a,B, + [Ulo,m) (3.20) 

where C depends only on 2, A. 
We now fix a point xeNk, and assume that ~=½1xol > %  We then let 

~= 1 (y_:¢) 
(7 

where y is our asymptotic coordinate on N k. If we let u(~)= co(y), ai~(~)= gi;(y), bk(~ ) 
= ~gij(y)Fl[j(y), and c(0 = - ~ 2 f ( y )  we have 

~?2u ~bk(g ) Ou Lu(~) = ~ %(~) + ? ~  + ~(~)u 

=a2(Aco(y)- f co(y)) . 

Now Ao9-fco=Af[y[ -I +h-AA[y1-1 by (3.2) and the definition of co. From (1.1) 
we see that 

I A l y l - ~ l ~ c 2 s l y 1 - 5  , l a ( d l y t - 1 ) l ~ c 2 9 1 Y 1 - 6  . 

These together with (3.3) imply 

ILuto,;,,B~ < C3oO-- 3 + ~ . 

It is clear from (1.1) that (3.19) is satisfied for our operator Lu with a constant A 
independent of a. Thus (3.20) gives 

lu12,~,B.2 --< c 3 1 ( ~ -  3 + ~ + tUlo,B)  • 

By (3.18) this gives for any 2, 0 < 2 < 1  

lU12,~,B.2 <C32a -2 • 

In terms of co, this implies 

10co(Xo)l N c321Xol- 3, 100co(Xo)l ~ c321Xo 1-4  

This establishes the required growth properties of co. The expression for A follows 
by integrating (3.2) over (N\Nk)w(Nk~B~(O)) using the boundary condition 
0v 

~-n- = 0  on ON, and letting a ~ o o .  

To prove uniqueness, suppose g is another solution of (3.2) satisfying g =  O(1/0 

and ~-n = 0 on ~N. Then u = v - g  satisfies 

0u 
A u - f u = O ,  u=O(1/r), ~nn=0 on 0 N .  (3.21) 

We show u = 0. Let 6 > 0 be any number, and let E~ = {xE N:u(x)~  6}. Because u 
tends to zero at infinity, we see that E~ is compact. We multiply (3.21) by u and 
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integrate over Eo 

S uAu= ~ f u  2 . 
Ed E,5 

Integrating by parts and applying (3.21) we have 

tDut e = -  S IDul- y fu  z 
E~ OEd E~ 

< U2 <~ 3/2 2/3 =S(f-) =(Sf: t ( .61"3 
E~ \Ed / \E6 / 

Applying Lemma 3.1 with ~ = u - 6  on E~ ,~ -0  on N\E~ we have 

S (U--~)6t1/3 ~-~Cl ~ toul2 " 
E~ / E~ 

Combining these inequalities and recalling the choice of e o 

Since u=O(1/r), we see that yu6<oe ,  so we may let ~5~0 and deduce a 
N 

contradiction unless u <0. Since - u  also satisfies (3.21) we must have u > 0, so that 
u - 0  on N. This concludes the proof of Lemma 3.2. 

The next lemma deals with conformal change of metric on N. 

Lemma 3.3. Suppose ds 2 is an asymptotically f lat metric on N satisfyin 9 (1.2). Let 
R be the scalar curvature function of ds 2, and suppose R satisfies 

R3/2 2/3 

where e o is defined in Lemma 3.2. Then there is a unique positive function (p with 

0~ = 0  on ON so that the metric ~ 2 =  qo4ds 2 is asymptotically flat, scalar flat, and 
On 
has total mass 

~ =  1 
- 32--~ !, R~0. 

Proof. In order for the metric @ds 2 to be scalar fiat, the function q~ must satisfy 

Aq~- ~Rcp=0. 

The function v = qg-1 then satisfies 

dv-}Rv= R 

In order for @ds 2 to be asymptotically 

(3.22) 

(3.23) 

flat, v must satisfy the asymptotic 
conditions of Lemma 3.2. Now Lemma 3.2 applies directly to give a v satisfying 

0v 
(3.23) with ~nn = 0 on 0N. Thus (p = v + 1 satisfies (3.22) with ~ -  = 0 on ON. In order 
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to prove that q~ is everywhere positive on N, we let E = {x~N:~o(x)<0}. Since ~o is 
asymptotic to one, we see that E is compact, and if E is nonempty, we multiply 

(3.22) by q0 and integrate by parts on E using ~-n = 0 on ON to obtain 

IID~oll z=  --~ ~e(o 2 
E E 

2 

E 

~1(!R3_/2)2/3(!~6)1/3. 

Applying Lemma 3.1 to this inequality we have 

(! ~6)1/3 ~C1~0 (! q)6)1/3 

1 
which is a contradiction since eo < 3-q~" We conclude that q)>0 on N. That ~0>0 

on N now follows from the Hopf  maximum principle. The usual proof works 

directly on the interior of N, and the boundary condition ~ = 0 allows an easy 

modification to show q~>0 on 0N (see [t7, p. 61]). 

To show that 0N has positive mean curvature relative to dsZ= q)4ds2 we note 
that if H is the mean curvature function relative to ds 2 and/~  the mean curvature 
relative to ~2,  a direct calculation gives 

1 ( 4 & p )  1 H ,  

so/1  > 0. This finishes the proof that ~'s 2 is an asymptotically flat metric on N. The 
formula for M follows from Lemma 3.2. 

A special case of Lemma 3.3 is the following corollary which was proved by 
O'Murchadka and York [19] in case N is diffeomorphic to IR 3. 

Corollary 3,1. I f  M = 0 ,  R__>0, and R is not identically zero, then there is a metric 
conformally equivalent to ds 2 which is asymptotically fiat, scalar fiat, and so that N k 
has negative total mass. 

Theorem 1 and Corollary 3.1 imply that an asymptotically flat metric 
satisfying the hypotheses M = 0, R _>_ 0 must have R = 0 on N. We assume now that 
ds 2 is such a metric and that (1.2) is also satisfied. We define a one-parameter 
family of metrics dset on N by 

3 

ds~ = ~ (gij + tSi~) dxidxj 
i,j = 1 

where S~j is the Ricci tensor of ds z. These metrics are defined in a neighborhood of 
t = 0  by (1.1) and (1.2), and ds~ = ds 2. For t sufficiently small, ds~ is asymptotically 
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flat by (1.2) and because ON has positive mean curvature relative to ds 2, so by 
continuity 0N also has positive mean curvature relative to ds 2 for t small. Let R t be 
the scalar curvature function of ds~, so that we have R 0 = R - 0 .  A known formula 
(see [20]) gives 

d 
R'° = d t  R, lt=o = - A R  + 66 R i c -  II Ricll 2 (3.24) 

where Ric =(S~) is the Ricci tensor, and 

00 Ric = Sljf;I, 1[ Ric[[ 2 =gikgJtSijSkt " 

Since R - 0 ,  we have A R G O ,  and a direct application of the second Bianchi 
identity shows 

b5 Ric = 2 A R  - 0 .  

Thus (3.24) becomes 

R~ = - [I Ric]] 2. (3.25) 

Since R 0 -=0, it follows from (1.2) that for t sufficiently small we have 

R3/2 2/3 ~go _ )  _ , 

where s 0 can be taken independent of t for small t. Applying Lemma 3.3, we find a 
function opt so that the metric @ds2~ is asymptotically flat and scalar flat. The mass 
M(t )  of this metric is 

M(t)= -- 327cl ! Rtqo t ~//~g~dx (3.26) 

where ~ is the volume factor for ds~. 
d M  

We will prove that ~ exists at t =0, and can be computed by differentiating 

(3.26) under the integral sign. For  small h, let @h) be defined by 

@h) = ~Oh - -  ~00 

h 

L e t  A t be the Laplacian for the metric ds~, and let A (h) be the differential operator 
defined by 

= 1 (AhV _ AoV) . A(h)v 
t't 

1 
Let R (h)= h ( R h - e o ) .  The function @h) satisfies the equation 

~o~O (h)- ~eo(P (h)= --A(h)q) h -t- 1e(h)@h. (3.27) 

By (1.1) and (1.2), we see that this equation satisfies the hypotheses of Lemma 3.2. 
Since ~0 (h) is O(1/r), that lemma implies 

]qCh)[<71(l+r)-i on N k (3.28) 
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where 71 is independent of h. Standard linear theory applied to (3.27) shows that 
~o (h) has a local C 2,~ bound depending on C 1 bounds on R o and -A(h)q) h + 81--R(h)(ph. 
Since these bounds are independent of h, we can find a sequence {hi} tending to 
zero so that ~Oh~ converges in C 2' '  norm for any /?<c~ uniformly on compact 
subsets of N to a C 2'~ function ~0~ which satisfies 

AorPo - gRo~o o = _ Ao~o o + gRocP o 

where 

, d , d 
A0=~/-~At[t= o, and R o = ~ R t l t =  o.  

By (3.28) we have (p~ = O(1/r) so the uniqueness part of Lemma 3.2 implies that the 
limit (p~ is independent of the sequence {hi} we have chosen. Thus it follows that 
d 

~0 t exists at t = 0 and is equal to cp~. From (1.1) and (1.2) we have constants 72, 7a 

independent of h so that 

[ethl] < 72(1 q_ r3 + ~)- lg(h) _-- 23( 1 + r I +~)- 1 o n  N k (3.29) 

1 
where g¢h)= ~(gh--go)" We now apply (3.28), (3.29), and the dominated con- 

vergence theorem to conclude that M'(0)= ~ M(t)[ t :  o exists and 

. . . . .  'd 1 
32zc 

Since R o -=0 and cpo = 1, we may apply (3.25) to conclude 

1 ~ [jRic[[2 " (3.30) M'(O) = ~ N 

If Rio is not identically zero, (3.30) implies that Mr(0)> 0 and hence by choosing a 
~4 ds 2 suitable t o < 0  we. would have M(to)<0. The metric 9% to would then be 

asymptotically flat, scalar flat, and N k would have negative total mass in 
contradiction to Theorem 1. Hence we conclude that R i c - 0 ,  and because we are 
working in dimension three, ds 2 is flat. This completes the proof of Theorem 2. 

Appendix 

In this appendix we give a brief discussion of the Regularity Estimate (2.1), and the 
existence of smooth solutions of the two-dimensional problem of least area for 
surfaces (regardless of topological type) having a given boundary curve in a 
Riemannian 3-manifold with boundary of positive mean curvature. These results 
are welt-known so we mainly give references and briefly indicate a few of the 
simpler arguments involved. The (interior) Regularity Estimate (2.1) and the 
existence theorem are part of the powerful approach to minimal surfaces which 
has developed through the use of geometric measure theory. A thorough account 
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of  this field is given by Federer [161 where Chapter  5 discusses the applications to 
variational problems of  area type. We refer the reader to the introduct ion to that  
chapter for an account  of  the people involved in the developments of  this theory. 
The Regularity Estimate (2.1) can be extracted as a very special case of the 
material in Section 5.3 and Theorem 5.4.15 of  1-16]. A more  differential geometric 
approach  to this estimate can be found in [211. 

The existence of an area minimizing current S,  (surface with singularities) 
having boundary  curve C o follows from 5.1.6 of  [161. The above mentioned 
regularity theory implies that  S, has no singularities in the interior of N~S~. We 
will show that  the positive mean curvature  of  @N implies that  S~ lies entirely in the 
interior of N, and hence S,/C~ is completely regular. To see this, consider a 
boundary  component  B of  N. For  ~ > 0  sufficiently small, the open set (9 t = {x~N: 
dist(x,B)<t} for 0 < t < e  retracts smoothly  on to  B, and the parallel surfaces 
B t = {xE N : dist (x, B) = t} for 0 < t < e are smooth  surfaces diffeomorphic to B -- B 0. 
Let  v be the outward  unit normal  vector field to B, and for 0 < t < e, extend v as a 
vector field on (_9 t by parallel translation along geodesics normal  to B. Thus  on Bt, v 
is a unit normal  vector field. The fact that  B has positive mean curvature with 
respect to v says that div (v)> 0 on B where div ( . )  is divergence of  a vector field 
taken on N. By continuity we then have 

d i v ( v ) > 0  on C t 

for some re(0, e). The theory of Chapter  5 of  [161 also gives us an open set V C_N 
so that 

S~=OV+ 

in the sense of  geometric measure theory. Let t /be the outward  (to V~) pointing unit 
normal  vector field of  S o (which exists almost  everywhere with respect to 
Hausdorf f  2-dimensional measure), and apply the divergence theorem, Theorem 
4.5.6 of [161 to the open set (gtc~V o. If  this set is not  empty we have 

5 (~f,") dJ~2-  ~ l d j ~ 2 > O  
Sc~n~t Btc~ Va 

where ~ 2  is Hausdorf f  2-dimensional measure on N. This implies Area(Btc~ V ~) 
< Area (S~n(gt) contradict ing the area minimizing property of  S~. This shows that 
S, lies strictly away from @N as claimed. 
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