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Abstract. The positive mass theorem states that for a nontriviat isolated 
physical system, the total energy, which includes contributions from both 
matter  and gravitation is positive. This assertion was demonstrated in our 
previous paper in the important  case when the space-time admits a maximal 
slice. Here this assumption is removed and the general theorem is 
demonstrated. Abstracts of the results of this paper appeared in [113 and [131. 

Introduction 

An initial data set for a space-time consists of a three-dimensional manifold N, a 
positive definite metric gig, a symmetric tensor pig, a local mass density #, and a 
local current density ji. The constraint equations which determine N to be a 
spacelike hypersurface in a space-time with second fundamental form p~j are given 
by 

where R is the scalar curvature of the metric gig. As usual, we assume that # and j i  
obey the dominant energy condition 

#> (~i JiJ) j/2 

An initial data set will be said to be asymptotically flat if for some compact  set 
C, N\C consists of a finite number of components N 1 . . . . .  Np such that each N i is 
diffeomorphic to the complement of a compact  set in R 3. Under such diffeomor- 
phisms, the metric tensor will be required to be written in the form 

gij = 6~5 + O(r- i) 

and the scalar curvature of N will be assumed to be O(r-4). 
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With each N k we associate a total mass M k defined by the flux integral 

1 
Mk= t -~  ~ .~. (giJ'j-gjj'i)dai 

L J  

which is the limit of surface integrals taken over large two spheres in N k. 
This number M k is called the ADM mass of N k (see Arnowitt, Deser, and 

Misner [1]). Classically it was assumed that the first term in the asymptotic 
expansion of gii is spherical. It was pointed out by York [11] that physically it is 
more desirable to relax this assumption to the one mentioned above. The method 
in this paper will work assuming only this general asymptotic condition of York. 

In order for the total mass to be a conserved quantity, one assumes Pij = O(r- 2) 
and ~ P u  = O(r- 3). 

i 

In this formulation, the (generalized) positive mass theorem states that for an 
asymptotically flat initial data set, each end has nonnegative total mass. If one of 
the ends has zero total mass, the initial data set can be obtained from the metric 
tensor and the second fundamental form of a spacelike hypersurface in the 
Minkowski space-time. (In particular # and d~ must be identically zero.) 

We proved the positive mass theorem assuming the condition that ~ Pl = 0 in 

our previous paper. In this paper, we demonstrate the validity of the general 
theorem by reducing it to the previous case. It should be mentioned that the 
classical attempts in proving the positive mass theorem have been to treat the 
important case ~ p i = 0  first and then reduce the general case to this case by 

i 

asserting the existence of maximal slices (see, e.g. [2]). While we have similar steps, 
the basic ingredients are very different. For example, in the former method, it is 

necessary to prove that the space-time admits a slice with ~ Pl = 0. Not  only is the 

existence of such a slice unknown, but also the space-time is expected to be more 
restrictive if such a slice does exist. Our approach can be described as follows. 

We deform the metric g~j and p~j in two steps. In the first step, we consider the 
product manifold N x R with the product metric and extend p~/trivially to be a 
tensor defined over N x R. We want to find a hypersurface N in N x R which 
projects one to one onto N and whose mean curvature is the same as the trace of 
p~ over N'. One of the motivations for considering such a hypersurface is that if N 
is a spacelike hypersurface in Minkowski space-time, the solution N can be 
identified with a linear slice of the Minkowski space-time. The second step is to 
observe that if such a hypersurface exists, the induced metric on this hypersurface 
can be deformed conformally to one with zero scalar curvature. If we can prove the 
existence of the hypersurface which is asymptotic to N in a suitable manner, we 
can prove that the total mass of N is the same as that of the hypersurface N. We 
have then reduced the positive mass theorem to the case that we treated in our 
previous paper. 

It happens that the hypersurface does not exist in general. Surprisingly its 
existence is closely related to the existence of apparent horizons in the initial data 
set (even if we assume the initial data set is nonsingular). The relation can be 
explained as follows. We perturb the equation that governs the hypersurface and 
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prove that the perturbed equation admits an entire solution with the required 
asymptotic behavior. When the perturbation tends to zero, we prove that the 
hypersurfaces defined by the perturbed equations converge smoothly to a 
hypersurface. Although the hypersurface satisfies the required asymptotic con- 
ditions, it need not be a graph over N. The set over which it is not a graph has 
boundary consisting of spheres which are apparent horizons. By conformally 
closing these apparent horizons, we carry through the argument outlined above. 

It should be pointed out that in a previous attempt by Jang to solve the 
positive mass theorem, the equation defining the above hypersurface was con- 
sidered. However, our geometric interpretation of the equation and our way of 
using it are completely different from his. (He used a method outlined by Geroch 
which up to now has been unsuccessful in proving positivity of mass.) While Jang 
observes that the equation is not solvable in general, he provides no method to 
circumvent this situation. It should be emphasized that the major effort of this 
paper is to overcome this difficulty. For a historical account of the previous efforts 
to prove tile mass theorem, see the references in [9]. We wish to point out that our 
method in this paper also works to prove the mass is positive for an initial data set 
with singularities, provided they are surrounded by apparent horizons. 

For  the reader's convenience, we suggest the reader to skip sections two and 
three for the first reading. They can read the first two paragraphs of pp. 238-240, 
statements of Propositions 1-3. 

1. Statement of Results 

As in the introduction, let N be an oriented asymptotically fiat three dimensional 
manifold without boundary. Let ds 2 be a positive definite metric on N. Suppose 
that N is of smoothness class C 4, and that ds 2 is C 3. Assume that on each N k there 

3 
exist coordinates x 1, x 2, x 3 in which ds 2 has the expansion dsa= ~, 9iflxidx j 

i , j = l  

with the g~3 satisfying the following inequalities for positive constants kl, k2, k 3 

g,j--g,j+b~j, [bij[<=kl(l +r) -1 , 
(1.1) 

i0bi~t =< k2(1 + r 2) - 1, [~c~bijt < k3(1 + r3) - 1 
3 

where r 2 = ~ (xi) 2 and 0 is the Euclidean gradient. Note that (1.1) implies that the 
i=1 

Christoffel symbols Fj~ fall off as O(r-2) and the curvature tensor as O(r-3) as 
r~oc .  We assume that the scalar curvature (Ricci scalar) R falls off like r -4, i.e., 

]R]<=k4(l+r4) -1 , tc~Rt<=ks(l+rS) -1 (1.2) 

for constants k4, k 5. 
We suppose also that on N we are given a symmetric two-tensor Plj which on 

each N k satisfy the inequalities 

tPij[ + rlc~pijl-t- r21c~c~pi~[ < k6(1 + r 2)- 1 (1.3) 

for a constant k 6. We assume the trace of Plj satisfies the faster falioff 

~ Pil <:k7(1 -t-r3) - 1. (1.4) 
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As was mentioned in the introduction we will be assuming the dominant energy 
condition holds on N, i.e., 

kt~ (~i JiJi)l/2. (1.5) 

We will refer to the triple (N, ds2,pq) satisfying (1.1)-(1.5) as an initial data set. Note 
that we have weakened the asymptotic assumption on 9~j from that assumed in 
[9]. In [10] we have established the main result of [9] under this weaker 
assumption. We state our first theorem. 

Theorem 1. Let (N, ds2,p~j) be an initial data set. For 1 <k<=p, we have Mk >O. 

We will also prove that if some M k is zero, the initial data set is trivial. For  this 
we need to assume ds 2 is C 4 and expand (1.1) to include the following assumption 

tOOOb~jl + 1O~&3bJ ~ ks(1 + r*)- 1. (1.6) 

Theorem 2. I f  (N, ds 2, Pi~) is an initial data set satisfying (1.6), and M k = 0 for some k, 
then (N, ds 2, Pij) can be isometrically embedded into four dimensional Minkowski 
space IM as a spacelike hypersurface so that ds z is the induced metric fi'om IM and Pij 
is the second fundamental form. In particular N is topologically IR 3. 

2. The Basic Equation and Local Formulae 

In this section we derive the basic formulae describing the local geometry of 
hypersurfaces in N × IlL Suppose (N, ds 2, p~) is an initial data set as defined in 
Sect. 1. We form the Riemannian product N × 1R with (positive definite) metric 
ds2+dt 2 where t~IR is a coordinate. We suppose that Z 3 S N x l R  is a smooth 
hypersurface, and let el, e2,e3,e 4 be a local orthonormal frame for Z with e 4 
normal to Z and el, e2, e 3 tangential. Let wl, w2, w 3, w 4 be the corresponding dual 
orthonormal coframe of one-forms. We may write the structural equations for 
N ×IR 

4 

dwa= ~ wab A w b, wob+%~=0,  (2.1) 
b = l  

4 ,4 

dWab-- Z woc A W~b = --½ Z R~b~dWc A Wd, (2.2) 
c= l c , d =  l 

where Robed is the curvature tensor of N × l~ We adopt the convention that letters 
a, b, c, ... run from 1 to 4 while the letters i,j, k, .., denote indices between 1 and 3. 
We define the second fundamental form of S, which we denote A =(hij)~ _<i,~3 by 

w4ilx = ~ hqwj, hlj = hji, (2.3) 
J 

where (.)Ix indicates restriction of a one-form to Z. The mean curvature H of Z is 
then given by H =  ~h,i.  Restricting (2.2) to S and using (2.3) we derive the 

i 

curvature equation 

l~ijk~ = Rok ~ + (hikhie- hiehjk) , (2.4) 
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where/~Uk~ denotes the intrinsic curvature of S. Applying the exterior derivative to 
(2.3) and using (2.2) we derive the Codazzi equation 

/ 3 k h u - -  D jh i k  = R4i jk  , (2.5) 

where 13 is used to denote covariant differentiation with respect to the metric of S, 
and/3khu is defined by 

~, Dkhuwk = dhu + 2 hikWkj -~- 2 hkjWki" (2.6) 
k k h 

We now exploit the special structure of N x IR. Let v be the downward unit 
parallel vector field tangent to the IR factor, and consider the function @4, v) 
defined on S, where ( .,. ) is the inner_product of N x IR. For a smooth function ~0 
on X, the covariant derivatives/3iq), D~Djq~, and the Laplacian Aq~ are given by 

j J 

i 

We calculate A(e4, v) by observing that v = ~ (v, e,)e,  is parallel, so the covariant 
a 

derivative DaY in N x IR is 

0 = 2 (Db U)aWb = d(v, ea) 4- 2 (V, eb)Wba. (2.7) 
b b 

Using (2.3) we then get 

d(e4, v) = - 2 (v, ei)wi~ = .~. hu(v , ei)w ~ . 
i z,j 

Thus by (2.6) and (2.7) we have 

bibj(v ,  e4) = 2 (bihjk) (v, ek) -- ~ hjkhik(l), e4). 
k k 

Taking the trace and using (2,5) we get 

A(v ,e , )  = ZR,~k,(V, ek) + Z(fikH)(V, ek) -- (Zh2kt(v, e4). (2.8) 
i,k k \i,k / 

W e  will need to compute D~Dkhu, so we define 

2 (/3ebkhlj)we = d(/3khu) + ~ (fieh~j)wtk 
E g 

+ 2 (/3khej)wei + ~ (/3khie)wej " (2.9) 

Applying the exterior derivative to (2.6) we then have 

2 (DeDkhij)we A w k = -½ Z hkjfftla~mW~ tx W m 
k,~ k,~,m 

--½ 2 hikekjgmWg A Wm. 
k,~',,m 
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Equating coefficients then gives 

D eDkhij- DkD thi~ = - ~ hmjRm~ek- ~ himR,~je k . (2.10) 
m m 

We wish to calculate Ahij= ~.,bkbkhij in terms of the mean curvature H, so 
k 

we use (2.5) 

Ahij = ~ bkDjhik + ~ bkR4ijk, (2.1 t) 
k k 

where blR4i~k is defined by 

DeR,,okWE = dR4q k + ~ n,.WkW~,i + ~, R4iekWe i + ~ R,,ijewek" 
d d ~ 

We may express this in terms of DiR4ij~ by using (2.3) 

beR41_i k = DtR4ijk - R4i4kha-R4~j,,ha~ + ~ Rmijkhme. (2.12) 
m 

We now use (2.10) in (2.11) to get 

Ahij = Z L)jDkhik + 2 DkR4ijk-- 2 hmkRmikj- Z himemkkj" 
k k m,k m,k 

Finally, we apply (2.5) once more, together with the symmetry of (hij) to obtain 

dhij = Di62H 4- ~ 6,R4ijk-- ~ hmkRmikj 
k m,k 

- Z hi,.R,,kk~ ÷ Z 6jR4ki~" 
m,k k 

Using (2.4) and (2.12) we finally have 

Ah, = ( 2 h, 4.1-I 2 
\m , k  ] 

-2 ~ h,.,R.,,~- ~ h..R,.z~j 
m,k m,k 

4. 2 DkR4u~ 4. Z DjR4klk 
k k 

- ~ R4i4khjk-- HR4ij4 - ~, R4k4khij 
k k 

- -  ~ R4ki4hjk + ~ Rmkikh,,; • 
k m,k 

We are not especially interested in the particular form for this equation, but we 
want estimates independent of Z, so we note that we have the matrix inequality 

A h,j > b,DjH - ( 2 h2k] ho + H 2 h~,~h,.j- c I(IA[+ 1)6~j, 
\m, k / m 

where c 1 depends only on kl,k2,k 3 (not on 2;). We are using IAI2= ~ h  2. We now 

calculate AhAI 2 as follows: 

1 2 ~AtAt = ~.hijAhij+ ~ (Dkhij) 2. 
t,,.; i,d,k 
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Therefore, we have 

½AfA[ 2 >= 2 (fikhij) 2 -  [A[ 4 -  IHI IAI 3 
i , j , k  

+ .~.hijfiifijn- Ca(lZl 2 + 1) 
l~J 

for a constant c 2. Since ½AIAI 2 = IZlztlhl + t/31Al t 2, we get 

(2.13) 

IAIA[A] >= ( 2 (Dkhij)Z--lDlAl[ z) -IAI 4 
\ i , j , k  

- IHI  IAI 3 + ~h~jb~fjH-cE(IAI z + 1). (2.14) 
I,J 

We now record the following observation of [8]. We may write the first term T on 
the right of (2.14) as 

T= i.j, k2 (E)khij) 2 -  IA1-2 ~ ( ~  hi~Dkhij) 2" 

This implies that 

IAI2T---~ - ~ (hijDkhe,,-hemDkhij) 2. 
i , j ,k , ,Y ,m 

Setting k = i and m = j  in the sum implies 

tAIe T >__½ 2 (hijDiht~- htj[)ihij) 2 
i , j , g  

> ~8 2 ( 2  hijffIihej- 2 h~jDihij] 2 , (2.15) 
g \ i , j  i , j  / 

where we have used the Schwarz inequality. By (2.5), 

.~ hejDihij= ~ hef)jH + .~. hejR41ji 
l , j  j z,d 

.~. hijD~hIj= .~. hijff) ehij + .~. hijR4jei " 
t ,J l,d ~,J 

Putting these into (2.15) and using the inequality ( a - b )  2 ~½a 2 -  b z we get 

IAI2T>= ~6 (~ hijL) ehij)2-ca[DHI2IA]2-c3[AI 2 • 

This implies that 

T>= ~7 ~ (ff)khij) 2 -  36c3 36c3 ~ ,~ ,k  - ~ - I / 3 H I 2 -  37 " 

Combining this with (2.14) then gives 

IAIAIAI > ~7 ~ (fikh,j) 2 -  IAI 4 -  Igl IAt 3 
i , j , k  

+ .~ hi~bibjH- c41bHI 2 - c4(Ml 2 + 1). (2.16) 

Inequality (2.16) will be important for the estimates of the next section, 



238 R. Schoen and S.-T. Yau 

For  the remainder of this section we specialize to the case when S is the graph 
of a function f defined on N. In this case we may extend our or thonormal  frame 
el,e2,%,e 4 to N xlR in such a way as to be parallel along the IR factor. We also 
suppose that the given data, pi~,/~, and J are extended parallel along the tR factor. 
We assume that e 4 is taken to be the downward unit normal to N so that 
(v, e4) > 0  everywhere on Z. Thus the following hold on N x lK 

e ,  = (1 + lDfI 2)- 1/2(+ D f -  v) 

R = ~ Rabab 
a,b 

Jb = ~ DoGb- Y', DbP.a, 
a a 

where R~bce is the curvature tensor of N x IK Since ej, e 2, %, e 4 is now extended in a 
natural way to all of N x IK we introduce the following notation [cf. (2.3)] 

W4i = 2 hidwj q- hi4w4" (2.17) 
J 

This defines ~ hi4w i as a one-form on £. We wish to refine (2.8) in our setting. First 
i 

note that since N x IR is given the product metric, and H is constant along the IR 
factor, we have 

0 = ~ R4iki(v , ek> + R414i(v , e4> 
k 

0 = ~, (DkH)(v, ek} + (e4H)@, e4)  , 
k 

where e4H is the directional derivative of H in direction e 4. Putting these into (2.8) 
then gives 

zl(v, e4)= ( -  ~ R4i4i-e4H-lAl2) (v, e4}. (2.18) 

We now notice that 

R = 2 ~ R4i4i  -]- ~.  Rijij , 
i z,y 

so by (2.4) we have 

R= 2 ~ R4i4i + R-- H2 +IAt 2, 
i 

where/~ is the intrinsic scalar curvature of 2;. Thus by the definition of # we have 

~ R 4 1 4 i = # + ½ (  - / ~ +  a,b~G~-(~P'@Z-IAI2+H2)" (2.19) 

We will also need to have an expression for e4(~ipu ) in terms of J, so we notice 
that 

Z D p. = Z (2.20) 
i i 
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and we have 

D ,PuW a = dpi ~ + 2 ~ p iiwj~ + 2pi4 w ,~i . 
a y 

Summing on i and equating coefficients of w 4 we have by (2,17) and the symmetry 
of Plj 

~D4pu=e4(~pu)  +2~p,4hi4. (2.21) 

We also have 

which gives 

Z (DaPi4)wa = dpi4 -]- 2 Pa4Wai -t- 2 PiaWa4 
a a a 

DiPi4 = ei(Pi4) + ~, Pj4 W ji(ei) + p44hu- .~ pijh~j . 
J ~,J 

Summing on i and using the definition o f / )  we have 

2 DiPi,, = 2 DiPi4 + p 4 , H -  ~Pijho . 
i i ~,y 

Combining this with (2.20) and (2.21) implies 

e,(~Pii)= ~ lDiPi4-J4 +P4, H 

-- ~ pijhij - 2 Y" pi4hi4 . (2.22) 
G ]  i 

We now combine (2.18), (2.19), and (2.22) 

2< v, e4) -* A <v, e4) =/~ - .~. (hlj-  pij) 2 - 2 ~ p2 
r,j i 

+4~i Pi4hi4-2~i DiPi4+(~i Pii)2 

- 2 ( / , -  J4). (2.23) 

We now observe that  since e 4 has been extended to be parallel along v we have by 
(2.17) 

0 = ~ (v, e~)Die, , + (v, e4)De4e4 
i 

= .~. (v, ei)hijej+ (v, e4) ~hj4e j . 
l,j j 

Since Dj(v, e4) = ~ (v, e~)h~j, we have 
i 

h i4  = - ( v ,  e 4 )  "" 1 D j ( v ,  e 4 )  = - ff)j (log (v, e4) ) . (2.24) 

Hence if we compute  A log (v, e4) we have 

A log (v, e4) = - ~/~ih~¢ = (v, e4) - 1A (v, e4) - ~ h{4 . 
i i 
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Putting this into (2.23) and using the energy condition (1.5) we have 

0 < 2(~-IJI) _-</~- E. (hij - Plj) 2 - 2 Y' (hi4 - pi4) 2 
t ,  d i 

+ 2p4,~ ( ~  p u -  H} + 2 e 4 ( ~ ,  . -  H ) .  (2.25) 

We now introduce the equation which 22 will be required to satisfy. It is an 
equation proposed by Jang [5]. We will study the solutions of this equation later 
in this paper. The equation is 

H = 2 P u "  (2.26) 
i 

More explicitly, if Z is the graph of a function f it is the equation 

(1 + D f  z)- 1/2 .~ c~iJOiDjf = .~ 9ijpij , (2.27) 

where 9ij is the induced metric on 

. . . .  f~fa 
0'J=g 'J 1 +lDflZ 

f i =  Z giJLJ " 
J 

Geometrically (2.27) says that we prescribe the mean curvature at each point of 22 
to be equal to the trace of the restriction of p~j (extended to N x IR) to 22. We will 
study solutions of (2.27) having the asymptotic behavior 

t f l=O(r-1/2) ,  [Ul=O(r-3/2) ,  IaUl=O(r-5/2) ,  tac3Ul-=O(r -7/2) (2.28) 

at each inifinity of N. 
The inequality (2.25) is closely related to Eq. (2.27). In fact, (2.27) expresses the 

fact that H - ~ P u  d°es n°t  change al°ng vertical lines' s° i t h a t v ( H - ~ P u )  =0" 

Assuming S satisfies (2.27), by (2.25) we have 

0 _-< 2(# -IJI)  < R - .~. (hi j -  Pia) z - 2 ~ ( h i 4  - P i 4 )  2 
t , j  i 

+ 2 ~ Di(hi4 - Pi4). (2.29) 
i 

It will afford us some convenience in the proof of Theorem 1 to assume strict 
inequality in (1.5). We prove a simple perturbation result which allows us to 
do so. 
Lemma 1. Let (N, ds 2, Pij) be an initial data set. Given a number e > O, there is a 
function go > 0 on N satisfying 

q~=l+Ak+o(r-2), IO~ol=O(r-2), I~O~pl=O(r -3) 
r 
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on N k with IAkl <e  so that (N, q~4dsZ, ~2pij) is an initial data set with mass density ft 
and current density Y satisfying ~> IJt. 

Proof If  q~ > 0 is a function on N, then we can compute 

~ = q~-g(p-  4(p- 1Aq~) 

IJ] = (o -4  (ZgiJKiKj) 1/z , 
\ i , j  / 

where K i = J i + 4 ~ p - l ~ o t p i  e. Thus if we tet 

we have T1 = ]Jl - ]2 =< 0, and 

rq~ = ¼C(lYt-  ~)- 

The linearization of Tq~ at ~o = 1 is given by 

Jipie 
An + ¼(IJI-]2)n + Y,n ~ IJl 

i,E 

which is an isomorphism on suitable spaces, so by the implicit function theorem 
we can find ¢p near 1 so that Ttp < 0, hence ~ > IJ]- [-For example, one exhausts N by 
compact  subdomains O and solves the inequality T ~ o = f < 0  on f2 with ¢p= 1 on 
0f2. Once one solves this equation, one can see easily that ~o converges to the 
require solution when f2 tends to N. The existence on compact subdomains follows 
by applying the implicit functions to the map  T: H2(~2)--~L2(f2).] The asymptotic 
conditions for ~o are easily shown. 

3. The a Priori Estimates 

In this section we prove the estimates which are needed to show existence of 
solutions to (2.27). We concentrate first on the local interior estimates, and then we 
construct suitable "barrier" functions [-see (3.20)] to control the behavior of 
solutions at infinity. 

We study a slightly more general equation then (2.27). Let F(x) be a given C 2 
function on N and suppose/~t,  ]22, and ]23 are constants so that 

sup IF[ < #1, sup [DFJ < ]22, sup fDDF[ < ]23 • (3.1) 
N N N 

Suppose f is a given C 3 solution of 

f ' f J  _~ D i D J  
id: l  +lDfl2) 1/i " (3.2) 

We propose to derive suitable estimates on f and its derivatives in terms o f # l  , #2, 
and ]23. We let cl, c z ... .  throughout  this section be constants depending only on 
(N, g~j, Pij) and #1, ]22, ]23. We wilt not explicitly denote the dependence on ]2a, #2, ]23. 



242 R. Schoen and  S.-T, Yau 

We will use the notation of Sect. 2 for the graph of f We first observe that by (2.4), 
(3.1), and (3.2) we have 

t~+lAI21_-<q, 
so inequality (2.25) implies 

[A[ 2 + ~ (hi,* - P/4) 2 £ E D i ( h i *  - Pi4)  + c2([A] + 1 ) .  
i i 

Multiplying this inequality by ~o 2 where ~p has compact support on the graph Z of 
f, and integrating by parts, we find 

IA] 2~o2 ]/~dx + ~ Z (lh, - Pi4) 2 V~gdx 
Z 2 i 

< - 2 S ~P Z (b/p) (hie - p~,) ~ d x  + c 2 ~ (]A[ + 1)9 2 ]/~qdx. 
Z i 2 

Using the inequality 2ab < a2+ b 2, we get 

S[AI2qoZl//~dx<=S]Dq)[Z]~qdx+c2~(IAl+l)cp2]/~dx (3.3) 
2 Z 

for any q0 with compact support on S. We now replace (p in (3.3) by the function 
IAI'(P to obtain 

~ ]A[4(p 2 [//~dx< S ]/3]Alcp[ 2 l/~dx+c2~(]A[ 3 + [AI2)(p 2 l~gdx. (3.4) 

Expanding, and integrating by parts, the first term on the right becomes 

([A[ 2 [Dq)[ 2 + 2q~[A] (Dq~, D[A[)+ (p2 [/)[A[ j2) V~dx 
£ 

= ~ [A[ 2 [/3c¢[ 2 p/~dx- ½~ q~2A[AiZ V~dx+{92[bIA[ [2 ~/~dx 

= ~ [A[ 2 Ibq)[ 2 V ~ d x -  ~ ~o2]A]A[A[ ~/~dx. 

Putting this into (3.4) then gives 

S CIAI (A IA) + IAI ~) ~@x_-< i IAI ~ Ibel ~ l ~ d x  + c3 S (IA? + J)C l /~dx,  
2 1; 

where we have absorbed [At 2 into IA13+ 1. We now use (2.t6) to get 

Z (bkh~s)2~ °2 ]//~dx<=c,~Y IAI21b~°t 2 ]/~dx 
i , j ,k  Z 

- c~ ~ s h~jb,b#~o ~ V~d~ + ~ ~I tbu?~ ~ V~ dx 
z i, j z 

+c,.I (IAI 3 + t)(p 2 ~/~dx. 

We integrate by parts the second term on the right and absorb to get 

~ (/)kh/)2q~ 2 ]/~dx<c 5 ~ ]AI 2 Ib~ol 2 ]/~dx 

+ c5 .f lbHIZq V 1/~ dx + c5 [. (1113 + 1)~ °2 ]//~dx. 
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We now get rid of the second term on the right by observing that (3.2) says 

H= ~pi i+F,  and we have 
i 

Z Dop.wo = alp. + 2 Z p~iwj, + 2pi4.w4~. 
a ) 

so summing on i we get 

which implies /3 ~.Pli 2 <c(IAl2 + 1), and hence by (3.1) and (3.5) we have 

2 (Dkhid 32g02 ]/~dx<c6IlAlal/3g°l z ]/~dx 
Z i,j,k 2 

+ c6 j (IAI 3 + 1)~o 2 l /~dx .  (3.6) 

We observe that (3.4) directly implies 

~ IAl4.cp 2 ]//~dx~2 j Z (/3kh,j)2cP z 1/~ dx 
Z Y~ i,j,k 

+ 2 ~ IAI 2 I/3q~l 2 l/'~dx + c 7 ~ (tAt a + 1) 1,/~gdx. 

Combining this with (3.6) and absorbing the term involving tAI 3 back to the left we 
get 

j IAI4.~0 21/~dx <= Cs (. IAI 2 I/3q~l 2 l/~dx + c8 j cp 2 ~ d x .  
2 ,~ X 

Finally, we may replace (p by ~o 2 and absorb to get 

IAt4.(1~4. ]//~ d x  ~ c 9 ~ 1/3@t4. ]//~ d x  -{- c 9 ~ @4- V~ dx (3.73 
Y. X Z 

for any Lipschitz function cp with compact support on Z. 
We now choose ~o with 0 < ~ 0 < 1  so that for any point xoeN, the geodesic 

exponentN1 map is a diffeomorphism on the ball with center at x 0 of radius fro. 
That such ~o exists follows from the conditions (1.1). We let B~(Xo) denote the 
geodesic ball in N xlR centered at a point Xo~Nx l lL  For any point 
X o = (xo, f(Xo) ) in Z, we will give estimates on Sc~B~(Xo) for suitable cr > 0. We first 
bound the volume of Sc~B~(Xo) by observing that (3.2) implies 

divz,,× ~(e4) = F + 2 (g i j -  - f '  f f  
i,i 1 + IDfl2 ] Plj , 

so we apply the divergence theorem on the four dimensional volume 
B~(Xo)~ {(x, x4.) : x 4 < f(x)} to obtain 

Vol (~  ~B~(Xo) ) < clo ~3 (3.8) 

for any o-<Qo, XoeZ.  The results of Hoffman and Spruck [4], generalizing the 
methods of Michael and Simon [6], now show that there is a number ~1 with 
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0 <01 <0o so that the Sobolov inequality holds on 22c~B41(Xo). In particular, it is 
true that 

for any Lipschitz ~0 vanishing outside 22nB~,(Xo). Since H 2 is bounded by (3.2), we 
may apply H61der's inequality and (3.8) to prove 

(!~06 ~/-~dx)l/3 _Cll !10@12 V~dx + c1202 (!@6 ~/-~dx)l/3 

If we take 01 small enough that cl20 ~ < ½-, we get 

for any Lipschitz ~o with support of (p contained in Zc~B4oI(Xo). We emphasize that 
both ~1 and cl3 are independent of X, Z. 

We let ~ denote the geodesic distance function to X o in N x IR, and observe that 
[D~[ = 1 and hence I/}0[ -< 1 on 22. We choose ~o in (3.7) to be a function of 0 
satisfying 

t10 ,or 
q~= for ~O>---Oi' [/}(P1=<301-1' I(P[--<I" 

With this choice of qo, (3.7) and (3.8) imply 

IAI 4 V~dx<=cl4. (3.10) 
Zc~B~,(Xo) 

2 

Note that we are taking Qi to be fixed, so we have not bothered to explicitly 
denote the dependence of ci4 on Qi. 

We now show that [AI 2 is pointwise bounded. To see this, let u = IA[ 2 + 1, and 
observe that by (2.13), (3.1), and (3.2) 

Au > - c 1 5(tAt Z + 1)u + 2 .~. hijff) i/} jH . 
/ , J  

Multiplying both sides by a nonnegative function ( vanishing outside 22c~B~l(Xo), 
2 

and integrating by parts we get 

![<~, ~u>-c15~,A12 +l~u~ 2 ~ ~,~ (~ h,,~,~)2 ~ ~h,,~,~ l ~x  <=0 

for any such (. It follows from (2.5) that ~.bihis <=c([bHl+l), and from the 
l 

discussion preceding inequality (3.6) that [/}HI 2 =< c(iA[2 + 1). We therefore have the 
following inequality 

! [(D~,Du)+ ~ (bi~)biu+~eu] l/~dx<=O (3.11) 
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for each nonnegative ( vanishing outside Sc~B~(Xo), where the functions b~, e are 
2 

b i = - 2u-  ~ ~, hijDjH 
J 

e = - c 15(tli 2 + 1) - 2u- 1 .Z DihijDj H • 

Since b~ and e satisfy 

lbit < cl 6 

tel ~_~ cl6(IA[ 2 -~- 1 ) ,  

by (3.8) and (3.10) we have 

sup (~tbi]2t + y tel z ~ d x < c 1 7 .  (3.12) 
_ \ i  ] ~nB~, (Xo) 

A standard iteration technique (see [7, Theorem 5.3.1] now gives the mean value- 
type inequality 

u ( X o ) < q s  (,~8~!(xo)u 2 ~/~dx 1/2) (3.13) 

for a constant cts. Note that this iteration technique works because we have the 
Sobolev inequality (3.9), and we may use the distance function Q in place of 
standard Euclidean distance. Also, it is crucial that lel is bounded in 

and 2>1dim)2. . .  3, so that the structural conditions [7, 5.1.3] are satisfied. It 
now follows from (3.8), (3.10), and (3.13) that IAI2(Xo) is bounded, so we have an 
extrinsic curvature bound 

sup [AI 2 ~ c 1 9  . (3.14) 

We summarize what we have proven in the following proposition. 

Proposition 1. Suppose f is a C 3 solution of (3.2) with function F satisfying (3.1). 
There is a constant c19 depending only on the initial data (N, gij, P~j) and on t~1, IZz, 1~3 
so that (3.14) holds. 

We discuss the consequences of this result. If X o e 2 ,  we let ( y l  y2,y3,y4) be 
normal coordinates in N x IR centered at X o so that the tangent space to S at X o is 
the y*y2y3-space. Thus, if the metric ds 2 + dt 2 for N x tR is given by 

ds2 + dr2 = 2 (tabdyady b , 
a,b 

we have 

0o~(0) =~ob, ?g~b~ (0)=0 <3y ~ 
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for l<a,b,c<4. In a neighborhood ofXo, S is given by the graph of a function 
w(y), y=(yl,y2,y3) on the yly2y3-space. The equation (3,2)satisfied by Z is 

2 0 "b WoWb~(D~Dbl'V-pa b =0  
.,~=1 ]-ff~2-] \ ID WI 

where W(Y)= w(y)- y'~, Y = (y l, y2, y a  y4). This gives an equation for w of the form 

3 

Uij(y, w, Ow)w/,~ = C(y, w, Ow) (3.15) 
i , j = l  

for y near 0, where Bi~(y,w,p) and C(y,w,p) are smooth functions of their 
arguments, aw=(wyl, wy2,wr~) is the Euclidean gradient, and (Bij) is positive 
definite with 

B#(0, 0, 0) = 3~j, C(0, 0, 0) = 0 .  (3.16) 

The length of the second fundamental form of 2 is given by 

- ( r -  
 w-r \ IOWl /" 

From this expression, one sees that (3.14) implies 

(wy,,j)Z<c2o 1 (w,~) 2 (3.17) 
i , j=  l 

in a neighborhood of 0. We can now prove a gradient bound on w as follows. 
Given a Euclidean unit vector ~ in the yly2y3-space, and a radus ~, we define S¢(~) 
by 

3 

S~(~= max ~ [%~(Q~)]:. 
° < 0 < g  i=1 

By the mean value theorem, (3.17), and the fact that u/(0)=0, we have for all small 

S¢(N < c2 ~(~)2 (1 + S¢(0)) s/2 . 

Elementary calculus now implies that there is a ~0 e >0  (depending only on c20 so 
that S¢(~) remains bounded for 0 < ~ < ~  e (thus w is also defined on the ball of 
radius Ca). Because of this and (3.17), we then have 

sup (lw(y)l + IOw(y)l + I~w(Y)l) < c22 (3.18) 

for constants ~o e > 0, c22 independent of Z. We will want to improve (3.18) a little so 
we define for 0 < e <  1, the HSlder norm on {lYl <~} by 

I[hll~,e= sup lyl-Y21-~lh(yl)-h(y2)l. 
lylt<~ 
ly~l < e 

We can now prove 

Proposition 2 (Local Parametric Estimate). Under the hypotheses of Proposition 1, 
there is a 03 >0  dependin 9 only on the initial data and #1,P2,Y3 so that for any 
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X o ~ Z  , the local defining function w fi)r Z (as discussed above) is defined on 
{IYl <Q3}, and satisfies ,for any ~ ( 0 ,  1) 

sup (Iw(y)l + [0w(y)l + IOOw(y)I + 10OOw(y)[ + lJ ~0~w[l~,e~)< c23(~), 
lyl --< ~3 

where c23 depends only on ~, the initial data, and #1,P2,#3. Moreover, we may 
require 

s ~ B ~ ( X o )  c= { ~:y~ = w(y)}. 
2 

We also have the following Harnack-type inequalities 

sup (e4, v)'<C24 inf (e4,v) 
.ZnB~ (Xo) ~nB~.~ (Xo) 

sup f ) l og (e~ ,v ) l<c25 .  
2c~B~(Xo) 

Proof The estimate for t008wl and [ta~0wI[~,a3 (for 03<½Q2) follows from (3.15), 
(3.16), (3.18) and standard Schauder estimates for linear elliptic equations with 
Lipschitz coefficients (see [7, 5.5]). Because of this estimate, Eq. (2.18) represents a 
uniformly elliptic equation on {[y[ < = ~-Q2}, so the following Harnack inequality (see 
[7, 5.3]) holds 

inf (v, e4)(y, w(y)) sup (v, e~) (y, w(y)) < cz5 lyl--< ~3 
lyl_<-e3 

for Q3 small enough. It is also standard (see [-7, 5.5]) that 
sup [0(v, e , )  (y, w(y))[ < cz6 sup [(v, e , )  (y, w(y))l • 

I r l<e3 lyl=<2e3 

Combining this with the Harnack inequality on {]Yl ~2Q3} we have 

sup t/3(v, e , )  (y, w(y))[ < c27 i r l i n f  l(v, e , )  (y, w(y))l 
[yl<e3 

which implies the stated estimate on I/) tog (v, e4) 1. Finally, we note that by (2.24) 

3 
lO~,e4t 2= ~ h24=jf i log(e, ,v) l  e 

i = l  

on S. Also, IZl z = ~ ID~i e4t 2, so we have 
i 

4 

2 1DeS412~c28 
a = l  

on £, and hence on N x IK Recall that e 4 is extended to N xIR by parallel trans- 
lation along vertical lines. From this it follows that we may take Sc~B~_e3(Xo) 
=c { y .  y4= w(y)} since any adjacent components of S ~ B ~ ( X 0 )  would necessarily 
have a normal vector e 4 bounded away from e4(X0) hence for ~3 small such a 
component could not exist. This completes the proof of Proposition 2. 

Our next task is to discuss the behavior of f at each infinity of N. For this 
purpose, we add to our hypotheses (3.1), (3.2) the following assumption on F 

F(x) = tf(x) + G(x) on N 

]a(x)[<#4(l+r3)-I ,  tOG(x)J<#5(l+r~)-i on N k (3.19) 
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for each k, where te [0, 1]. Assuming that f (x)  tends to zero on each Nk, we will 
give estimates on the fall-off of f and its derivatives. We first give a bound on f by 
constructing suitable "barrier" functions near each infinity. For A>0, fie(0,1), we 

1 

define a function f(r) for r>AP +1 on each N k by 

oo 

f(r) = A ~ (s 2a+ 2_ Aa) - 1/2ds ' (3.20) 
r 

The following properties of f are easily checked 
1 

o<_f(r)<-c29Ar-P for r>AP+l ,  
(3.21) 

0 ATe- f oo. 
Or 

The Euclidean mean curvature/~e, (with respect to the downward normal), and 
square length tAel 2 of the second fundamental form of the graph of f are given by 

ffl~(x, f(x)) = - (1 - ~3)At- 2-8 

IA~(x, f(x))l 2 = (B2 + 2/3 + 3)A2r- 4- 28. 

We wish to compute the mean curvature n of the graph of f with respect to ds 2. 
Using (1.1), it is not difficult to see 

H(x, f (x)) < I~'( x, f (x) ) + caor- 1 [A'(x, f(x))l 

r-21~f(x)t 
+ c3o ~ 10?(x)l 2 

1 

for r > Ap+ 1 on each N k. This implies 

H(x, f (x)) < - (1 - fl)Ar- 2 -8 + c31Ar- 3 - 8 (3.22) 
1 

for r>Ae+* 
We will show that f is a supersolution of (3.2) for suitably large A. For this 

purpose, we estimate the trace of the restriction of P,b to the graph of f .  Using (1.4) 
we have 

~ (  Pi, cazr-ZlOfl2 iPt = gu_ f~f~ ~ < c 3 2 r - 3 +  
1 + IDfl 2] = 1 + [07[ 2 

=< c32r-  3 -t-- c32Ar-  3 -~ 

where we have denoted the trace of the restriction of P~b to the graph of f by /5  so 
by (3.19) and (3.22) 

H - P - G <  - (1  - f i ) A r - e - e  +ca3(r -3 +Ar  -3-8) 
( 1 - 8  8 )  

= < - ( 1 - f l ) A r - 2 - 8 + c 3 3  A 7+~+Ai78  r - 2 - 8  

I 

where we have used r => A8 + 1 to get the last inequality. From here we see that if 
A = A 8 is chosen sufficiently large (depending on/3 as well as the other data), then 

H - P < G  (3.23) 
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1 

for r > A~ + 1 on each N k. In a similar way we see that for A large we have 

- H - P > G  , (3.24) 

so that the function - f  is a subsolution of (3.2). We can now estimate f and its 
derivatives near infinity. 

Proposition 3. Suppose f is a C 3 solution of(3.2), with function F satisfyin9 (3.1) and 
(3.19). Suppose also that lira f ( x ) = 0  for each N~. For any fi~(0, 1), the're is a 

x--+ c~ 

constant c33=c33(fi) dependin 9 only on fi, the initial data (N, gij, pij), and the 
constants #1, #2, #2, #4, P5 so that 

If(x)[ + IxTlc~f(x)l + IxlZlOc~f(x)l + Ixt3l&~c?f(x)l £ ca 3(fi)[x[ -~ 

for any X~Nk, any k. 

Proof The estimate of tf(x)l comes directly from the properties off.  Indeed, for any 
positive number L we observe that (3.23) implies that f +  L is also a supersolution 
since the equation H - P  = G is insensitive to translation in the vertical direction. 
Since f tends to zero at each infinity, we observe that for L sufficiently large we 

1 

have f ( x )+L  > f ( x )  for each x with r = Ixl > AP + 1. Define L o by 

L o = i n f { L : f + L > f } .  

Then L o >0,  and we show that L o =0. To see this, we suppose on the contrary that 
L o >0. Since f tends to zero at each infinity, it follows that there is a point xo~N 

1 

with [xo[ > A ~+ 1 such that fA,~(xo)+ L o =f(xo).  We note that it is impossible that 
1 

ix0j =Ap+ 1 since f + L  o has infinite slope for such points by (3.21) and hence the 
inequality f + L o >  f would be violated at points near x o. Thus we have 

1 

tXol>AP+l and the function f - f  has a minimum at x o so we have 

~(Xo)= Of ~ (Xo), 

~ )  tXo/is a nonnegative definite matrix. 

It follows that 

fi(xo) f J(Xo) fi(Xo) f J(Xo) 
f~(x°)-  1 + [Df(xo)[ 2 --0~J(x°) 1 + [Df(xo)[ 2 

We denote this matrix by B ~j, and we see that by subtracting (3.2) from (3.23) we 
get 

~'BiJ a 2 ( f - f ) "  " -  tf(xo)<=O" . ~ t X o ) ~ -  
l,J 

Since B ~ is positive definite, this contradicts the nonnegativity of the matrix of 
second partial derivatives. Therefore L 0 = 0, and we have shown f (x)< f(x) for 



250 R. Schoen and S.-T. Yau 

1 
txt > A  p+ 1 which implies by (3.21) that f<c ( f l ) r  -p. A similar method using (3.24) 
shows - f__< f hence 

[f(x)l < c34([3)lxl-a (3.25) 

on each N k. 
It is now elementary from Proposition 2 and (3.25) that [0j'], [00f[, and 1&90f[ are 

bounded near infinity. In fact, standard Schauder estimates (see [7, 5.5]) applied to 
(3.2) in the ball U(x) = {y : tY- xl < 1 } then give 

laf(x)[ + [~Of(x)[ + Ic300f[ _<-c 35(fl)lx] -~ (3.26) 

on each N k. We now view (3.2) as the following linear equation 

, ,  ov 
aijtx ) ~ 

i , j  i c x  

% = ( 1 + i D f 1 2 ) _ ~ / 2 ( f s  - f i f s  .] _ i 
1 + IDf t2)  ' b e -  - ~" aksCS' \ k , j  

d = G +  2(g 'J-  i's  . 
i,j , 1 + Df2/  'J 

TO improve the bounds (3.26) on the derivatives off ,  we fix a point x o ~ N  k and 
define coordinates 2 = (x-xo)/~r,  a = fxol/2. In terms of 2, our equation becomes 

,-, (?zf _ Of 
aistx ) ~ - ~ - ~  + ~ c~bi(x)~xr - ta2f  = 0 -2 d ( x )  (3.27) 

for 2e  UI(0) = {Ixl < 1}. It follows from (3.26) that the H61der coefficient II~fllp,~,(0) 
satisfies 

laf(~)- af 02)I 
Ilafllp' ~'(°~ = isp~P~ t7.- 7 f  ~-~ C36(fl) " 

Ifl<l 

Therefore> Eq. (3.27) is uniformly elliptic, and the coefficients satisfy [by (1.1), (1.3)] 

II%11~, 0~0)+ ~ IIo'billi~, 0,(o) 
~,j i 

C37(fl ) s u p  I~r2d(Yc)l+ tt~rZdltn, c~(o) <C3s(fl)~ -~. 
xsUl(0) 

Standard methods (see [7, 5.5]) then show 

I 0/(~)1 + t JJ/(~)t _-_% ¢39/sup (Ifl + ~2d) + II aZdtl e, v,¢o~]. \v~(o) / 

for 2E CJ1/z(O). Writing this in terms of the original coordinates x and using (3.25) 

IxollOf (Xo)t + lxol~lOOf (xo)l < C 4o(fl)lxol - ~ 

[Note that in deMing with (3.27), we do not have a bound on ta 2, the coefficient of 
f, but we are using the fact that t~r a ~ 0 which makes the sign of this term helpful in 
deriving the estimates.] A similar method by differentiating the equation gives 
estimates for 1333f1 . This completes the proof of Proposition 3. 



Positive Mass Theorem. II 25 t 

4. Proof of the Existence 

In this section we prove existence of solutions of (2.27), asymptotic to zero at 
infinity, and defined on the exterior of a finite family of apparent horizons. We also 
study the asymptotic behavior of these solutions on the apparent horizons, 
showing that they are asymptotic to the cylinder in N x IR over the horizons. 

To solve (2.27) we introduce an auxilliary equation for s~[0, 1], t~[0, 1]. 

H ( f ) -  sP( f )= ~, (4.1) 

where H(f), P(f) are given by 

1 + JDSl 2/1/i  i-b  ' 

f i f j  

We first solve (4.1) for t>0 ,  and then study the limit as t-~0. We will look for 
solutions of (4.1) in a weighted H61der space B 2'' for any ]~e(0,1) defined in the 
following way. We let z(x) be a weight function on N satisfying "c > 1 on N, and 
z(x)=r(x) on each end N k. We then define a norm 

I} fl[ a, ~ = sup (z'(x)lf(x)[ + "c 1 +'(x)IDf(x)T 
x ~ N  

+ ~c2 ÷ qx)iDDf(x)l +'c2 ÷ 2~(x )[IDDNNp, x), 

where [IDDflt,,~ denotes the H61der coefficient in the ball B~(~)t2(x ) 

ID Df  (xl ) - D Df  (x~)r 
IIDDNtI~,x= sup . . d(Xl,X2) ~ , Xl~ X2EI~(~c)/2 IX) 

where d(x 1, x2) is distance. We let B a'' be the Banach space of C 2' ' functions on N 
with finite IIftl e,~. We first solve (4.1) for t > 0. This turns out to be straightforward 
because in this case we can derive a priori bounds on f and tDNI. To see this note 
that we have 

f i  

Differentiating (4.1) in the direction of x k, we have 

Rik 

(42) 

where R~k is the Ricci tensor of N, arising from the commuting of covariant 
derivatives. This implies in particular that the function u=lDf[ 2 satisfies an 
inequality of the form 

.~ Di(AiJD ju) + ~ BiDi u + cu li:z ~ tu , (4.3) 
z, 3 i 
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where A ij is positive definite, B i, C are bounded on N (independent of s, t). If 
f e b  z'~ satisfies (4.1), then we have the following bounds 

sup t l f  I < #1, sup tlDfl <-_ ~tz , (4.4) 
N N 

where #1, #z are constants depending only on (N, gij, Pij). To prove (4.4), we simply 
note that since f tends to zero at infinity, either sup f < 0 ,  or f has an interior 

N 
maximum point. Using (4.1) at this point we would have 

max t f < q .  
N 

Similarly we show max ( - t f ) <  c2, thus proving the first inequality of (4.4). The 

second comes from the fact that u = lDfl z tends to zero at infinity, so using (4.3) at 
its maximum point we find 

sup tlDf[ 2 < c 3 sup [Df[ 
N N 

which gives the second part of (4.4). The following lemma can now be proved. 

Lemma 2. Suppose t>0 ,  and f e B  z'~ satisfies (4.1)for some fls(o, 1). Then there is a 
constant c4(13, t) depending on I3, t as well as (N, gij, Pij) so that If f t l  2, ~ < c4~,  t). 

Proof This lemma is a straightforward consequence of (4.4). We note that since 
IDTt is bounded, (4.1) and (4.2) are unijormly elliptic equations. In particular, 
standard estimates (see [7, 5.3]) applied to (4.2) imply a HNder estimate on Dkf  
with exponent as  (O, 1) for some c~. Thus f has a C I'~ bound. This implies a bound 
on the HNder modulus of continuity for the coefficients of (4.1), so we have (see 
[7, 5.5]) a C 2'~ bound on f In particular, we get Lipschitz bounds on the 
coefficients of (4.1), so we can bound the C 2'p norm o f f  for any 13e(o, 1). The decay 
near infinity can be derived, for example, using the barrier method of 
Proposition 3. This completes the proof of Lemma 2. 

We can now easily solve (4.1) for t>0.  

Lemma 3. For t > O, there exists a solution f e B 2" ~ of the equation H ( f ) -  P( f )  = zf. 

Proof We use a standard continuity method. Let S = {se [0, 1] : (4.1) has a solution 
fsEBZ'P}. We will show that S=[0,  1] by noting first that 0eS since f = 0  is a 
solution of H ( f ) = t f  We then show that S is both open and closed (hence 
S=[0 ,  1]). The fact that S is closed follows from Lemma 2, since if {s.} is a 
sequence in S with s .~s ,  and f~. is a solution in B 2'~ of HO's.)- s.P(,[~.)= tfs ., then 
by Lemma 2 

Js,]tz,p <=c4(fl, t). 

In particular, this bound is independent of n, so we can choose a subsequence off~, 
converging uniformly along with its first and second derivatives on compact 
subsets of N to a limit fs satisfying H ( f s ) -  sP(f~) = tf~. Moreover, [k £ 1t 2. p --< c4(/3, t), 
so that f~eB 2'~ for any fie(0, 1). Thus seS,  and S is a dosed subset of [0,1]. 
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To prove that S is an open subset of [0, 1], we use results for linear equations 
together with the implicit function theorem. Let soeS, a n d f o e B  2'~ be a solution of 
H(fo)-soP(fo)=tfo.  We will show that there is co>0  so that if se [0 ,1 ]  and 
Is-sol<e,  o, then seS. We define a Banach space B °,p for fie(0,1) to be those 
HNder  continuous functions h on N so that the following norm is finite 

[IhN o,a = surf (z0Q 2 + Plh(x)l + v(x) 2 + z~ 11 h II~,x), 

where as before IT • ][~,x denotes the HNder  coefficient taken on the ball B,{x)/2(x ). 
We then observe that T: B 2' B × IR--,B °' ~ x IR defined by 
T(f, s) = (H(f) - t f -  sP(f), s) is a C 1 mapping and T(fo, so) = (0, so). The lineariza- 
tion of T at (fo, so) is the operator Lo:B2"~xlR-~B°,~xlR given by Lo(rl, z ) 
= (L;(r/), z) where 

L~O(rl) = ~ AIJD ID jr I + ~ BiD irl - tq - z P( f  o) 

( AO=(l  +fDfol2)-l/2 gU_ f; fd  
1 +-~fol 2] 

B i= ~ DjA 0 + 2s o ~ (1 + ]Dfol 2)- 1/2AiVJpj k . 
j j ,k 

It is fairly elementary to show that L o is a linear isomorphism from B e, ~ x IR to 
B °,~ xlK Applying the inverse function theorem for Banach space, we see that T 
maps a neighborhood of (fo, So) onto a neighborhood of (0, So). In particular, there 
is % > 0  so that (0,s) is in the image of T for IS-Sol<Co; i.e., there exists fs 
satisfying H(fs ) -  sP(J;)=tfs. This shows that S is an open subset of [0, 1], and 
completes the proof of Lemma 3. 

We now study the limit of the solutions constructed in Lemma 3 as t tends to 0. 
For  this purpose, the estimates of Lemma 2 give no information since the 
constants become large when t is near 0. In fact, it is not generally true that the 
solutions of the perturbed equation converge as t tends to zero. Instead we use the 
parametric estimates of Sect. 3 to analyze the limit. 

Proposition 4. There is a sequence {t~} converging to zero and open sets f2+, f2 , •o 
so that if .fl satisfies H(~i)-P(f i )= tlfi we have: 

(1) The sequence {Jl} converges uniformly to + oo (respectively - oo) on the set 
f2 + (respectively f2 ), and {f/} converges to a smooth function fo on f2 o satisfying 
(2.27) on (2 o, and (2.28) on each N k. 

(2) The sets f2+ and Y2  have compact closure, and N=(2+w(2 w(2 o. Each 
boundary component Z of f2+ (respectively f2 ) is a smooth embedded two-sphere 
satisfying H z -  Trx(po ) = 0 (respectively H z + Trz(po ) = 0) where Hx is the mean 
curvature of Z taken with respect to the inward normal to f2 + (respectively f2 ) and 
Tr~(pu) is the trace of  the restriction of  PU to Z. Moreover, no two connected 
components off2+ can share a common boundary. 

(3) The graphs G i of fi converge smoothly to a properly embedded limit 
submaniJbld M o C=N x IlL Each connected component of M o is either a component of 
the graph of  fo, or the cylinder 2 x IR C= N x IR over a boundary component Z off2+ or 
f2_. Any two connected components of  M o are separated by a positive distance. 
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Remark. The two-spheres making up the boundary components of f2+ and f2_ will 
be referred to as apparent horizons in N (see [3] for explanation). 

Corollary 1. If  the initial data (N, gij, Pq) contains no apparent horizons then (2.27) 
has a solution on N satisfying the asymptotic conditions (2.28). 

Proof of Proposition 4. The assertions of (3) are a direct consequence of 
Propositions 2 and 3, for by the local estimate of Proposition 2 we can find a 
sequence {t~} so that the G~ converge to a properly embedded limiting submanifold 
M 0. The fact that M o is nonempty, and is a graph near infinity satisfying (2.28) on 
each N, then follows from Proposition 3. The Harnack inequalities of Proposition 
2 immediately imply that any connected component of M o has everywhere finite 
slope and hence is a graph, or has everywhere infinite slope and hence is a cylinder 
Z x lR over a compact surface Z CN. We will show that Z is a two-sphere 
momentarily. We first note that the convergence of Gi to M o also determines O+, 
f 2 ,  f2 o. Our other assertions are clear except for the analysis of the boundary 
components of I2+ and f2_. 

We first analyze the boundary 0f20 of O o. In order to do this, we observe that 
the Eq. (2.27) is translation invariant in the sense that for any a~IR, fo - a  is also a 
solution of (2.27) defined on ~2 o. Let Go, ~ denote the graph of f o -  a, and note that 
by the estimates of Proposition 2 there is a sequence a, tending to + oo so that the 
graphs Go,a, converge smoothly on compact subsets of N x IR to a limiting three 
dimensional submanifold of N x IK By the Harnack inequality of Proposition 2, 
each component of this limiting submanifold is a cylinder over a compact surface 
in N. We denote this limit by S+ xlR where Z+ is a family of compact surfaces in 
N. It also follows from (2.27) that X+ satisfies the equation H~+-Tr~+(p~)=0 
where Hx+ is computed with respect to the normal pointing outward from f20. We 
show that each component Z of S+ is a two-sphere by using (2.29) on Go,,~ ~. We let 
(p be a smooth function of compact support on Go,,, and multiply (2.29) by q~2 and 
integrate by parts as in the derivation of (3.3) to arrive at 

((-R)+ P)q~2 ]/~dx<2 ~ I/3~0121/~dx, 
Go, at GO, a~ 

where P = 2(/ , -  IJ[) can be taken strictly positive by Lemma 1. It follows that for 
any q~ with compact support on Z x IR we have 

~o~[!((-K)+p)p2da]dx4<_22[!lVr#12+(~ ) da]dx, (4.5) 

where do- is the area elements of Z, and K, V are the intrinsic Gauss curvature of X 
and the covariant derivative operator of Z. Let )~(x 4) be a function satisfying Z(x*) 

=1 for Ix41< T, )~(x4)=0 if [x4l_-> T + I ,  and O~xX4 <2. Let ~ be any function on Z, 

and choose rp =)~( in (4.5) to obtain 

z dx 
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Dividing both sides by 7 Z 2dx4 and letting T tend to infinity we get 
- - O 3  

~ ( - K  +P)~2da<-_2SIV~12da 
2g 

for any smooth function ff on Z. Choosing ~ - 1 ,  we get 

(4.6) 

~ P d a <  S Kda .  
Y. £ 

Since P is positive, by the Gauss-Bonnet theorem we conclude that S is a two- 
sphere. 

By similar reasoning we can choose a sequence a i converging to - go so that 
Go.,, converges to a cylinder Z_ xlR where N_ is a collection of two-spheres S in 
N satisfying H ~ - T r z ( p u ) = 0  where Hx is computed with respect to the inward 
normal to f2 o. The fact that the graph G O is properly embedded implies that fo(x) 
converges either to + go or - oe as x tends to a boundary point of £2 o. Using this 
fact, it is clear that 0 0 0 = 2  + wZ_.  

From the construction of M 0, it follows that any boundary point of £2+ or O_ 
which does not lie in ~f2 o must lie on a cylindrical component Z x IR of M o. For 
such a S, we can verify (4.6) by using (2.29) on the graphs Gi, so we conclude that 
such Z are two-spheres satisfying the appropriate equations. This concludes the 
proof of Proposition 4. 

We can derive a little more information about the behavior offo  near af2 o from 
the preceding result. In fact, if we let Z be a boundary component of f20, say for 
definiteness that fo tends to + c~ near S. (A similar argument works if f0 tends to 
- oo.) If we let 0 be a coordinate on the two dimensional sphere Z, and tEN be 
along the linear factor of 2 x lK then we can define a coordinate system on a 
neighborhood of Z x IR in N x IR by taking the fourth coordinate ~ to be the 
distance function to 22 x IR, say ~ > 0 in f2 o x IlL Let (9 be a small neighborhood of 22 
in N such that the coordinates (0, t,Q) are nonsingular on (fi x lIL It is a 
consequence of Proposition 4 that for T > 0  sufficiently large, the 3-dimensional 
manifold Gon((9 x(T, oo)) can be expressed by the equation O=go(O,t) for a 
smooth function go on Z x(T, oe). Moreover, it follows that l img0(0, t )=0 

I--+ 00  

uniformly for 0~2. Using this information and the equation that go satisfies, it is 
easy to show that the derivatives of go up to second order also tend to zero as t 
goes to infinity. We summarize this information. 

Corollary 2. I f  Z is a boundary component of f2 o on which fo tends to + go 
(respectively - o e ) ,  then for T sufficiently large, the 3-manifold Go~((9 x(T, oo)) 
(respectively Go~((9 × ( - o o , -  7)) can be represented in the form 0=go(0, t) for a 
smooth positive function go defined on Z x (T, oo) (respectively S, x ( -  oo, - T)). 
Moreover, given e > O, there is a number T~ > T so that 

go(O, t) + [Dgo( O, t)r + IDDgo( O, t)l <e  

for all OeN and t >= T, (respectively t<  -- T~). 
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5. Proof  of Theorem 1 

We use the function f0 constructed in the previous section to prove Theorem 1. We 
want to prove that M k__> 0, so we consider only that component  of £Jo which 
contains N k. For  simplicity we denote the corresponding component  of G O also as 
G o. Let ~0 be a bounded Lipschitz function on G O which tends to zero and is square 
integrable near (~f20) xIK Multiplying (2.29) by q~2 and integrating by parts we 
have 

(P-_R)9 z ] ~ d x < - 2  ~ (,oZZ(hi4-Pi4) 2 ~/~dx 
Go Go i 

- 4 ~ (p Z Pi(hi4- Pi,*) [f~dx. 
Go i 

Note that no boundary terms appear  in the above inequality because by (2.28) we 
have 

Ihi4-pi4] = 0 ( r 7 / 2 ) ,  

and cp~O near Og2 o x IR whereas by Proposition 2, Ih~41 is bounded near 8f2 o x I~ 
By the arithmetic-geometric mean inequality, 

4~o ~ o,(hi, , -  Pi4) < 2q ~2 ~ (h,4- p,,,)2 + 21/~q~lz. 

Combining these inequalities we have 

I (P--R)g °2 ]/~dx<2 ~ ID,-Pl z l/~dx 
Go Go 

for any bounded Lipschitz ~o on G O tending to zero and square integrabte near 
(0Qo) x l~ We next observe that by Corollary 2 we can deform G o slightly in 
(9 x (T, ~ )  or (9 x ( -  c~, - T) for each boundary component  of Qo so that G o 
coincides with Z xlR in ~0 x(T, oo) or do x ( -  o% - T) and so that G O satisfies 

- 5 e~ o21/~dx~ 3 5 IO~°l ~ 1~ dx (5.1) 
Go Go 

for 9 as above. Making G O equal to (~g2o) x IR near infinity will, of course, destroy 
the Eq. (2.27) which G O satisfies, but we need only (5.1) to finish the proof, and this 
modification of G O will afford us technical convenience. We next remove all 
infinities of G o except that asymptotic to N k. This can be done by a conformal 
change of metric. Let Z be a component  of 8f2 o, and note that by inequality (4.6), 
the first eigenvalue 21 of the operator A - ~ K  on Z is strictly positive. Let ~1 be the 
first eigenfunction, say ( l (x )>  0 for x~ Z. It follows that the functions e -+ ~ ' ( a ( x )  
are solutions of A - ~ / (  = 0 on Z x IK Let 5 e + denote those components of Of 2 o on 
which fo has limit + o% and 5 ~-  those on which fo has limit - oo. Let G~ denote 
the infinity of G O asymptotic to Ne, i.e., G~ = GoC~(N t x IR). For  each E + k, let ~pe be 
a positive solution of A - ~ / ~ = 0  on N~ satisfying 

~Pt= Ae +O(r-2) as r ~ o o .  
r 



Positive Mass Theorem. II 257 

Such solutions tpe can be constructed easily because of (5.1). Let tp be a positive 
smooth function on G o satisfying the following 

1 on G~ 

t;: on G~, : + k  

~=  e - V ~ l  on Gom(SxlR) for I ;E~ ÷ 

[ e ÷ ~ y  1 on Goc~(ZxlR) for S e ~ - .  

Thus ~o tends to zero at each infinity except G~. If ~2  denotes the induced metric 
on Go, we define a new metric ds~ by ds~ =~p4d-s2. For  :~ek, it follows from 
(1.1) and (2.28) 

t;: gi; = (,5~: + O(r -  1)) 

on G~. If we set y~ = A 2 rx~, ~o = [y[, and write ds~ in terms of the y coordinate system 

we have 

ds 2 = .~ ( ~ + O(Q))dyi dy j (5.2) 

for q near zero. On Goc~(2; xlR) for Z~5 P-+, we have the expression 

ds 2 = ~4(x)e± 4v~:( dt 2 + da 2) 

as t--*_ oo where da 2 is the metric of L'. If we set ~=(2  ~/~-l)-~e ±2v~:, we then 
have 

ds 2 = ~4(x) (do 2 + 421Q2da 2) (5.3) 

for 0 near zero, x~Z .  If we choose a diffeomorphism of 2;" with the standard S 2 
having metric dao 2 and write the flat metric in the punctured bali as do~ 2 + 02da~, we 
see that the resulting diffeomorphism establishes a uniform equivalence of 
Goc~(S xlR) with the punctured ball, i.e., lengths are distorted by at most a fixed 
constant. 

We see from (5.2) and (5.3) that it is possible to add a point to G o for each 
component of ~(2 o and for each G~, : :~  k to form a new manifold (No, ds~) having 
only one infinity Nko = Gko. If {Pa . . . . .  P~} are the points we added to Go, it follows 
from our construction that the metric ds~ is uniformly equivalent to a smooth 
metric in a neighborhood of each P~, and that the scalar curvature R 0 vanishes 
identically for points close to each P,. If ~ is a bounded Lipschitz function on No, 
the equation 

R o = tp -  5(/~p_ 8A~p) 

together with (5.1) for q)=~p~ implies 

5 ~ tp-2tDo(tp~)12dvo - ~ Ro~2dvo<8 ~ tDo~12dvo, (5.4) 
No No No 

where Do, dv o are the covariant derivative mad volume form of N o. We will use 
(5.4) in,the following lemma to construct a solution of A - 1 R  o. 
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Lemma 4. There is a positive function u on N O satisfying Au-½Rou=O except at 
{P1 . . . . .  P~}. At each Pj, u is continuous, and u is weakly harmonic in a neighborhood 
of  P~. Moreover, u satisfies 

Ak u = l + - - + O ( r  -2) as r~oo  
r 

on Nko where the number A k is negative. 

Proof Let B~ be the bounded region of N O determined by {r = o-}, and for a large 
we can find a function G satisfying 

A G - ~ R o G = ~ R  o on B~ 

G = 0  on aB,,. 

This follows because (5.4) implies that the homogeneous problem Au--~Rou =0  
with zero boundary data has only the trivial solution. Moreover, G is HNder 
continuous and weakly harmonic near each Pj. Inequality (5.4) then implies 

5 I ~p-2lDoOPV,)[2dvo < S [Ro1[GIdvo" 
B¢, Ba 

Since ~p is a bounded function, we thus have 

IDo(toG)12 <c ~ IRot IGldvo. 
Be B~ 

By the Sobolov inequality we thus have 

(~  ItoG[ 6 dvo) 1/3 < c 8~S IR°[ tG[ dv° " 

Since R o vanishes in a neighborhood U of {P1 . . . .  , Ps}, and to is bounded below on 
N o ~ U, we thus have by the H61der inequality 

which implies 

]Gl6 dvo <= c 
B,r ~ U 

with c independent of ~r. Standard theory then gives a uniform pointwise bound on 
Iv~l in B~,-~ U. The Harnack inequality applied to G + 1 gives a uniform estimate of 
IGL in U. It is now straightforward (see [9, Lemma 3.2]) to prove convergence of 

G +  1 to a function u satisfying Au+½Rou=O on No, u =  1 + Ag +O(r_2) on N~. 
r 

The positivity of u follows by using ~ = rain {u, 0} in (5.4) and applying Stokes 
theorem in a standard way. This implies u >0, and that u > 0  follows from the 
Harnack inequality. 

To show that A k <0, we use ~=u  in (5.4) and integrate by parts to obtain 

5 
Ak <= _ .f ~p- 2]Do(WU)I 2 dvo. (5.5) 

~o 
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Note that although u may not be Lipschitz near Pi, we can justify its use in (5.4) by 
Lipschitz approximation. This completes the proof  of Lemma 4. 

We can now complete the proof  of Theorem 1. The metric u4ds 2 on N O has 
zero scalar curvature, and is asymptotically fiat in the sense of (1.1). If the results of 
[9] and [10] were applicable we would conclude that M k is nonnegative. But we 
have 

o M k = M k + 2A k (5.6) 

as can be seen from the definition of mass. Since Mk ° > 0  and Ak<O , it would follow 
that  M k > 0. Note that we have been assuming # > t J[ to conclude M k > 0. In light 
of Lemma 1 we would then have M k > O  for an arbitrary initial data set. 

It remains for us to justify the use of [9] and [10] to assert o M k >=0. The 
problem is that the metric u4ds 2 is not smooth at {P1, ..., P,}. We note, however, 
that  since the Laplace operator is uniformly elliptic near each P j, there exists a 
positive Green's function G(p, q) asymptotic to zero on N k. If we define ~v by 

t~(.) = ~ G(Pi, . ) ,  then tp satisfies 
j = l  

A~p=0 on N o ~ { P 1 , . . . , P ~ }  

B k 
~P = ~ r  + O(r- 2) on N k 

c - l l Y t 2 - ° < W ( y ) < c l y l ~ - "  for coordinates y at Pj.  

For  any e > 0, consider the metric (1 + e.~)4u4ds 2. This metric is now smooth with 
infinities at each Pj. It is easy to see that the results of [9] and [101 apply to show 
that the mass on N k given by o M k + eB k is nonnegative. Since e > 0 is arbitrarily 
small we have M ° >0.  This completes the proof  of Theorem 1. 

6. Proof  of Theorem 2 

In this section we prove Theorem 2 which states that if M k = 0 for some k then the 
initial data set is trivial. We first note that by Lemma 1 we can find a sequence of 
initial data sets N ~) converging smoothly to N as : - ,  co with mass M(k:)~0 for the 
kth end and with N <~) satisfying p < IJl for each : .  Then we may apply the analysis 
of Sect. 4 to construct graphs G~o :) satisfying (2.27). By the estimates of Propositions 
2 and 3 we may assume that the G(0 ~) converge smoothly to a properly embedded 
limiting submanifold having a component  G O which contains a graph o v e r  N k 

satisfying (2.27). We now examine the proof  of Theorem 1. If we let U ~t) be an 
exhaustion of N x IR by bounded open sets, then we can choose ~p:, the conformal 
factor of Sect. 5 so that tp:= t on G(ot~c~Ue. It then follows from (5.6) and the final 
arguments of Sect. 5 that M! e) -~ ACe) > 0 --'*k =-"  Hence by (5.5) and the fact that M(k:)--~0 
we have 

lim ~ tbu:l 2 ~ /~dx=O.  (6.1) 
:"~ Gd%v~ 

Since G~0 ~) converge to Go, it follows that u e converges to a smooth positive 
function u on G O satisfying A u - ~ l ~ u = O ,  u,-~ 1 on N k. Thus by (6.1) we have that 
u--1  on G o, and hence the equation satisfied by u implies t h a t / ~ - 0 .  
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Thus we may  apply Theorem 2 of  [9]  (see also [10]) to assert that  G o is 
isometric to the flat IR 3. In particular, N is diffeomorphic to IR 3 and the solution f 
of  (2.27) exists on all of  N and has flat graph G o. N o w  the metric on G o has the 
form gij = glj + f~fxJ, and since G O is IR 3, we can choose coordinates 2 = (21, 2 2, 2 A ) 
on G o so that  ,qo = 6iJ" We thus have 

gi~ = a ~ j -  f~,f~,. 
This shows that if (21, 2 2, 2 3, 2 4) are coordinates in M 4, the Minkowski  space with 

3 

metric ~ (d2i) e -  (d~4) 2, then the mapping  N ~ I M  4 defined by 2 ~ ( 2 ,  f(2)) is an 
i = 1  

isometric embedding of  N. The second fundamental  form of this embedding is 
given by 

rci~ =(1 - t /3 f f2 )  - 1/2f>~j. 

Note  that  I/3flz < 1 because gij is positive definite. The corresponding expression 
for h~i, the second fundamental  form of G o in N x IR is 

hij=(1 + D f  2~11/2 f .  - 

J ] JNt~3 , 

where IDf[ z is taken with respect to ds 2. Direct calculation shows 1 + [ D f l  2 
= ( 1 - ] / ) f [ 2 )  -1 so that  hij=~z~j. On the other  hand, s i n c e / ~ = 0  we can integrate 
(2.29) over G o and apply Stokes theorem to show hij = p~j. Therefore, we have ~z~i 
= Pij and we have shown that  the initial data  set (N, ds 2, P~i) is embeddable in IM 4. 
This completes the proof  of  Theorem 2. 
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