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In this paper we prove the following conjecture of Frankel [7]. 

Main Theorem. Every compact Ki~hler manifold of positive bisectional curvature is 
biholomorphic to the complex projective space. 

The case of dimension two was proved by Andreotti-Frankel [-7] and the case of 
dimension three by Mabuchi [18] using the result of Kobayashi-Ochiai [12]. 

Our method of proof uses harmonic maps and the characterization of the 
complex projective space obtained by Kobayashi-Ochiai [15]. According to the 
result of Kobayashi-Ochiai the complex projective space of dimension n is 
characterized by the fact that its first Chern class equals 2c1(F ) for some 2>n  
+ 1 and some positive holomorphic line bundle F over it. Since by the result of 
Bishop-Goldberg [-2] the second Betti number of a compact Kiihler manifold M 
of positive bisectional curvature is 1, for the Main Theorem it suffices to show 
that ca(M ) is 2 times a generator of H2(M, 7Z.) for some 2> 1 +dim M. This can 
be done by proving that a generator of the free part of H2(M,Z) can be 
represented by a rational curve, because the tangent bundle of M restricted to 
the rational curve splits into a direct sum of holomorphic line bundles over the 
rational curve according to the result of Grothendieck [-11]. The existence of the 
rational curve is obtained in the following way. According to the result of Sacks- 
Uhlenbeck [22] and its improved formulation by Meeks-Yau [-19], the infimum 
of the energies of maps from S 2 to M representing the generator of rcz(M ) can be 
achieved by a sum of stable harmonic maps f~ from S 2 to M (1 <i<m). The key 
step in our proof is to show that each f~ is either holomorphic or conjugate 
holomorphic. The known methods of proving the complex-analyticity of a 
harmonic map use the formula for the Laplacian of the energy function [23, 25, 
26] or a variation of it [24]. Here we use instead the second variation formula of 
the energy function. In this second variation formula a 2-parameter variation 
has to be used to imitate the situation of holomorphic deformation. After this 
key step we use holomorphic deformations of rational curves in M to show that 
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m = 1. This is done by proving that in case m > 1 we can holomorphically deform 
the images of some holomorphic f~ and some conjugate holomorphic fj so that 
they are tangential to each other at some point. By removing a disc centered at 
the point of contact from each and joining the two disc boundaries by a suitable 
surface, we obtain a map from S 2 to M with energy smaller than the minimum 
energy. Thus m = l  and the image of f l  is a rational curve representing a 
generator of the free part of H2(M, 7Z). 

In our proof the existence of a rational curve plays a very important role. 
This important role of a rational curve has already been observed earlier by 
Hartshorne and Kobayashi-Ochiai [13]. 

We learn that very recently Mori [20] has also given a proof of Frankel's 
conjecture by using the method of algebraic geometry of characteristic p > 0. 
Mori's result is stronger than ours. He needs only the assumption that the 
tangent bundle of the manifold is ample, whereas we have to assume that the 
manifold has positive holomorphic bisectional curvature. Though our result is 
weaker, our proof has the advantage that it uses only methods of K~ihler 
geometry to answer a question in K~ihler geometry. On the other hand, even in 
the case of complex manifolds Mori's proof involves the use of methods of 
algebraic geometry of characteristic p > 0. 
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w 1. Second Variation Formula 

Suppose M, N are compact K~ihler manifolds whose K~ihler metrics are re- 
spectively 

d s~=2Re  ~ h~dz~dz ~ 
at, fl= 1 

and 

ds2=2Re ~ gijdwidw -'7. 
i , j = l  

Let f( t):N~M, teC, [tl<e, be a family of smooth maps parametrized by an 
open disc in C. The pointwise d-energy o f f  is defined by 

I~ft 2 =g~Jf~h~l~, 

where the summation convention is used and 

t~ 2 
In order to compute ~ [~f[2 at a point P of N, we choose local holomorphic 
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coordinate systems at P and Q = f (P )  such that 

dgq=0  at P 
and 

dh~=O 
~?~0~h~B=0 at Q. 

This is possible because the metrics of M and N are both K~ihler. Direct 
computation yields 

~2 ~2 - -  ~" ~ a 

- -  Of" Off 
ot o r  

Consider the vector field ~ on N defined by 

D . 
where ~- is the covariant differentiation with respect to the connection of the 

tangent bundle of M, i.e. 

D 0 f , _  0 2 Off Off 
Ot Ot OtO? f'+MF;~ Ot Or' 

MF~ being the Christoffel symbol of M. The divergence of ~ at P is 

. . [  0 2 .a ~ 02 

+g~j(OuO~h~B) fiv f f  Of" Of: 
Ot 0~" 

Now assume t h a t f  is harmonic at 0. Then at P and t = 0  

g~J O~f:Y h~ = 0 
and 

0t0~ I~f iZ-2Re  dive =gU tot ' ! f~-P h:B 

_ _  # 

• ~J c~ r ~ .  0f  ~f~ 2 Re g~3 R.,~:l~ fi ~ Of" O f :  
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Hence at t = 0 

U "  o f  ~ 

N Oi O~ 

Of" a f  ~ 
+ S g ~ f f l ~ R . ~  ~t c~t 

-2Re ~ g~;R,~ f , ~  Of" Of ~ 
~ ~t 

where 

Rural ~ = b ubgh~l ~-  h~ ~uh~y c?~ha~ 

is the curvature tensor of M. 

w 2. Relation of Energy and O-Energy 

Suppose M, N are as in w Let f :  N-*M be a smooth map. Similar to [~fjz, the 
pointwise O-energy IUI 2 o f f  is defined by 

where 
IUI z = ~Jfflfa h~ B 

Of~ 
f;=awr 

The pointwise energy e(f) of f, which is defined as the trace of f*(ds~4 ) with 
respect to ds~, is therefore equal to I~f]2+]Of[ z. Now assume d i m e N = l .  The 
pullback of the K~ihler form of M under f is 

Hence 

l / -Z_lh~df~^d~F=~_lh~B (Of~ r Off ~fP]dw Ad#" 
\Ow ~w O~ a~I  

S I~ I~fl2:~l/-lh~Bdf~Adf ~ 
N N N 

which is equal to the K~ihler class ~o(M) of M evaluated at the homology class 
[ f (N)]  defined by f :  N ~ M .  It follows that 

S lafl ~ =�89 ]" e(f)+�89 [f(N)] ,  
N N 

2 1 
S I~fl =~ S e ( f ) - �89  If(N)].  
N N 

As a consequence, the energy-minimizing maps from N to M are precisely the 
same as the 0-energy-minimizing maps. 

Remark. This last fact was first observed by Lichnerowicz [16]. 
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w 3. Complex-Analytieity of Energy-Minimizing Maps 

Suppose M is a compact  K/ihler manifold with positive holomorphic  bisectional 
curvature. Let fo: IP1 ~ M be an energy-minimizing map. 

Proposition 1. I f  f~" c l(M ) evaluated at  IP 1 is nonnegative (respectively nonpositive), 
then fo is holomorphic (respectively conjugate holomorphic). 

Proof Since the proof  of the other case is similar, we prove here only the 
holomorphic case. 

Let T M be the holomorphic  tangent bundle of M, let w be a local coordinate 
D 

of IP1, and let ~ be the covariant differentiation, in the ant iholomorphic 

direction, of local cross sections of f *  T M with respect to the connection of T M. 

Let ~ be the sheaf of germs of local cross sections s of f ~  T M with ~ s=O. 

Clearly ~- is an analytic sheaf over IP1. We claim that f f  is locally free and the 
holomorphic vector bundle associated to f f  is topologically isomorphic to 
f0* TM. 

It suffices to show that for an arbitrary point P of IP l there exist local cross 
D 

sections sl, . . . ,s, ,  at P such that ~ s i - O ,  l<i<_m, and sl(P ) . . . .  ,s,,(P) form a 

basis of the fiber f *  T M at P, where m = dim e M. 
These local sections s i can be constructed as follows. Choose the local co- 

ordinate (z ~) of M at Q=fo(P) such that the metric tensor h,~ of M satisfies 
dh~p=O at Q. Every local cross section s o f f *  T M at P can be written as 

S_~. ~ "  S ~ - -  
~ Z  a " 

Then at P 
D s=~C~S ~ c3 
c~ ~ c~ c~z ~" 

Choose smooth local cross sections 

t i = ~  t ~ c~ 
(~ Z a 

of f *  T M at P, 1 _-< i__< m, such that the matrix 

is nonsingular at P and each t~' is holomorphic at P as a function of w. Then 
D 

~ t i vanishes at P. Solve the equations 

D 1 D 
u i -  w -  w(P) c3~ ti (*) 
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for u~ locally at P by using the Cauchy kernel 

1 d w ^ d f  

2 w - 

and the standard classical iteration process of Korn-Lichtenstein (see e.g.p. 394 
of [21]; cf. pp. 254-267 of [1]). Since the right-hand side of (,) is bounded, it 
follows that u t is e-H/51der continuous for any 0 < e < 1. Define s t by 

s i = t t - ( w  - w ( P ) )  u i. 

Then s t satisfies the requirements. 
Now we can regard f *  T M as a holomorphic vector bundle over IP I (after its 

identification with the holomorphic vector bundle associated to ~ ) .  By the 
theorem of Grothendieck [11], f * T  M is a direct sum of holomorphic line 
bundles L1, ..., L m over IP a. Since the first Chern class of f~' T M evaluated at IP1 
is nonnegative, it follows that for some i, c~(Li) evaluated at IP~ is nonnegative. By 
the theorem of Riemann-Roch, we can find a nontrivial global holomorphic 
section 

S ~ E  S ~ -  
Oz ~ 

of L i (and hence of f *  TM) over IP r 
Construct a smooth family of smooth maps f( t) :  I P I ~ M  , t ~ ,  [t]<e, such 

that f ( 0 ) = f o  and at t = 0  
O 

~ f ~ ( t ) = 0  

and 
0 

~ f ' ( t ) = s L  

Since s is a holomorphic cross section of f *  T M, it follows that at t = 0 

D O_Of~ D ~ f  ~ D . . . .  s~=0. 
Ot O~ Of  Ot Of  

Moreover, 

o_ i,=O0I'= o 
0~ Off Off 0~ 

at t=0 .  
From thesecond variation formula derived in w 1, it follows that at t = 0  

0 2 
OtOi ~, Igfl2-- [" of= afl~ " Ofu Of~ ( V / -  l dw ^ dr) ,  (t) 

r, Of Of K.~.~ ~ W 

where Ru~,~ is the curvature tensor of M. By w fo is g-energy minimizing. 
Hence at t = 0 we have 

O z 
IJfl~->0. 

Otd[v~ 
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Since the holomorphic bisectional curvature of M is positive, i.e. 

R ~ , ~ '  ~V rl~rl p <0  

for (~"), ( q~ )~C ' -0 ,  it follows from (?) that 

0 f ~ = 0  
0~ 

on IP 1 - Z  for all ~, where Z is the zero-set of s. The map f0 is holomorphic, 
because Z is a finite subset of IP I. Q.E.D. 

w 4. Existence of Energy-Minimizing Maps 

Let M be a compact Riemannian manifold and S 2 be the 2-sphere. For  each C a 
map f :  S 2 ~ M ,  we let E ( f )  be the energy o f f  and let E ( [ f ] )  be the infimum of 
the sum of the energies of maps whose sum is homotopic to f The following 
proposition is proved by using the method of Sacks-Uhlenbeck [22] (see also 
[19] for results related to the present situation). 

Proposition 2. For every C 1 map f :  S 2--~ M there exist energy-minimizing maps 
fi: S2-+M, l<_i<_m, such that the sum o f f  i is homotopic to f and E ( [ f ] )  

= ~ E(f,). 
i = 1  

Proof It is proved in [22] that any nonconstant harmonic map or any 
homotopically nontrivial C 1 map from S 2 into M has energy > c  for some fixed 
positive constant c. Let k be the smallest nonnegative integer such that 

kc 
E ( f ) < ~ - .  

We are going to prove the proposition by induction on k. The case k - 0  is true. 
We want to prove the case k = n + 1 under the assumption that the. case k = n is 
true. 

By [22] for a >  1 we can find smooth maps f , :  S 2 ~ M  which minimize the 
functional 

E~(g) = S (1 + [dg[2) ~ 
S 2 

over the space of all C a maps homotopic to f Let x, be a point of S 2 so that 

Idf=[ 2 (x=)= sup Idf=[ 2. 
S2 

If sup ]df~r 2 is uniformly bounded in ct, the f= converges to an energy-minimizing 
S 2 

map and the assertion is proved. If sup ]df=l z is unbounded in ~, then for some 
S 2 

disc D= with center at x~ the map f~[ D=, after identifying D, with an open disc in 
R 2 by a suitable homothetic map, converges on compact subsets to a harmonic 
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map g: llz---,M. It is proved in [22] that g can be extended to a harmonic map 
~,: S2-~M and we can assume that f, IOD, has arbitrarily small length. 

As in [19], we can construct a map f l: S2__,M so that E(f, ~) is arbitrarily 
close to E(f,)-E(~,) and f is homotopic to the sum of f l and g. For  later 
purpose, we outline the argument as follows. Fix a disc D so that f, JD converges 
smoothly on D to ~t D and the energy of ~ over D is close to the energy of ~. We 
define maps f ,  from S 2 into M by extending f, JD to S 2 in the following way. 
Since f~l OD is close to ~[OD, we can join each point f~(x) to g(x) (for xe3O) by a 
short geodesic and obtain a map h a from an annulus into M whose image has 
small area. Then we obtain a map f ,  from S z into M by putting together the 
maps f ,[S2-D, h, and ~,[S2-D. 

By approximation, we may assume that the map f ,  is a smooth immersion 
from S z into M and the area of the image o f f ,  is close to the sum of the areas of 
the images o f f ,  IS z -  D, h,, and ~1S 2 -  D. The map f ,  pulls back the metric from 
M to a metric on S 2 which defines a conformal structure on S 2. Since there is 
only one conformal structure on S 2, there is an orientation preserving diffeomor- 
phism from S 2 into S z which pulls this conformal structure back to the standard 
conformal structure on  S 2. We define f,~ to be f~ composed with this diffeomor- 
phism so that f,~ is conformal. Observe that the area of the image of a map from 
a real surface to a Riemannian manifold is the same as the energy when the map 
is conformal. Since ~ is conformal (see for example [19]) and E(~,IS2-D) is 
small, the area of the image of the map ~ [ S 2 - D is small. This together with the 
smallness of the area of the image of h, implies that E(f, I) is close to E(f~) 
-E(~). 

1 n c  
Since ~ is harmonic, E(~)>c and E(f, )<~- for ~ sufficiently close to 1. By 

induction hypothesis, for ct sufficiently close to l, we can find energy-minimizing 
maps f/: SZ~M, 1 <i<m-1 ,  such that the sum of f / (1  <i<m-1)  is homotopic 

m - 1  

to L '  and E([f~t])= y, e(f/). 
i=1  

Set f,, = ~, then 

E ( [ f ] )  = lim E(f~)= lim E(f~ I) + E(~,) 

=> E(I-L'])+ E(~) 

= ~ E(f3. 
i=1  

On the other hand, from the definition of E ( [ f ] ) ,  it is clear that 

E([f])< ~ E(f/). 
i=1  

Hence E ( [ f ] ) =  ~ E(f/). It follows from the definition of E ( [ f ] )  that f,, is 
i=1  

energy-minimizing. Q.E.D. 
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w 5. Holomorphic Deformation of Rational Curves 

Let M be a compact complex manifold of complex dimension m whose tangent 
bundle T M is positive in the sense of Griffiths [10]. Let C o be a rational curve in 
M, possibly with singularities, that is, C o is the image of a holomorphic map 
fo: IP1 ~ M, which is the normalization of C o. 

Let Vc I P  1 x M  be the graph of fo .  Let 

~ : I P l x M ~ I P  l, 

er: ~i • M ~ M  

be the natural projections. Since T~I • M is isomorphic to ~* TF, @ g * T  M and T v is 
isomorphic to 7:* T~,, it follows that g* TM[ V is isomorphic to the normal bundle 
N v of V in lP 1 • M, that is, fJ '  T u is isomorphic to N v. 

Let /5  be the moduli space when V is deformed as a subspace of lP 1 • M (see 
[3]). Let 13 be the irreducible component of /5  which contains the point Xo of/5 
corresponding to V. The infinitesimal deformation of V is given by F(V,, Nv). We 
claim that H~(V, Nv) vanishes so that all infinitesimal deformations are realized 
as actual deformations and Xo is a regular point of /5  of dimension equal to the 
dimension of F(V,, Nv). 

Since T M is positive, the ~th symmetric tensor product Tff ~ of T M is ample in 
the sense of Griffiths [10] for p > some positive integer Po. Take ve V such that 
at y=~(v)  the map fo is an immersion. Then for # > # o ,  we have an exact 
sequence 

0 ~ F  ~ F ( V ,  N~v u)) ~(N~vU))v--,0 

so that the natural map F--,(N~vU))v| is surjective. By a theorem of 
Grothendieck [11], N v splits into a sum of holomorphic line bundles L~, . . . ,L, .  
over V. Then for p >__ #o and 1 _<i_< m we have an exact sequence 

O-+ F, ~ F(V, L~)-+(L~)~-~O 

so that the natural map F I--+(L~)~| is surjective. Hence each L i is a positive 
holomorphic line bundle over V. By the theorem of Riemann-Roch, Hi(V, L i )=0  
for each i. It follows that Hi(V, Nv)=0. 

We have a complex subspace r~ of D x IP 1 x M with the following property. 
Let 

0e: ~--+ D, 

/3: ~ I P ~  x M 

be the natural projections. Then cg is 0~-flat and for every xeO,  ,8 maps ~-~(x) 
biholomorphically onto the complex subspace of lPa x M corresponding to the 
point x. In particular, fl maps ~-~(Xo) biholomorphically onto V. 

Let c~, be the subset of cg consisting of all weCg such that 

i) the structure sheaf of (g is reduced at w, 
ii) D is regular at e(w), and 

iii) the map e is a submersion at w. 



198 Y.-T. Siu and  S.-T. Yau  

Clearly c~_ c~, is a subvariety of c~. The fiber a-1  (Xo) is contained in if'. Let 
D 1 = a ( ~ - f f ' ) .  Then D t is a proper subvariety of D. 

Let t2~ (respectively O~) be the sheaf of germs of hotomorphic 1-forms on D 
(respectively c~) in the sense that it is locally the sheaf of germs of holomorphic 
1-forms on an ambient manifold modulo the defining functions and their 
differentials. Let 2" be the linear space over ~ associated to the coherent 
analytic sheaf 1 , 1 f2,/ct t2 o on c~, i.e., the sheaf of germs of holomorphic functions 

1 * 1 on 2" which are linear forms along the fibers of 2 '  is isomorphic to t2~/e g2 o 
(see [6]). When restricted to W', 2" is isomorphic to the vector bundle of tangent 
vectors along the fibers of ~. Let IP(2") be obtained by replacing each fiber of 2" 
by the projective space of all complex lines, i.e. IP(2") is the orbit space of 2" 
under the 112" action on the fibers. The projection aft: cK ~ M induces a holomor- 
phic map 

(a f ) ,  : IP(2") ~ IP(TM) , 

where IP(TM) is the projectivization of the tangent bundle T u.  We claim that 
(aft), is surjective. 

Since D is compact (see [8, 17]), it follows that ~ is compact and IP(2") is 
compact. Hence the image of (aft), is a subvariety of lP(Tu). To prove the 
surjectivity of (aft),, it snffices to show that (aft), is open at some point. Take a 
regular point Y| of C 0. Then it corresponds to a point w o in c~, i.e. 7(Wo)=X o 
and (af)(Wo)=y o. Let 37oelPl be the point such that fo(370)=Yo. Let ~ be a local 

coordinate of IP 1 at 370 vanishing at Yo. Then w 0 and t S / }  determine a 
% 

point 0o 
o 

in IP(2"). We are going to show that (aft), is open at 0 o. 
Let E be the divisor of the differential dfo off| and let [E] be the line bundle 

over IP 1 associated to the divisor E. Then T~,, | [E] is a line subbundle of fo* TM. 
Let Q be the quotient bundle f *  TM/Tr, | [E]. By the theorem of Grothendieck 
[1 1], Q splits into a direct sum of holomorphic line bundles Q2 . . . .  , Qm over lP 1. 
Since fo* TM is positive, each Q,, 2 < v < m, is a positive line bundle over IP~. Let 
[Y0] be the line bundle over IP~ associated to the divisor 37o- For  2 < v < m  there 
exists a holomorphic cross section s, of Q~| [_17o]- ~ over 1P~ which does not 
vanish at 370. We can regard s, as a holomorphic cross section of Q | [37o]-1. 
Consider the following exact sequence 

FOP,, (fo* TM) | [3703 - ~) --' F(IP1, Q | [yo] - 1) .._. H i  ( lP1,  Tm,| [E] | [37o]- ') 

coming from the exact sequence 

O ~ Tv, | [El  | [Yo] - 1 ~ (fo* Tu) | [37o] - ' ~ Q | [370] - ~ ~ O. 

Since 

HI(IP1, Tr, | [E] | [37o]- 1) = 0 

by the vanishing theorem of Kodaira, the cross sections s~, 2 < v < m ,  can be 
lifted to holomorphic cross sections g, of f *  T M | [Yo]-1 over IP 1. 

Let t be the holomorphic cross section of [Yo] over IP 1 whose divisor is 370. 
Let u,=g~t. Then u, is a holomorphic cross section of fo* TM over IP~, 2<__v <m, 
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1 
and these sections have the p roper ty  that  ~u~, 2<v<m, form a basis of  

( f * TM/ TM)~o. 
F o r  1 <_v<_m-1 there exists a h o l o m o r p h i c  cross section sin+ ~ of  Q~+a over  

IP1 which does not  vanish at Y0. We can regard s,,+,, l < v < m - 1 ,  as a 
h o l o m o r p h i c  cross section of Q. Consider  the following exact  sequence 

F(IP1, f *  TM) ~ FOP,, Q) ~ H, '  (IP~, T~, | [E])  

coming  f rom the exact sequence 

O--* T~, | [E] ~ fd~ TM ~ Q  ~O. 
Since 

H~(IP~, TF,| [El)=0 

by the vanishing theorem of Koda i ra ,  the sections sm+,, l < v < m - 1 ,  can be 
lifted up to a ho lomorph i c  cross section um+,, 1 < v < m - 1 ,  off~T~t over ~ .  

Each  u~, 2 < v < 2 m - 1 ,  defines a tangent  vector  v~ of  D at  x o and  defines 
~ e F ( c ~ -  l(Xo) , T~) such that  

i) (d~)(~v)-v ~ at  every point  of  ~-a(xo),  and 
ii) (d(afl))(~0 at wec~-l(Xo) equals u, at rcfl(w). 

Choose  a local submani fo ld  R of D at  x o such that  the tangent  space of R at  x o 
is spanned  by v 2 , . . . ,v2m_ 1. At Wo, we choose a local coord ina te  system 
t I . . . .  , t2,_ 1 of  ~ - I ( R )  such that  

i) t~ is of  the form t'~o~ for 2 < v < 2 m - 1 ,  
ii) tl(Wo) . . . . .  t2m_l(Wo)=O, 

iii) ~ T = ~ v  ( 2 < v < 2 m - 1 )  at ~- l (Xo)  , and 
- - v  

iv) t l = ( o f o l  o(afl) on ~-l(Xo). 

Choose  a local coord ina te  system z~, ... ,  z,, of  M at  Yo such that  

i) C O is defined by z 2 . . . .  = z,, = 0, and 
ii) Z l = ( o f o  1 on C O . 

Let  

u~= ~=lUVU~z u ( 2 < v _ < m - 1 )  

1 
where u~u is a h o l o m o r p h i c  funct ion on IP 1 near  Yo- Since ~ u~, 2 < v < m, form a 
basis of  (f~ TM/TM)~o, it follows tha t  the mat r ix  

is nons ingular  at Yo. Let  

( ]2=<~,~=<m 
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on C o near Yo. Then  on C o near Yo we have 

(d(afl)) = Ozl,  

0 

L e t  
m c~ 

( 2 < v < m ) .  

(m < v < 2m). 

Since uv, m < v < 2 m ,  form a basis of  (f~TM/TM)yo, it follows that  the matrix 

(b,.) . . . . .  2m, 2<=.<=m 

is nonsingular  at Yo. 
Now we calculate the Jacobian  matrix o f  the map  ( a f ) . ,  restricted to 

I P ( ~ ) I R ,  with respect to local coordinate  systems we are going to describe and 
verify that the Jacobian  matrix has rank 2 m - 1  over ~ at 0 o. 

Since ~ - l ( x )  is of complex dimension 1 for every x e D ,  for weCg ' the fiber of  
I P ( ~ )  at w consists only of  a single point. Hence we can identify I P ( ~ ) I ~ '  with 
cr and use t 1 . . . .  , t2, ,_ ~ as local coordinates  at w o for IP(5~) (after identification 
of  IP(LP)]~' with cg,). 

Every element q of  T M can be written as 

0 

and we use as local coordinates  of  IP(TM) near Yo, the functions 

1'/2 r/m 
Z i~ . . . ,Zm~--~ . . . , - -  

~11 rh 

The map  aft makes z 1 . . . .  , z m functions of  t l ,  . . . ,  t2m_ 1' The Jacob ian  matrix of  
(aft) , ,  restricted to I P ( ~ ) I R ,  with respect to the coordinate  systems 

t I , . . . ,  t 2 m _  1 , 

and 

Zl'  " " '  Zm" ~I ' " " '  I~m'01 

equals to the ( 2 m -  l) x ( 2 m -  1) matrix (A, B), where 

\ 0 t v i l - < v < 2 m - l _  = , l < = . u = < m '  

B= ~ I ~ Ii 
I ~ 
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We have 

Ot~ 

cqzu 
- - = t l a v u  
~t~ 

c~zu 

on c~-l(Xo) near w o. Now 

(the Kronecker delta) for 1 </~ < m, 

for 2<v<m,  l=<#=<m, 

for m<v<2m,  l<__l~<=m 

/ ? , z ~  Ozu Oz. 0 dz 1 

I ~ t l l  ~tl Otv ~t l ~t~ OZu 

\Ot , l  or, 
at w o for 2 < v < m, 2 </~ < m. Since the matrices 

( a v u ) 2  < v, u =< m 

and 

(by#) . . . .  2m,2<=,u<=m 

are nonsingular at Yo, it follows that (A, B) is nonsingular at Wo. This concludes 
the proof that (~fl). is open at 0 o. 

Let G be the subset of 1P(TM) consisting of all points ~3 of IP(TM) such that 
(afl),l(~) is entirely contained in the restriction of IP(~") to cr Let Z 
=IP(TM)--G. Then Z is a proper subvariety of IP(Tu). We thus have proved the 
following. 

Proposition 3. Let M be a compact complex manifold whose tangent bundle T u is 
positive. Let C o be a rational curve in M and fo: lPl-~Co be its normalization. 
Then there exists a proper subvariety Z of IP(TM) with the following property. I f  
y~M and ~(TM)r--O define an element of IP(TM)-Z, then there exists a 
holomorphic map f :  IP ~ M homotopic to fo (when fo is regarded as a map from 
IP 1 to M )  such that y is a regular point o f f  (lPl) and the tangent vector o f f  (lP 0 at 
y is a nonzero multiple of ~. 

w 6. Proof of the Main Theorem 

Suppose M is an m-dimensional compact K~ihler manifold of positive bisec- 
tional curvature. Since the Ricci curvature of M is positive, it follows from the 
theorem of Bonnet-Myers that the universal covering of M is compact. Since IP m 
has no fixed-point-free automorphism, in order to prove the Main Theorem, by 
replacing M by its universal covering, we can assume without loss of generality 
that M is simply connected. It follows that n2(M ) is isomorphic to Hz(M, ~E). 
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Since the holomorphic bisectional curvature of M is positive, by the result of 
Bishop-Goldberg [2] (see also [9]) the second Betti number of M is 1. From the 
universal coefficient theorem it follows that H2(M, Z),~TL There exists a posi- 
tive holomorphic line bundle F over M whose first Chern class ca(F ) is a 
generator of H2(M, 7/). Let g be a generator of the free part of H2(M, 7/) such 
that the value of c~(F) at g is 1. Let f :  I P I ~ M  be a smooth map so that the 
element in n2(M) defined by f corresponds to g in the isomorphism between 
n2(M) and H2(M, 7/). 

By Proposition 2, there exist energy-minimizing maps f/: IPx-~M, O<=i<=k, 
k 

such that the sum off/(O<i<=k) is homotopic to f and E ( [ f ] ) =  ~ E(f/). 
i=0  

By Proposition 1, each f/ (O<=i<=k) is either holomorphic or conjugate 
holomorphic. So each f/(lPa) (O<=i_~k) is a rational curve�9 Since Cl(TM) is a 
positive integral multiple of ca(F) and the value of c~(F) at g is 1, it follows that 
at least one f/ is holomorphic�9 If k>0,  then at least one f j  is conjugate 
holomorphic. We distinguish now between two cases�9 
Case 1. k =0. 
We use the notations ofw 5. The line bundle T M | [E] is a subbundle o f f*  T M and the 
quotient bundle ( f~ Tra)/(TM | [E]) splits into a direct sum of line bundles Q 2, ..., Q,,. 
Each Q, (2 __< i <__ m) is a positive line bundle�9 It follows that 

ca(f*TM)=ca(TM)+ea([E])+ ~ ca(Qi). 
i=2  

Hence c a (TM) evaluated at g is > n + 1. That i s, c ~ (TM) = 2 c a (F) for some integer 2 > n 
+ 1. By the result of Kobayashi-Ochiai [14], M is biholomorphic to IP,,. 

Case 2. k > O. 
Without loss of generality we can assume that f0 is holomorphic and fa is conjugate 
holomorphic. From Proposition 3 we obtain a proper subvariety Z oflP(TM) for the 
rational curve f0 (IP 1) of M. Similarly we obtain a proper subvariety Z' of IP(TM) for the 
rational curve fx (IP1) of M. Take a point y~ M and a nonzero tangent vector ~ of M at y 
so that the point of IP(TM) defined by y and ~ does not belong to Z w Z'. The map fo 
(respectively f 0  is homotopic to a holomorphic map fo (respectively conjugate 
holomorphic mapf~') from IP 1 to M such that y is a regular point off~ (IP a) (respectiv ely 
f~(IP0) whose tangent vector at y is a multiple of 4. Since for v =0, 1 both E ( f  0 and 
E(f~) are equal to the absolute value of the K~ihler class of M at [ f~ (IP0], by replacing 
fv by f~' (v=0, 1) we can assume without loss of generality fv=f" (v=0, 1). 

Choose a local coordinate system z 1 . . . .  , z, at y with y as the origin such that 

�9 Choose a local coordinate system ( of IP~ so that both f o  l(y) and fl-t(Y) 

correspond to ( = 0  and fv (v=0, 1) is of the form 

ZI~--- ~ 

z ,=Lu(~ ) ( 2 < # < m )  
near ( =  0. 
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For 6 > 0 let A~ be the closed disc in r of radius 6 centered at 0. For 6 sufficiently 
small, we rernove fv (A ~) from f~ (IP 1) (v --- 1, 2) and replace these two discs by the surface 
S~ defined by 

z 1 = 6 e  i~ 

z u = t fo( fe  i~ + (1 - t) f l ( f e  i~ 

for 0 < 0 < 2 n  and 0 < t < l .  The surface 

s,u( U 
v=l ,2  

oriented in the obvious way is the image of a map f from S 2 to M which is 
homotopic to the sum of fo and f l .  Moreover, for 6 sufficiently small the area of 
this surface is strictly less than the combined area of fo(lP0 and fl(IP0. By 
smoothing out f we obtain a smooth map f from S 2 to M such that the area of 
f ( s  2) is strictly less than the combined area of fo(IP0 and fl(IP1). We make f 
conformal by replacing it by its composite with a suitable diffeomorphism of S 2. 
Then E ( f ) < E ( f o ) + E ( f  O. The sum of f and f2 . . . .  ,fk is homotopic to f and yet 

k k 

E ( f ) +  ~, E(f~)< ~ E ( f 3 = E ( [ f ] ) ,  
i=2 i=0 

which is a contradiction. Hence k = 0 and M is biholomorphic to IP m. 
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