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One of the natural generalizations of conformal structure on a two dimensional 
surface is a conformally flat structure on an n-manifold. In higher dimensions, 
not every manifold admits such a structure and it is a difficult problem to 
give a good classification of conformally flat manifolds. Recall that conformally 
flat Riemannian manifolds are manifolds whose metrics are locally conformally 
equivalent to the Euclidean metric. Kuiper [Kul ,  Ku2] was the first to study 
the global properties of these manifolds. He classified those compact conformally 
flat manifolds with abelian fundamental group. For  dimensions greater than 
two, the Liouville theorem tells us that the conformal transformations of S" 
are determined locally and are given by M6bius transformations. Hence by 
a standard monodromy argument, a simply connected conformally flat manifold 
(with dimension > 3) has a conformal immersion into S" which is unique up 
to composition with a M6bius transformation of S". For  a general locally confor- 
really flat manifold, we can determine such a conformal immersion from its 
universal cover and this immersion is called the developing map. The fundamen- 
tal group of the manifold acts on its universal cover and by the above uniqueness 
statement, is mapped into the M6bius group by a homomorphism called the 
holonomy representation. 

The developing map and the homomorphism of rc 1 into the MSbius group 
form the most important invariants for the study of conformally fiat manifolds. 
An important  class of locally conformally fiat manifolds arises from the case 
in which the developing maps are injective and the manifolds are therefore 
quotients of open subsets of S n by certain Kleinian groups. This class of confor- 
rnaUy fiat manifolds has been extensively studied by many mathematicians 
including Mostow, Thurston, Kulkarni, Goldman, Kamishima and others. 

One of the main accomplishments of this paper is that we find an extensive 
class of locally conformally fiat manifolds whose developing maps are injective. 
Such manifolds are, in particular, quotients of a simply connected domain in 
S" by a Kleinian group. To explain this class of manifolds, we need to explain 
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some new global conformal invariants. For a complete conformally flat manifold 
which can be immersed conformally into S", we can construct a Green's function 
for the conformally invariant Laplace operator. We are able to show that the 
"Sobolev constant" of such a manifold is the same as that of S". From this 

2n 
we prove that the minimal Green's function is integrable to the power - -  

(n -2)  
outside a neighborhood of its singularity. The minimum exponent for the integra- 
bility of the Green's function is an important invariant of the manifold. Multiply- 

n--2 
ing such an exponent by T '  we obtain a number d(M) between zero and 

n. When M is an open subset of S", d(M) is not less than the Hausdorff dimension 
of the complement of M. The invariant d(M) measures "the conformal dimen- 
sion" of M at infinity. 

We demonstrate that when d(M) is less than (n-2)z  and when the scalar 
n 

curvature is bounded, any nontrivial conformal map into S" is injective and 
the complement of the image has zero Newtonian capacity. It is easy to see 
from here that such a manifold can be embedded as a simply connected domain 
in S". 

When a conformally flat manifold M does not admit a nontrivial conformal 
map to S", we can consider its holonomy cover and define d(M) in terms of 
this cover. When M is compact, d(M) is an invariant depending only on the 

( n - - 2 )  2 
conformal structure. The previous theorem implies that if d ( M ) < - - ,  M 

n 
is the quotient of a simply connected domain in S" by a Kleinian group. 

There is a close relation between scalar curvature and the invariant d(M). 
We prove that for a complete manifold with nonnegative scalar curvature, we 

have 0=< d(M)<= 2. When the scalar curvature of M is greater than a positive 

constant or when the first eigenvalue of the Laplacian is positive, the stronger 

bound O<=d(M)<__~ holds. Combining this with the previous statements, w e  

see that when n is large enough, M is always quotient of a simply connected 
domain in S ~ by a Kleinian group. By using the energy function which was 
introduced by the first author in [Scl], we prove the same statement for arbitrary 
n. 

We also get topological information for locally conformally flat manifolds. 

{ (nn2)2 } For any integer k>d, we prove that when d (M)<min  n - k - 1 ,  , then 

H~(M)=0 for i=2,  . . . ,k .  When M is complete and conformally fiat with 
bounded curvature and with scalar curvature bounded from below by a positive 

constant, thenlI,(M)=Ofori=2 ..... [~[ where In[ denotes the integer part 

o f -  n" L.~J L.~J 

2 
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If M is a compact locally conformally flat manifold which is the quotient 
of a simply connected domain by a Kleinian group F, then we prove that M 

. < n - 2  
admits a metric with nonnegative scalar curvature if and only if d=--~---.  Here 

d is the Hausdorff dimension of the limit set of E Unless F is an elementary 
group, we prove that d(M)=d. A corollary of this theorem says that if the 
holomomy group of a compact conformally flat manifold M is amenable, then 
M is either flat or covered by S" -~x  S ~. Results related to this last theorem 
were proven in the literature by several people including Goldman [-G], Fried 
IF] and Kamishima [Ka].  Goldman has been able to extend these techniques 
to prove the same statement for amenable holonomy. 

In the last section, we discuss the relation of conformally flat manifolds 
with weak solutions of a well-known nonlinear elliptic equation on S". We dem- 
onstrate examples of weak solutions whose singular sets are precisely given 
by limit sets of Kleinian groups including Cantor sets and various sets of frac- 
tional Hausdorff dimension. 

1. Preliminaries on conformaily fiat manifolds 

A manifold M of dimension n is said to be locally conformally fiat if it admits 
a coordinate covering {U,, ~b,}, q~: U~ ~ S", such that whenever U~c~ Ua#0, the 
change of coordinates map ~bao~b~ -I is a conformal diffeomorphism from 
qS,(U, n Ua) onto ~bo(U, n Ua). Note that if n > 2 it follows from Liouville's theorem 
[Sp] that ~baoq~ 1 on any connected component of ~b,(U,c~ UB), is the restriction 
of a M6bius transformation of S". If M is locally conformally flat and g is 
a Riemannian metric on M, then we say that g is compatible with the conformally 
flat structure if for each ~ the map ~b,: (U,,g)~S" is a conformal mapping. 
This is equivalent to saying that g has an expression of the form 

g- ;t(x) ~ ( , ix ')  2 
i=1 

for a function 2 > 0  on U~ where q~,=(x I .... x"). It follows that the Weyl tensor 
of g vanishes. Conversely, if n__> 4 and (M, g) is a Riemannian manifold such 
that the Weyl tensor of g vanishes, then there is a unique locally conformally 
flat structure on M such that g is a compatible metric. A standard partition 
of unity argument shows that a paracompact locally conformally flat manifold 
admits a compatible metric g. 

Suppose M is a smooth manifold and ~: M ~ S "  is an immersion, i.e., the 
differential of �9 is a linear isomorphism at each point. The immersion �9 then 
induces a locally conformally flat structure on M since for any point p~M 
there exists a neighborhood Up of p such that ~:  Up--* S" is a diffeomorphism 
onto its image. The change of coordinates transformation is then the identity 
and hence M has a unique locally conformally flat structure with respect to 
which ~: M--*S" is a conformal map. If go denotes the standard Riemannian 
metric on S", it then follows that ~* go is a compatible (incomplete) Riemannian 
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metric on M. For  a manifold M" which is simply connected and of dimension 
n greater than or equal to three, every locally conformally flat structure on 
M is induced by an immersion 4 :  M" ~ S" called the developing map. 

To see this, observe that if poeM and (U o, qS0) is a chart with po~Uo, then 
we can define 4 = ~b 0 in a small neighborhood of Po- We can then analytically 
continue 4 along any curve passing through P0 in the following way: If 4 
is defined on an open arc ~, and if p~M is an endpoint of V, then we can 
choose a coordinate chart (U, ~b) containing p and by Liouville's theorem we 
have a M6bius transformation ~: S " ~  S" which agrees with 4o ~b-1 in a neigh- 
borhood of ~b(p). We can then extend 4 to a neighborhood of p by defining 
4 = ~b o ~b. Since M is simply connected we get a well-defined locally conformal 
map 4 :  M-oS*. 

For  a general locally conformally flat manifold M we have the immersion 
4 :  M--+ S" where M is the universal covering manifold of M. The uniqueness 
of 4 up to composition with a conformal transformation of S ~ implies the 
existence of a homomorphism p: z q ( M ) ~  C~, where C, denotes the conformal 
group of S", satisfying 4 o y = p ( ~ ) o 4  for y~zrl(M ) where we view zq(M) as a 
group of deck transformations on M. The homomorphism p is called the holon- 
omy representation of the conformally flat structure. Conversely, conformally 
flat structures on M are determined by a homomorphism p: zr t (M) ~ C, together 
with an equivariant immersion 4 :  ~ ~ S". 

In general, let ker (p) denote the kernel of the homomorphism p. Then ker (p) 
is a normal subgroup of rq (M), and the developing map is defined on the cover- 
ing /~=/~ /ker (p ) .  Thus we have 4:  M ~ S "  and the group F==.Tq(M)/ker(p) 
acts by deck transformations on 57/ with M = ~ / F .  We then have / ~ : r ~  C, 
with t~ injective. It is often convenient to work with the covering ~ instead of 
the universal covering .~. We refer to ~ / a s  the holonomy covering of M. 

Given a locally conformally flat manifold M together with a compatible 
metric g, the operator L is defined by 

n - 2  
Lda=Ad?- - -  R(g)~b 

4(n-- 1) 

where R(g) is the scalar curvature of g. L is conformally invariant in the sense 
4 

that if ~ = u ~--=~ g, then we have for any function ~b 

. + 2  _ 

L(u ~b) = u " ---=-~ L(4). (1.1) 

We will refer to the operator L as the conformal Laplacian. A basic fact about 
4 

L is that for a metric g = u,-2 g the scalar curvature R (~) is given by 

R(g)= 4 ( n - 1 )  _.+2 u ~-2Lu. (1.2) 
n - 2  

A consequence of (1.1) and (1.2) is the following well-known result. 

Lemma 1.1. I f  M is a compact locally conformally flat manifold, then M admits 
a compatible metric whose scalar curvature does not change sign. The sign is 
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uniquely determined by the conformal structure, and so there are three mutually 
exclusive possibilities: M admits a compatible metric of 

(i) positive, (ii) negative, or (iii) identically zero scalar curvature. 

Proof The three possibilities are distinguished by the sign of 2o(-L),  the lowest 
4 

eigenvalue. If Uo > 0 denotes a lowest eigenfunction, then the metric u~ --~ g has 
scalar curvature of one sign, and it is straightforward that (i), (ii), and (iii) are 
mutually exclusive and exhaustive possibilities. 

We illustrate the analytic method by proving a result about the fundamental 
group of conformally flat manifolds of negative scalar curvature. 

Proposition 1.2. I f  (M, g) is locally conformally flat with strongly negative scalar 
curvature, then the universal cover (1~1, ~,) has positive lowest eigenvalue (for the 
Laplace operator), and in particular has exponential volume growth rate for geo- 
desic balls. Therefore, if M is compact, locally conformally fiat with negative 
scalar curvature, then nl (M) is a non-amenable group. 

4 
Proof Let ~: h~t ~S"  be the developing map, and write ~*(go)=U~---~g where 
go is the standard metric on S ~. Thus there is a constant c > 0  such that A u 
+ c u < 0  on M,u>0 .  This implies that 2o(~r)>c. The exponential volume 
growth then follows by a standard variational argument. The final statement 
of the proposition follows from a theorem of R. Brooks I-B] which shows that 
for a compact Riemannian manifold M the condition 2o(~t)>0 is equivalent 
to the non-amenability of n 1 (M). This proves Proposition 1.2. 

The following result derives from the same idea. 

Corollary 1.3. Suppose (M, g) is locally conformaUy flat. The conformal Laplacian 
L of ffl has a minimal positive Green's function on f l .  

Proof Let poeM, and let O: f l ~ S  n be the developing map, and let qo=~(po). 
Let Go be the Green's function on (S n, g o) for the conformal Laplacian L o with 
pole at qo say LoGo=-6qo. If we write ~*(go)=[~'12 g on /V~, then by (1.1) 
we have n+2 

E l l = - -  ~ I ~'(p)l--2-- 6p 
p~q~ - 1 (qo) 

n - 2  
where H= [~'[ ---y- Go o ~. The existence of a minimal positive solution G of LG 
= -6po then follows by standard arguments. Moreover, we have the bound 

n+2  
G__< I~'(Po)l--r- H. 

2. Some global conformal invariants 

Let M" be a conformal Riemannian manifold (not necessarily locally conformally 
flat). The invariance properties of the operator L imply that the "Sobolev" 
constant Q (M) defined below is a conformal invariant 

Q ( M ) = i n f { - ~  q~L~pdv:~peCT(M),~ ~b~2--~dv=l} 
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where C~ (M) denotes the space of smooth functions with compact support 
on M. If M is a compact manifold, it is an easy consequence of Lemma 1.1 
that Q(M) is positive (resp. zero, negative) if and only if M admits a conformally 
compatible metric with everywhere positive (resp. zero, negative) scalar curva- 
ture. A consequence of the work of [Au], [Scl]  on the Yamabe problem is 
that (for compact M) Q(M) is strictly less than Q(S ~) unless M is conformally 
equivalent to S" with its standard conformal structure. The following lemma 
is well known. 

Lemma 2.1. I f  M is an open subset of S", then Q(M)= Q(S"). 

Proof. It is clear that Q (I21)< Q (02) if 01 _ 0 2, and also it is clear that 

lim Q (S ~ -  B~) = Q (S") 
e-'*0 

where B, denotes a ball of radius e > 0 in the standard metric. Now if M = f2 
is a domain in the sphere, then there is a conformal transformation ~: S n ~  S" 
such that ~ ( O ) _  S n -  B, for any preassigned e > 0. Thus we have 

Q (o) = O ($ (f2)) =< Q ( S " -  B~). 

Since e is arbitrary it follows that Q(12)<Q(S"), and the opposite inequality 
follows by inclusion. 

We now generalize this result to manifolds M n which can be mapped confor- 
mally into S ~. This includes those manifolds which are simply connected and 
locally conformally fiat. 

Proposition 2.2. Assume there exists a conformal map qb: M~ ~ S n. We then have 
Q (M) = Q (S"). 

Proof. Since �9 is locally one to one, it follows from Lemma 2.1 that there 
exists an open subset U c M  with Q(U)=Q(S"). It then follows by inclusion 
that Q(M) < Q(S~). 

On the other hand, if we let {U~}, i=  1, 2 . . . .  be an exhaustion of M by 
compact domains with smooth boundary, we then have Q(M)= lim Q(U~). Thus, 

i~oo 

in order to show Q(M)>Q(Sn), it is enough to show that Q(U)>Q(S ~) for any 
domain U c M  with (7 compact and d U smooth. Suppose on the contrary we 
have Q(U)<Q(S*). The existence theory (see [Scl])  then implies that Q(U) can 

2n 
be realized by a smooth function u > 0  on U satisfying S u~--~-dv=l as well 

U a s  n + 2  
Lu+Q(U)u~-2=O on U 

u = 0  on ~U. 

If we extend u by defining u = 0 on M -  U we then have 

n + 2  
Lu+Q(U)u"~- >0 on M 

2n 
~ u'--=2dv=l 

M 

(2.1) 
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where the inequality in (2.1) is understood in the distributional sense. We now 
define a function v on S" as follows: Set v = 0  on S"-~( [7) ,  and for ye~(t.7), 
define , -  2 

v(y) = max { [ ~ ' ( x ) l - T  u(x): x e ~ -  l(y)c~ U}. 

Since q, is an immersion, the set ~ - l ( y ) n  1.7 is finite, and for each x e ~ - ~ ( y ) &  G 
there is a neighborhood ~/x of x such that �9 is a diffeomorphism of qx onto 
�9 (~/~), a neighborhood of y. Let ~ -  1 denote the inverse of this local diffeomorph- 
ism, and observe that the function v~ defined on r by 

. - - 2  
vx(yO = I(q'; ') '1 - ~ -  u(~2 ~ (yl))  

. + 2  
satisfies Lo v~ + Q(U)v~-2_~ 0 o n  ~(/']x). This follows from the conformal invar- 
iance properties of L. Here Lo denotes the conformal Laplacian of S". Thus 
we see that v is a nonnegative Lipschitz function on S" satisfying Lov 

n + 2  
+Q(U) v~-z>O on S". Again by conformal invariance we have 

2n 2n 
5 v~-~dvo = S u.~- dr, 

qJ(~l~) ttx 

2n 
v~-2dvo~ 1. By integrating the differential inequality 

Sn 

and hence we see that 

satisfied by v we have 
2n 

Eo(v) = -  S vLov<=Q(U) ~ v ~ d v o  . 
S n Sn 

2 n  

Since ~ v~-2dvo < 1, this inequality implies that Q(S")<=Q(U), a contradiction. 
Sn 

This completes the proof of Proposition 2.2. 
A consequence of the above result is the following corollary which limits 

the growth of the minimal Green's function for a manifold which can be mapped 
conformally into sn. 

Corollary 2.3. Suppose there exists a conformal map ~: M"--* S". Let g be any 
compatible metric on M, and let Go be the minimal Green's function for L with 
pole at OeM. (Note that Go exists by Corollary 1.3.) For any open neighborhood 
of 0 we have 

2 n  

G~o-Z dv< ~ .  
M "~. ~) 

Proof L e t  UI, U2 . . . .  be an exhaustion of M by smooth precompact domains 
with (Pc U1 and /Y/c U/+I. Let Gg ) denote the Green's function of Ui with pole 
at 0, and with G~ ) -  0 on 0 U~. By definition of Go we then have lim G~ ) = Go. 
For an open set U ~ M ,  and CeC~ we let i~o~ 

Ev(r = ~ ([Vr162 dv 
U 
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denote the energy of ~b taken on U. Let ( be a smooth function with compact 
support in U1 and with ( =  1 on (9. Since G~ ) minimizes energy for its boundary 
values on U/\(9, we have Eu,..e(G~))<Ev,..~((G~)). Therefore it follows that 
Ev,..~(G~))< C for a constant C independent of i. It follows immediately that 
Ev,((1-  () G~))< C' for a constant C' The Sobolev inequality of Proposition 2.2 
now implies a bound on 

j' [(1-~) ~ U  ~"/~"-~ dr. 
Ui 

This gives the conclusion of Corollary 2.3. 
For a locally conformally fiat Riemannian manifold M, let M denote the 

holonomy covering, and define a number p(M) by 

p(M)- in f{p:  ~ G ~ d v < ~  for any open (990}. 

We then define d ( M ) = ( ~  -~) p(M). The following proposition outlines some 

properties of p(M) and d(M). 

Proposition 2.4. The quantities d(M), p(M) satisfy: 

(i) I f  M is compact, then d(M) is independent of the metric g but depends 
only on the conformally flat structure of M. 

(ii) For any M we have d(M)~[0, n], and if there is a constant R o > 0  with 
R > Ro on M, then we have d(M)~[0, ( n -  2)/2]. 

(iii) Suppose (M, g) satisfies R>O. Let 20(~) denote the lowest eigenvalue 
for the Laplace operator on 291, i.e., the limit of the lowest Dirichlet eigenvalue. 
We distinguish two cases: 

(a) I f  2o(~)>0 ,  then d(M)~[0, (n--2)/2]. 
(b) I f  2o(A7/)=0, then d(M)e[0, n/2]. 

Proof of Proposition 2.4. Part (i) follows because a new conformal metric 
4- 4 

on M is of the form ~ = v .---=-~ g, and hence the metric on ~ becomes ~ = u"~-g 
where u is a positive bounded function. We then have for any 0 e ~ ,  Go 

n + 2  
=u(0)"---=-~u -~ Go and hence it is clear that G o is in L ~ if and only if Go is 
L p. 

The first statement of (ii) follows from Corollary 2.3. If we assume R > Ro > 0 

on M, then we will show that ~ G o d v < ~ ,  and this implies d(M)<=n22. 

Let {U~} be a smooth exhaustion of M by compact domains with 
~ =  Ui = ~ = Ui + 1 for i > 1, and hT/= U U~. Let G<d ) be the Dirichlet Green's func- 

tion on U~ with pole at 0, and observe that we have 

v~(0)= j ~g~(x)dv~ 
Ui 

where v i is the solution of the problem 

Lvi = - 1 on U~, v~-O on OU~. 



Conformal ly  fiat manifolds,  Kleinian groups  and scalar cu rva tu re  55 

Since R > R o > 0, the maximum principle immediately implies 

'max vi <-_ (c(n) Ro)- 1. 
Ui 

Thus vi(O) is bounded independent of i, and hence we have j" Godv<oo 
as required. ~t-. 

We now treat (iii), part (a). Let { U~} be an exhaustion of hT/as above, and 
observe that since R > 0  we have AG~)>=O on U~\(P. Multiplying by (Gg)) ~ for 
any ~ > 0 and integrating by parts we conclude 

�9 l + e  
j" IV (Gg))-~-12 dv < c(e). (2.2) 

Since 2o( /~)>0 we then conclude that 

S ( G~))I+edv<=c(8)" 
ui"-.~ 

This is derived in the same way as we derived Corollary 2.3. This establishes 
(a). 

To prove (b) we use AG~)>__c(n)RG~ ), multiply by (G~)) ~ and integrate by 
parts as above to show 

R(Gg))l+~dv<_r 
U i "~ d3 

Combining this with (2.2) and using R > 0 we get 

l + e  
Eu,...~(( G~))--~) < c(e). 

As in the proof of Corollary 2.3 we may use the Sobolev inequality on .M3 
to derive 

(G~))~1+~ dv<c(e). 
U i ' - . ~  

This implies p(M)< n - ~  and hence d(M)< 2 as required. 

We now discuss the case of domains in S". If M is a domain in S ~, then 
4 

it follows that the metric g may be written g=u ',-2 go where u > 0  on M and 
go is the standard metric on S ~. If S"\M has zero Newtonian capacity, it then 

n + 2  
follows that Go=u(O),~-u-lHo where H0 is the Green's function (on S n) of 
the conformal Laplacian for go with pole at 0eM.  (To see this, observe that 

n + 2  n + 2  
Go<u(O)"~-u-~Ho because G O is minimal, and the function u(O)~-u-~Ho 
is a solution with the required singularity. Since uGo is a solution of Lo(uGo)=O 
where L o is the conformal Laplacian of go, and uGo<u(O)-lHo and hence 
is bounded near a M  we conclude that uGo extends across dM, a set of zero 
Newtonian capacity. Thus equality holds above.) Thus we see that the condition 

2n _ 
S Gg dr< oo is equivalent to ~ u ~-2 Vdvo< oo where dvo is the volume form 

M-..~ M 
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of the standard metric go on S". If we assume that the eigenvalues of g with 
respect to go dominate 6 -2 near aM where 6(x)=dist(x, OM), then we see that 
the above condition implies 

6 (x)" 2 2 v - ,  d Vo (x) < ~ .  (2.3) 
M 

If  a M  consists of manifolds of dimension d, then we see easily that the infimum 
2 

o f p  for which (2.2) holds is ~ d. Hence we see that d(M)>d. (In fact, d(M)=d 

if the eigenvalues of g are bounded in ratio with 6 -2 near aM.) More generally 
we have the following result. 

Proposition 2.5. I f  M is a domain in S" with aM of zero Newtonian capacity, 
and g is a complete conformaI metric on M, then d(M) is greater than or equal 
to the Hausdorff dimension of aM. 

Proof. If p>O with ~ Gg dv< ~ ,  then as we saw above 
M - . . r  

2 .  _ 

S u~--~ Pdvo<~ 
M 

4 

where u > 0  is the function defining the metric g, i.e., g=u"---=~g0 . Let ~b be 
a function of geodesic distance p (w.r.t. g) from 0 ~ M  satisfying ~b(p)=l for 
p<a, ~b(p)=0 for p>2a, and [Vr~l<a -1. From the definition of u we have 

2 

lackl=u~----~lVepl where lamb[ denotes the gradient with respect to go- Thus if 
n - 2  

we choose q = n -  p we see from above 
2 

2 / I  -- 

IatgP[qdvo<a -q ~ u ~-2 V dvo<ca- L 
M M 

Since g is complete, we may  choose a arbitrarily large, and hence ~b = ~b a ~ 1 
on compact  subsets of M, each ~a ~ 0 near aM, and S Ja ~bl ~ dvo --', O. This implies 

M 

that a M  has zero q-capacity, and a standard result [AM] then implies that 
n - 2  

the Hausdorff  dimension of a M is less than or equal to n - -q  = - - - ~  p. This 

completes the proof  of Proposit ion 2.5. 
Under  very general conditions we can show that the eigenvalues of g domi- 

nate 6 -2, and hence relate p(M) to inequality (2.3). 

Proposition 2.6. Suppose M is a domain in S" and g is a complete conformal 
metric on M with bounded curvature and that Rg has bounded gradient with respect 

t l - - 2  

to g. Then we have the inequality u(x)> cr(x)----~- for x~M, c a positive constant. 

Proof. Let 0 ~ M  be a fixed point, and choose a Euclidean metric on F~ " =  S " -  {0}. 
4 

Then we write g~=  v~----~j in terms of Euclidean coordinates. The function 
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4 
v then satisfies the equation Lv -1 = 0  since v - , -Zg  is a fiat metric. Since the 
Ricci curvature of g is bounded, the Harnack inequality ICY] implies 

IV l ogv l <c  near OM. Translated to the Euclidean metric this says IOvl<=cv.-2 
2 

where r0 v[ is the length of the Euclidean gradient of v. Thus we have [a v - . -  21< ' ~ C .  

For a point x~]R"\OM, let 7 be a Euclidean line of length 6(x) from x to 
z 

a point of 0M. Integrating from x to any point y of ~ we find v ( x ) - ~ < c ' b ( x )  
2 2 

+v(y) -"--=7. Since g is complete, we have ~ v"~2d(=~ ,  and hence there is 
7 . - 2  

a sequence {Yi} ~ Y so that v(yi)~ ~ .  Thus we conclude v(x)> 6(x) --z- .  Since 
the spherical metric is equivalent to the Euclidean metric near 0M, we have 
established Proposition 2.6. 

Theorem 2.7. Suppose M is a domain in S" which has a complete conformat metric 
g with R(g)>0.  Then OM has zero Newtonian capacity and the Hausdorffdimen- 

n 
sion of OM is at most ~. I f  R(g) is bounded below by a positive constant then 

n - 2  
the Hausdorff dimension of OM is at most ~ -  

Proof The fact that OM has zero Newtonian capacity is shown in the next 
section. The conclusions concerning the Hausdorff dimension of 0M follow from 
Propositions 2.4 and 2.5. 

It is not known whether smallness of the Hausdorff dimension of OM is 
sufficient for the existence of a complete conformal metric with nonnegative 
scalar curvature on M. The following example provides negative evidence. 

Example 2.8. We claim there exists a convergent sequence of points {xi} with 
limit x in S" such that if we let M=S"\{x l ,  x}, then the infimum of p for 

2n 
which (2.3) holds is as close as we like to ~ .  It then follows from Proposition 

2.6 that for any complete conformal metric g on M having bounded curvature 
we must have d(M) nearly n. In particular M does not have a complete conformal 
metric g with R(g)> 0 and with the curvature tensor of g bounded (even though 
OM is a countable set of points). To construct such a sequence (xi}, let ~>0 ,  
and choose for any i>  1 a maximal set of points Si in the sphere of radius 
i -" centered at x whose distances apart are at least i - 1 - , .  The number of points 
in S~ is then of the order i"-1. We take our sequence to be the union of the 
S~, and observe that for any yeS~ the nearest point of U S~ to y has distance 

ci- 1 -~ from y. Therefore it follows that (2.3) holds if and only if the series 

~ ( i -  1 - ~ 1 ~  p - I 
n- -2  

i" 
i = 1  

2 n  
converges. This converges only if p > (1 + ~)- x n - ~ "  
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3. An embedding theorem for locally eonformaily flat manifolds 

In this section we show that a large class of locally conformally flat manifolds 
are conformally equivalent to domains in S". The hypothesis which is required 
to establish this is smallness of the invariant d(M) introduced in the previous 
section. 

Theorem 3.1. Let (M, g) be a complete Riemannian manifold and ~: M ~ S" a 
conformal map. Assume that the scalar curvature R(g) is bounded below by a 

negative constant on M, and assume also that d(M)< (n -2 )2 .  For n=3, 4 we 
n 

make the assumption that IR(g)l is bounded. Then ~ is one-one and gives a confor- 
mal diffeomorphism of M onto ~ ( M ) c S " .  Moreover the boundary of  ~(M) has 
zero Newtonian capacity. 

Proof Let 0~M and let Go denote the minimal Green's function for L with 
pole at 0. We also let do denote the pull-back of the Green's function of S" 
(with pole at ~(0)) under �9 normalized so that Go-Go is bounded near 0. 

n - - 2  
Thus do is a multiple of the function [ ~ ' [ T H o ~  where H is the S" Green's 
function, and I~'[ denotes the linear stretch factor of the conformal map ~. 

4 
Note that the metric ~ on M defined by g = G~- 2 g is the pull-back of a Euclidean 
metric on S"--{~(0)} and hence is a fiat metric. Since the metric 

4 

has vanishing scalar curvature, it follows that the function v=Go(do) -1 is a 
harmonic function with respect to g. Since Go is the minimal Green's function 
we also have 0 < v__< 1. Our starting point is the Bochner formula for v with 
respect to the (incomplete) flat metric g. This is 

JI  Vvl 2 = 21 ggvl 2 (3.1) 

where the "bars" denote quantities taken with respect to g. We need the follow- 
ing lemma. 

Lemma 3.2. Suppose (M, g) is complete and ~: M ~ S" is a conformal map. In 
addition assume that R(g)>= - c  for some constant c. I t  then follows that 

lim (sup {Go(x): p(x, 0)=>o-}) =0. 

Proof Since S 
M'~O 

2.3, we have 

2n 

G"o -2 dv<  ov for any open neighborhood (9 of 0 by Corollary 

lira I 
r  { x : p ( x .  O)>~r} 

2n 

G~--'Z dv=O. 
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Our proof will be complete if we can establish the estimate 

2n \n--_2 

c Oo(X)<= (3.2) 

for any x~M\B2(O ). First observe that the Sobolev inequality of Proposition 
2.2 implies, for any ~b of compact support on M 

2n \ n - 2  

(~ ~--~ dv) " <c ~ (IV(b[2 +c(n)R+ fb2)dv 

where R+ denotes the positive part of R. The equation for Go combined with 
the lower bound on R imply 

A Go-c(n) R+ Go>= -c l  Go 

for a constant cl. Multiplying by G p- i ~b 2 and integrating by parts gives 

( p - l )  S dp2GPo-2lVGol2dv+c(n) ~ c~ 2 G~R+ dv 
M M 

<__2 ~ 4~Gg-IIVcklIVGoI+c~ ~ Gg4~ ~. 
M M 

2n 
Assuming p > we get 

n - 2  

([VdpGg/212 +c(n)R+ qSE GP)dv~cp ~ Gf)([Vchl2 +ch2)dv. 
M M 

Combining this with the above Sobolev inequality 

(q~G~f2p~- dv " <=cp G~(lV~12+~2)dv. 
M 

2n 
The standard iteration argument I-M] starting with Po = n - - ~  then implies (3.2). 

This completes the proof of Lemma 3.2. 

Using the observation of ICY] we see that [fifty[ 2 > n = n - 1  ItTlffvll2' and hence 
from (3.1) we find 

a I Vvl~>c(=)l;vl=-=lglgvll z (3.3) 
n - 2  

for ~> . Multiplying (3.3) by a smooth function ~b 2 with compact support 
n - - 1  

away from the poles of G we easily get 

[. 4,~lCvl~-Zlr [. 1r 
M M 

2(n -2 )  n - 2  
We will choose ~ = and note that for n_>_ 3 we have ~ > . We express 

n n - 1  
the right hand side of the previous inequality in terms of g 

1.h.s.<c S IV~l 2 6~lVvl ~dv (3.4) 
M 
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where we have used the choice of ~. Next observe that near a pole of Go we 
have 

{VvI=O(Ix-O[ "-3) and 6o=0(1x-012-"). 

Thus if we choose ~k to be a function vanishing near 0 with ~b < 1, and replace 
~b by r ~b where gb is not necessarily zero near Xo we have from (3.4) 

1.h.s.<c $ [17~bl z 6~[Vvl~dv+c ~ q~z[V~kl2 Ix-xo[-~dv. 
M M 

Therefore, if we choose r  in Br(xo), f f = l  on M\B2r(XO) with [V~kl<r -1 
we see that the last term above is bounded by cr"-2-L Since n - 2 - ~ > 0  we 
may let r---} 0 and establish (3.4) for any smooth ~b with compact support on 
M. 

We now estimate the right hand side of (3.4) by noting 

6~ I Vvl ~ = G~ IGo i V Go- Go Go 2 V6ol ~ 

and hence 

G~ lVvl~<=c IVaol~ + ca~ l V log GolL 

For a large radius a we choose ~b~l on B~/2(0), ~b~0 on M\B,(0) ,  and IV@l 
< 2 o -  1. Thus (3.4) implies 

1.h.s. < ctr -2 ~ IVaol~dv+ca -2 ~ JVlogGol~dv. (3.5) 
B,~ (0) --. B~,/z (0) B~ (0) --. B,~/2 (0) 

Since ~ < 2 we have [VGol ~ <c(G~ + G~IV log GoP2). Away from the poles of Go 
we have 

A log Go = c(n) R - I I  7 log (~012 = Go 1 A G O - I V  log (~0[ 2. 

We multiply by a smooth function ~k 2 with compact support and integrate 
by parts to get 

g'21VlogGol2 dv<= ~ g'21Vlogaol2 dv+2 ~ g'Vg"(VlogGo-Vlogao)dv. 
M M M 

This implies 

g'211ZlogGol2dv<c ~ g'21VlogGol2dv+c ~ IV~12dv 
M M M 

for any r with compact support away from the poles of G 0. It is easy to remove 
the restriction that ~ vanish near the poles of Go, and hence to derive the 
same inequality with r of compact support on M. We now replace g, by G~/2 ~b 
and require ~ to vanish near 0. This implies 

S @2a~lVl~ ~ ~kza~lVl~ ~ G~ll7~blZdv" 
M M M 
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We choose ~b=0 o n  Ba/4(0 ) and on M\B2,,(O) and ~ =  1 on  n,r(O)\B,r/2(O ) with 
I VO] < 1. Then from (3.5) we have 

1.h.s.<ccr -2 ~ G~dv+ca -2 ~ G~lglogGol2 dv. (3.6) 
M~.BI  (O) B2~(O)~.Ba/4(O) 

Note that for n > 5  we have e > l  and we can estimate the second term on 
the right as follows: We have A G O > -cGo since R has a lower bound. Multiply 
by tP 2 G~- t and integrate by parts and absorb to get 

G~-2[VGo12 q52 dv<c ~ G~o(IFqgl2 +~2)dv. 
M M 

(3.7) 

Thus we may use this in (3.6) to finally derive 

1.h.s. < c cr -2 ~ G~o dr. (3.8) 
M'--- B1 (O) 

To derive (3.8) for n =  3, 4 we need to use a slightly different argument. For  
n=  3 we have e = 2, and we use the assumed upper bound on R(g) to get A Go 
<cG o. We multiply by G~- ~ (~2 and integrate by parts to get 

( 1 - ~ )  ~ q~ZG~-ZlVGolZdv~2 ~ c~G~-~lVr ~ G~cpZdv. 
M M M 

This implies as before the inequality (3.7) and hence (3.8). For  n = 4 we have 
~= 1, so we choose a positive number  e x < e =  1. F rom Lemma 3.2 we know 
that Go is bounded on M\B~(O), and hence (3.6) holds with e replaced by 
~ .  Since e l < l  the argument used for n = 3  implies (3.7) with c~ replaced by 
cq and hence 

1.h.s. < c a  -2 ~ G~ ~ dv (3.8)' 
M~.BI(O) 

2(n-2) 
for n = 4  and exe(0, 1) arbitrary. Since d (M)<  (n-2)----~2 we have p ( M ) < - -  

n n 
=c~. By Lemma 3.2 we see that for any p>p(M) [ Ggdv<oo since by 

M'-.BI(O) 

definition there is a sequence PiJ, P(M)) with ~ G~' d v < ~ and hence for 
i large we have Pi < ~ and by Lemma 3.2 ~ -. m ~o} 

G~ dv<c ~ Gg' dv< oo. 
M'--.B~(O) M'--. B1 (0) 

Therefore the integral appearing on the right of (3.8) and (3.8)' can be taken 
finite and letting a ~ oo we conclude that ]Fv l -cons tan t ,  and since IVy] (0)=0  
we have V=GoIGo is a constant. Since v(0)= 1 we have v = 1 on M and that 
implies G o n g  o. Since Go has a pole at every point of ~-1(~(0) )  it follows 
that ~ -  1 (~ (0))= {0}. Since 0 e M was arbitrary we have shown that 4~ is injective. 

Let f2=~(M) .  To show that  0f2 has zero Newtonian capacity, choose a 
point 0et2 and consider a Euclidean metric on S " - { 0 } = R " .  The minimal 
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Green's function Go is then gotten by minimizing the Euclidean Dirichlet integral 
for functions ~b vanishing near dr2 with ~b ~ 1 near 0. The statement Go = Go 
says precisely that this minimizing function is identically one and this is the 
statement that dr2 has zero Newtonian capacity. This completes the proof of 
Theorem 3.1. 

Proposition 3.3. Let (M, g) be a complete Riemannian manifold with R(g)>0 and 
let ~: M ~ S" be a conformal map. Under any of the hypotheses (i), (ii), or (iii) 
below we can conclude that �9 is injective and t3~(M) has zero Newtonian capacity. 

(i) Suppose n>=4, R(g)> R o for some number Ro>0,  and if n = 4  assume 
the Ricci curvature of g is bounded. 

(ii) Suppose n>5 and 2o(M)>0 where 2o denotes the limit of the lowest 
Dirichlet eigenvalue for compact domains in M. 

(iii) Suppose n >_ 7. 

Proof. We use the results of Proposition 2.4 which show that under hypotheses 

(i) or (ii) we have d(M)<-~.~__ Since -~n-2 < (n-n 2)2 for n__>5 we may apply 

Theorem 3.1 to establish our conclusion under hypothesis (ii) or (i) with n>5 .  

For  n = 4  we have n - 2  = ( n - 2 ) 2 =  1. We show that under the hypothesis of 
2 n n - 2  

bounded Ricci curvature we actually have d ( M ) < - - ~ .  To see this, let G~ } 

be the Dirichlet Green's function for U~, and observe that 

AG~)>c(n)Ro G(~ ) on U~. 

Multiply both sides by e 6p where 6 > 0  and p is the geodesic distance from 
0 and integrate by parts on U/\B,(0). Since the normal derivative of Gg ) is 
negative on a Ui we have 

c (n) Ro S e 6p G~ ) d v < c + ~ G~ ) A e ~p d v. 
Ui'~.BI(O) Ui'-..BI(O) 

Since the Ricci curvature of M is bounded we know that A e~P_ c ~ e ~p distribu- 
tionally (see ICY]). Therefore we have 

e~PG~)dv<c+tc ~ ea"G~'dv. 
Ui ".. Bt  (0) Ui ".. Bl (0) 

Choosing 6 small then enables us to prove 

etP Godv< ~ .  
M'~BI(0) 

Since the Ricci curvature of M is bounded, the Harnack inequality ICY] implies 
that Go > e -cp for some constant c. Therefore we have 

~-~c-' dv<~ 
M"~ BI (0) 

and p(M)< 1 as required. This proves the theorem under hypotheses (i) or (ii). 
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Under hypothesis  (iii) we use the weak statement of Proposition 2.4 that 

d(M) < n and observe that n < ( n -  2) 2 when n > 7. 
= 2  z n - 

Remark 3.4. In the next section we will show that the hypotheses (i), (ii), and 
(iii) can be removed by a different argument so that Proposition 3.3 is true 
for all n with no additional hypotheses. 

4. Fundamental group and positive energy theorems 

We first consider the simplest examples of locally conformally flat manifolds, 
those arising from Kleinian groups. Suppose F is a discrete subgroup of the 
conformal group C , = 0 ( n +  1, 1) of S". The limit set A of F is the minimal 
closed invariant subset of S" which may be characterized as the set of accumula- 
tion points of the orbit of any point. The complement t2 of A on S" is then an 
open set on which F acts properly discontinuously and is called the domain of 
discontinuity of F. If F has no fixed points in ~2, then M = ~2/F is a locally 
conformally flat manifold (possibly disconnected).The following result realizes a 
large class of locally conformaUy flat manifolds as O/F for a Kleinian group/7. 

Theorem 4.1. Suppose (M, g) is a complete locally conformally fiat manifold with 

R(g) bounded below. I f  n= 3, 4 assume [R(g)J is bounded. I f  d (M)< ( n - 2 )  2 then 
n 

we have ~1 = ffl, the developing map � 9  ill -* S" is injective, the holonomy represen- 
tation p: Irl(M)-o C, is 1 - 1 ,  and F = p ( n l ( M ) )  is a discrete subgroup of C,. 
I f  M is compact, then f2= O()fl) is the domain of discontinuity of F and M = f 2 / F  
arises as above. 

Proof We may apply Theorem 3.1 t o / ~  to deduce that 4~:/~-oS" is injective. 
This implies that the holonomy covering M is the universal cover /~ ,  and hence 
p is injective. Let f2= q~(I~I), and observe that F =p(n l  (M)) acts properly discon- 
tinuously on t? since the action of F is conjugate under �9 to the action of 
nt(M) on i~. Therefore F is a discrete subgroup of C,. Since 0f2(=S"\f2)  is 
a closed invariant subset under F we have A(F)cOf2.  If M is compact and 
xe0g2, then any neighborhood of x must contain infinitely many translates 
of a compact fundamental domain F c f2 and hence f2 = A. This completes the 
proof of Theorem 4.1. 

We now discuss the case R(g)__> 0 and relate it to the positive energy theorem. 
Suppose (M, g) is complete, and suppose for every point p o e M  the minimal 

4 
Green's function G o for L with pole at Po exists. It is natural to think o f ~ =  G ~  g 
as a metric on M-{Po} .  If we choose a conformally flat chart near Po, say 
Oo: t~ ~ S", then ~ has a nice form if we require �9 o (Po) = oo and think of S" 
as R"w { oo }. Let go denote a Euclidean metric on N" with Euclidean coordinates 
x 1 . . . .  , x". Expressing 

g, = h"--~ go = h (x) "~- (d xi) 2 
i=1 
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we see that h(x) is an asymptotically constant harmonic function defined outside 
a compact set of p.n. It follows that h(x) has the following expansion for Ixl 
large, 

h(x)=a + b lxl2-" + O(lx[ 1-') 

where a, heiR with a>0 .  If we had chosen another chart qgo with ~o(Po)= 
and denote Euclidean coordinates on the image of ~o by yl . . . .  , y" then we 
see that x = 40 ~ ~3 o 1 (y) is a conformal transformation fixing ~ ,  and hence x 
= # B y + x  o where #>0 ,  BeO(n) is an n x n orthogonal matrices, and XoeP-L 
Therefore we have 

g = h(x) ~4-~2 ~ (dxi) 2 = h(pBy + Xo) n-~ ~ 2  ~ (dyi)2 
i = 1  i = 1  

n - 2  
so that h(y)-/~---z-h(pBy + Xo) which has the expansion 

/~(y)=4+ Nlyl 2-n+ O(lyl ~-~) 

n - 2  2 - n  
where d = # - Z - a  a n d / ~ = V T  b. Thus it follows that d~=ab so we define E(Po) 
=ab and observe that E(po) depends only on Po and the metric g. If we re- 

4 n + 2  
place g by ~=u~--=-~g, then we have ~o=U(po)~-2u-lGo and hence s 

n + 2  4 
=u(po)~-E(po). Note that if we choose 4o so that a = l ,  we have ~ = h ~ 2 g  o 
where 

h(x)= 1 + E  Ix12-~ + O(Ixl 1-") 

for Ixl large. The quantity E(po) generalizes the ADM energy of asymptotically 
flat spacetimes in general relativity (see [SY1]). The positive energy theorems 
imply a statement to the effect that E will be positive if the function R(g) is 
positive. The next result relates the positivity of energy to the embedding theo- 
rems of the previous section. 

Proposition 4.2. Suppose M is a locally conformally fiat manifold and 4: M -~ S" 
is a conformal map. The function E is nonnegative at each point of M if and 
only if 4 is one to one and the image [2 = 4(M) has boundary of zero Newtonian 
capacity. 

Proof. We have seen that 4 is one-one onto a domain with boundary of zero 
capacity if and only if for every poeM the minimal Green's function Go for 
L with pole at Po is a multiple of the pullback under 4 of the Green's function 
on S" with pole at qo=4(po). Following the notation used in the proof of 
Theorem 3.1, we let Go denote the multiple of the pullback Green's function 
with pole of the same strength as Go at Po. We study the energy terms of 
Go and Go. Let 4o: O-*S" be as above with 4o(Po)=OG and let h, /~ be the 
corresponding harmonic functions, say 4 o is chosen so that h ~ 1 at infinity. 

Since the metric h - ~  ~ (dxi) 2 is a Euclidean metric we clearly have 
i = l  

= 1 ,  
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i.e., E = 0 .  Note that h-~ 1 because Go has pole of the same strength as Go 
at Po and h ~ 1. We also have h < i near infinity. Thus by the maximum principle 
we either have h = h- or h < ~ near infinity. We write the expansion for h 

h(x)= 1 + E Ixl 2 -n+ O(ixlX-n). 

If h<h-, then i - h  is a positive harmonic function on Nn\B~(0) for some o > 0 .  
If we choose a number 6 with 0 < fi < min { i (x ) -h (x ) :  x~ ~B,(0)}, then we must 
have • x ) -  h (x) > 6 I xl 2-n  for [xl > tr since 6 [xl 2- ~ is a minimal solution. There- 
fore we have E < - - 6 .  Thus we have shown that either E(po)<0 or Go=Go 
on M. This completes the proof of Proposition 4.2. 

In order to study non-simply connected manifolds we prove the following 
result on the behavior of the energy for coverings.. 

Proposition 4.3. Suppose M1 is a nontrivial covering of M, M is locally conformaIly 
flat, and for each yo~M suppose the minimal Green's function with pole at Yo 
exists. I f  7t: M 1 ~ M  denotes a covering map, then the energy functions E, Ez 
for M, Mz satisfy the inequality E1 (x) < E(r~(x)) for every x ~ M1. 

Proof. Let xo~MI, and let Go denote the pullback under 7t of the minimal 
Green's function of M with pole at yo=n(Xo). The existence of Go then implies 
the existence of the minimal Green's function Go of M1 with pole at Xo. Since 

is nontrivial we have Go<Go on Ml\{Xo}, and hence the argument used 
in the proof of Proposition 4.2 implies the inequality E1 (Xo)< E(yo) as required. 

We now state a result which derives a positive energy theorem from the 
results of Section 3. 

Proposition 4.4. Let (M, g) be a complete locally conformaIly fiat manifold with 
R(g)>=0. Assume that for every point xoeM the minimal Green's function with 
pole at Xo exists. (This is automatic if R(g)_->Ro>0 or if M is compact and 
R (g) is not identically zero.) Assume one of hypotheses (i), (ii) or (iii) of Proposition 
3.3 holds for the holonomy covering ~I. Then the energy function E on M is 
nonnegative at every point. I f  M is not simply connected then E is strictly positive 
at each point, while if ~1 (M)= 0 then E is identically zero. 

Proof. This is an immediate consequence of Theorem 3.3, Proposition 4.2, and 
Proposition 4.3. 

Conversely, one can use the existing positive energy theorems to strengthen 
the embedding theorem for manifolds with R(g)>0.  For  this application it is 
necessary to extend the positive energy theorems (see [SYI~, ESY2]) to the 
case of complete manifolds; that is, assuming M has an asymptotically flat 
end and other ends which are merely complete. This extension will be carried 
out in a future work. 

Proposition 4.4'. Proposition 4.4 holds without the assumption of (i), (ii), or (iii). 

Proof. It is sufficient to prove Proposition 3.3 without hypotheses (i), (ii), or 
(iii). Thus we may assume ~: M -~ S ~ is a conformal map. By Proposition 4.2 
it is enough to show E(xo)>O for each xo~M. Let Go be the minimal Green's 
function with pole at Xo, and observe that for any 6 > 0  the metric g=(Go 

4 
+6)~-----~g is complete on M\{xo} and has an asymptotically flat end at Xo. 
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Moreover, since R(g) > 0 we have 

L(Go + 6) = -- c(n) 6R (g) < 0, 

and hence r has nonnegative scalar curvature. The positive energy theorem 
then shows that the energy of r is positive, hence E(xo)+6>O for any 6>0. 
This implies E (Xo) > 0 and completes the proof of Theorem 4.4. 

Theorem 4.S. Suppose M(g) is complete, locally conformally fiat with R(g)>O. 
Then we have ffl=]~l, the developing map ~: f f l~Cn is 1 - 1 ,  and F=p(rq M) 
is a discrete subgroup of C,. I f  M is compact, then f2=~(fi~t) is the domain 
of discontinuity of F and M = f2/F. 

The previous theorem follows from Theorem 4.4 in the same way as Theorem 
4.1 follows from Theorem 3.1. Recall that the invariant d(M) dominates the 
Hausdorff dimension of 0 (~ (M)). We can use this bound to derive some topologi- 
cal information concerning locally conformally flat manifolds. 

Theorem 4.6. (i) Suppose k > 2 is an integer, and (M, g) is a locally conformally 
( (nn2)2 } fiat manifold with d(M)< min n - k - 1 ,  . Then rci(M ) = 0 for i= 2, ..., k. 

(ii) Suppose (M, g) is complete locally conformally flat with R(g) > R o > 0. Then 

zr,(M)=0 for i=2,  ""' H2H where [ [ ' ] ]  denotes the integer part. 

Proof By Theorem 3.1 and Proposition 2.5, the universal covering of M is 
a domain f2 with at2 having Hausdorff dimension at most n - k - 1 .  Given a 
map f :  Si~t2  we can extend f to f:  B i+1 ~S", and since i<k we can perturb 
f so that f misses t~f2 and hence Try(f2)=0, i=2  . . . . .  k. This establishes (i), and 

Part (ii) follows because of Theorem 4.4 and the bound d ( M ) < - ~ -  < n - ~ 2  ~ 
- 1. This proves Theorem 4.6. 

We now focus on the case of compact M, and we show that in this case 
d(M) is precisely the Hausdorff dimension of Of 2. 

Theorem 4.7. Suppose F is a Kleinian group with M=f2/F compact, and let 
A be the limit set of F and let d(A) denote the Hausdorff dimension of A. M 

a compatible metric g with R(g)>O if and only if d ( A ) < ~ .  In any case has 

we have d(M)=d(A) unless F is an elementary group, i.e., unless A is either 
one point or two points. 

Proof We first show d(M)=d(A). Suppose p > 0  with ~ Gg dr< oo. Let F c M  
M-~r 

be a compact fundamental domain for the action of F with 0 e F  and hence 

7~r F 
~,*1 

Since y acts o n / ~  by isometries we have Go(TX)= Gr-lo(X). Since F is compact, 
the Harnack inequality implies that max Gr-lo<cminGr-1 o, and hence for 

F F 
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each x we have convergence of the series 

G~-~o(X)< ~ .  

y * l  

Since G(x, y)=u-l(x)u-l(y)G(x, y) where G is the Green's function for L o on 
S", we see that convergence of the previous series is equivalent to 

u-P(~'O)< co. 
y6P 

n - 2  
The transformation law for u is [7'1 2 uo?=u for 7~/7, and hence we get conver- 

n--2 
gence of the Poincar6 series ~ [?,[--2--p. Thus we see that GoeLP(ffl) if and 

~ r  n - 2  
only if the Poincar6 series with exponent - ~ -  p converges. A theorem of Patter- 

son [P] and Sullivan [Su] shows that the minimal exponent for which the 
Poincar6 series converges is d(A) provided F is not elementary. Therefore 
d(M) = d(A) proving the last assertion of the theorem. 

n - 2  
First suppose R (g)> 0. It then follows from Proposition 2.4 that d ( M ) < - -  

2 
unless 2 o ( ~ ) = 0 .  A theorem of Brooks [B] shows that this occurs only if rc 1 (M) 
is an amenable group. Since any non-elementary Kleinian group contains a 
non-abelian free subgroup, it then follows that F = r c l ( M  ) is elementary; that 
is, the limit set consists of either one or two points. If A is one point, then 
M is a flat manifold since each element of A is parabolic with the same fixed 
point. If A consists of two points, then M must be covered by S 1 x S"- x and 
it is easy to see that Go decays exponentially, on M so that d(M)=0.  Since 

d(A) < d (M) we have shown that ,  ,~unless M is a flat manifold, we have d (A) < n 2 2. 

Conversely, suppose d(A)<s ~--. Since M is compact we either have a con- 

formal metric g with R(g)>0  on M or we have a g with R(g)<0  on M. Suppose 
we have g with R(g)<0.  Lifting g to (2 we get a complete metric g with R(g)< 
- R o ,  Ro>0.  Let Go be the minimal Green's function with pole at 0el2. Since 

+ 
Go=u-l(O)u-tdo where g = u , - Z g o ,  we have that G o ~ 0  at 0f2. Let (9={Go 
> 1} and observe that (9 is a compact neighborhood of 0. Now the equation 
of G o implies A Go < - Ro Go. Let 6 > 0 and compute 

AG~ +'~ < --(I + f) Ro G~ +~ + f(I +6) GoX +~IVGo[ 2. 

The Harnack inequality ICY] implies ]VGol2<=cG~ on M\(9,  and hence if 6 
is small we have 

AG~+~<-cG~ +~ 

on M \ C  for a positive constant c. If it were true that S G~ +'Sdv<~, then 
we could choose a sequence of radii al ~ ~ so that M\~ 

lira ~ G~++dZ=O 
i'-~oO OBat 
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where dE is the surface measure (w.r.t. g) of 0B,+. Integrating the above inequality 
on B~,\(9 we get 

I Co'++-----c I Co '++ 
OBai B~f ~. 

after applying Stokes theorem and the fact that the normal derivative of G o 

is nonnegative on Od~. Again by Harnack we have ~ G~ +~ <cG~ +~ and hence 

letting i tend to infinity we get a contradiction. Therefore we must have 

G~+6dv= 0o and hence d ( M ) > ~  -~. Since d ( m ) = d ( A )  we have a contra- 
M-.. .  ~7 

diction. This completes the proof of Theorem 4.7. 

5. PDE aspects of the theory 

In this section we describe the relationship of the geometric problem of construc- 
tion of complete conformal metrics of constant scalar curvature on domains 
f2 c S" to the study of weak (distributional) solutions of the equation 

n + 2  

Lo u + U,--=-~=O. (5.1) 

where Lo is the conformal Laplacian for the standard metric go on S". There 
is a substantial interest in the study of weak solutions of (5.1) with u positive 

n + 2  

and uEL]-~r In particular, progress has been made on the case of isolated 
singularities by Serrin, Caffarelli, Nirenberg, Spruck, Polking, etc. We will also 
consider the differential inequality 

n + 2  

Lo u + u "-~-~ < 0. (5.2) 

The following theorem relates the study of weak solutions of (5.1), (5.2) to the 
complete metrics on domains f2 c S". 

4. 

Theorem 5.1. Suppose 12 is a domain in S", and g = u " - 2 g 0  is a complete metric 
on f2 with scalar curvature R(g) satisfying R(g )> l  on f2. Then it follows that 

n- -2  ,+2 
012=S"\f2 has Hausdorff dimension at most ~ , u~l_p~- (S"), and a multiple 

of  u is a weak solution of  (5.2) on S". I f  g has bounded curvature and R(g) -  1, 
then a multiple of  u is a weak solution of (5.1) on S". 

Proof. We assume R ( g ) > l  and establish (5.2) distributionally. First observe 
that a multiple of u, which we call u, satisfies (5.2) pointwise on f2. The condition 

n - 2  
that dr2 has Hausdorff dimension at most ~- follows from Proposition 2.4 

and Proposition 2.5 (with the Newtonian capacity condition on Of 2 implied 
by Theorem 4.4 and Proposition 4.2). In fact, from the discussion preceding 

n + 2  
Proposition 2.5 we have u~/.r--=~(S"). To establish (5.2) weakly we must show 
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that 
n+2 

S (uLo ~ + u~-2 ~) d Vo < 0 (5.3) 
S n  

for every (eC~(S  ") with ( > 0 .  Let Z.(t) be a smooth concave function with 
3a 

Za(t) = t for t < a and Za(t)----~- for t >_--2a, and observe that  

L o  (J(a (U)) 
n(n--2) 

zdu)+z;(U)~oU 

since Za is concave and L o = A  o n ( n - 2 ) .  Thus on t2 we have 
4 

n+2 
Lo(~a(u) ) < n(n-- 2) (Z'a(U) U-- Za(U))-- Z'a(U) u"- 2. (5.4) 

4 

It follows from Lemma 3.2 that Go tends to zero at af2 uniformly. Since Go 
= u - t  Go where d o is the Green's function for Lo, it follows that u tends uniform- 
ly to ~ near 63f2. Therefore Za(U) extends to a smooth function on S" and 
(5.4) holds on all of S n. Therefore we have for ffeC~~ (=>0 

n+2 
S (Za (U)(LO 0 + Z'. (U) U "~z 0 a VO _ - - _ _ - -  

S- 

n ( n - 2 )  S ~(Z'.(u) U--Za(U)) do'o. 
4 s- 

n+2 
Since ueL~-2(S ") we may  let a ~ 0o and use the dominated convergence theorem 
to get (5.3) as required. 

Now we assume that R ( g ) - 1  on ~2 and hence a multiple of u satisfies (5.1) 
pointwise on f2. We modify the previous argument to establish (5.1) weakly 
on S". As above we get Za(U) is a smooth global solution of 

.+2 n ( n - 2 )  
Lo (Xa (U)) = X~' (U) 163 U[ 2 - -  Z'a (U) U ~ + 

4 (z;(u)u-z~(u)). 

We can argue as above, letting a ~ 0o to get (5.1) satisfied weakly on S" provided 
we can show 

lim S ~z'~(u)163ul z dvo=0 (5.5) 
a---~ oo Sn 

for any ~eC~~ We may choose ~ ( t )  so that ]~'(t)l<ca -1. Therefore we 
have 

IS (ZZ(u)163u12 dvol <ca-1  S 163ulZ dvo 
S n {x: a < u ( x )  ~_ 2a} 

<2c S u-l163u12 dvo" 
{x: a~_u(x)} 

Thus in order to establish (5.5) it is enough to show 

u-  l163ulE dvo < oO. 
O 
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Since we are assuming g has bounded curvature, the Harnack inequality ICY] 
implies [ V Go[ < c Go on f2\b 1 (0). Since Go = u-  1 Go , this implies [ V u -  1 [ < c u-  t 
+c[VGol[u -t. Writing this in terms of go and using the fact that u>c>O 

n 

we see lout <cu "-~. Therefore we have 

n + 2  

u -~ E~uf2dvo<c ~ u. -2 ,  

and hence we have established (5.5). This completes the proof  of Theorem 5.1. 
As an application of Theorem 5.1 we can find a rich class of examples 

of global weak solutions of (5.1). We consider those domains f2 which are univer- 
sal coverings of compact locally conformally flat manifolds with positive scalar 
curvature. The solution of the Yamabe problem [Scl]  on the quotient then 
lifts to a complete metric g on s with R(g)--1 and with bounded curvature. 
The first such example arises from the Kleinian group generated by a single 
hyperbolic element 7~Cn. We then have f2=sn\{p, q} where p, q are the fixed 
points of ~ and we get a weak solution of (5.1) singular at the points p, q. 
Of course such solutions can also be constructed by putting (without loss of 
generality) q = - p  and looking for radial O.D.E. solutions of (5.1). The next 
simplest example arising from Kleinian groups is the group generated by two 
sufficiently strong hyperbolic elements ~1, 72 with distinct fixed points. It is 
well-known that such a group is free on two generators and f2 = S"\A where 
A is a Cantor  set whose Hausdorff dimension can be made arbitrarily small. 
This then generates weak solutions of (5.1) which are singular on a set of fraction- 
al Hausdorff  dimension. This behavior is typical for the singular sets arising 
from domains which are invariant under a Kleinian group. Other singular sets 
which occur are round spheres (e.g. from products of spheres with compact 
hyperbolic manifolds), and certain quasiconformal deformations of round 
spheres. Again these tend to have fractional Hausdorff dimension. 

This discussion leads naturally to the question of whether weak solutions 
of (5.1) exist which are singular on smooth submanifolds. This question for 
constant negative scalar curvature was solved by LoEwner-Nirenberg [LN]. 
The first author  has shown [Sc2] that singular solutions exist which blow up 
at a prescribed set of at least two points. We close with a conjecture about 
weak solutions of (5.1). 

n + 2  

Conjecture 5.2. Any u~I_v--=-~(S ") with u > 0  which is a weak solution of (5.1) 
n - 2  

is regular on a domain ~2 with 0f2 of Hausdorff dimension at most ~ and 
4 

the metric g = u , -  2 go is a complete metric (of constant positive scalar curvature 
o n  o.) 
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