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! ESTIMATES OF EIGENVALUES OF A COMPACT RIEMANNIAN MANIFOLD

Peter Li and Shing-Tung Yau+*

Let M be a compact manifold with (possibly empty) boundary. Then
in this paper, we study the eigenvalues of M with respect to various
boundary conditions.

Since the Poincare inequality plays A very important role in analysis
and since a lower bound of the first eigenvalue gives an upper bound of
the constant in the Poincare inequality, it is very desirable to find a
good lower estimate of the first eigenvalue. For domains in euclidean

i space, there are classical works of Faber-Krahn, Polyi—SzegB, Payne,
Weinberger, etc. The works of these authors are not only beautiful and
important, but also give a deep impact to estimate eigenvalues on curved
spaces. For many geometric problems, we often need to estimate the

{ Poincare inequality for domains on a curved space. Thus in this paper,
we concentrate our attention to this case. The first major result in

- this direction was due to Lichnerowicz [10] and Obata [11]. In their

beautiful work, they assumed the Ricci curvature of the compact manifold
(withBut boundary) is greater than a positive constant and they estimated
the first eigenvalue from below in terms of this constant. It is remarkable
that this constant is sharp. This estimate of Lichnerowicz-Obata was

generalized later by Reilly [14] to manifolds with boundary where he treated
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the Dirichlet boundary valued problem. Besides the assumption of
Lichnerowicz-Obata, he also assumed the boundary of the manifold has non-
negative mean curvature.

After this work of Lichnerowicz-Obata, J. Cheeger [ 3] studied the
first eigenvalue by estimating it from below by a constant which is involved
in certain type of isoperimetric inequality. In [ 1], Aubin gave a
lower estimate of the first eigenvalue in terms of a lower bound of the
volume, an upper bound of the diameter, a lower bound of the sectional
curvature, an upper bound of the Ricci curvature and a lower bound of the
injectivity radius. For the purpose of applications, it is important to
relax the dependency of the lower bound on the geometric quantities.

For this purpose, the second author [15] showed that one can estimate

the first eigenvalue from below by lower bound of the volume, an upper
bound of the diamter and a lower bound of the Ricci curvature. Basing

on nnupper estimate of Cheng [ 5], the second author conjectured that one
should be able to drop the dependency of the volume in the above estimate.
Combining with Cheng's result, this would give the best possible estimate
of the first eigenvalue for a general compact manifold.

It turns out that the first author [ 9] was ablg to demonstrate
the above conjecture in all the major cases. His method depended on a
gradient estimate of the first eigenfunction. In this paper, we indicate
how to make a slight modification of this method to give a complete demonstra-
tion of the above conjecture. For the special case of cgmpact manifolds

. . .. m .
with non-negative Ricci curvature, we show that Al 2 — where d is
4d

the diameter of the manifold. Cn the other hand, Cheng's estimate gives

m .
)‘l <n_2 where n is the dimension of the manifold. (Cheeger [ 2] had a
d .

weaker estimate prior to Cheng's result.) We also extend these estimates
to compact manifolds with boundary. For Dirichlet boundary valued problem,
the estimate also depends on the lower bound of the mean curvature of the

boundary. For Neumann boundary valued problem, we have to assume the



EIGENVALUES OF A COMPACT RIEMANNIAN MANIFOLD 207

second fundamental form of the boundary is positive semidefinite. In
the Dirichlet boundary valued problem, the diameter d can be replaced

by the radius of the largest geodesic ball that can be inscribed into the

manifold.

In the second part of the paper, we demonstrate how to use the
variational principle to obtain both upper and lower estimates of
higher eigenvalues )\m' Let V be the volume of the compact manifold.

Then the famous estimate of H. Weyl shows that when m tends to infinity,
2

n
)‘m (rln/_) approaches to a constant C(n) depending only on the dimension

of the manifold. We demonstrate how to find an upper and lower estimate

2

n
of Aﬂ}(%) . For example, when the Ricci curvature of M 1is non-negative,
2

A n
we show that —= (V—) is bounded from above by an absolute constant.
C(n)\m+1

When the Ricci curvature is bounded from below by (n - 1)K, then we
2

n
rove that X <C mel) o, C., where C depends on K, d and n;
P m o1 2 P

v 1
2 depends on K and n. Our method depends on Cheng's result [ 5].
2

C

n

The lower estimate of Am(%) is more complicated. When the
2

n
sectional curvature is non-negative, }\m( -Y-) has a lower bound depending

m
only on n when m is greater than a constant depending on the upper
bound of sectional curvature and the radius of convexity. When the

sectional curvature is allowed to be negative, then the lower bound of
2

n
)\m (%) should be replaced by a positive constant depending on n, d

and the lower bound of the sectional curvature.

Finally we should mention that Professor Gromov has pointed out
that in a classical book of P. Levy [ 8] there was an indication of an
estimate of the first eigenvalue. This estimate depends on a very

non-trivial analysis of the regularity of certain hypersurface with
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constant mean curvature. Up to now, it is not known whether this analysis
can be carried out when dimension n 2 7. Furthermore, the constant
involved in this analysis is not sharp whereas our estimate is sharp

for manifolds whose Ricci curvature is non-negative and whose boundary

has non-negative mean curvature. We should also mention that for convex

domain in euclidean space, Payne-Weinberger [13] has already estimated

Xl for Neumann problem. During the conference, Chavel-Feldman generalized

the result of Payne-Weinberger to convex surfaces with non-negative curvature.

Our theorem is more general while our method is very different. After we
indicated our result to Professor Protter, he pointed out a paper of Payne
and Stakgold [12] on the estimate of the first eigenvalue of a domain

in euclidean space. It turns out that part of our estimates is similar

to theirs.

1. GRADIENT ESTIMATE. In this section we consider the solution of the equa-
tion
(1.1) Au = F(u)

defined on a compact manifold M of dimension n. In the case if M is a

manifold with boundary oM, we imposed one of the following boundary conditions:

(1.2) =0 on oM

(1.3) =0 on oM

g .

The first one is known to be the Dirichlet boundary condition and the
latter is the Neumann boundary condition, where g% denotes the outward normal
to oM.

Suppose the Ricci curvature of M is bounded below by (n - 1)K. 1In the
next three theorems we will derive an upper estimate for the gradient of the
solution of (1.1) (with different boundary conditions) in terms of K, u, F(u)
and its derivative.

THEOREM 1. Let M be a compact manifold. If u is a solution of (1.1) and

U > 1 1is any constant, then

|Vu|2 < max

an - 1) [—(n - DK -Fy | &IL] ,

H sup u-u

/8 ” ﬁ_fiEl___1L (U sup u-u) 2

sup u-u
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where F, denotes the derivative of F with respect to u.
PROOF. For uH > 1, we define the function

2
(1.4) fo wl®

(M sup u-u)2

By the compactness of M, there is a point X, € M such that f achieves its

supremum. Hence at X,

VE =10
(1.5) and
Af <O
This gives
2
| 7u| “u.
(1.6) 2 u.u.. + 1=
3 jji M sup u-u
and
Zu? * Tou.u...
(1.7) o> i,d7i3  i5j 11t
(M sup u-u)
2
v .. 4
I b 7ul® Z v, . 3|w

4
(4 sup u-w)® (U sup u-w)®  (u sup u-u)

By choosing suitable orthonormal frame at X,» We may assume u,= 0 for

@ > 1. Substituting (1.6) into (1.7) and using the Ricci formula, we have

2
(1.8) Zul, +Tu. (), + IR .uu, PR 1
T i i .7.Mij7i73 T M sup u-u
a>] i,j
Clearly
2 1 2
(1.9) Zu., > Zu )
asy 2 nlig,, e
1 2
= n-l(Au - u,)
) 2
! 11 " (Au)
22(n - 1) n-1
By (1.6)
2 1 [vul4 (awy
(1.10) v P mm T 5y -
a>] . (M sup u-u)
Therefore
1.11) 1 vul® -~ PP
(1. 2(n - n-1

1 (U sup u-u)2

+ Fu]Vulz + (n - 1)|<|\7u|2

. |Vu|2F(u), <o

H sup u-u
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Hence
1 2 ) F (u) )
(1.12) T - 1) £ (xo] + (Fu + (n - 1)K + T o Gl f(xo)
et (F{u] )2
n -1\ sup u-u
and

f(xo) < max {4(n - 1)[-(n - DK - Fu
R
H sup u-u H sup u-u

THEOREM 2. Let M be a compact manifold with boundary. Suppose H denotes

This proves theorem 1.

the mean curvature of oM, and if u 1is a non-negative solution of (1.1) and
(1.2). Then for u > 1,

either
. 1/2
ivul <max]-2(n - 1)H, z“——Fi“—)-l }
W osup u-ui|y,
X (U sup u-u)
or
2 F(u)
iVu| <max {4(1‘1 - 1) [-(n e’ I)K — Fu+ HTm L] s
F(u)
V8 ‘ oo o5 Lf (4 sup u- u]
where || llaM denotes the supremum norm on oM.

PROOF. Again, we consider the function defined by (1.4). If X, € M is a

point where f attains its supremum. By the strong maximal principle

of

(1.14) x—(x ) >0
Hence
7u) %u,,
(1.15) Z ot iswp o
By a suitable choice of orthonormal frame el,...,en such that en = g%

and e, are tangential to M for @ < n, since u|aM =9

(1.16) Uy = 0 for a <n

Direct computation then gives

(1.17) (n - 1Hu, = z Usy
a<n

= 8u - u,,
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Therefore (1.15) becomes

3
(1.18) ubu - (n - 1)”“\2: * u_ﬁ
Since wu,, < 0,
(1.19) t"’/z(xo) <-(n - DHf(x)) - u——sﬁ; e f%-,/(z)
(o]
Hence
1/2

(1.20) fl/z(xo) < max {-z(n - l)H) 2“ M sflp(ul’u aM ;

This gives the first part of the theorem. On the other hand, if xo is in
the interior of M, theorem 1 gives the second half of the estimate.
THEOREM 3. Let M be a compact manifold with boundary. Suppose the principal
curvatures on oM are non-negative (i.e. M is convex). If u 1is a solution
of (1.1) and (1.3), then for u > 1.
L

F(u)
H sup u-u

L} (M sup u-u)2

IVu|2 <max{4(n -1 [-(n - DK - F_ +

I/g I F(U)
'u sup u-u

(” PROOF. 1In view of theorem 1, it suffices to show that the function

2
£ = [Vu

(u sup u-u)2

attains its supremum in the interior of M.

Assuming the contrary if X, € oM 1is the maximum point of f. Then

2
|vu| “u,,

(1.21) ; ugu, + TR >

i
If haB are the second fundamental form elements of oM, then by direct

computation one shows that

(1.22) Uyy = -hGBuB 1<q,B<n

where we used the fact that u, =0 on oJM. Together with (1.21), we have
: -2Zh_ uu, >0
i a,B af a B

which is a contradiction to the convexity of oM. The theorem follows.

2. ANOTHER GRADIENT ESTIMATE. In this section, another form of gradient
estimate for the solution of (1.1) is obtained. In the case when the Ricci
curvature of M is non-negative, the estimates in the following theorems are
much sharper than those of the previous section. However for general manifolds

theorem 1-3 are more effective as will be demonstrated in the next section.
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THEOREM 4. Let M be a compact manifold. Suppose u

If & is any constant and Bz ?-sup(a4-u)2, then

is a solution of (1.

[ Yu
2

XEM 8

x (8% @+ w)

PROOF. Consider the function
: IVu é

(2.1) g =
82- (@ + u)2

where Q@ = constant and BZ > sup(e + u)z. If X, € M 1is a point where g

achieves its supremum, then at X, 8 satisfies

2
| 7u] (e + u)u,

( g; ujuji
2.2) 0= ——-= +
2 82_ @ + U}E (52- (@ + u)2)2
and
u?. + Uu.u... du.u..u. (@ + u)
(2.3) 0>%&= ji jgid, jgi
B2 @ w? (B (@ewD?

4
| 9ul . lvu]?(@ + WEQ)
8- @+ wH? (8- @+ whH?

+*

4[Vu[4(“ + U)z
(32- @ + u)2)3

+

Substituting (2.2) and using the Ricci identity, we have

ul, F [Vulz
ji u

2 “(Fy + (0 - DB @+ wH - @+ wFQ)
| <sum[

2
, (0 - DK|%u]

(2.4) 0>
62- (@ + u)2 BZ- (u-ru)2 82- (@ + u)2

7] * L L@+ wr)
(% @+ wH? (B - @ wH?

+

By picking suitable orthonormal frame and using (2.2) again

4 2
2 2 [7ul“ (@ + w)
(2.5) u,. 2 u
ji 11 (82- (@ + u)2)2
Hence
2
(2.6) 0 >g2 _@ruw (F, + (n - DK)g

82- (¢ + u)

2 . (@ + u)F(u)

g
32- (@ + u)2

g

1).

-—
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Therefore

(2.7) -(Fy+ (- DO @+ w?) - @+ wRw) > 8

and the theorem follows.

THEOREM 5. Let M be a compact manifold with boundary. Suppose u is a
positive solution of (1.1) and (1.2). If HSO0 is the lower bound of the

mean curvature of OM with respect to the outward normal é%' then either

|7u]? < sup
XEM

[-(Fu s - DB @+ wd - @ u)F(u)]
82
x (2. (@ + w)?

or 2 2
|vul? < (n - 1)2H2(B'—2a> 8- @+ w?
a

for any a >0 and Bz = sup(a + u)z.
PROOF. Again we consider the function g defined by (2.1). If the supremum
point X of g is in the interior of M, the estimates of theorem 4 can be

applied. If x, € oM, then

(2.8) 0 < %gv (x,)
Hence at x
2 2
| Vu “ou,,

(2.9) Ottt T
By (1.17) 3

,  |vulfou,
(2.10) 0<-(n- I)Hu\) + m

Since u 1is a positive solution, this implies

(2.11) - (- 1H > E%ZEL
4
8. a
Hence
2, 12
(2.12) - (n - %> _“_le'_l_z
(8% o?)
Therefore

(2.13)

2
2 2 [Pu]“(x )
(n - 1%? ( B -2 ) >——3 >3
a B°- a
which proves the theorem.

THEOREM 6. Let M be a compact manifold with boundary. Suppose u is a
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solution of (1.1) and (1.3). If oM is convex with respect to the outward
normal, then

|Vu|2 < sup
x €M

[-(Fu + (n - 1)1()(62- (@ + u)z) - (@ o+ u)F(U)]
a2

x (8- @+ wH
for any constant & and 82 2 sup(> + u)2.

PROOF. Similar to theorem 3, we only need to show that the supremum of the

function g occurs in the interior of M.

If not, say xg € M 1is the supremum point of g. Then
2
u.u, Vut" (@ + u
v +||( Ju,,

(2.14) 0 <
B- @+ w? (8- @+ whH?

Since u, =0 on oM, this gives

2.15 0 <Zu,u,

- - S a <
hygUals 1 ,B<n
which is a contradiction to the convexity assumption of oM. Hence the estimate

of theorem 4 can be applied.

3. APPLICATIONS AND EIGENVALUE ESTIMATES. We will give applications of the
previous theorems to obtain lower bounds for the first non-zero eigenvalues of

the Laplacian.

For manifold without boundary, we consider the eigenvalues of the equation
(3.1) . Au = - Au

In the case if M has boundary oM, again we impose either the Dirichlet or

Neumann condition:

(3.2) u=0 on M
(3.3) g%-E 0 on oM.

THEOREM 7. Let M be a compact manifold. Suppose d denotes the diameter

of M. If Al is the first non-zero eigenvalue of (3.1), then

A mexp - [1e(1-am - 1idnl/Y
1 2(n - 1)d?
PROOF. If u 1is the first eigenfunction, by theorem 1
2 Xl
(3.4) |ou]“ < max {4{11 - 1) [ (n - 1)K+ X + 1] ,
V8 (4 sup u - u)2
TR P
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for any uw > 1. Therefore

WA 1/2
(3.5) N Y <[4(n 5 1)( 1 (- l)K)J

U supu-u u -1

However since u satisfied

(3.6) fMu= 0

This implies that the nodal set N of u divides M into two parts. If
x € M 1is the point where u achieves its supremum and Y be the shortest
geodesic joining x and N, then Y has length at most d. Integrating (3.5)

along Y, we have

Y

H -1 W supu-u
uxl 1/2
<[4(n—1)(u_1—(n—1)1() d
Hence
-1 1 H 2
(3.8) log + (n - 1)](] <A
M [4(n-1)d2( “'1) .

Clearly the left hand side can be made to be positive by choosing H closed

enough to 1. The theorem is then proved by maximizing (3.8) with

T el s (1 - 4 - 2%y

THEOREM 8. Let M be a compact manifold with boundary. Suppose i denotes
the inscribed radius of M, i.e. the radius of the biggest geodesic ball than

can be fitted into M. If u is the first eigenvalue of (3.1) and (3.2),

1
then
ny >% [1_2 (log N+ (n - 1)1(]
4(n - 1)i~ .
where

Y = max lexp[l + (1 - 4(n - l)zizK)l/z]; exp[-2(n - 1) X Hij:

PROOF. It is well known that the first eigenfunction .u of the Dirichlet

boundary problem does not change sign. We may then assume u is non-negative

and apply theorem 2. We get

(3.9) |Vu| < -2(n - 1)H( sup u-u)

or
(3.10) lnu|? < 4@ - 1) (u W (- l)K) (u sup u-u)’

If (3.9) holds, we have

— ——--——Tj'r_"_
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(3.11) 1wl ¢ - m

U sup u-u

By integrating along the shortest geodesic Y joining sup u to oM, we have

(3.12) log —2— < -2(n - 1)Hi
H -1
Hence if we take H such that

U >e-2(n - DHi

(3.13) T

we get a contradiction. Hence (3.10) holds, and the estimate of theorem 7
follows for u satisfying (3.13).

By applying theorem 3 instead, one can easily obtain lower estimate for
Xl of the Neumann problem.
THEOREM 9. Let M be a compact manifold with convex boundary. (i.e. the
principal curvatures of oM are non-negative). If Al is the first non-zero

eigenvalue of (3.1) and (3.3), then

A o >exp -1+ (-4 - l)zdzl()l/z]
! 2(n - 1d°

PROOF. Similar to theorem 7.

For compact manifolds with non-negative Ricci curvature we apply the
gradient estimates of section 2 to obtain the following sharp estimates for the
first non-zero eigenvalues of (3.1), (3.2) and (3.3).

THEOREM 10. Let M be a compact manifold. Suppose Al is the first non-
zero eigenvalue of (3.1). Then
wl

)\1 + max{-(n - 1)X,0} > 5
4d

In particular, if the Ricci curvature of M is non-negative

PROOF. Applying theorem 4, we have

, (- (@ - DROE- @+ wd
(3.14) [u| <sup[ 3
B
Au(a + u)
. 1_2_] 8% @+ w?
8
[Hw{a@+un-(n-un¥-m+uf1
a sup 2

x (82 (@ + wd

P ——
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By setting a = 0 and 82= (sup u)2 (we may assume that sup u = ]inf u|) gives

(3.15) IVul2 <[ + max{-(n - DK,0}]

X ((sup u)2 - uz)

Hence
Vu 1/2

(3.16) —J—ﬁ< [\,+ max{- (n - 1)K,0}]

(sup u)® - u
Integrating along the shortest geodesic joining sup u and the nodal set of
u yields

m
(3.17) 5< [Al + max{- (n - 1)K,0}]1/2d

This proves the theorem.
THEOREM 11. Let M be a manifold with boundary. Suppose My is the first
eigenvalue of (3.1) and (3.2), then

H. + max{- (n - 1)K,0}

>L[E - sin~! - (n - DH >]
i2 c ((u1+ max{- (n - 1)X,0} + (n - 1)21-12)1/2

where i = inscribe radius and H<0 is the lower bound of the mean curvature
of oM. -

1 2

In particular, if M has non-negative Ricci curvature then

2
My > LZ ;- sin-l(—-———ﬁ- (n - 1)}2{ 2)
i u1+ (n - 1)H

PROOF. By theorem 5, if we set Q=Y supu and B8 = (Y + 1) sup u, then

either
vu)? 2y + 1
(3.18) g = > > < My + max{- (n - 1)K,0}) % —
B” - (@ + u) (r + 1)
or
(3.19) g < (n - 1)2H2(2Y—*2’1)
Y
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where u is the non-negative first eigenfunction. We claim that for

appropriate choice of 7Y

(3.20) g SH+ max{- (n - 1)K,0} .
If not, since fgl—:—li=< 1, g must satisfied (3.19). Therefore, we have

vy + 1)
(3.21) (n - 1)%H° (31—%—1):> g >u, +max{- (n - 1K,0}

Y

| 2.2 2.2 1/2
However if Y =, 1) 5t @ - BFy + 1

luI+ max{ - (n - 1)X,0} Mo+ max{ - (n - 1)K,0}

2,2

ST é:xi-}%nH- I it can be easily be checked that

1

(n - 1)2H 2(ZY + 1) = Yz(ul + max{ - (n - 1K,0H

which is a contradiction to (3.21). Hence for the above choice of Y, we have

(3.22) | Pul

/?Y + l)z(sup u)2~ (Y sup u - u)2=< M+ max{ - (n - I)K,O})l/2

Integrating from sup u to M yields the theorem.

. R n : :
REMARK. If M is a compact domain in R~ with non-negative mean curvature,

theorem 11 generalizes the result obtained by Hersch [7].

THEOREM 12. Let M be a manifold with convex boundary. Suppose Xl is

the first non-zero eigenvalue of (3.1) and (3.3), then

2
Al + max{ - (n - 1)X,0} >—2
4d

PROOF. Follows from theorem 6.

The gradient estimate of theorem 4 is in some sense best possible for
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compact manifold with non-negative Ricci curvature, as the next theorenm
will show.

THEOREM 13. Let M be a compact manifold with non-negative Riceci curvature.

If u 1is an eigenfunction on M then

2
w2 > 2“3”2

where V = volume of M. Equality holds iff the universal covering M
k

. . 3 : . . . k
isometrically splits into R" X N and u is an eigenfunction on R alone.

PROOF. By setting o = 0, B = Ilu[LJo and applying theorem 4, we have

(3.23) lu]? <A [Hulﬁ - uZJ

Integrating both sides yields

(3.24) 2 uli? < ful@n

Hence equality holds iff

(3.25) I9ul? = A(ful - B
Differentiating equation (3.25) gives

(3.26) ujuji = -lhui

If one chooses suitable orthonormal frame, this yields

(3.27) u, s -Au

1]
(o]
=]
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and

Covariant differentiating (3.26) in the ith direction and sum

(3.28) 0= u?. +ou.u,,.. + AuZ + Auu,
J1 J J1i1 1 11
>=u§1 + (n - DK|7u]? - A%2
2
= (n - 1)K|Vu| (by 3.27)
>0

This implies that equality holds on each step of (3.28). Hence the

Ricci curvature vanishes along Vu and uij =0 wunless i =3j = 1.
We define a 1-form ® to be the dual of (sgn u) T%%T-. We claim
that W can be defined smoothly on M. In fact, since urg = Au, this

Vu

means e, = (sgn u) ——— is well-defined up to a sign even at the critical

| 7ul
points of u. Hence W is a smooth 1l-form.

Consider the equation

= 0)

(3.29) (w,Aw) = - %Almlz + |vw|2 (since R,

= | (ol = 1)

Clearly uij =0 when i#1 or j #1 implies
(3.30) | w

Hence w is a parallel harmonic 1-form on M. By the splitting theorem

k

of Cheeger and Gromoll [4], M splits into R X N. The rest of the

theorem follows trivially.
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4. UPPER BOUNDS FOR Am

Given any compact manifold of dimension n, the well-known Weyl
formula gives the asymptotic relationship between the number of eigen-
values less than any given number T and the number itself. If we take

the increasing ordering of eigenvalues {0 < )\1 4)\2 < ---} then the
Weyl formula can be written as
Z 2
x ~(%)n x 4nr(%+ 1> "
The purpose of this section is to give upper bounds of Am with
the right order in %- which corresponds to the Weyl formula. For

general Riemannian manifold, we obtain

2

m+ 1 i
)‘mgcl“zz( v )

where C1 and C2 are constants depending only on n, d = diameter of
M and K = lower bound of Ricci curvature of M. When M 1is a manifold
of non-negative Ricci curvature, we have

2 4
n n

<F(m+ 1) n
km C ( v X 41T > + 1

where C = constant depending on n along. Moreover C(n) is bounded
above for all n € Z'

COVERING LEMMA. Let M be a compact manifold. For each 0 <r <,

k(r)

A such that
i=1

there exists a collection of geodesic balls {Bi(r)}
they satisfied the following properties
(1) LJBi(r) covers M
i
(ii) Bj(éa r]Bi(g) is a set of measure zero for i # j
(iii) for y € M, there are at most
n

P =3 (2 sinhv-K r)
YK r

221
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balls which contained y, where k < 0 is the lower bound of the sectional

curvature of M.
REMARK. If M is non-negatively curved, P <3 - 2’k

PROOF. For any 0 < r < d, there exists a maximal set of points {xi}tii)

such that they are mutually of distance at least r apart. Property (i)

k()

: if we take
i=1

follows trivially from the maximality of {xi}

{B(xi),r}iii) to be our collection. The fact that all the xi's are

of at least distance r apart gives property (ii). For y € M, the

number of balls which contained y is the same as the number of xi's

which are in B(y,r). By the comparison theorem and lifting B(y,r) to

the tangent space at y, it reduces to counting the maximal number of points
with euclidean distance

rv/-K
sinh rv-=K

apart that can be fitted into the euclidean ball of radius 1. A simple

counting argument gives (iii).

REMARK. By (i) and (ii) one obtains the following estimates of k(r)

ktr)
(4.1) VM) < Z V(Bi(r))
i=1

< k(1) max{V(Bi (r))}

n-1

-
< k(r)o(n - l)f [(-K)~ 1/zsinhv/-_K tldt
o

and

k(r) .
(4.2) viM = Z V(B (3)
i=1

> k(1) min{aicga}

r/2
> k(r)a(n - 1)(/?)1'1/. (sin(¥T c))“'ldt

o]
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where a(n - 1) denotes the volume of the unit n - 1 sphere in mﬁ,

and T = upper bound of the sectional curvature of M.
Clearly k(r) 1is a non-increasing function of r. 1In general, k(r)

. . . + e : .
is not a surjection onto Z = positive integers. However the following

lemmas show that it is not far from being surjective.

LEMMA 14. For € > 0, and m € Z+, there exists a collection of geodesic

balls {B,(r.)}" which satisfied:
1 1 i=1

(i) LJBi(ri) - M 1is a set of measure less than E.

T.
(ii) Bjtil) F]Bi(ri/Z) is a set of measure zero for 1 # j

(iii) there exists an r, such that r S»ri:< T+ € for all 1 €i <n.

PROOF. In view of lemma 14, we know that for ¢ small enough, there exists

r>0 such that k(r) =m <m<m, = k(r - §. Consider {Bi(r)}".l‘=1

the collection which satisfied property (i-iii) of the covering lemma.

m
We may assume that Bl(r -8 U Bi(r) does not cover M. Let
i=2 ,

m
x €M - {B(r - S)iEéBi(r) C By(r) - By(r - 8.
6),By(r - 8§} LJ{Bi(r)}?zz satisfies

Bi(r) by 6

Clearly the collection {B(x,r -

the required properties. Inductively by shrinking the balls

and adding balls of radius r - &, we can obtain m balls which satisfied

the conclusion of the lemma.

LEMMA 15. For € > 0, and m € Z+, there exists a collection of geodesic

balls {B.(r.)}" . of which satisfied
it7i’ Ti=1
(1) LJBi(ri) covers M

T.
(ii) Bj(ilj r]Bi(ri/z) is a.set of measure less than & for i # j

(iii) there exists an r, such that r < r, Sr+€ forall 1<i<mn

(iv) for y € M, the number of Bi(ri)'s which contained y is

at most
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sinh((r + €) /I))"

- 3(2
(r + €)vV-K

PROOF. We proceed the same way as in lemma 14. Instead we take

m
{B(x, 1)} L}{Bi(r)}i=1 to be our new collection. It is easy to check
that properties (i-iv) are satisfied. Again by adding more balls

inductively, the lemma follows.

We are now ready to give some estimates on the eigenvalues.

THEOREM 16. Let M be a compact manifold. If Xm is the mth non-zero

eigenvalue of the Laplacian on M, then

( (28 s 12 (k) + a(1 + 28252 (smh/“d>

2
a(n - 1) 1 |n
x[(’“ MR V(M)]
when n = 2(B+ 1), B=0,1,2,...
Am < 2n-2
2 . n
(2_32_3)—(-1() A+ T+ 228)2 (M_d)
v-K d
2

(n—l)

“[men: ol

_ when n =28+3, B=0,1,2,...

where K < 0 1is the lower bound of the Ricci curvature of M.

PROOF. Let {B ( }m +1 be the collection of balls which satisfied lemma

i=1
14. Consider 95> the first eigenfunctions of the Dirichlet boundary
problem on the Bi(ri)' If u,, 0 <Ka< m-1, are the first m
eigenfunctions on M (including the constant function), then by the

variational principle

1 va?

f £

(4.3) A = inf
fl uy

where inf is taken over all f orthogonal to uy, 0 <ae<m- 1.
I‘.

By the essential disjointness of B ( ), the set of functions wi
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on M are linearly independent. Hence there exists 0 # (Cli)?:i € R

such that
= Ta
(4.4) ¢ =X iwi

is orthogonal to wu_, for all «a.

al
Therefore
/1 %l 2
(4.5) J\ms__z_
Je
But
2 2
Siwel? - sf2iw, |2
=Zu (B.)a wz
1 i i
2

where ul(Bi) denotes the first eigenvalue of the Dirichlet problem on

T

_i . .
Bi(Z ). This gives
(4.6) )\m < max ul(Bi)

However by the monotonuity of uy and a theorem of Cheng [5 ]
T
4.7 AL <UI(B(K,—))
(@8 1)? L, 40~ 2) ?n?
4 r2

when n=2(B+1), B=0,1,2,...

=< 2
j (2B + 2)
4

2 28,2
(1) » AATN 2 20)

T

whenn=28+3, B=20,1,2,...

\

m+1
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On the other hand, by (4.1)
1-n = n-1
(4.8) VM) < (n + o - 1)(-K) 2 f (sinh/X t)dt
o
-n K (+€) . n-1
<@+ Dam - DK C f (w—-————“ff’_‘z (r+€) t)dt
) V-K (T+€)
.___21\_2 . Vard n-1 /X c n
=] (m + l)a(n - 1) (_K) ) (SIHhr;E (r+E)) * [ -Kn(r+ )]
-n+1
2
= (m + 1)E£251_ll (r+€) (sinh v-X (r+€))n-1(-K)
S+ D30 - 1) ey (_};@)“1
2 YK d
Hence
2 2n-2
. 2 n . —
1 (r+£) afn - 1) 1 sinhv-K d
(4.9) =5 < [{m + 1) ——~:| (————)
r2 1'2 n V(M) '/_—K d
Together with (4.6)
( z 2 2N=2)
< (28+D° o, a1 2rs)zﬂz (r+€) (sinh/-_l( d) n
4 e /K d
2
an +1) 1 -
fee 0 ]
when n = 2(B+ 1), B =0,1,2,...
)\m < < and . p .
@8+ 0%y, 40+ THA L 2252 (zve)?
T
2n-2 2
 f sinhv=K d) i [(m . 1)a(n - 1) 1 ]"
VK d . n V(M)
when n=28+3, 8=0,1,2,...
\
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Letting € + 0, we obtain the desired result.

When K = 0, we can obtain a sharper estimate on Am .

THECREM 17. Let M be a compact manifold of non-negative Ricci curvature.

Then
L 2 2
Tlm o+ 1 n
A < o+ On [ v a("'l)]
PROOF. As in theorem 16, we have
A o
» <H (B0, D)
However, it is known [ 5] that
T n(n + 4)
UI(B(O,f)) <——2—
T
Similarly to (4.7)
VM) < (m + l)max{V(B(xi,r + )}
< (m + 1)e(n - 1) (r+e)n
n
Hence 2
n

A <n+ 4) [(’“ * 1313(" = 1)]

5. LOWER BOUNDS FOR )‘m
In this section we will obtain lower bounds for Am with the right
order in % . The first part is devoted to estimate higher eigenvalues.

For m big enough, we have

2

Am>c3($)"
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where C3 depends only on K, d, upper bound of & = radius of convexity,
and K = lower bound of the sectional curvature of M. When M has non-

negative sectional curvature we show that

<|3
=)

where C 1is a constant depending on n alone.
For general m = 2, we employ a method of the second author [15]

to obtain lower bounds for Am’ namely

=R

m
Am >(:4(71-)

However C4 now depends on n, §, d, k and V.

THEOREM 18. Let M be a compact manifold of dimension n. Suppose Am

is the mth non-zero eigenvalue of M. If

V(ﬁ) n-1

m >
a(n - 1)f272 (sin(tt))" lae

where T = upper bound of the sectional curvature of M and S = radius

of convexity. Then

SREN]
S

2,2..1/2
exp -[1 + (1 - 16(n - 1)7°dK) ] /e(n - 1)
)‘m > 32(n - 1)p ( n ) (

<|=m
S ——

where

. n
P23 (2 sinh 6/3?)
§Y-K

with 0 2 k = lower bound of the sectional curvature of M.
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PROOF. By (4.2) and lemma 15, it is clear that if

v
a( - 1)(/r‘)1'"j°°72(sin(/r‘ "1 de

(5.1) m =

and for any € > 0, there exists a collection of geodesic balls {Bi(ri)}rL

which satisfied properties (i-iv) of lemma 15. Moreover
ri<r+ e<d forall i=1,..., m

The maximum principle of )\m gives

2
(5.2) A = max min Ml_

2
{Wi}?:l fley Jf

where we maximize over any set of m functions on M and minimize over
all function f which :are perpendicular to 9;5 1 <i<m. In particular,
if we take upi to be the charateristic functions on Bi(ri)’ then the

conditions f 1 ¢, means

(5.3) f £=0
B

i(ri)

Hence

2
(5.4) Am 2 min M

2
f1 A If

However if Xl(Bi) denotes the first non-zero eigenvalue of the Neumann

problem on Bi(ri) then (5.3) implies

(5.5) f |vel? > A (B.) f 2
Bi(ri) Bi(ri)

— o - - ——— e -

229
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Summing up both sides of (5.5) over i, we have

m m
(5.6) ff |9£]% > min (A (8,)} £ f £

1 Bi (ri) i=1 Bi (ri)

>min{ll(Bi)}_{df2

by property (i)} of lemma 15. On the other hand, property (iv) gives

P 5 2
(5.7 Ppf |vE|“> Z [ v£|
M i=1 “B

3 (r;)

A3

Therefore

min{ll (Bi) }

(5.8) Xm = 5

Applying theorem 9, we have

exp - [1 + (1 - 16(n - l)zrik)l/z]

5.9) A (B.) =
( 171 8(n. - 115
> &Xp_- [1+ ( - 16(n - 1)2(1' + E)ZK)I/Z]
2
8(n - 1)(r + E)
by property (iii). However (4.2) and property (ii) gives
25
1 2 1
(5.10) VEmn - )——mF f (sin(¥T £))™ " dt - me
(TP
o
(s il ) e
>nlam -1 li‘/'(ZSmZ t) dt - €
(T ¢
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since T < 6 = radius of convexity

L /T
>m—0(n - 1) o E]
L n2"

Combining (5.8), (5.9) -and (5.10) yields

2 2..1/2
/exp-i1+(l-16(n-1)(r+6)l() ]
(5.11) Am> TCRL:
2
2 n
1 {ma(n - 1) 1
X (r f E) Z( n ) 2

(Vv + mE)ﬁ

Theorem 18 is proved by letting € —+ 0.

THEOREM 19. Let M be a compact manifold of non-negative Ricci curvature.

If
- n-1
V(T )
m > 572, . n-1

a(n - l)f0 (sin(¥T t)) dt

then
: 2
A > 2 (a(n-l))n<ﬂ)n
m 3 . 2n+6 n Vi

PROOF. We follow the idea of the proof of theorem 18. The non-negative
Ricei curvature assumption allows us to apply theorem 12, hence we can

replace (5.9) by

. \2
(5.12) A (B) >(4(r_+?))

and the theorem follows.
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COROLLARY 20. Let M be a compact manifold of non-negative sectional

curvature. If
= V(ﬁ)n-l
T = 572 . n-1
a(n - l)fo (sin(Tt)) dt
then
2 2
1T2 a( - 1) n - n
Ao = n ( n (V>
T 64«32

For lower eigenvalues Xm’ the task of getting a lower bound

becomes more difficult since theorem 9 and theorem 12 applied only to
manifolds with convex boundaries. However utilizing the method of Yau Rs1i,

we can avoid the difficulty of obtaining a lower bound for the first

eigenvalue of the Neumann problem.

Let M be a compact manifold, consider the ball of radius r < d,

Bp(r), centered at a given point p € M. We define the isoperimetric

constant I (Bp(r)) by

A(oM, N 3M, M B (1))
I (8,(x) = inf[ 1 2 ' 7pT ]
}

mintVOM, (1B, (3).V01, NB(3))

where inf is taken over all decompositions Bp(§) = M1 L}MZ with

V(M1 r]Mz) = 0. This constant I (Bp(r)) is similar to the constant I(M)
defined by Yau [15, p. 499]. Moreover, theorem 4 and corollary 1 in [15]

can also be generalized to II (Bp(r)) with the appropriate modification

in the proofs and the statements. We will give their analogue for

o( Bp(r)) in the next two propositions, however since their proofs follow

directly as in [15] and will be omitted.

IBp(r)lvf1
PROPOSITION 21. T (8,(x)) = inf| f—h e
BE R Bp[?)
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where inf 1is taken over all functions f € Hl 1(Bp(r))
PROPOSITION 22. For any f € H1 2(Bp(r)), we have

f lvg]2 > i (B =)’ f (f - 2

B_(r)
p(
for any k € R satisfying

OB CHORESDES TCNeN

and

V(B ( ) N x| fx) <D >—V(B (—))

In particular, if f = f =0 then
)

ﬁVf|2 I (B (1‘)) f

Bp () B (—)

The following proposition is essentially theorem 8 of [15] together

with proposition 21.
PROPOSITION 23. Let M be a compact manifold. Consider the ball Bp(r) CcM

with r <d. Define G = sup exp [fi' <- —l—z—le((cl(s))szds)) dt] where
g . t

G ranges over all minimal geodesic segments with length £ < r and

T
o(0) € Bp(f)‘ Then for all f € Hl,l(Bp(r))’

V(B ()

i+

I (B (r)) =
P 2r la(n - 1)G

Combining the above propositions, we can show that for any
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f € H, ,(B (r)) satisfying [ f = 0 then
L27p B (5
P
we &)V
(5.13) ive| %> P2 2
41_n+la'(“ - 16, £ .
5™ e
p2

The next lemma enables us to estimate the volume of Bp(%) from below.

LEMMA 24. Let M be a compact manifold. The ball Bp(g) has volume

bounded below by either

T viM)
V(BP (7)) = -

or

n
r C
0

V(B_(5) >
P2 (Zn)n

where C0 is the isoperimetric constant defined by

IO
min{V(M,),V(M,) -t

C = inf
o

with inf taken over all codimension-1 submanifold N which divides

M into M1 and MZ'

PROOF. Suppose V(Bp(—%)) <y—§ﬁ- . In particular V(Bp(t)) <V§—M)

for all t <§ . Hence by the definition of Co

A(3B_(t
(9B_(t))

>
(5.14) — #¢

[= =0

n
V(Bp(t])

However it is well known that A(BBp(t)) = dEfV(Bp(t))' Therefore

integrating (5.14) gives

1
T =
1 7 d <t
. —=V(B_(t)) o
T\ N _ dt
(5.15) nV(Bp(—z—)) -j; __%1 dt >T

V(B (t))—ﬁ_
P
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The lemma follows.

THEOREM 25. Let M be a compact manifold. Suppose )‘m is the mth
non-zero eigenvalue of M with m # 2. Then

2
n

)\m>CS($)

where Cs is a constant bounded below by
2

s 2
min{zT 172 a(n - M dvi™

Cs > . 2
6n+10 nn 2
3.2 (sinh(d¥-k)) ' n" G
or
min{Z 1Y@/ 3" c 2
) [¢]
c =
5 2 2
4n+8 n n-2+ n 2- n .2
3.2 (sinh(dv~kK)) n a(n - 1) G

where C0 is the isoperimetric constant defined in lemma 24 and

t

d
G = sup exp f (- izf K(U'(s))szds) de
[s) o t [+]

PROOF. For m € Z+, let {Bi(ri) }?=1 be a collection of geodesic
balls which satisfied properties (i-iv) of lemma 15, In view of the
proof of theorem 18 and 19 where we obtain the estimates for )‘m with
r< r, <T + € and by letting € + 0 in the final process, we may hence
assume r, = r for 1 <i<m

If we take tpi to be charateristic functions on Bi(r), equation

(5.2) gives

2
(5.16) A > min UEZL
fle, Jf
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However

(5.17)

or

(5.18)

Summing

(5.19)

where

and

(5.20)

Since

then
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proposition 23 and lemma 24 imply either

2 2

nv £

(8(2r)"*1a(n i 1)6) it
i

[ve|? >
Bi(2r)

c 2
fl Vf|2 = ( n+3 n-(; \ f fz
27"n a(n - DTG/

Bi(Zr) Bi(r)

over i on both sides gives

E,ﬁVfiz >£ff2
M M

£ i nv 2 Co 2
= min , —
2l e - e PR S e

I-’ =3 1Sfl..f‘l]'l dv/-_K a
dr~x

» maximal number of Bi(Zr) that contained any

given point in M

On the other hand by (4.2) and property (ii) of lemma 15

T

2
Ve - 1) —— f (sin(/T £))" 1} a4t
O

o

r < d, in the case when 28 2> d we have 5>-§. If 26 < d,

r ré
>
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Therefore
% x min{Zg’l}
1 . n-1
(5.21) Vv2m(n - 1) ———— f (sin(¥T)) dt
ok
0
(min{sz iht
Zme(n - 1) ——2——r
n2

(since % X min{%g 1} < §)

Combining with (5.16) and (5.19), we have

£ 2 min y

The theorem follows

COROLLARY 26. Let M be a compact manifold. Then

S
n

m
Am>c4(v)

where C4 = constant depending on n, 6, d, k, and V.

PROOF. This follows from theorem 25, plus the fact that K 2 K, and a

e : S

237




238

PETER LI AND SHING-TUNG YAU

result of Croke [6] which gives a lower bound for Co’ namely

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(s}

(10]

(11]

(12]

+1
c = v

°  sam™ ! am - 1)(fg(f-?'l sinh/E )" 1 ay™*l
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