
manuscripta math. 28, 159 - 183 (1979) 
manuscripta 
mathematica 

by Springef-Verlag 1979 

ON THE STRUCTURE OF MANIFOLDS WITH 

POSITIVE SCALAR CURVATURE 

R. Schoen and S.T. Yau ~ 

Dedicated to Hans Lewy and Charles B. Morrey, Jr. 

In this paper, we study the question of which compact manifolds 

admit a metric with positive scalar curvature. Scalar curvature 

is perhaps the weakest invariant among all the well-known invariants 

constructed from the curvature tensor. It measures the deviation 

of the Riemannian volume of the geodesic ball from the euclidean 

volume of the geodesic ball. As a result, it does not tell us much 

of the behavior of the geodesics in the manifold. 

Therefore it was remarkable that in 1963, Lichnerowicz [i] 

was able to prove the theorem that on a compact spin manifold with 

positive scalar curvature, there is no harmonic spinor. Applying 
^ 

the theorem of Atiyah-Singer, it then follows that the A-genus 

of the manifold is zero. Later, Hitchin [2] found that the vanish- 

ing theorem of Lichnerowicz can also be used to prove the other 

KO-characteristic numbers defined by Milnor [3] are zero. 

For a while, it was not clear whether these are the only 

topological obstructions for the existence of metrics with positive 

scalar curvature. It was not until 1977 that the authors found 
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2 SCHOEN-YAU 

another topological obstruction in connection with some problems 

in general relativity. (See [4], [5], [6].) At that time, we 

restricted our attention to three dimensional manifolds. We found 

that if the fundamental group of a compact three dimensional manifold 

with non-negative scalar curvature contains a subgroup isomorphic 

to the fundamental group of a compact surface with genus > i, then 
w 

the manifold is flat. Assuming the (topological) conjecture of 

Waldhausen (see [7]), one can then prove that the only possible 

candidates for compact three dimensional orientable manifolds 

with non-negative scalar curvature are flat manifolds and manifolds 

which can be decomposed as the connected sum 

M 1 # ... # M n # k.(S 2 • S I) 

where each M i is covered by a homotopy sphere and k.(S 2 x S 1) 

is the connected sum of k copies of S 2 • S I. It is a conjecture 

that M i is in fact the quotient of the three sphere by a finite 

group of orthogonal transformations. If so, this will give a com- 

plete answer to our question for three dimensional manifolds 

because one can prove that, conversely, the above manifolds do admit 

metrics with positive scalar curvature. At this point, one should 

mention that the proof of the positive mass conjecture [6] is much 

more delicate than the case of a compact manifold because the 

topology of the space does not help, and the analysis at infinity 

is much more involved. 

In August of 1978, the second author visited Professor Hawking 

in Cambridge who indicated that a generalization of the above works 
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SCHOEN-YAU 3 

to four space would be of great interest in quantum gravity. After 

a month, using an important idea by the first author, we were able 

to settle the positive action conjecture of Hawking. As an easy 

consequence of this proof, we gain some understanding of compact 

manifolds with positive scalar curvature in higher dimensions. 

Defining a class of manifolds to be class C, in Section I, 

we prove that for dimension ~ 7, any compact manifold with positive 

scalar curvature must belong to class C. One of the key features 

that occurs here is that if the manifold has "enough" codimension 

one homology classes to intersect non-trivially, then it does not 

admit any metric with positive scalar curvature. For example, the 

connected sum of any manifold with the torus or the solvamanifold 

admits no metric with positive scalar curvature. The topological 

condition that we find here has an analogue with the condition 

that the second author [8] used in studying the circle action. 

We feel that the topological conditions that we find here 

are quite satisfactory in low dimensions. Since we use the regu- 

larity theorems of minimal hypersurfaces, we have to restrict 

ourselves to manifolds with dimension < 7. This is rather un- 

satisfactory because one feels that the singularity of the minimal 

hypersurface should not be the obstruction for the proof of the 

theorem. After we got these results, Professors Gromov and Lawson 

were able, by a beautiful argument, to find a topological condi- 

tion which works for all dimensions. Namely they find that our 

condition is closely related to the Novikov signature. They 

replace the signature operator in the Lusztig proof of the Novikov 
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4 SCHOEN-YAU 

conjecture by the Dirac operator. Applying the Lichnerowicz 

vanishing theorem to families of operators, they can prove the 
^ 

vanishing of a generalized A-genus for spin manifolds. Ex- 

ploiting a similar idea, they can also deal with a class of 

manifolds which they call enlargable manifolds. However, they 

have to restrict to the class of spin manifolds. Even in the 

case of spin manifolds, their condition does not include ours. 

Therefore it would certainly be of interest to combine the two 

conditions and also generalize our condition to arbitrary dimen- 

sions. Concerning this last part, we have some definite progress 

and we hope to report later. 

At the same time we were finding the topological conditions, 

we were also working on the construction of manifolds with positiv, 

scalar curvature. As was mentioned above, in the class of three 

dimensional manifolds, we can connect two manifolds with positive 

scalar curvature to form another manifold with positive scalar 

curvature. As the theory of classification of manifolds is based 

on surgeries on manifolds, we generalize the procedure for connect. 

sum to general surgeries. It turns out that if one does surgeries 

with codimension > 3 on manifolds with positive scalar curvature, 

one always obtains manifolds with positive scalar curvature. In 

fact, a more general way of constructing manifolds with positive 

scalar curvature is provided in Section 2. With these surgery 

results, we believe that manifolds with positive scalar curva- 

ture may be classified soon ~ecause the geometric problem has 

been essentially reduced to a topological one. 
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SCHOEN-YAU 5 

Finally we should mention that recently we learned that 

Professors Gromov and Lawson have some form of our surgery result 

also. We wish to thank S.Y. Cheng for his interest in our work 

on connected sums since the time we announced our first results 

in this direction at Berkeley in March of 1978. 

i. Inte~rability conditions for the existence of a metric with 

non-negative scalar curvature 

In this section, we use the theory of minimal currents to give 

a topological restriction for manifolds to admit metrics with 

non-negative scalar curvature. 

To see the precise statement of this topological restriction, 

we proceed to define inductively a class of manifolds in the 

following manner. Let C 3 be the class of compact orientable three 

dimensional manifolds M such that for any finite covering manifold 

M of M, KI(M ) contains no subgroup which is isomorphic to the 

fundamental group of a compact surface of genus ~ i. In general, 

we say that an n-dimensional compact orientable manifold M with 
^ 

n > 4 is of class C if either M is spin and the A-genus of M is 
-- n 

zero or for any finite covering space of M, every codimension 

one (real) homology class can be represented by an embedded compact 

hypersurface of class C n-l" 
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6 SCHOEN-YAU 

Theorem i. Suppose M is a compact orientable manifold with non- 

negative scalar curvature whose dimension is not greater than 

seven. Then either M has zero Ricci curvature or M is of class C n. 

Proof. First of all, we observe that we can assume the scalar 

curvature of M is everywhere positive. Otherwise the arguments 

in [9] show that the Ricci curvature of M is identically zero. 

The proof is done by induction on dimension. For n = 3, this 

was the theorem proved in [5]. For n ~ 4, we proceed as follows. 

If M were not of class Cn, then the Lichnerowicz vanishing theorem 
^ 

and the Atiyah-Singer index theorem show that the A-genus of M is 

zero. Therefore, by definition of C n, for some finite covering 

space M of M, some codimension one (real) homology class cannot be 

represented by any compact embedded hypersurface of class C n-l" 

On the other hand, by geometric measure theory (see [10]), 

one can show that this homology class can be represented by an 

orientable closed embedded hypersurface H of minimum area (compared 

with all other closed hypersurfaces in the homology class). The 

regularity theory guarantees that H is regular if n ~ 7. 

We claim that H admits a metric with positive scalar curvature. 

Indeed, let Rijks be the curvature tensor of M and Eij be the second 

fundamental form of H. Then we can compute the second variation 

of the area of H as follows. Let e n be the unit normal vector of H 
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SCHOEN-YAU 7 

and # be an arbitrary smooth function defined on H. Then if we 

deform the hypersurface H along the direction #en, the second 

derivative of the area is given by (see [ii]) 

(i.i) - I (Rnn#2 % ~--- H2 I 12 H i,j ij ~2) + IV ~ 
H 

where Rnn is the Ricci curvature of M in the direction of e n. 

By the minimality of H, this last quantity must be non-negative 

for all #. In order to make use of this fact, we use the Gauss 

curvature formula as follows. Let Rijks be the curvature tensor 

of H with respect to the induced metric and el, ..., en_ 1 be 

a local orthonormal frame in H. Then the Gauss curvature equation 

says 

(1.2) Rijij - Rijij = Hii Hjj ij 

for i, j < n. 

Summing (1.2), we have 

'~ 2 ]i2 
(1.3) ~ Rijij = .~ Rijij + (~ nii) -> lj 

i,j n 1,3 n i i,j 

�9 Therefore, by the minimality of H, the scalar curvature of M is 

(1.4) R = .~ - R .... 
i,j<n 1313 

= 2 ~--- Rninii + i~n Rijij 

= 2 Rnn + R + ~. �9 13 
1,3  
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8 SCHOEN-YAU 

where R is the scalar curvature of H. 

Therefore, putting (1.4) into (i.i), we have 

- . . Hij) 2 I Iv*l = 
H H H 1'3 H 

for all smooth functions # defined on H. 

Since R > 0 on H, we conclude that 

-f ,f 
H H 

for all non-zero smooth functions ~. 

Let A be the Laplace operator of H. Then (1.6) implies that 

for I ~ 0, the only solution of the equation 

(n-3) 
(1.7) ~ = 

is the zero function. 

Otherwise multiple (1.7) by # and integrating, we have 

R* 2 < Iv,  I (i.8) ~ lv,  I = _ �89 _ 2A(n-2) ,2  2 
n - 3  

H H H H 

which is impossible. 

The fact that (1.7) has no non-trivial solution means that 

(n-3) ~ are positive. It all the eigenvalues of the operator ~ - 

is well-known that the first eigenfunction for operators of this 

form cannot change sign. If u is the first (positive) eigenfunction 

of the operator, then 
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SCHOEN-YAU 9 

(1.9) Au n-3 
4(n----~ Ru = - Xu 

where ~ > 0. 4 

If we multiply the metric of H by u n-3 , then the scalar curva- 

ture of H is changed to 

4 
-n~ 3 -i u (~u 4 (n-2) 

n-3 AU 

(Note that dim H = n-l). Therefore (1.9) shows that H admits a 

metric with positive scalar curvature. By the inductive hypothesis, 

H is of class C which is a contradiction. 
n-I 

Remark. We found the argument of using the first eigenfunction of 

n-3 
the operator A - ~ - ~  R from the paper of Kazdan-Warner [9]. 

In order to find a class of manifolds which behave well under 

! 

maps of non-zero degree, we consider the following class. Let C 3 

be the class of compact three dimensional manifolds which do not 

admit any non-zero degree map to a compact three dimensional mani- 

fold M such that H2(M) = 0 and M contains a two-sided incompressible 

surface with genus > i. For n > 4, let C' be those n-dimensional 
-- -- n 

compact manifolds M such that every codimension one homology 

class of M can be represented, up to some non-zero integer, by a map 

from a manifold of class C' It is clear from these definitions 
n-l" 

that if M is of class C' and if there is a non-zero degree map from 
n 

M onto M' then M' is of class C' 
' n" 

Theorem 2. If M is a compact n-dimensional manifold with non- 

negative scalar curvature and if n < 7, then either the Ricci 
m 

curvature of M is identically zero or M is of class C'. 
n 
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I0 SCHOEN-YAU 

Proof. The proof is almost identical to that of Theorem 1 except 

! that we have to notice the following remark. If M is of class C3, 

then using a well-known lemma in topology (see [7] p. 62) one can 

show that M is of class C 3. 

corollary i. Let M n be an n-dimensional compact manifold with 

n ~ 7 such that for some compact manifolds M i with dimension i for 

3 ! i ~ n there are maps from M i onto Mi_ 1 which pull the fundamental 

class in Hi-l(Mi_l) back to a non-trivial class in M i. Suppose 

that E2(M3) = 0 and M 3 contains an incompressible surface of genus 

1 with trivial normal bundle. Then M n admits no metric with non- 

negative scalar curvature except those with zero Ricci curvature. 

Proof. This follows easily from the duality between cohomology and 

homology. The following corollary is an easy consequence of 

Corollary 1. 

Corollary 2. Let M be a compact manifold which admits a non-zero 

degree map to the n-dimensional torus. Then for n ! 7, the only 

possible metric with non-negative scalar curvature on M is the 

flat metric. 

Proof. It is easy to check that M is not of class C' and hence 
n 

the only possible metric with non-negative scalar curvature on M 

has zero Ricci curvature. On the other hand, the assumption on M 

guarantees that there are n linearly independent harmonic one- 
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SCHOEN-YAU ii 

forms on M. As M has zero Ricci curvature, the familiar Bochner 

method shows that these forms are parallel forms. It is then easy 

to show that M is flat. 

Remark. I. Note that Corollary 2 remains valid if we replace the 

torus by a compact solvamanifold because the latter manifold is 

clearly not of class C'. 
n 

2. In the above theorems, part of the conclusion is that 

the Ricci curvature of the manifold is zero. This is a restrictive 

class of manifolds as was shown by Cheeger and Gromoll [12]. They 

prove that compact manifolds with zero Ricci curvature are covered 

isometrically by the product of a euclidean space and a compact 

simply connected manifold with zero Ricci curvature. 

2. Construction of metrics of positiye scalar curvature 

In this section we construct a large class of compact manifolds 

of positive scalar curvature by showing that one can'do surgeries 

on submanifolds of codimension at least three in the category of 

positive scalar curvature. Let M be an n-dimensional compact mani- 

fold with scalar curvature R > 0 and metric ds 2. Let N be a compact 

k-dimensional embedded submanifold with k < n - 2. In the appendix 

we have shown the existence of a positive function u on M ~ N satis- 

fying 
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12 SCHOEN-YAU 

n-2 
(2.1) Au - ~ Ru = 0 on M~N 

~ r 2+k-n + 0 (r 3+k-n) 
u = if k < n-3 

-It 2+k-n + 0(log r -1) if k = n-3 

where r is the distance function to N measured with respect to ds 2 

and A is the Laplacian with respect to ds 2. (Here 0(f(r)) means 

that after differentiating i times, the function is bounded by 

dif/dr i �9 ) For a positive function ~ on N, we recall the followin 

standard formula for the scalar curvature of the metric 

4 

ds'2 = ~n--~ ds 2 

n+2 

(2.2) R' = # n-2 (R# - 4(n-l) A~) 
n-2 

4 

Formulas (2.1) and (2.~) show that the metric u n-2 ds 2 has zero 

scalar curvature on M ~ N. We now let h(r) be a smooth function 

which is zero on [a, ~) for a small number a > 0, and we define a 

metric ~-~2 = ds 2 + dh ~ dh. Thus, if we choose coordinates {x i} 
n 

on M, and suppose ds 2 = ~ g..dxidx j then ~2 = ~--- ~ijdxidx j 
i,j= 1 13 ' i,j 

where gij = gij + hxihxj" The Christoffel symbols ~.13 = 

1 ~ks - - 
(gs + gs - gij,s ) are then easily seen to be 

(2.3) ~k'1] = rijk + (i + IVhl2) -I hkhij 

where we use the metric ds 2 to raise and lower indices, and hij 

the covariant hessian of h taken with respect to ds 2. Direct 

computation then shows that the scalar curvature of ~2 is 
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SCHOEN-YAU 13 

R 2(I + IVht2) -I = - RijhihJ 

+ (i + IVhl2) -I gikgjs163 - his ) 

where ~ij = gij hih j l+IVhl 2 is the inverse matrix of gij and Rij is 

the Ricci tensor of ds 2. Near N, one then sees 

= R + (r-2+0(r-l)) (n-k-l) (n-k-2) (h')2(l+(h,)2) -I 

(2.4) 

+ 2(r -I + 0(i))(n-k-l) h'h" 
(i+ (h') 2) 2 

To compute this formula one uses the fact that H(r), the Hessian of 

r, has the following form: If Xl,...,Xk,Xk+l,...,x n is a local 

coordinate s y s t e m  s u c h  t h a t  X k +  1 = . . .  = x n = 0 d e f i n e s  N ,  a n d  

n 
r 2 = > x~, then 

i=k+l 

~ij xix~ 
H(r) (x~ i' x~ ) = r - r 3 + 0(i) 

for i,j > k + 1 

H(r) (~xi, ~xj) = 0(i) 

otherwise. 

(For the reader's convenience, we remark that with respect to 

an orthonormal frame field 

2 2) -i 
= R - 2(l+IVhl2)-l(~ -- Rijhih 9) + ((Ah) 2 - ~--- hij) (l+IVh I 

- 2[(Ah)~--- hihijh j - ~- hihijhjkhk] (i + IVhI2) -2 

171 



14 SCHOEN-YAU 

= R + (Z+lVhl2) -z 
! 

[(n-k-l) (n-k-2)r-21h ' 12 + 2 (n-k-l) r-lh'h" 

+ 0(r-l) ]h'I 2 + 0(1)h'h"] - 2(l+[Vh]2) -2 h '2 

[0(r-l)h '2 + (n-k-l)r-lh'h" + 0(1)h'h"]) 

4 

We compute the scalar curvature R of the metric ~2 = un-2 ~-~2. 

From (2.2) we see that 

4 

(2.5) R = u -n-2 (R 4(n-l) u-I Au) 
n-2 

where barred quantities are taken with respect to ~2. We see 

from (2.3) that 

- ~  
= Au - (l+lVhl2)-Z+iJhijhkuk - " '~ ''t1+t~t x' ~+j ~u 

Near N we use (2.1) to get the expansion 

u-l~u = u-IAu_(2+k_n) (l+iVh 12)-l(Ah) (r-l+0(1))h, 

+ (2+k-n) (l+IVh I 2) -2hihjhi j (r-l+0 (i))h' 

- (l+IVhl2)-lhih j ((2+k-n)r-lrij 

+ (2+k-n) (l+k-n)r-2rirj) . 

Since Ah = h'Ar + h" = h'(n-k-l) (r-l+0(1))+ h" and h i = h'(ri+0(r) 

we conclude 

2 
h'h" (h') u-IAu = u-IAu + (n-k-2) (r-l+0(1)) + 0 (r -1) 

(i+ (h') 2) 2 i+ (h') 2 

172 



SCHOEN-YAU 15 

Substituting this and (2.4) into (2.5) and using (2.1) we have 

4 

R = u -n-2 [(n-k-l) (n-k-2) (r-2+0(r-l)) (h')2(l+(h')2) -I 

(2.6) 

fn(n-k-2) i) (r-l+0(1))h'h"(l+(h')2) -2] - 2, 

Note also that for n > k + 2 and n > 3, we have 

n(n-k-2) - 1 > 0 
n-2 

Equation (2.6) shows that if a is sufficiently small we have 

Z 
R > 0 provided h is chosen so that h' < 0 and h" > 0. If we 

choose coordinates xl,...,x k locally on N and we choose a local 

orthonormal frame ~k+l,...,gn for the normal space, then we 

can define a coordinate system in an open set of M as follows: 

For each y = (yk+l .... ,yn) e R n-k with IYl sufficiently small, 

n 
set F(x,y) = eXPx(u~lYU~a)'=Kt If we take (x,y) as coordinates 

for M, ds 2 has the following form 

k 
ds 2 = } (x,y)dx idxj + ~--- (~aS+0(r2))dy~dy8 

i,j=l gij 5,8 

(2.7) 

+ ~ (YSF~sg~y+0(r2))dxidy~ 
i,~,B,7 

Note that r 2 = ~- (yU)2. Let 6 be chosen so that 0 < 6 < a 

and choose the curve t = h(r) for ~ < r < a so that h' < 0, 

h" > 0, and the curve joins the line r = ~ in a smooth manner 

at the point (~,to) in the rt-plane for some t O > 0. If we 

write ds 2 in terms of t, we see that r tends to 6 and 
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16 SCHOEN-YAU 

d r  
dr = ~ dt tends to zero as t tends to t o �9 It follows that 

~2 = ds2 + dh ~ dh = dt 2 + ds 2 joins smoothly to the metric 

dt 2 + ds~ at t = t O where ds~ is the metric induced by ds 2 

on the hypersurface S~ = {r=6}. 

Thus we may take 

4 

(2.8) a-S 2 = U n-2 (dt 2 + ds~) for t ~ t o 

which is a function times the product metric on R x S~ 

We let du 2 be the metric on the total space of the 

normal bundle of N gotten by lifting ds~ via the induced 

Riemannian normal connection. Note that in terms of the 

coordinates (x,y) we have 

d~ 2 = ~,j gij (x'0)dxidxj + >~ (dyU) 2 

+ ~ YSr~8 (x,0) 6ay dxidy ~ 
i,a,8,y 

Let da~ be the induced metric on the normal sphere bundle 

of radius 6. For e > 0, we pull back the metric ds~6 from 

Se~ to S~ via the map (x,y) § (x, cy), and then multiply the 

radius of the fiber sphere by e -2. We denote this new metric 

From (2.7) we have 
qe,~" 

(2.9) lim = da~ 
~+0 + q~,~ 

in smooth norm. Thus if we let e(t) be a smooth function 

which changes from 1 for t ~ 2t o to 0 for t ~ 2t o + b for 

b > 0 to be chosen, we may redefine ~2 as 
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SCHOEN-YAU 17 

4 
~2 

l-e(t)) n'-2 (dt 2 + qe(t),6) for t < 2t ~ + b (~ (t)u+ 

(2.10) 

~2 = dt 2 + da~ for t ~ 2t O + b 

It is a straightforward calculation to see that a metric 

u~/(n-2) (dt2+q(t)) has scalar curvature of the form of the form 

4 

(2.11) utn-2(Rq+0(]ql2)+0(]~l) + u t l a q u  t + o ( l ~ t l )  + o(l~r I6tl)) 
where dot means differentiation in t, and ]ql' ]q] can be 

taken as the maximum matrix entry in some coordinate system. 

It is easy to check that for each fixed e with 0 < e < 1 

the metric qe,6 has scalar curvature bounded below by a 

fixed positive constant times 6 -2 . (This is essentially a 

special case of (2.7). 

Since r s 6 is constant on S6, it follows from (2.1) 

that u;iAqUt_ = 0(6-i). It then follows from (2.9), (2.10), 

and (2.11) that ~Vs 2 has non-negative scalar curvature if b 

is large and le], I~[ small. We can now prove the following 

theorem. 

Theorem 3. Let N be a k-dimensional compact embedded (not 

necessarily connected) submanifold of a compact n dimensional 

manifold M of positive scalar curvature. Suppose k < n-2. 

Given any metric on N and any connection on the normal bundle 

v of N we define a metric P on the total space Tv by 

using the connection to lift the metric from N. For ~ > 0 

sufficiently small, there is a neighborhood V of N and a 

metric Q on M ~ V so that in a neighborhood of av, Q is a 
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18 SCHOEN-YAU 

product of a line with the sphere bundle of radius ~ with 

the metric induced by P. 

Proof. We simply connect the prescribed metric and connection 

to do 2 and the Riemannian connection with one parameter 

family of metrics and connections parametrized suitably by t. 

As above, if ~ is sufficiently small, each 6-sphere bundle in 

the family will have scalar curvature bounded below by a 

positive constant times 6 -2 . We may then choose the metrics 

to move very slowly with respect to t and apply (2.11) to 

finish the proof. 

In the case in which the normal bundle is trivial we 

can show 

Theorem 4. Let M, N, k, n be as in Theorem 3. There is a 

neighborhood V of N and a metric P of non-negative scalar 

curvature on M ~ V which in a neighborhood of ~V is a pro- 

duct of a line with N x sn-k-l(6), N having any preassigned 

metric and sn-k-l(~) being the standard sphere of radius 

for a small 6 > 0. 

Theorem 4 follows by applying Theorem 3 with a trivial 

connection. 

Corollary 3. The connected sum of two compact manifolds of 

positive scalar curvature has a metric of positive scalar 

curvature. 
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SCHOEN-YAU 19 

Corollary 4. Let MI, M 2 be compact n-dimensional manifolds 

of positive scalar curvature and NI, N 2 compact k-dimensional 

submanifolds with k < n - 2. Suppose there is a fiber pre- 

serving diffeomorphism F of the normal bundle of N 1 to that of 

N2. The new manifold formed by removing tubular neighbor- 

hoods of N 1 and N 2 and identifying the boundary sphere bundles 

via F has a metric of positive scalar curvature. 

C0rollary 5. The connected sum of two conformally flat 

manifolds of positive scalar curvature has a conformally 

flat metric of positive scalar curvature. 

Cprollary 6. If M is a compact manifold of positive scalar 

curvature, then any manifold which can be obtained from M 

by surgeries of codimension at least three also has a metric 

of positive scalar curvature. 

Corollary 7. Let M, N be as in Theorem 3, and suppose N is 

the boundary of a k+l-dimensional manifold N. Suppose the 

normal sphere bundle of N extends to a sphere bundle over N. 

Then the manifold which is gotten by replacing a neighborhood 

of N in M with the extended sphere bundle of M has a metric 

of positive scalar curvature. 

Remark 2. we have learned recently that Gromov and Lawson 

have independently obtained some form of our surgery results. 
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20 SCHOEN-YAU 

The proofs of the corollaries follow easily from 

Theorems 3 and 4. Corollary 4 follows by applying Theorem 

3 to MI, N 1 with metric and connection gotten by pulling 

back those from N 2. Note that by choosing 6 smaller if 

necessary we can always make the radii of the boundary sphere 

bundles of Theorem 3 coincide for N 1 and N 2. Corollary 5 

follows because it is easy to see that a metric of the form 

4 

u (dr2+r2d82+dh(r) ~ dh(r)) 

is conformally flat where d82 is the unit sphere metric. 

To prove Corollary 6, note that if S k is an embedded k- 

sphere with trivial normal bundle, then by Theorem 4 we 

have a metric of non-negative scalar curvature on 

M ~ (S k x D~ -k) which on the boundary can be taken as a 

product sk(1) x sn-k-l(6) of standard spheres. Take a metric 

on D k+l which is a product of a line with sk(1) near the 

boundary, and choose sn-k-l(~) to be a standard sphere of 

radius n, so small that D k x sn-k-l(n ) has positive scalar 

curvature (note n-k-i ~ 2). Since both D, ~ are arbitrarily 

small, we may take 6 = D and complete the surgery. Coro- 

llary 7 follows by a similar application of Theorem 3. 
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SCHOEN-YAU 21 

Appendix. 

In this appendix we sketch a proof of the existence of 

a positive function u satisfying (2.1). We are assuming 

that N is a compact embedded k-dimensional submanifold of 

a compact n-dimensional manifold M having scalar curvature 

R > 0. We are also assuming k < n - 2. Let G(P,Q) be the 

n-2 Green's function on M for the operator L = A - ~ R. 

Since R > 0, G(P,Q) exists, and by the maximum principle 

G(P,Q) does not change sign. We take G(P,Q) to be positive. 

(See [12, p. 136] for the construction of G(P,Q).) Green's 

formula then says that for any function f on M, the function 

defined by 

f 
~(P) = - | G(P,Q) f(Q)dQ 

M 

satisfies the equation L~ = f. We let ~(P,Q) denote the 

intrinsic distance from P to Q, and we recall that for n > 3, 

(A.I) G(P,Q) = 0(~(P,Q) 2-n) 

We let r(P) be the distance from P to N, and note that r 

is a Lipschitz function and r 2 is smooth in a neighborhood 

of N. Let ~o be a smooth function on M ~ N satisfying 

~o = r2+k-n in a deleted neighborhood of N. It is straight- 

forward to check that f = L~o satisfies 

(A.2) f = 0(r l+k-n) near N . 
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Let {fn } be a sequence of bounded functions on N which 

converge uniformly to f on compact subsets of M ~ N. 

[ 
Set ~n(P) = - J G(P,Q) f (Q)dQ. By (A.2) we see that f 

M n 
L 1 is an function on M, so the bounded convergence theorem 

implies that for any P ~ N we have ~n(P) § ~(P) where 

(A.3) #(P) = -I G(P,Q) f(Q)dQ 

M 

Standard elliptic theory implies that ~ is smooth on M % N 

and satisfies L# = f on M ~ N. It follows that the function 

u = #o - # satisfies Lu = 0 on M ~ N. We now must study the 

asymptotic behavior of ~ near N. We will be finished if 

we can show 

(A.4) ~ = 0(r 3+k-n) if k < n-3 

= 0(log r -1) if k = n-3 

It will then follow from the maximum principle that u > 0 

on M ~ N. To check (A.4) we take a point P ~ N with r(P) 

small, and let 0 be the nearest point of N to P, so that 

r(P) = p(0,P). We choose a normal coordinate system centered 

at 0, call it x I .... ,x n , and suppose _--T' .... ~ span the 
~x 0x 

tangent space to N at 0. Let 6 be the radius of our normal 

coordinate ball which we denote B6(O). Since we only care 

about P close to N, we assume r(P) < 6/2. Thus it follows 
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from (A.I) that G(P,Q) is bounded for Q ~ B~(0), so that by 

(A.2) we see 

(A. 5) I G(P,Q) f(Q)dQ = 0(i) 

M%B~ (0) 

TO show (A.4), we are left with showing 

(A.6) f G(P,Q) f(Q)dQ = I 0(r3+k-n) if k < n-3 
J 
B~ (0) 10(log r -1) if k = n-3 

In our normal coordinate system, we let x I = (x l,...,x k) 

x 2 = (x k+l ,x n) so that x = (Xl,X2) Using (A.I) (A.2) ,=,, , �9 , 

and our choice of normal coordinates, we see that to prove 

(A.6) it suffices to show 

I ix_yl2_n ly2 II+k-n 

B~ (0) 

dy = 100(Ix213+k-n ) if k < n-3 

(log Ix2 I-l) if k = n-3 

where the integral is now a Euclidean integral in R n. This 

may be seen by estimating the equivalent integral 

f ix_yl 2-n ly2 ll+k-n dYldY 2 

Evaluating this as an iterated integral, one can first show 

I ix_yi2_n 

B~ (0) 

dy I = 0CJx2-y2J2+k-n~ 
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This reduces the problem to showing 

f Ix2-Y 212+k-n JY211+k-n dy 2 = I 0 (Ix213+k-n) 

[0 (log Ix2 I-1) 
if k < n-3 

if k = n-3 

Both of these are elementary to check and we omit the proofs. 

This completes the proof of existence of u satisfying (2.1). 
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