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ESTIMATES OF EIGENVALUES OF A COMPACT RIEMANNIAN MANIFOLD

Peter Li and Shing-Tung Yau *

Let M be a conpact manifold with (possibly enpty) boundary. Then

in this paper, we study the eigenvalues of M with resPect to various

boundary conditions.

Since the Poincar6 inequality plays a very inPortant role in analysis

and since a lower bound of the first eigenvalue gives an uPPer bound of

the constant in the Poincar6 inequality, it is very desirable to find a

good lower estinate of the first eigenvalue. For donains in euclidean

space, there are classical works of Faber-Krahn, Polyi-Szeg6, Paytte,

Weinberger, etc. The works of these authors are not only beautiful and

important, but also give a deep impact to estinate eigenvalues on curved

spaces. For nany geonetric problems, we often need to estinate the

Poincar6 inequality for domains on a curved sPace. Thus in this PaPer,

we concentrate our attention to this case. The first najor result in

this direction was due to Lichnerowicz [f0] and Obata [Il]. In their

beautiful work, they assuned the Ricci curvature of the comPact nanifold

(without bormdary) is greater than a positive constant and they estimated

the first eigenvalue from below in tenrs of this constant. It is renarkable

that this constant is sharp, This estinate of Lichnerowicz-Obata was

generalized later by Reilly [fa] to nanifolds with boundary where he treated

t98O laatheoetlcs SubJect Classiflcatioa S3-lO(.
*This research was supported in part by the NSF Grant MCS78-04872
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206 PETER LI AND SHING-TUNG YAU

the Dirichlet boundary valued problern. Besides the assumPtion of

Li-chnerowicz-Obata, he also assuned the boundary of the rnanifold has non-

negative mean curvature.

After this work of Lichnerowicz-Obata, J. Cheeger [ 3] studied the

first eigenvalue by estj-nating it frorn below by a constant which is involved

in certain type of isoperinetric inequality. In [ 1 ], Aubin gave a

lower estimate of the first eigenvalue in terrns of a lower bound of the

volurne, an upper bound of the dianeter, a lowet bound of the sectional

curvature, an upper bound of the Ricci curvature and a lower bound of the

injectivity radius. For the PurPose of applications, it is inrportant to

relax the dependency of the lower bound on the geometric quantities.

For this purpose, the second author [1.5] showed that one c:rn estimate

the first eigenvalue fron below by lower bound of the volune, an uPPer

bound of the dianter and a lower bound of the Ricci curvature. Basing

on rnupper estimate of Cheng [ 5], the second author conjectured that one

should be able to drop the dependency of the volune in the above estimate.

Combining with Chengts result, this would give the best possible estinate

of the first eigenvalue for a general comPact manifold.

It turns out that the fi.rst author [ 9] was able to denonstrate

the above conjecture in all the rnajor cases. His nethod depended on a

gradient estinate of the first eigenfunction- In this paPer, we indicate

how to nake a slight modification of this nethod to give a complete demonstra-

tion of the above conjecture. For the special case of comPact manifolds
n2

with non-negative Ricci curvature, we show that f' > -= where d is
^ 4d-

the diarneter of the manifold. Cn the other hand, Cheng's estilnate gives

_2
l, ( n"'- where n is the dimension of the manifold. (Cheeger [ 2 ] had a

'd'
Heaker estinate prior to Chengls result.) We also exttsnd these estinates

to compact manifol.ds with boundary. For Dirichlet boundary valued Problem,

the estimate also depends on the lower bound of the mean curvature of the

boundary. For Neunann boundary valued problem, we have to assume the
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second fundamental form of the boundary is positive semidefinite. In

the Dirichlet boundary valued problern, the dianeter d can be replaced

by the radius of the lalgest geodesic ball that can be inscribed into the

nani fold.

In the second part of the paper, we denonstrate how to use the

variational principle to obtai.n both upper and lower estinates of

higher eigenvalues 
^r. 

Let V be the volume of the coilpact nanifold.

Then the fanous estinate of H. Weyl shows that when n tends to infinity,
2

^- 
(*) 

t 
"ppro".hes 

to a constant C(n) depending only on the dinension

of the manifold. We dernonstrate how to find an uPper and lower esti.mate

2

of 
^, 

( *) " . For example, when the Ricci curvature of M is non-negative,

l-
we show.n.t adr$.J is bounded from above by an absolute constant.

When the Ricci curvature is bounded from below by (n - f)K, then we
2

prove that 
^, 

{ a, ff)t 
. a, where Ct depends on K, d and n;

CZ depends on K and n. Our rnethod depends on Chengrs result [ 5].

The lower estimate of 
^r(*) 

t 
t, *ot" complicated. When the

sectional curvature is non-negative,

only on n when n is greater than

bound of sectional curvature and the

sectional curvature is allowed to be
2

^r( *) 
t 

has a lower bound depending

a constant depending on the uPPer

radius of convexity. When the

negative, then the lower bound of

^, 
(*) should be replaced by a positive constant depending on tr, d

and the lower bound of the sectional curvatute.

Finally we should rnention that Professor Gronov has pointed

that in a classical book of P. Levy I E ] there was an indication of

estinate of the first eigenvalue. This estimate dePends on a very

non-trivial analysis of the regularity of certain hypersurface with

out

an
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constant mean curvature. Up to now, it is not known whether this analysis

can be carried out when dirnension n7 7. Furtherrnore, the constant

involved in this analysis is not sharp whereas our estimate is sharp

for rnanifolds whose Ricci curvature is non-negative and whose boundary

has non-negative mean curvature. We should also mention that for convex

donain in eucli.dean space, Payne-Weinberger It3] has already estinated

I, for Neunann problen. During the conference, Chavel-Feldrnan generalizedt^
the result of Payne-Weinberger to convex surfaces with non-negative curvature.

Our theorem is more general while our method is very different" After we

indicated our result to Professor Protter, he pointed out a PaPer of Payne

and Stakgold [12] on the estimate of the first eigenvalue of a domain

in euclidean space. It turns out that part of our estinates is similar

to theirs.

l. GMDIENT ESTIMATE. In this section we consider the solution of the equa-

tion

(1.r) Au = F(u)

defined on a conpact nanifold M of dimension n. In the case if M i.s a

manifold with boundary EM, we inposed one of the following bor-rndary conditions:

(1.2) u=0 on aM

(I.3) #=o on aM

The first one is known to be the Dirichlet boundary condition and the

latter is the Neumann boundary condition, shere * denotes the outwardnormal

to aM.

Suppose the Ricci cur,rature of M is bounded below by (n - f)K- In the

next three theorems we will derive an uPper estinate for the gradient of the

solution of (1.1)(with different boundary conditions) in terms of K, u, F(u)

and its derivative.
THEOREM l. Let M be a comPact manifold- If u is a solution of (l.l) and

U > I is any constant, then

lv,rl2 <'"* 
lc{n - t,[-(n - r)K - F,, - ilu#S*L] ,

I

Eil#fu1ffru '"n"-"r2
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where Fu denotes the derivative of F with respect to u.
PROOF. For ! > l, we define the function

(1.4) r= lv"l2 -
(u suP u-u;2

By the conpactness of M,

suprenun. Hence at to

(1.5) and

there is a point to a M such that f achieves its

This gives

(1.6)

and

(1.7)

By

o > l.

(1.8)

Clearly

(r.s)

By (r.6)

(r.10)

Therefore

(1. 1l)

2 u.,,- -

J J)'

^2+--tJ.U., .Z,u.U- -.
O> rJ 1'l 1,1I 111

)
(U suP u-u) -

I

I

'

:

choosing suitable orthonorrnal frarne at xo, we nay assune ro= 0 for
Substituting (1.6) into (1.7) and using the Ricci formula, we have

"3r4 
* ?'i(Au). + 

i]iRi;ui'5 
* -lvu-l2^g-< o

"3r"il " 
ri(.j,",") '

=;!ra,, - \r)t
"ir (A,r) 

2

>m - l) - n -t

"j,*1=z#D.,# g
I lvr,la ttEI

2(n - r) (u sup u_u12 n - I
* Fulvul2 * (n - r)Klvul2

* lv.rl2r(,r). 
" ou suP u-u



2LO

Hence

(r. r2)

(r.14)

Hence

(1" ls)
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* (n - r)K + 
u #?,-u) er*ol

and

This proves theorern l.
THEOREM 2. Let M be

the nean curvature of
(1.2). Then for U >

either

r(xo) {'",. 
{o(n 

- 1)[-," r)K - Fu

.lffilll ^lffilll
a compact manifold with boundary. Suppose H denotes

3M, and if u is a non-negative sol.ution of (1.1) and

t,

x (U sup u-u)

where ll ll a u denotes the suprenurn norm on aM.

PROOF. Again, we consi-der the function defined by (1.a). If x^ € 0M is a
o

point where f attains its suprernum. By the strong maxinal principle

v,, 2 ( 
'"* [0,r, 

- ,) 
[-(n - 

r)K - F,,+

tv,l <,,^. 
{-r(n 

- 1)H, rlt"+S=ll,'jt}

${*o) ' o

1v,, | 
2,r,,

E u.u- + -----j- > 0. riv usuPu-u

By a suitable choice of orthonormal frame el,...,en such that 
"r,

and €c are tangential to 3M for o ( n, since ulaU = 0

(r. l6) uc=0 for o<n

Direct computation then gives

(n-r)H5r Euqo
O<n

a

0v

)

(1. 17)

=at:\v
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Therefore (1.15) becones

(1. l8) uuAu

Since \ < 0,

(1.1s)

Hence

(r.20)

, ,3-(n-l)Hu-t+ >0v u suP u_u

f/zu; < -(n - r)Hr(xo) ;-# "-, rll:,

r,/2{*o). *"* l-2'' - r)H.2ll 
"=:fkll:l'l

This gi.ves the first part of the theorem. on the other hand, if *o is in
the interior of M, theorem 1 gives the second half of the estirDate.
THEoREtr't 3, Let M be a compact rnanifold with boundary. Suppose the principal
curvatures on aM are non-negative (i.e. oM is convex). If u is a solution
of (1. f) and (1.3) , then for U > l.

(

I r(,rt ll )-ffilll ,'s"p"-,,;2

1, it suffices to show that the function

^ lv,-,| 
2

(U suP u-u;2

lv,, | 
2..,

E u.u.-. a ------1- I g

i 1rt us1Pu-u

lv,lt <*"*[o,n - r) 
[-(n 

- r)* - ,u . 
I

PROOF. In view of theorern

(1.27)

attains its supremum i-n the interior of M.

Assr-uning the contrary if xo € EM is the maxinun point of f. Then

If ho' are the second fundanental form elenents of EM, then by direct
computation one shows that

(L-22) uou=-hoBuB r{c,B<n

where we used the fact that ,v f 0 on aM. Together with (1.21), we have

--E^hoBuotB t o
c,F

which is a contradiction to the convexity of aM. The theorern follows.

2. ANortlER GMDIENT ESTII'{ATE. In this section, another fonr of gradient
estinate for the solution of (1.1) is obtained. In the case when the Ricci
curvature of M is non-negative, the estinates in the following theorens are
nuch sharper than those of the previous section. However for general manifolds
theorem 1-3 are nore effective as will be denonstrated in the next section.
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THEOREM

Ifc

PROOF.

(2. t)

where o'

achieves

(2.?)

and

(2.3)

Hence

(2.6)

u) F (u)

be

nt

"I

4. Let M

is any consta

1v,., l2 < ,,rp

92-

2g+
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a compact nanifold. Suppose u is a solution of (f'l)'

and 82 ) suplo+ u;2, then

l(F,, * (n - l)K)(82- (a * u)2) - (o *

92x€M

' (82- (c * ,r)2)

Consider the function
lv'I2c'=?'r..;V

= constant and 92 ) suple * u)2. If *o = M is a point where

its suprernurn, then at *o, g satisfies

lv,rlo

or+=

4lvul4(o * ,r)2'aT;;zr
Substituting G.2) and using the Ricci identity, we have

u?. rrlv,rl2 .(n_r)xlvul2(2.4) org_|"-F.fhf.ffi,,r'

By picking suitable orthononnal frame and using (2.2) again

(2.s) u?. > ,r], > lv" I 
a 
ra ' gl 1-ji - -ll 

G2_ (c * ,r)2)2

(g2- (e * u)2)2

o)g2 1o, + u)2

* u)2
(F,r+(n-f)K)g

(a

(o + u)F(u)
(c * u)2^2E-
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-(F., * (n - l)K)(82- (o + u)') - (o * u)F(u) ) B2g

and the theoren follows.
TFIEOREM 5- Let M be a cornpact maniford with boundary. suppose u is a
positive solution of (1.1) and (L.2). If H <o is the lower bound of the
Dean curvature of aM with respect to the outward norrnal $, tr,"r, either

213

Therefore

(2.7)

for any a)0
PROOF. Again

point *o of
applied. If

(2.8)

Hence at *o

(2.s)

By (r. r7)

(2. ro)

Since u is a

(2. rr)

Hence

(2-t2)

Ttrerefore

(2.13)

which proves the
THEOREM 6. Let

lv,,l2 < 
:":r I
, (82- (a * ,r)2)

lv.,l2 < 6 - D2u2(+) G2- 1e* .,)2)

', -2and B' ) sup(a * u)-.
consider the function g defined by (2.L). If the supremum

is in the interior of M, the estirnates of theoren 4 can be
€ aM, then

o ' ]eu (xo)

o<- (n-l)Hd.++
positive solution, this inplies

- (n - rlH'$uz ;

' (n - t)2t12 , ffi
(n-r)'r'(+L) ,t+

theoren.

M be a conpact nanifold with bormdary.

we

c

x
o

(

)o

Suppose u is a
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solution of (1.1) and (f.3). If aM is convex with respect to the outward

nornal, then

+ (n - l)K)(82- (a + u)') - (o *

ror any constant 

"-tul"ot"u' 
;t'1r," * u)2 .

PROOF. Sinilar to theoren 3, we only need to show that the suprenurn of the
function g occurs in the interior of M.

If not, say xo € EM is the supremr.un point of C. Then

(2-14) o<--jlc---r*lv"l2(o*'')\
g-- (ct + u)- (B-- (o * u)')'

Since \ = O on EM, this gives

(2.1s) o.?urtru
l
- ho'uot' I {c,fl < t1

which is a contradiction to the convexity assurnption of 3M. Hence the estinate
of theoren 4 can be applied.

3. APPLICATI0NS AND EIGENVALUE ESTIMATES. We will give applications of the
previous theorens to obtain lower bounds for the first non-zero eigenvalues of
the Laplacian.

For manifold without boundary, we consider the eigenvalues of the equation

(3.1) Au--tru
In the case if M has boundary EM, again we impose either the Dirichlet or
Neumann condition:

(3.2) u=0 on aM

(3.3) €$ = o on aM

THEOREM 7. Let M be a compact manifold. Suppose d denotes the diameter
of M. If It is the first non-zero eigenvalue of (3.1), then

^-,exp 
- [t * (t - c(n: r)2a2x)r/2]"1 

26 - Dd2

PROOF. If u is the first eigenfunction, by theorem I
lr(n-r)K*Ir.u j1 ,

?
sup u - u)-

vrr2(r,rp l-
x€M L

u) F (u)- (Fu

92
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for any u > l. Therefore

(3.s) 
"+S* 

.[0,"

However since u satisfied

(3. 6)

(3.7) roe 
u lf

,) * )] '/'

This i.rnplies that the nodal set N of u divides M into two parts. If
x € M is the point where u achieves its suprernum and y be the shortest
geodesic joining x and N, then Y has length at nost d. Integrating (3.5)
along ], we have

(_- 1

./rusuPu-u

. 
[0,,' 

- ,) (J\ - (n - ,r*)] '/' o

Hence

(3.8) .#t-\?('"'ul-) 2* (n-,)K] .r,
Clearly the left hand side can be rnade to be positive by choosing 1.t closed

enough to l. The theoren is then proved by naximl,zing (5.8) with

+t = exp[l + (l - 4(n - r)2a2r';r/2,

THEOREM 8. Let M be a conpact nranifold with boundary. Suppose i denotes

the inscribed radius of M, i.e. the radius of the biggest geodesic ball than
can be fitted into M. If Ul is the first eigenvalue of (J.l) and (3.2),
then

u.' >l [--t- ( rog y)2 * (n - l)K'l
^ ' [o(n - l)iz I

where

Y = nax l"*plr + (l - a(n - 1)2t2gt/zt, exp[-2(n - l) . Hi]l
PROOF. It is well known that .the first eigenfrmction , u of the Dirichlet
boundary problem does not change sign. 1{e uray then assurne u is non-negative
and apply theorern 2. We get

(3.9) lv"l . -2(n - t)H(u sup u-u)
or

(3.r0) lv,,l2 <4(n - r) ("+ - (n - r;x) ru s,,p,,-,,12

If (3.9) holds, we have
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(i.rr) --l-wl- < -2(n - r)Hu suP u-u

By integrating along the shortest geodesic Y joining sup u to 0M, we have

(3.t2) loc u+J < -2(n - l)si

Hence if we take l.t such that

(3. rs) J-t 7 e-2(n - l)ni
u-r

we get a contradi.ction. Hence (3-10) holds, and the estimate of theorem 7

follows for U satisfying (3.13).
By applying theorem 3 instead, one can easily obtain lower estimate for I

I, of the Neunann problem. 
i

THEOREM 9. Let M be a courpact nanifold with convex boundary. (i.e. the

principal curvatures of aM are non-negative). If tr, is the first non-zero

eigenvalue of (3.1) and (3.3), then

^ "exp 
- [l + (t - 4(n - t)2a2gr/zt.-l- 

21.',-_L)d2

PROOF. Sinilar to theorem 7.

For compact manifolds with non-negative Ricci curvature we apply the

gradient estimates of section 2 to obtain the following sharp estimates for the

first non-zero eigenvalues of (3.1), (3.2) and (3.3).

THEOREM fO. Let M be a coupact nanifold. Suppose 
^r. 

is the first non-

zero eigenvalue of (3.f). 'I'hen

_2ll * r.r{-(n - t)K,o} >+'

In parti.cular, if the Ricci curvature of M is non-negative

,

^''#
PROOF. Applying theoren 4, we have

(3.r4) lqrl2 < r* f(^'- 
(t - r)K)(82- (a * u)2)

Lg2
tr,u(a + ")l .-z .2-. _T_) (B-_ (a + u)-)

.,

[rt(82- c(a + s)) - (n - 1)K(82- (a + u)2)l
- _.PL

, (82- qcr + u)2)
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By setting a = 0 and 92= lsup u)2 (we rnay assune that sup u ) linr ul) gives
(3. rs) lv,rl2 < [trI * ."r,{- (n - 1) K,0}]

x ((sup u)2 - u2)

Hence

(3.16) , 
lt=( [lr+ max{- (n - L)K,o}]7/2

r'(sup u)o - u'
rntegrating along the shortest geodesi.c joini.ng sup u and the nodal set of
u yields

(3.17) ] a t^, * max{- (n - r) x,o}1l/2a

This proves the theorem.
THEOREM 11. Let M be a naniford with boundary. Suppose !l is the first
eigenvalue of (3.1) and (3.2), then

xl * tr*{- (n - l)K,oi

=+l+-sin-r/ -(n-rtH 112,'L' \irr. "*t- (n - r)K,o;; -;V7jn)J
where i = inscribe radius and H < 0 is the lower bound of the nean curvature
of aM.

In particular, if M has non-negative Ricci curvature then

PROOF. By theoren 5, if we set o=y sup u and B = (y + l) sup u, then

either

lo t2(3.18) c=-ziu-----r {(r, *nax{- (n- 1)K,0}) "2Y*l =B'-(c*u)' -r (trD2

ot

c < (n - t)2u2 (i+)

u,"i[]-'*-'(
ul

H

tH'
r.)

r)
I
n

(

(+ )]'

(3. rs)
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where u i.s the non-negative first eigenfunction. We clain that for

appropri.ate choice of Y

(3.20) g {ul * max{- (n - r)K,o}

D

If not, since " "u ( r, g must satisfied (3.19). Therefore, we have
(Y * l)-

(3.21) (n - 1)'r'(T)2 s) 1,, + max{- (n - 1)K,0}

' (n - r)2u2 / cn-- rl2H2 .. -, * ,11 
L/2

However if y = i\_ mai-G-_rJ--DT-,o- (ry' ',;-1

(n - t)2H2. ulr\hijii:l-{"-Tl ' it can be easilv be checked that

2.',(n - I)'ll'(2'r * 1) = Y'(ut * max{- (n - l)K,o})

which i.s a contradiction to (3.2f). Hence for the above choice of ], we have

/ri -if rt"n 'l- rt sup u -,r)2 < (ur* rnax{- (n - l)K,o})I/2

Integrating from suP u to aM yields the theorem.

REMARK. If M is a conpact domain in Rn with non-negative nean culvatuTe,

theorem 11 generalizes the result obtained by Hersch [ 7 ].

TIIEOREM 12. Let M be a manifold with convex boundary. Suppose 
^, 

is

the first non-zero eigenvalue of (3.1) and (3.3), then

_2
r, + maxt - (n - l)K,o) ,;F

PROOF. Follows fron theoren 6.

The gradient estimate of theorem 4 is in some sense best possible for

o

)
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conpact nanifol.d with non-negative Ricci curvature, as the next theoren

wi,ll show.

T}IEOREM 15. Let M be a cornpact manifold with non-negative Ricci curvature.

If u is an ei.genfunction on M then

, "? - zh"lllz
li"lf > _w

where v = volr-rne of M. Equality holds iff the universal covering ft

isornetrical ly splits i.nto Rk ,, N and u is an eigenfunction on Rk alone.

PROOF. By setting o = 0, g = li"lU and applying theorem 4, we have

(3.23) lv,,l2 <^ fti"t( - "tJ
Integrating both si.des yields

219

(3.24)

Hence equality holds iff

(3.2s)

zx lluli?,< lufvr

lv,l2=rqlplf-u2;

Differentiating equation (3.25) gives

(3.26) u.u.. = -l'uu.)JL 1

If one chooses suitable orthonorrnal frame, this yields

(3.27) ull = -ltt

=Au

(

I
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and

(5. 28)

Clearly tij = when

(3.50)

PETER LI AND SHING-TUNG YAU

ilr or jlt inplies

lw,l2 = o

ur=vu

Covariant differentiating (3.26) in the ith direction and sum

= u?. * u.u... * Iu? * luu..
Jr. J 111 1 11

? , ,2 .22) rir * (n - l)KlVul- - A-u-

= (n - r)Klvul' (by 3.27)

>0

Ricci

that

meanS

points

This implies that equality holds on each step of (3.28). Hence the

curvature vanishes along Vu and tij = 0 unless i = j = 1-

we define a l-form ur to be the dual of (sgn 
") fv:T 

. we claim

o can be defined snoothly on M. In fact, since ur, = Au, this

Vue, = (sgn 
") ldl 

is well-defined up to a sign even at the critical

of u. Hence trj is a smooth l-form.

Consider the equation

(s.2s) (ur,Aur) = - |lrl2 * lv,,rl2 (since Rrt = o)

= lw,l2 (l'12 = r)

Hence o is a parallel harrnonic l-form on

of Cheeger and Gromoll t A l, t splits into

theorem follows triviallY.

M. By the splitting theorem

nkt N. The rest of the

D
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where C = constant depending on n along. Moreover C(n) is bounded

above for all n € Z+ .

, COVERING LEMMA. Let M be a conpact nanifold. For each 0 ( r { d,
I

there exists a cotlection of geodesic batts tnrftllfli) such that

they satisfied the following properties

(i) 
| 

t, f"l covers M

(ii) B.(? nBi(t is a set of rneasure zero for i I j

(ij.i) for y € M, there are at most

p = s lz sinhv? r\n
\ rz" /

tt1EIGENVALUES OF A COMPACT RIftANNIAN MANIFOLD

4. UPPER BoUNDS FOR l,n

Given any conpact nanifold of dimension n, the well-known Weyl

fornula gives the asymptotic relationship between the nunber of eigen-

values less than any given nunber T and the nrnber itself. If we take

the increasing ordering of eigenvalues iO. trt *^, (...) then the

Weyl fornula can be written as

, ,n n

^, 
-(+) x 4rr (l. ')

The purpose of this section i.s to give upper bounds of 
^, 

with

the right order in + which conesponds to the WeyI forrnula. For

general Rienannian nanifold, we obtain

2

tr, *., . c2 (r-:-lv )"

where Ct and CZ are constants depending only on n, d = diameter of

M and K = lower bound of Ricci curvature of M. when M is a manifold

of non-negative Ricci curvature, we have

2

tr, {d (t#) "
2

(
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balls which contained y, where r ( 0 is the lower bound of the sectional

curvature of M-

REMRK. If M i.s non-negatively curved, P { g' 2n

pROOF. For any 0 ( r S d, there exists a naxirnal set of points {-rflji)

such that they are mutualLy of distance at least r aPart. Property (i)

follows trivially frorn the maximality of {.rflji) if we take

{rtxr),.}lii) to be our collection. The fact that alr the *i', are

of at least distance r aPart gives property (ii). For / € M, the

nr.rnber of balls which contained y is the sane as the number of *i't

which are in B(y,r). By the comparison theorem and lifting B(y,r) to

the tangent space at y, it reduces to cotmting the maximal nunber of Points

with euclidean distance

tJ-<
sinh rIF

apart that can be fitted into the euclidean ball of radius l. A sinple

counting argument gives (iii).

REMARK. By (i) and (ii) one obtains the following estinates of k(r)

(4.1) v(M) < 
*S")u1rrr't)

{ k(r) urax{v[e, (r) ) ]

{ k(r)c(n - D f' t(-K)- l/2rinnf r .'ll.l
Jo

and

(4.2) v(ro > 
*$') 

urrrrpl
i=l

) k(r) min{urtI2 i

-r/2
) k(r)o(n - nlfqr-"J (sin(6 t))n-lat

o
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where c(n - l) denotes the volunre of the unit n - I sphere in Rn,

and r = upper bound of the sectional curvature of M.

Clearly k(r) i,s a non-increasing function of r. In general, k(r)

j.s not a surjection onto 2+ = positive integers. However the following

lenmas show that it is not far fron being surjective.

LEMI"{A 14, For E > O, and n € Z*, there exists a collection of geodesic

balIs {g. (r. ) )t which satisfied:1- 1- i=l

(i) U Br(rr) - M is a set of rneasure less than E.

r.
(ii) B. (1" ) OB.(r./2) is a set of measure zero for i I j

)'Z'' 1'l

(iii) there exists an r, such that r ( r. ( 1 + E for all I ( i ( m-

PROOF. In view of lenna 14, we know that for 6 snall enough, there exists

r > 0 such that k(r) = 11 (r a^, k(r - 6;. Consider trrt"){=,

the collection which satisfied property (i-iii) of the covering Iemrna.
n

We may assume that Br(r - d).t-j B.(r) does not cover M. Let
r=l

m

x € M - {nr{r - 6).U_Bi(r) c Br(r) - Br(r
t=2 '

clearly the collection {g(x,r - 6),81tr - d)} U {rr1.l}l=z satisfies

the required properties. Inductively by shrj-nkins the balls nr(r) by 6

and adding balls of radius r - 6, we can obtain m ba11s which satisfied

the conclusion of the lemma.

LEMMA 15. For E > 0, and

balls in, frrl )f-, of which

(i) U B.(ri) covers

(ii) t:(lt nBi(ril2) is a set of neasure less than E for i I j

(iii) thereexistsan r,suchthat t{.i(r+e forall l(i(n

(iv) for y € M, the number of Br(rr)'s whi-ch contained y is

at most

6).

m € Z*, there exists a collection of geodesic

sat is fi ed

lrt

C

,,___--. ________
I



224 PETER LI AND SHING-TTJNG YAU

p = slz sinh((r + e)/-<;1n

\ (.+)EE I

PROOF, We proceed the sarne way as in lenuna 14. Instead we take

{a(x, r)} U {Bi(-){-, to be our new collection. It is easy to check

that properties (i-iv) are satisfied. Again by adding rnore balls

inductively, the lemrna follows.

We are now ready to give sone esfirrates

THEOREM 16. Let M be a conpact nanifold.

eigenvalue of the Laplacian on M, then

on the eigenvalues.

If l, is the rnth non-zero
m

(28 : r)2 ,-K) + 4(l

' [,*

when n = 26p + t),

(29 ! 2)2 ,_K) + 4(l

" [r'"

when n=28+3,

2n-2

* z\2n21sintrl-x a\ n

\ 4K-a t

.,,u(1-l) I li* r, 

- 

vlvtl
B = 0,L,2,.. 

Zn_2

* n2;1r * z2\)z /sinrrf,T a \ 
n

\ ,z--r a I

. ,., gln-:-f)- t I ** r,, ---n- VTM'I

B = 0,1,2,...

where K < 0 is the lower bound of the Ricci curvature of M.

PROOF. Let tBrf.rl]lll be the collection of balls which satisfied lerruna

14. Consider gi, the first eigenfunctions of the Dirichlet boundary

problem on the Br(rr). If uo, 0 {o { m - l, are the first m

eigenfunctions on M (including the constant fwrction), then by the

variational principle

(4. 3) I = i6 Ilv42
t fluo lfz

where inf istakenoverall f orthogonalto uo,0{o(m-1.
r:

By the essential disjointness of ti(j, ), the set of functions g.

,1

i

t

I
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on M are linearly

such that

(4.4)

is orthogonal to uo, for all s.

Therefore

independent. Hence there exists o I (4t)T:i € IRt*1,

g = Eeig\

(4. s1

But

(4.7)

ft*t'=#twrt2
- f 2- > ur G) a-rJ v,

{ nax r, Olf v2

first eigenvalue of the Dirichlet problem on'n"l: ur(B')

tt (*) . rhis

(4.6')

denotes the

g].ves

However by the monotonuity of !t and a theorem of Cheng [ 5 ]

^, 
( u, (B(K,t)

(28 ! I)2 (-K) *

when n=2(B+

(29 ! 2)2 (-K) *

whenn=2p+3,

l, ( r.* ur(Bi)

Qaa
4(L + zP)'n'

2r
1), B = 0,L,2,--.

4(t + r211t * z2B'12
2r

B = 0,L,2,..-

4'
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On the other hand, by (a.1)

l-n 
"'*t 

n- I
(4.8) v(M) < (m + I)a(n - I)(-K) ' J lsinhfR t)at

( (m + l)ct(n -
o

-2n+l

= (rn + l)o(n - I) (-K) 2

= (rn + rl{TJ (r+e) (sinh

/sinnfT {r*e;\n-r ,. [4T (r+e;1n
\r.e/

/T (r+e)r"-t1-.1 
;

-n rR (r+e1

r) (-K) z J

+4o+ zB)2;g(aTa)+
2

"[c'.,)si!+-,]'
B = 0,I,2,..-

(-K) * qe*r2)e*?28)2(r*q2

?2n-2
n

/ sinhr'-K d \
\r*d I

when n = 29 + 3, B = 0,L,2,...

( (m + l)o(n : 1),r..t" 
(:r4rr_e.)"-r

Hence

(4.s) i==*
Together with (4.6)

when n = 2(B + l),

and

4

[r,"- rlelr--ll #] '
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Letting t + 0, rde obtain the desired result.

When K = 0, lre can obtain a sharper estimate on 
^,

THEOREM 17. Let M be a cornpact manifold of non-negative Ricci curvature.

Then

r-2 z

l, { (n + 4)n " [t+a orn - r)] i

PROOF, As i,n theorem 16, we have

^, 
{ ur(B(0,t)

However, it is known [ 5 ] that

Similarly to (4.7)

Hence

5. LOWER BOUNDS FOR 
^tn

In this section we will obtain lower bounds for tr,n with the right
n_order j.n -2. The first part is devoted to estinate hi.gher eigenvalues.v

For m bi.g enough, we have

(n-1)l)a
nV

(n+l. (t(" - ol I
z

]"

)

^' = t, (#f

ut(B(0,;)I <ALi-l}

V(M) < (m * l)nax{V(B(x.,r + e) }

= 
(rn + t)s(n _ t) (r+e;n
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where cs depends only on K, d, upper bound of 6 = radius of convexity,

and K = lower bound of the sectionaL curvature of M. l{hen Ir{ has non-

negative sectional curvature we show that

2

^, "d(+) "

where C is a constant depending on n alone.

For general m)2, we employ a method of the second author [15]

to obtain lower bounds for trr, namely

However C+ now depends on D, d, d, k and V,

TFIEOREM 18. Let M be a compact manifold of dimension n. Suppose l

is the mth non-zero eigenvalue of M. If

2

^,).0(+)t

..- e. II-1
- vtlr I

o(n - DI:/' (sin(rs;)n-ldt

where T = upper bor:nd of the sectional curvature of M and 6 = radius

of convexity. Then

22

^, " (E-'l-:-u) 
t 

(+) 
t

where

P = slz sinh 6f,R)n
\or<l

with 0 ) r = lower bound of the sectional curvature of M.



EIGENVALUES OF A CO}'{PACT RIEMANNIAN MANIFOLD

PROOF. By (4.2) and lemma 15, it is clear that if

(s.1) m )
a(n - 1) (fr)r-n 1oo/2(tin(fr t;1n-l dt

.

", ^nd 
for any . > 0, there exists a collection of geodesic balls tn.{.r)}f=1

] 
,hich satisfied properties (i-iv) of lerruna 15. Moreover

i r.(r+e{6 forall i=1,...,n.;1

r The maxirnurn principle of I gives
.'m

(s.2) 
^, = 

,riii=r rT;i 
t#

where we maximize over any set of m functions on M and ni-nimize over

all function f which-are perpendicular to gi, I < i ( n. In particular,

if we take gi to be the charateristic functions on Br(rr), then the

conditions fLgi means

(s.3)

229

{r,"r,t = o

Hence

(s.4) 
^- 

> min l4n t-r- 9t t 12

However if Il(Bi) denotes the first non-zero eigenvalue of the Netunann

probl.en on f . (rr) then (5.3) inplies

,,r,lo " ^rw Ir(,i)rT
B.

(s.s)

t
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Suruning up both sides of (5.5) over i, we have

(s.6) 3 I vrf>nin{trr(Br)}3 I 12
i=r B. (ri) i=l Bi(ri)

> min{}r rs;} f &
M

by property (i) of lemna 15. On the other hand, proPerty (iv) gives

f-mf(s.7) pllvrlz>; I lvrl2
, - M i=t -Br(rr)

Therefore

)]
(s.8) l, )

Applying theoren 9, we have

(s.e) rr(Bi) > 
exP - [l + (1 - l6(n - r)2t2'r1t/21

a(n. - r)rf

\ exp - [r * (r - ro(n - r)2(r * e)2r)r/21
2

8(n - l)(r + e)

by property (iii). However (4-2) and ProPert). (iil gives

(s.ro) v )nc(n - t)(fF l' ,trnrf .))'-r dt - ne

r7l
T\

o
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since r < 6 = radius of convexity

f t /'f\\n-l n- 
'l

.1",. ,,(,-=_ / (;f* ..J

prfo(n - t) .n _ ,l
Lnzn J

Conbining (5.8), (5.9)'and (s-10) yields

(5.1r) l. t exp - [r + (r :-leIn-:-r)2(r * e)2x)1/2]

.2
x / r \ r /mc(n - t)\t t

\r+e/ a\ n I 2

(V + ne)fi-

Theorem 18 is proved by letting E + 0.

THEOREM 19. Let M be a conpact manifold of non-negative Ri,cci curvature.

If

n-l
- vrrT I

a(n - DId/2(sin(f t))n-r dt

then

22

l > n2 .1atn _ rl \ 
n1q\ n

rD 3.2n+6\ n l\vl

PROOF. We follow the idea of the proof of theoren 18. The non-negative

Ricci curvature assumption allows us to appl.y theoren 12, hence we can

i replace (5.9) by

11(Bi) "(.t;+q)(s. 12)

and the theoren follows.
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curvature. If

then
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Let M be a compact manifold of non-negative sectional

- vrr?)n-l
a1n - r;/f/tirir,1..1)'-ldt

For Lower eigenvalues ),r, the task of getting a Lower bound

becornes more difficurt since theorem 9 and theoren 12 applied only to

manifolds with convex boundaries. However utilizing the method of yau [5],
we can avoid the difficulty of obtaining a lower bound for the first
eigenvalue of the Neunann problen.

Let M be a compact nanifold, consider the ball of radius r ( d,

Bp(r), centered at a given point p € M. We define the isoperinetric
constant U (BO(r)) bf

^^,;i-( oi+,)*(*) *

tr lB (r)'p'
I A(aM, n aM^ f^r B tr)]:^sl L z D- "

l_min{vG"r, t^rr_1I1),v(r,t_ nB (:r fr Bp (;)) ,v (t,tz n BP (t )

where inf is taken over all decompositions t'(i) = Mf U MZ with

v(Mr rlMr) = 0. This constant tr (Bp(r)) is sinilar to the constant I(M)

defined by Yau [15, p. 499]. Moreover, theorem 4 and corollary I in [ls]
can also be generalized to tr (Bo(r)) with the appropriate modifi.cation

in the proofs and the statenents. we wi.ll give their anal0gue for
tr(Bp(r)) in the next two propositions, however since their proofs folLow

directly as in [.I5] and will be omitted.

I

I
I
I

I
It

l

i

:

;

i
I

i

J

PROPOSITION 21. u (Bo(r)) =
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!,here inf is taken over all functions f € Ht,r(BO(r))

PROPOSITION 22. For any f € Ht,r(BO(r)), we have

233

for any k € IR satisfying

tvrt2 > ":+9! f"orr(r - k)2

v(Bp(t ft {xlr(x) > k}) > }rraorill

and

v(Bp(t Cr {xlr1x; < k}) >}vrootrrlt

Inparticular,if f -f=0 thent rrrl

The following proposi-tion is essentially theorern 8 of [15] together

with proposition 21.

PRoPosITroN 25. Let M be a conpact nanifold. consider the ball Bo(r) c M

with r { d. Derine G = s;p 
:* [t: ( i/jr1orr,l,2a,;)at] 

where

o ranges over all mininal geodesic segments with length t { r and

o(0) € t'(i). Then for att f € Hl,r(BO(r)),

fwlz ,n (B'(r))' 
f - 

,'
no (r) uo (.y'

nvta- (IJ )
trfB(rllp-. =Y'' P' " 

2rn*Le(n - I)G

Combining the above propositions, we can show that for any

I
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Hr,r(Bn(r)) satisfying I _f=o then
ro (i)

(s. r3)

The next

LEMMA 24. Let

bounded below

(s. r4)

4ir'"(#+P *l 4,,ru

lernma enables us to estinate the volune of

M be a compact manifold. The ball t'(ty'

by either

to(Iy' from below.

has volune

vrnn crrl )

OT

,^c
v(BD(t) > 

=.^
^ ( zn)

where C- is the isoperimetric constant defined byo-

A(N) 
N

nin{v(Mr),v(M2) }n-l

with inf taken over all codimension-1 subrnanifold N which divides

M into Mt and MZ.

PRooF. Suppose v(Bp(t) =Y In particular v(Bp(t)) *Y

for all a *; . Hence by the definition of C-

> v(to?2

C =info

However it is well known that A(aBp(t)) = fav{nntt)). Therefore

integrating (5.14) gives

.l
I rz 4rcs-rtll 'ci(s.rs) nv(an())"=J^ *-.-"E dt>-

o-
v(B (t) )

D
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The lerrna follows.

THEOREM 25. Let M be a compact manifold. Suppose 
^, 

is the nth

non- zero eigenvalue of M with n 7 2. Then

2

r,,)tr(+) '

where CS is a constant bounded below by
2

'i"{+ ,12n+2 o1n - r1n1af,r;n
cs)

235

3 . 26'*lo(sinh(dfr; lnni ot

n \ "r{f; r}21af-r.l"c j
| 4--5 

2r-z* ? 2- 2

, . r4n+8(sinh(d--g)nn-" 
- n a(n - t) n 

c2 (

where C^ is the isoperirnetric constant defined in lenrna 24 and
o

G = s;P "*f4' ( lt).(o'(s),".) ..]

PRooF. For m e z+, le:- {nrfrr)}f-, be a collection of geodesic

balls whi.ch satisfied properties (i-iv) of lerma 15, In view of the

proof of theorem 18 and 19 where we obtain the estirnates for tr. with

r{ri dr + e and by letting e + 0 in the final process, we may hence

assulne "i=t for 1(idn-

If we take gi to be charateristic frmctions on nr(r), equation

(5.2) gives

(s.16) t- > rnin lli-It t rei !t'

--__



236 PETER LI AND SITING-TIJNG YAU

However proposition 23 and, lenna 24 imply eit er

(s.17) I:,r,::i= (,,,,),-*," _ ,). )' fr,,j'
or

(s. r8)

Sunming over i on foth sides gives

(s. rs)

where

^n+5 n2tlf twt'r (
B. (2r) \

c
o

o

\
I J"ror"

iJrtt,efr'
MM

' = ""[( I,( ,n+Snn- I n(n - l)rG

' = ' (ell-'ft)'
) maxinal nr-urber of B. (2r) that contained any

given point i.n M

On the other hand by (4.2) and ProPerty (ii) of lemna 15

r
(s.20) v )nc(n - r) + f' Grnln t))n-l at

(ft}" ' J
o

Since r{ d, inthecasewhen 2d>d wehave O>f . re 26<d,

then :>td.zd
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Therefore

(s.21) Vlmo(n -

) ma(n _

(since

Conbining wi.th (5.16) and

where

and

| "i.,t{,rt
"#I 

(sin(6))n-rdt
o

lmin{$ r})n nl) -' r' 
n2n

| "intf,r) < 6)

(5. t9) , we have

r >in-
P

p = 3(4:rl!-sc)"

:

n.2 2

"';'intf 
:\'n*' o(n - r)i

22
Urrrn ,4n+ 10a2

2

u^ 'i"tf,rt2cj
2 ^ - 2 )_2
Fn'n-" i r2n+8 s(n _ l)'- i 

",

The theorem follows

COROLLARY 26. Let M

where C. = constant
4

PROOF. This follows

be a compact manifold.

2

^, ".0 (+)"

depending on

fron theoren

6, d, k,

plus the

n,

25,

and V.

fact that K ) K, and a



f*rC)-o aoqn;n-l a(n - r) rf jcrr-1 sinhfr t)n-l dt)t*r
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result of Croke I O ] which gives a lower bound for Co, nanelY
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