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1. Introduction

Geometrizing the expected symmetries in the moduli space of supersymmetric theories

has proven to be a simple and successful tool in the investigation of their non perturbative

behaviour. Especially the geometric interpretation of the non perturbative SL(2, ZZ) of

type IIB string as coming really from a two torus of an (elliptically fibred) compact-

ification of F -theory has helped to uncover many non perturbative properties of string

compactifications to dimensions greater then five [1][2][3] [4][5].

Elliptically fibred complex four dimensional Kähler manifolds X with SU(4) holomony,

Calabi-Yau fourfolds for short, are the geometry relevant for N = 1 compactifications of

F -theory to four dimensions [1]. Orbifold constructions [6] [7] [8] [9] of M and F the-

ory are particular useful to get a fast view on the spectrum and the symmetries. Using

results of [10] they were considered to compactify F (M , type II) theory to four (three,

two) dimensions in [11]. However in order to study the moduli space and in particular

transitions, one wishes to have a deformation family and the knowledge about the en-

hanced symmetry points1. To get some overview of the possible deformation families of

Calabi-Yau fourfolds, especially the elliptically fibred ones, is the first objective of this

paper. We will therefore consider a rich class of hypersurfaces and complete intersections

in weighted projective spaces and toric varieties. For the hypersurfaces we obtain a large

scan (104 021 configurations) over possible Hodge numbers by classifying all Fermat type

configurations and generic hypersurfaces up to degree 400. The Euler number ranges be-

tween −240 ≤ χ ≤ 1 820 448. Examples with negative Euler number could eventually lead

to supersymmetry breaking in three dimensions by anti-branes, which have to be included

to cancel the tadpoles if χ < 0 and the fourform background flux vanishes [13][14]. A

hyperkähler fourfold with χ < 0 was constructed in [13] and and Kähler examples appear

in[10], both orbifold constructions. Here we find the first Kähler manifolds with χ < 0

realized as deformation families.

The properties of elliptically fibred fourfolds can be understood from properties of

the bases and the degeneration of the fibres. The most basic properties, like the triviality

of the canonical bundle, are decided from the degeneration over codimension one. For

instance if the singularity here is as mild as possible (I1 fibres only, compare A.1) one can

express the Euler number for the fourfold X by formulas, which refer only to properties of

1 There are elegant ways of finding such symmetric configurations in the deformation families,

see e.g. [12].
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the bases and the generic type of fibre. Likewise physically the most basic properties like

the unbroken gauge group2 are decided from the degeneration on codimension one. We

therefore aim for examples in which we can control the degeneration at codimension one

in a simple way.

We will first study examples, which are simplest in two respects, namely the fibres

degenerates homogeneously on a subspace B′ of codimension one in the base to an ADE

singularity and it does so for generic values of the moduli. In this situation we find formulas

for the Euler number, which depend on the cohomology of B′ and the invariants of the

gauge group. The manifolds provide a realizations of N = 1 gauge theories, discussed

recently in [15] [16].

F -theory on the fourfolds has beside the complex and the Kähler moduli of the man-

ifold, also the moduli associated with three branes, which live in space-time and intersect

the base in points, as well as a choice of discrete back ground fluxes which take (half)integer

values in the unimodular selfdual lattice H4(X, ZZ), which is even if χ = 0 mod 24. About

the global moduli space of the first two types of moduli, we can learn by Kodaira & Spencer

deformation theory and mirror symmetry (see e.g. [17] for recent results on dimension> 3).

On the moduli space of the three branes one can learn locally in non generic situations

with orbifold symmetries [7][18] or more generically in situations as above [16] and at the

transitions points which connect the F -theory vacua. Using Batyrev and Watanabes clas-

sification of toric Fano threefolds we can construct systematically a rather dense net of

such fourfold transitions (fig 1), which are again very simple in that they keep the elliptic

fibre structure and the generic degeneration type3. These extremal transitions correspond

to shrinking E8, E7, E6, D5 Del Pezzo surfaces along one dimensional (T-stable) subsets

in the base or generalized elliptic threefolds to (T-fixed) points in the base.

Of course physically one would like to understand perturbative or non-perturbative en-

hancements of the gauge symmetries, which correspond to codimension one degenerations,

which occur only for specific values of the moduli and the meaning of the codimension

two (and three) degenerations. A good guidance to these more complicated situations

can be obtained by considering those three dimensional elliptic fibrations over Hirzebruch

surfaces Fn, for which the degeneration on codimension one and two has been studied in

2 More exotic theories could also arise from degeneration on codimension one.
3 The geometrically interesting fourfold transitions considered in [19] are not particularly useful

for F-theories, because they behave randomly w.r.t. to the fibre structure (if any).
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[2][3][4][5]and [20] and replacing the base IP1 of Fn by a rational surface. In easy cases

this can be done so that part of the singularity structure at codimension one and two

essentially carries over to fourfolds. Here we can also obtain systematically chains of now

more complicated extremal fourfold transitions, which keep the elliptic fibre structure, but

frequently violates the evenness of H4(X, ZZ).

1.1. Divisors which lead to a non-perturbative superpotential in three dimensions.

Some aspects of the four dimensional theory can be investigated more easily by com-

pactifying first M -theory or type IIB on X to three dimensions or two dimensions and

considering decompactification limits to learn about four dimensions. Eleven dimensional

M-theory compactifications, on not necessarily elliptically fibred, Calabi-Yau fourfolds X ,

leads to N = 2 supersymmetric theories in three dimensions [21] [22] . There is a general

mechanism to generate a non-perturbative superpotential in the three-dimensional theory

from supersymmetric instantons, which arise from wrapping the 5-branes of the M-theory

around complex divisors D of X .

i.) Under the assumption that D is smooth, the following necessary condition on the

arithmetic genus of D for the occurrence of instanton induced terms in the superpotential

was derived from the anomaly vanishing requirement in [21]:

χ(D,OD) =
3∑

n=0

hn(OD) = 1 (1.1)

ii.) If h0(OD) = 1 and h1(OD) = h2(OD) = h3(OD) = 0 a non-perturbative contribution

of the form ∫

dθe−(VD+iφD)T (mi) (1.2)

must be generated in the superpotential, as no cancellation from extra fermionic zero

modes can occur. Here VD is the volume of D measured in units of the 5-brane tension,

(VD + iφD) are real and complex moduli components of a chiral superfield and T (mi) is a

non-vanishing section of a holomorphic line bundle over the moduli space of the theory on

X .

Using the fact that hn(OD) describes the dimension of the deformation space of D it

was shown in [21] that divisors given by a polynomial constraints in a Calabi-Yau fourfolds

defined as hypersurfaces or complete intersections in (products) of ordinary projective

spaces have χ(D,OD) < 1. The reason is basically that such polynomials have too many
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possible deformations. These divisors will therefore not lead to nontrivial contributions to

the superpotentials. Using the Hirzebruch-Riemann-Roch index formula [23]

χ(D,OD) =

∫

(1− e−[D])td(X), (1.3)

the explicit expansion of the Todd polynomials T0 = 1, T1 = 1
2
c1(X) T2 = 1

12
(c2(X) +

c1(X)2) and the fact that c1(X) = 0 for manifolds of SU(4) holonomy we can

rewrite (1.1) in the more useful form

[D]4 + c2(X)[D]2 = −24. (1.4)

With this topological formula the above statement follows from the fact that all intersection

numbers on the left of (1.4) come from semi ample divisors in projective spaces and are

hence positive. On the other hand the fact that the left hand side of (1.4) has to be negative

suggests that D’s with the desired properties occurs preferably as exceptional divisors or in

situations where the deformation space is for some reasons small. For instance because we

make an orbifoldisation and thereby killing most of the deformation space or we work with

weighted projective spaces, where the possible deformations are restricted by the weights.

This hints that weighted projective space and more generally toric varieties will lead to

interesting configurations of such divisors. In fact we will see that the intersection of the

T -invariant orbits of the toric ambient space with the Calabi-Yau fourfold will lead under

very simple combinatorial conditions, which are explained in section 4, to such divisors. A

special situation where one can construct infinitly many divisors, which contribute to the

superpotential, was described in [24].

1.2. Preferred physical situations, additional geometrical data and dualities

If the Calabi-Yau manifold4 X admits an elliptic fibration

E −→ X
π

−→ B (1.5)

then a compactification of M theory on X is equivalent to F -theory [1] on X × S1, which

in turn is equivalent to Type IIB on B×S1. If ε is the area of E one can use for ε→ 0 the

4 Other interesting compactifications are on manifolds with Spin(7) holonomy, the so-called

Joyce manifolds. They lead to N = 1 supersymmetry for M -theory compactifications to three

dimensions (see [1][25]).
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fiberwise equivalence of M theory compactification on R9×T 2 with Type IIB on R8×S1.

This means that M theory compactification to three dimensions on X has the same moduli

as Type IIB compactified to three dimensions on B × S1. Denoting the radius of the S1

by R one has ε ∝ 1/R such that the ε → 0 limit is the decompactification limit for the

type IIB theory.

W.r.t. this limit ε→ 0 one has two principally different situations for the location of

the divisor D on X to distinguish

a.) π(Da) = B, i.e. Da is a section or multisection. Da is called horizontal.

b.) Db = π−1(B′) with B′ a divisor in B. Db is called vertical.

As was explained in [21] for generic fixed geometry of the base non perturbative super-

potentials in the four dimensional Type IIB theory will only occur in case b.). The reason

is that the action of the non perturbative configuration in F -theory units is proportional

to the volume of the divisors, which for the two types of divisors goes like Da ∼ 1/ǫDb in

the limit5 ǫ→ 0.

For phenomenology it might be more useful to think about the situation in terms of

the heterotic N = 1 string. This is possible if B admits a holomorphic IP1 fibration

IP1 −→ B
π′

−→ B′ (1.6)

then one can consider an elliptic fibration

E ′ −→ Z
π′′

−→ B′ (1.7)

over B′ and get, by fiberwise application of type IIB/heterotic string duality, a description

of the heterotic string on the Calabi-Yau threefold Z. The effect of a divisor of type b.) can

be interpreted in the heterotic string theory description [21] as worldsheet or as spacetime

instanton effect depending of whether Db maps in Z to a vertical or horizontal divisor

w.r.t. π′′. Both types can occur as T -invariant toric divisors as discussed in section 5 and

6.

The organization of the material is as follows. In section two we will summarize the

basic topological properties of Calabi-Yau fourfolds. Then we give in section three some

overview of the class of complete intersections in weighted projective spaces. In section

5 Of course one can enhance the contribution of the Da divisors by going to a singular point

in B.
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four we explain the toric construction of elliptically fibred toric fourfolds. We extend the

formulas of Batyrev and give a characterisation of the divisors on X , which come from the

divisors of the ambient space, which are invariant under the torus action. This gives a very

easy criterium, when such a divisor contributes to the superpotential. Section five contains

a complete list of elliptically fibred Calabi-Yau manifolds over toric Fano bases and the

transitions among them. In section six we also discuss degenerations of the fibre, which

lead to gauge symmetry in four dimensions. Sections seven and eight contains proofs for

the formulas of the Euler number of the fourfolds in terms of the topological properties

of the base and the the type of the fibre. Some cases have been already discussed in

[13]. In section nine we discuss the quantum cohomology of fourfolds using Frobenius

algebras. Especially we give the generalization of the formulas for quantum cohomology

ring obtained for threefolds in [26] [27] to the n-fold case. In section (9.6) we discuss in

some details examples which are connected by transitions.

Acknowledgements. We would like to thank P. Candelas, X. de la Ossa, S. Katz and C.

Vafa for very helpful discussions. We also like to thank S. Hosono for his help and frequent

correspondences.

2. General topological properties of Calabi-Yau fourfolds

We will first employ Hirzebruch-Riemann-Roch index theorems to derive some rela-

tions and general divisiblity conditions among the topological invariants of Calabi-Yau

fourfolds. If W is a vector bundle over X , χ(X, W ) =
∑n

i=0(−1)idimHi(X, W ) and

c0[X ], . . . , cn[X ], Chern classes of X and d0[W ], . . . , dr[W ] Chern classes of W one has [23]

χ(X, W ) = κn

[
q

∑

i=1

eδi

n∏

i=1

γi

1− e−γi

]

, (2.1)

where κn[] means taking the coefficient of the n’th homogeneous form degree, the γi

and δi are the formal roots of the total Chern classes:
∑n

i=0 ci[X ] =
∏n

i=1(1 − γi) and
∑q

i=0 di[X ] =
∏q

i=1(1− δi). We want to use the index formula to compute the arithmetic

genera χq =
∑

p(−1)pdimHp(X, Ωq). First we will evaluate (2.1) for W = TX , the tangent

bundle of X . One way of to do so is to express the formal roots, via symmetric polynomial,

in terms of the Chern classes ci. This yields for the two,three and four dimensional cases

the following formulas for χq =
∑dim(X)

p=1 (−1)php,q:

dim(X) = 2 : χ0 =
1

12

∫

X

(c2
1 + c2), (2.2)
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dim(X) = 3 :

a.) χ0 =
1

24

∫

X

(c1c2)

b.) χ1 =
1

24

∫

X

(c1c2 − 12c3),

(2.3)

dim(X) = 4 :

a.) χ0 =
1

720

∫

X

(−c4 + c1c3 + 3c2
2 + 4c2

1c2 − c4
1)

b.) χ1 =
1

180

∫

X

(−31c4 − 14c1c3 + 3c2
2 + 4c2

1c2 − c4
1)

c.) χ2 =
1

120

∫

X

(79c4 − 19c1c3 + 3c2
2 + 4c2

1c2 − c4
1)

(2.4)

We are mainly interested in Kähler fourfolds with c1[X ] = 0. This is equivalent to

the statement that a Ricci flat Kähler metric exists and the manifold has holonomy inside

SU(4). In the following, by a Calabi-Yau manifold, we mean a manifold for which the

holonomy is strictly6 SU(4). In this case there is a unique holomorphic four-form and no

continuous isomorphisms, i.e. h0,0 = 1, h1,0 = h2,0 = h3,0 = 0, h4,0 = 1. Hodge ∗-duality

and complex conjugation reduces the independent Hodge numbers in the Hodge square

1 0 0 0 1
0 h3,1 h3,2 h3,3 0
0 h2,1 h2,2 h2,3 0
0 h1,1 h1,2 h1,3 0
1 0 0 0 1

to four, say h1,1 = h3,3, h3,1 = h1,3, h2,1 = h3,2 and h2,2. For Calabi-Yau manifolds in the

sense above we have c1 = 0, χ0 = 2. Using this in (2.4) implies7 a further relation among

the Hodge numbers say

h2,2 = 2(22 + 2h1,1 + 2h3,1 − h2,1). (2.5)

The Euler number can thus be written as

χ(X) = 6(8 + h1,1 + h3,1 − h2,1). (2.6)

The middle cohomology splits into a selfdual (∗ω = ω) B+(X) subspace and an anti-

selfdual (∗ω = −ω) subspace B−(X)

H4(X) = B+(X)⊕B−(X),

6 Which excludes 4-tori T 8, K3 × T 4, T 2 × CY -3-folds etc. Note however that there are

Hyperkähler fourfolds with h2,0 6= 0, which are not of of this simple product type.
7 Beside this it implies

∫

X
c2
2 is even. It also seems that c2

2 ≥ 0, indicating that χ ≥ −1440.
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whose dimensions are determined by the Hirzebruch signature as

τ(X) = dimB+(X)− dimB−(X) =

∫

X

L2 =
1

45

∫

X

(7p2 − p2
1)

=
χ

3
+ 32.

(2.7)

The symmetric inner product (ω1, ω2) =
∫

X
ω1 ∧ ∗ω2 is positive definite on H4(X) and

H4(X, ZZ) is by Poincare duality unimodular. The symmetric quadratic form Q(ω1, ω2) =
∫

X
ω1 ∧ω2 is positive definite on B+(X) and negative on B−(X). Beside this we expect a

split of H4(X, ZZ) from mirror symmetry, see section 4 .

We note furthermore that from the definition of the Pontryagin classes pi ∈ H4i(X, ZZ)

in terms of the Chern classes

p =

[dim(X)/2]
∑

i=0

(−1)ipi =
∑

i,j

(−1)ici ∧ cj , hence

p1 = c2
1 − 2c2, p2 = c2

2 − 2c1c3 + 2c4, . . .

(2.8)

one has, using the Gauss-Bonnet formula, for Calabi-Yau fourfolds8 always χ = 1
8

∫

X
(4p2−

p2
1).

It was shown in [13] that I(R) = −
∫

X
X8(R) =

∫

X
(4p2−p2

1)/192 = χ/24 6= 0 gives rise

to a non vanishing contribution one-point function for the two, three or four form in IIA,

M- or F-theory compactification on X . Assuming that there are no further non integral

contributions to the one-point functions it was argued in [13] that these compactification

are unstable if the one-point functions cannot be canceled by introducing integer quanta

of string, twobrane or threebrane charge in these theories, that is 9 χ = 0 mod 24.

In [14] it was argued that there is a flux quantization [G] − p1

4
∈ H4(X, ZZ), where

G is the four form field strength to which the twobrane of M theory couples [22]. If G is

zero that means that p1/4 has to be an integral class (c2 = 2y with y ∈ H4(X, ZZ)) and as

explained in [14] this implies by the formula of Wu x2 = 0 mod 2 for any x ∈ H4(X, ZZ).

That means especially by (2.7) that H4(X, ZZ) is an even selfdual lattice with signature10 τ

and implies by (2.4) a.) again that χ = 0 mod 24. On the other hand if p1/4 is half integral

8 The later condition was found in [28] requiring the existence of a nowhere vanishing eight

dimensional Majorana-Weyl spinor in the 8c representation of SO(8).
9 We have collected in table B.2 a couple of non-trivial examples, in which χ is actually zero.

10 Note that τ = 0 mod 8 as it must be for even selfdual lattices ifχ = 0 mod 24.
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then [G] has to be half integral and potentially non-integral contributions to the one point

function I(R, G) = −
∫

X
X8−

1
8π2

∫

X
G2 = 1

8

∫

X
c2
2−

1
2

∫

X
G2− 60 can be canceled also for

Calabi-Yau’s for which χ 6= 0mod 24.

We will find in chapter three and six various chains of geometrically possible transition

between elliptically fibred fourfolds in which the Euler number is divisible by 24 in an

element of the chain, while it is not divisible after the transition (see especially table 6.5).

This is somewhat disturbing as the flux G would have to jump by one half unit if one tries

to follow this transition in M - or F -theory, suggesting that these transitions are impossible

in these theories.

Beside the three brane source terms there are contributions from the fivebranes [29] which

can cancel I(R, G). In [13] it has been also suggested to calculate the Euler number of

an elliptic fibration by counting locally the three-brane charge which is induced from

the seven branes whose world volume W is the discriminant locus ∆̃ of the projection

map π : X → B times the uncompactified space-time. This three brane charge is

Q = 1
48

∫

W
p1(W ) = 1

48

∫

∆̃
p1(∆̃). It might be that such induced three brane charges

can explain the occurrence of three brane charge quanta in ZZ/4 if one tries to follow the

transition.

3. Constructions of Calabi-Yau fourfolds

The classification of Calabi-Yau manifolds with dimension d ≥ 3 is an open problem11.

The purpose of this section is to get a preliminary overview over Calabi-Yau fourfolds by

investigating simple classes: namely hypersurfaces in weighted projective spaces, Landau-

Ginzburg models and some complete intersections in toric varieties. Some examples of

Calabi-Yau fourfolds appear in [10](orbifolds) [21][19][31] (hypersurfaces and complete in-

tersections) [29] (toric hypersurfaces).

3.1. Hypersurfaces in weighted projective spaces

There is well studied connection between N = 2 (gauged) Landau-Ginzburg theories

and conformal σ-models on Calabi-Yau complete intersections in weighted projective spaces

[32], [33]. For example consider a Landau-Ginzburg models which flows in the infrared to

11 It was shown in [30] that there are, up to birational equivalence, only a finite number of

families of elliptically fibred Calabi-Yau threefolds.
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a conformal theory with c = 3 · d. If such a model has a transversal quasi-homogeneous

superpotential of degree m, and r = d + 2 chiral super-fields with positive charges (w.r.t.

the U(1) of the N = 2 algebra) qi = wi/m subject to the constraint

r∑

i=1

(1− 2qi) = d (3.1)

then it corresponds to a σ-models on the Calabi-Yau hypersurfaces Xm(w1, . . . , wr) of

degree m in a weighted projective space IPr−1(w1, . . . , wr). Due to fixed sets of the C∗-

action of the weighted projective space, the Calabi-Yau hypersurface Xm(w1, . . . , wr) is

in general singular. The Hodge numbers of the resolved Calabi-Yau hypersurface can be

obtained from the Landau-Ginzburg model formula for the Poincarè polynomial of the

canonical twisted LG model [32], i.e.

tr tmJ0 t̄mJ̄0 =

m−1∑

l=0

∏

l
wi
m

mod ZZ=0

1− (tt̄)m−wi

1− (tt̄)wi

∏

l
wi
d

mod ZZ 6=0

(tt̄)m/2−wi

(
t

t̄

)m(l
wi
d

mod ZZ−
1
2 )

.

(3.2)

Here the Hodge numbers hp,q are given simply by the degeneracy of states with (J0, J̄0)-

charges (d − p, q). For d ≤ 3 there is always a geometrical desingularization of theses

singularities [34]. For d ≥ 4 there need not be such a geometrical resolution. However we

note that for all Landau-Ginzburg models described in the following the relation derived

from the index theorem (2.5)(2.6) holds, independent of whether a geometrical resolution

exist or not. This is a hint that the index theorem (and many other apparently geometrical

aspects relevant to M and F -theory compactifications) could be stated in terms of an

internal N = 2 topological field theory.

To get some overview of this class of Calabi-Yau fourfolds we classify first the Fermat

type constraints. In these cases, all weights divide the degree. It is easy to see that the

maximal allowed degree of these configurations growth with md = md−1(md−1 +1) (m = 6

for tori, m = 42 for K3 etc. ) much faster then factorial in the dimension. In fact the

maximal configuration in dimension d is a fibration with maximal number of branch points

over IP1 as base, whose fibre is in turn the maximal configuration in dimension d− 1. The

extreme Calabi-Yau fourfold12 with degree m = 326548 is hence the top of the following

12 Let us use the notation Xm(w1, . . . , wr)
h1,1,hd−1,1

h2,1 to summarize the three independent Hodge

numbers of a fourfold
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vertical chain of self mirrors13 (hd−1,1 = h1,1) in d = 1, . . . , 4

X3265248(1, 1806, 75894, 466206, 108714, 1631721)
151700,151700
0

X3612(1, 1, 84, 516, 1204, 1806)
252,303148
0

↓ ւ

X1806(1,42, 258, 602, 903)
251,251

X84(1, 1, 12, 28, 42)
11,491

↓ ւ

X42(1, 6, 14, 21) X12(1, 1, 4, 6)

↓ ւ

X6(1, 2, 3)
1,1

,

(3.3)

and has χ = 1 820 448 = 24 · 75852. It is the Calabi-Yau fourfold with the highest Euler

number in this class. There are in total 3462 Fermat type fourfolds14 (to be compared

with 147, 14, 3 in d = 3, 2, 1). The bounds on the topological numbers for the Fermat

Calabi-Yau fourfold hypersurfaces are

288 ≤χ ≤ 1 820 448, 1 ≤ h1,1 ≤ 151 700, 0 ≤ h2,1 ≤ 1008

284 ≤h2,2 ≤ 1 213 644 60 ≤ h3,1 ≤ 303 148.

Note that all upper bounds up to the last one are saturated by the X3265248 case, while

the configuration with maximal hn−1,1

X3612(1, 1, 84, 516, 1204, 1806)252,303148
0 ,

is constructed by taking the minimal number of branch points over IP1 for the top fibration

in (3.3). Configurations for which δ = hn−1,1 − h1,1 is maximal15 fit as branches in the

chain of d-fold fibrations over IP1 as indicated in (3.3). Among the 3462 Fermat cases there

are 59(7) for which the Euler number is not divisible by 24(12).

Using the transversality conditions [36][37] one can show similarly as in [37] that the

number of all quasi homegenous hypersurface fourfolds is finite. It is straightforward but

13 For the K3 case in the chain the statement is that the Picard lattice of X42 can be identified

with the Picard lattice of the mirror. Especially half of the Picard-lattice has to be invariant

under automorphismus by which the mirror K3 is constructed see e.g. [35].
14 N = 2 Landau-Ginzburg models with c = 3 · d can have maximally 3 · d nontrivial (qi < 1

2
)

fields. For d = 4 one has 157, 43, 14, 10, 2, 1 Fermat examples for r = 7, . . . , 12.
15 For K3 the statement is that the invariant part of the Picard Lattice under the mirror

automorphism is maximal [35].
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very time consuming to enumerate all of them. To get an estimate on the number of

these configurations we note that there are 100 559 configurations with16 m ≤ 400, which

exhibits topological numbers in the range

−240 ≤ χ ≤ 239 232, 1 ≤ h1,1 ≤ 173 0 ≤ h2,1 ≤ 716,

82 ≤h2,2 ≤ 159 506, 6 ≤ h3,1 ≤ 39 840.

Among them there are 21641 (9654) cases for which the Euler number is not divisible

by 24 (12).

Furthermore a small fraction of it, 138 cases, are examples of Calabi-Yau fourfolds

with negative Euler number, which give the possibility to break supersymmetry at least

for the M -theory compactification to three dimensions. E.g. the hypersurface

X180(10, 17, 36, 36, 36, 45)30,36
78

has Euler number χ = −24. Because of (2.6) for χ to be negative h2,1 has to be large.

Elements in H2,1, or by the Hodge ∗ and Poincare duality we may actually count elements

of H3,2, are generally generated if we have a singular curve C of genus g in the unresolved

space Xsing. In this example we have a genus 6 singular curve X5(1, 1, 1) living in the

x3, x4, x5 stratum of the weighted projective space with a ZZ36 action on its transversal

space in Xsing. Putting the curve in the origin the singularity in the transverse direction is a

C3/ZZ36, where the ZZ36 acts by phase multiplication by exp(2πi10
36

), exp(2πi17
36

), exp( 2πi45
36

)

on the C3 coordinates. The resolution of this singularity can be described easily torically

(see section below). It gives rise to a 2 dimensional toric variety E whose fan ΣE is spanned

by ν∗
1 = (−1;−1,−1) ν∗

2 = (−1; 1,−1), ν∗
3 (−1; 11, 19) from the orign. The triangle in the

(−1; 0, 0) plane contains 13 points in the interior which correspond to rational surfaces

with an intersection form which will depend on the triangulation of ΣE . Thus X contains

a divisor which has the fibre structure of a fibre bundle E → Y → C which contributes

13 · 6 independent H2,3-cycles, all of them made up from a (1, 0)-cycles of the base and the

(2, 2)-cycles of the rational surfaces in the fibre. This reasoning will be generalized in the

toric description to yield formula (4.9). Further examples with χ ≤ 0 appear in table B.2.

For many cases constructed in the literature as orbifold examples we obtain candidates of

deformation families17. For example the Hodge numbers of the model discussed in [11][38]

coincide with the deformation family X47(3, 5, 7, 8, 11, 13)100,4
0 .

16 Nine examples appear in [31]. Some Other examples of complete intersections in products of

projective spaces are considered in [19].
17 A list containing admissible weights and the dimensions of H∗,∗ is available on request.
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3.2. Elliptic fibrations with sections and multisections as complete intersection CY

We will describe here a method for constructing elliptic fibred Calabi-Yau spaces as

hypersurfaces in weighted projective spaces. The starting point are the elliptic curves

E6 : X3(1, 1, 1) = {x3 + y3 + z3 − sxyz = 0 | (x, y, z) ⊂ IP2(1, 1, 1)}

E7 : X4(1, 1, 2) = {x4 + y4 + z2 − sxyz = 0 | (x, y, z) ⊂ IP2(1, 1, 2)}

E8 : X6(1, 2, 3) = {x6 + y3 + z2 − sxyz = 0 | (x, y, z) ⊂ IP2(1, 2, 3)}

D5 : X2,2(1, 1, 1, 1) =

{
x2 + y2 − szw = 0
z2 + w2 − sxy = 0

∣
∣
∣
∣
(x, y, z, w) ⊂ IP3(1, 1, 1, 1)

}

,

(3.4)

which will appear as the generic fibers. Here we included the complete intersection case

D5. We will focus in the following mainly on the first three cases.

In the third case there are birational equivalent representations, which give rise to

additional possibilities to construct the fibration space. To find them, consider the C∗-

action σ : (x → ρx, y → ρ2y, x → ρ3x), with ρ6 = 1 and construct the possible fractional

transformations, which are well defined under this action. There are two series of fractional

transformations,

(1) :
x = ξ

2
3+k

y = ξ
1
3 η

z = ζ

, (2) :
x = ξ

1
2+k

y = η
z = ξ

1
2 ζ

(3.5)

which identify X6(1, 2, 3) with the following representations

E′
8 : X4+6k(1, 1 + 2k, 2 + 3k) =

{ξ4+6k + ξη3 + ζ2 − sξkηζ = 0|(ξ, η, ζ) ⊂ IP2(1, 1 + 2k, 2 + 3k)}

E′′
8 : X3+6k(1, 1 + 2k, 1 + 3k) =

{ξ3+6k + η3 + ξζ2 − sξkηζ = 0|(ξ, η, ζ) ⊂ IP2(1, 1 + 2k, 1 + 3k)}.

(3.6)

Our construction of elliptic fibred Calabi-Yau hypersurfaces (complete intersections)

will proceed by the following general process

X
(0)
d1,...,dk

(w
(0)
1 , w

(0)
2 , . . .w

(0)

r(0))→ X
(1)
pd1,...,pdk

(w
(1)
1 , w

(1)
2 , . . . , w

(1)

r(1) , pw
(0)
2 , . . . , pw

(0)

r(0)) (3.7)

with
∑r(1)

i=1 w
(1)
i + p

∑

i=2 w
(0)
i = p

∑k
i=1 di. In this cases the base is given by

This construction is a simple generalisation of the one used in [39] to get threefolds

with K3 fibre. It was used in [40] to produce more such examples and in [31] to get some
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fourfold configurations. Iteration of this process, with say r(i) = 2 i > 0, lead to sequences,

e.g. for the X3 case,

X3(1, 1, 1) →

X6(1, 1, 2, 2) →
X9(1, 2, 3, 3)
X12(1, 3, 4, 4)
X15(2, 3, 5, 5)

X12(1, 1, 2, 4, 4) →
X18(1, 2, 3, 6, 6)
X24(1, 3, 4, 8, 8)
X30(1, 4, 6, 6, 6)

...

X24(1, 1, 2, 4, 8, 8) → . . .
X24(1, 2, 3, 6, 12, 12)

...

in which fiber of the threefold is itself an elliptic fibered K3 and so on. The birational

equivalent cases (3.6) can be treated similarly. The table B.3 contains a complete list of

all K3 hypersurfaces which are obtained in the first step from this process.

Let us investigate some general properties of these types of fibrations. The condition

for triviality of the canonical bundle of X follows from the analysis in [41]. As summarized

in [2] one can choose a birational model to get a Calabi-Yau with KX = 0 if

KB = −
∑

ai[B
′
i], (3.8)

where B′
i is a divisor in the base B and ai follows from the type of singularity of the fibre

over B′
i according to Kodaira’s list of singular fibres for Weierstrass models in table A.1.

Our first aim is to relate the Euler number of the total space to topological data of the

base. In the following we first concentrate on cases which have a section (or multisection)

and for which the fibre degenerates no worse than with the I1 fibre over codimension one

in the base. That means that the discriminant ∆ of the normal form of the elliptic fibre

vanishes with ord ∆ = 1, while the coefficient functions e, f, g are generic (see section 5.1).

Proofs of the formulas for the Euler numbers can be found in section 7,8. The d = 4 X6

case was first treated in [13].

If the dimension of the total space X is d = 3 we have the following formula

χ(X) = −2 · C(G) ·

∫

B

c2
1(B), (3.9)

where
∫

B
c2
1(B) is the integral of the square of the first Chern class over the base and C(G)

is the dual Coxeter number of the group associated with the elliptic fibre (3.4),

C(E8) = 30, C(E7) = 18, C(E6) = 12, C(D5) = 8.
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Using (3.7) , with r(1) = 3, we can provide examples with B = IP2 for these cases

X18(1, 1, 1, 6, 9)2(0),272, X12(1, 1, 1, 3, 6)3(1),165, X9(1, 1, 1, 3, 3)4(2),112,

X6,6(1, 1, 1, 3, 3, 3)5(3),77.

From the index theorem (2.2) and χ(IP2) = cB
2 = 3 we conclude

∫

B
c2
1(B) = 9 and applica-

tion of (2.3) gives χ = 2(h1,1−h2,1). We can represent these manifolds torically as described

in the next section. IP2 is then encoded in the fan spanned by (1, 0), (0, 1), (−1,−1) and the

blow up can be represented torically by adding the successively the vectors (−1, 0), (0,−1)

and (1, 1) to the IP2 fan. This enhances h1,1(B) and hence the Euler number of the bases

by 1, but does not introduce singularities of the fibre in higher codimension therefore

h1,1(X)→ h1,1(X) + 1 and by (3.9) we get chains of models with (h1,1
(i+1)(X), h2,1

(i+1)(X))=

(h1,1
(i) (X) + 1, h2,1

(i) (X) − C(G) + 1). Transitions of this type involve the vanishing of real

2 (d-1)-cycles and for d = 3 they have been analysed in [3][42][43] and we generalise this

situation to d = 4 in section 5.

For the general dimension d of X we show that

χ(X) = a

d−1∑

r=1

(−1)r−1br

∫

B

cr
1(B)cd−r−1(B) (3.10)

with a = 2, 3, 4, b = 6, 4, 3 for the E8, E7, E6 fibre respectively. For D5 the Euler number

likewise only depends on the Chern classes of the base. Let us summarize the formulas for

d = 4

E8 : χ(X) = 12

∫

B

c1c2 + 360

∫

B

c3
1, E7 : χ(X) = 12

∫

B

c1c2 + 144

∫

B

c3
1,

E6 : χ(X) = 12

∫

B

c1c2 + 72

∫

B

c3
1, D6 : χ(X) = 12

∫

B

c1c2 + 36

∫

B

c3
1.

(3.11)

The study of examples with low Picard numbers has helped a lot to establish the N = 2

Type II/hetetoric duality in four dimensions. Fourfold cases with low Picard numbers are

expected to play a role in the investigation of the dynamics of M theory compactifica-

tions to three dimensions and N = 1 F -theory/heterotic duality in four dimensions. For

the general LG-models we found respectively 31, 108, 255, 411, 508, 800 configurations with

h1,1 = 1, 2, 3, 4, 5, 6. The ones which have an elliptic fibration of type E6, E7, E8, E
′
8, E

′′
8 ,

which is apparent in the patches of the weighted projective space are collected in table

B.4.
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It is clear from table B.4 and (3.11) that the cases in which the fibre degenerates

only to I1 are very rare. Such cases are for instance (5,9,27), where the base is IP3 with
∫

IP3 c3
1 = 64. Let us check for these manifolds (3.8) and the fact that the fibre degenerates

with I1 over a generic point of the codimension one locus. c1(IP
n) = n[H], where [H] is

the hyperplane class. So KB = −n[H] and from section (5.1) we see that the discriminant

∆̃ = 0 is a singular degree 12n polynomial in IPn, i.e. [∆̃] = −12KB. However f, g, h are are

generic such that over codimension one the fibre degenerates to I1. As d∆̃ = 3fdf + 2gdg

(e.t.c) ∆̃ will degenerate in codimension two at f = g = 0 to a cusp, but this does not

contribute to (3.8). So a = 12 and hence [∆̃] = −KB. Similar cases are (23,41,79) where

the base is a IP(OIP ⊗ OIP(3)) → B → IP2 bundle with
∫

B
c3
1 = 72 and case (109) where

the base has a IP(OIP ⊗OIP(4))→ B → IP2 structure with
∫

B
c3
1 = 86 etc.

The E′
8, E′′

8 cases are very interesting because the Weierstrass form degenerates for

them over codimension one in the base. For example for the E′
8 case (60) in table B.4

the Weierstrass form degenerates to a conic bundle for x4 = 0, which splits over codi-

mension two in the base into pairs of lines. In this respect it is very similar to the case

X20(1, 1, 2, 6, 10) described in [20]. Similar as in [20] it is part of a chain of transitions

(110) → (60) → (23), which is analogous to the X18(1, 1, 2, 6, 8) → X20(1, 1, 2, 6, 10) →

X24(1, 1, 2, 8, 12) transitions. Note that the Euler number of (110) and (23) is divisible by

24 while the one of (60) only by six. We will discuss such chains further in the toric setup

in section 6.

Most of the time the models of table B.4 have a much more intricate singularity

structure over the base. As these give rise to gauge groups, matter spectrum and more

exotic physics in the low energy field theory, it is very important to investigate these cases.

It turns out however that the realisation of simple generalisations e.g. to gauge groups

without matter are easier to engineer in the toric framework, which we will do in the next

section.

4. Toric construction and mirror symmetry for Calabi-Yau Fourfolds

Next we consider a generalization of the previous construction namely a d-dimensional

hypersurfaces X in a compact toric variety 18 IP∆∗ . This hypersurface is defined by the

zero set of the Laurent polynomial [45]

P =
∑

ν(i)

aiUi = 0, where Ui =
d+1∏

k=1

Xν
(i)

k (4.1)

18 See e.g. [44] and section 2.6 for the construction of IP∆∗ .
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and ν(i) are the integral points in M ∼ ZZ
d+1, whose convex hull defines the polyhedron

∆. The hypersurface (4.1) defines a Calabi-Yau space if ∆ contains the origin as the only

interior point [45]. The polar polyhedron ∆∗ = {y ∈M∗|〈x, y〉 = −1, ∀x ∈ ∆} is likewise

the convex hull of integral points ν∗(i) ∈M∗ with this property. Such a pair of polyhedra

(∆, ∆∗) is called reflexive pair. Note that (∆∗)∗ = ∆.

In [45] Batyrev has given the following combinatorial formulas for h1,1 and hd−1,1 in

terms of the numbers of points in (∆, ∆∗):

h1,1(X∆) = hd−1,1(X∆∗)

= l(∆∗)− (d + 2)−
∑

dimΘ∗=d

l′(Θ∗) +
∑

codimΘ∗
i
=2

l′(Θ∗
i )l

′(Θi), a.)

hd−1,1(X∆) = h1,1(X∆∗)

= l(∆)− (d + 2)−
∑

dimΘ=d

l′(Θ) +
∑

codimΘi=2

l′(Θi)l
′(Θ∗

i ), b.)

(4.2)

where Θ (Θ∗) denotes faces of ∆ (∆∗), l(Θ) is the number of all points of a face Θ and

l′(Θ) is the number of points inside that face. In the last term the sum is over dual pairs

(Θi, Θ
∗
i ) of faces. The fan Σ(∆∗) over ∆∗ defines in the standard way [44] a toric variety

IP∆∗(Σ(∆∗)) = IP∆∗ in which X is embedded.

The following facts are relevant for the discussion of the divisors

i.) Divisors and sub-manifolds in IP∆∗ : Every ray τk through a point Pk in ∆∗ (or more

generally a cone in Σ(∆∗)) defines a Q-Cartier divisor (or more generally a sub-manifold)

in IP∆∗ , denoted D′
k := V (τk), which by itself has a very simple toric description. Take all

cones Sk = {σki
} for which τk is a face and consider the image of Sk in M∗(τ) = M∗/M∗

τk
,

where M∗
τk

is the sub-lattice of M∗ generated by vectors in τk. This image is called star(τk)

and can be visualized as the projection of the Sk along τk on the hyperplane perpendicular

to τk. Now V (τk) is the toric variety constructed from the fan over star(τk). Especially all

these divisors in IP∆∗ have h0,0 = hd,d = 1 and hi,j = 0 for i 6= j and one can construct

l(∆∗)− (d + 2) independent divisors classes which are a basis for Hd(IP∆∗).

ii.) Divisors and sub-manifolds in X : The intersections DK = D′
K ∩X leads to divisors in

X . In fact the divisors classes [DK ] obtained this way generate Hd−1(X). The manifold X

can be thought as being constructed from a singular variety Xsing with quotient singular-

ities along subsets RK of codim > 1, which are induced from quotient singularities of the

ambient space IP∆∗ . The divisors DK will therefore be bundles of exceptional components
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Ek coming from the desingularisation of the ambient space over the regular component Rk.

The dimension of the regular and singular components depend simply on the dimension

of the face of ∆∗ on which the point Pi lies. The real dimension dΘ∗
k

of the face Θ∗
k is the

complex dimension dEk
of the exceptional component of Dk, while the complex dimension

of Rk is dRk
= d − 1 − dEk

. In fact Ek and Rk have a very simple toric description. If

Θ∗
k is a face of the d + 1 dimensional polyhedron ∆∗

i then the dual face Θk, of dimension

dim(Θ) = d− dim(Θ∗
k), is defined as

Θk = {u ∈ ∆|〈u, v〉 = −1, ∀v ∈ Θ∗
k}. (4.3)

The sets Ri can be viewed as D′
i ∩Xsing and are constructed as follows. Remember that

the coordinate ring of the singular ambient space is generated by the corners Ei of ∆∗,

especially Xsing is given in this coordinates by the vanishing of

p =

l(∆)
∑

i=1

ai

#E
∏

j=1

x
〈νi,Ej〉
j . (4.4)

Now from the construction of D′
i as above it is clear that Dk ∩ Xsing is given by the

vanishing of

pk =

l(Θk)
∑

i=1

aki

#E(Θ∗
k)

∏

j=1

x
〈νi,Ej(Θ∗

k)〉
j , (4.5)

where Ej(Θ
∗
k) are the corners of the face Θ∗

k. The structure of the exceptional component

of Dk is given by the toric variety constructed from star′(τk); the projection of Sk on Θ∗
k

along τk. This implies especially that h0,0 = h
dθ∗

k
,dθ∗

k = 1 and hi,j = 0 if j 6= j [44].

Particularly useful is the fact that number of parameters by which we can move Rk in X

namely l(ΘK) is also the dimension of HdRk
,0(Rk), i.e.

hdRk
,0(Rk) = l(Θk). (4.6)

This structure gives a useful classification of the divisors in X in types (a-d) below

just according to the dimension of the face on which τk lies.

o.) dΘ∗
k

= d, then Θk is a point and Rk = {pk = 0} = ∅. Therefore divisors associated

with these points have no intersection with X and the corresponding points are therefore

subtracted in the third term in (4.2) a).

a.) d∗
Θk

= d− 1, then Θk is one dimensional and Rk = {Qi|i = 1, . . . , deg(pk)} are points

in X whose number is given by the the degree of pk or equivalently by l(Θk) + 1. The
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fact that one has l(θk) + 1 divisor components Di
k of the type pi × Ek explains addition

of the fourth term in (4.2) a). That Ek is toric variety implies hi,j(Di
k) = 0 if i 6= j and

in particular χ(Di
k,ODi

k
) = 1. So this case leads to divisors for which a non-perturbative

superpotential due to five fivebrane wrappings is generated.

b.) dΘ∗
k

= 2, Ek are rational surfaces, while Rk are Riemann surfaces whose genus g is by

(4.6) the number of points inside Θk i.e. l(Θk). In this case we get l(Θ∗
k)·l(Θk) (3, 2)-forms

from the pairing of the (1, 0)-forms on Rk with the (2, 2)-forms of the Ek, which leads to

the generalization of (4.2) given below. Especially we have for the irreducible component

of the divisor h0,0(Dk) = 1, h1,0(Dk) = l(Θk), h2,0(Dk) = 0, h3,0(Dk) = 0.

c.) dΘ∗
k

= 1 Ek is a IP1 (in general in a Hirzebruch Sphere three) and Rk is a hypersurface in

a three dimensional toric variety with h2,0(Rk) = l(θk), moreover we can use the Lefschetz

theorem to conclude h1,0(Rk) = 0. In this case we get additional (3, 1) forms form the

pairing of (2, 0)-forms of Rk with the (1, 1)-forms of Ek, which gives rise to the fourth term

in (4.2) b). A superpotential is generated if l(Θk) = 0.

d.) dΘ∗
k

= 0 in this case Dk = Rk. Similar as in [21] one can argue with the Lefschetz

theorem that h1(D) = h2(D) is zero, so that χ(Dk,ODk
) = 1− l(Θk). Usually h3(Dk) is

expected to be very positive so that D is movable and χ(Dk,ODk
) ≤ 1. However in toric

varieties due to conditions imposed by the weights this deformation space can be actually

very restricted so that one can easily construct cases in which h3(D) = 0 for divisors of

type d.), i.e. this divisors can lead to a non-perturbative superpotential. To summarize

we have

χ(Dk,ODk
) = 1− (−1)dim(Θk)l(Θk). (4.7)

It should be clear by the above that χ(D,OD) = 1 divisors classes can be made

abundant in the toric constructions of CY-manifolds. To illustrate this point take the

mirror of any fourfold with small Picard number, e.g. the mirror of the sixtic in IP5.

∆∗ is now the Newton polyhedron of the sixtic which has 6, 75, 200, 150, 30, 1 points on

dimension 0, 1, 2, 3, 4, 5 faces, which lead, as the ∆ has only 6 corners and the inner point

such that l(Θk) = 0, all to χ(D,OD) = 1 divisors. Some examples of this type of divisors

have been considered in [21][19][29]. Very frequently one encounters the situation were

l(Θk) = 1, which means ΘK is a reflexive polyhedron of lower dimension and c1(Rk) = 0.

The compactification of the fivebrane on such a divisor could lead to a sub-sector in the

N = 1 theory with enhanced supersymmetry.
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Mirror symmetry implies for the Hodge diamonds of a mirror pair X, X∗ that

hp,q(X) = hd−p,q(X∗). (4.8)

For threefolds this property follows from (4.2) as h2,1(X) and h1,1(X) are the only inde-

pendent Hodge numbers, if we construct X∗ = X∆∗ from ∆∗ in the same way as X = X∆

is constructed from ∆.

For fourfolds we have from (4.2) h3,1(X) = h1,1(X∗) but since we have one more

independent Hodge number we also have to establish h2,1(X) = h2,1(X∗). This follows

from the discussion of c.) above, which gives the formula

hd−r,1(X) = hr,1(X∗) =
∑

codim Θi=r+1

l′(Θi) · l
′(Θ∗

i ), for d− 1 > r > 1. (4.9)

Together with (2.5) it shows for four-folds that X , X∗ as constructed from ∆, ∆∗ have

indeed the mirror Hodge diamond.

It is somewhat more complicated to obtain h2,2(X) = h2,2(X∗) directly from the

polyhedron. If mirror symmetry is true however, then one expects to have very good

control over H2,2(X) as

H2,2(X) = H2,2
prim(X)⊕H2,2

prim(X∗), (4.10)

were H2,2
prim(.) denotes the primitive part of the cohomology. This gives of course also a

way of counting h2,2 directly19.

To every quasi homogeneous polynomial p in d + 2 variables, like the one discussed in

the last section, we can associate a Newton polyhedron ∆p by considering the (d+2)-tuples

of the exponents of the monomials of p as coordinates of points in IRd+2 and building the

convex hull of them. Quasi homogeneity of p implies that ∆p lies in a hyperplane in IRd+2,

while (3.1) implies that (1, . . . , 1) is always an interior point of ∆p, which we shift in the

origin of IRd+1. For d ≤ 3 transversality of p implies reflexivity of ∆p. That was actually

shown by construction [46] (see also [47]). For d ≥ 4 this property does not hold. A simple

counter example is the manifold X7(1, 1, 1, 1, 1, 2).

19 E.g. for the sixtic in IP5 (h1,1 = 1, h2,1 = 0, h3,1 = 426) it is easy to see that h2,2(X) =

h2,2
prim(X) + h2,2

prim(X∗) = 1 + dim (C[x1, . . . , x6]/∂P |deg=12) = 1752, as it also follows from the

index theorem. Here P is a degree 6 polynomial in x1, . . . , x6.
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5. Toric four-folds over Fano Bases.

Fano varieties of dimension two, so called del Pezzo surfaces, are IP2, IP1 × IP1 and

IP2 blown up in up to eight points. There are five toric del Pezzo surfaces classified in [48].

IP2, IP1 × IP1, the Hirzebruch surface F1, the equivariant blow up of IP2 at two points B2,

and the equivariant blow up of IP2 at three points B3.

There are 84 Fano varieties of dimension three which were classified by Iskovskih and

Mori-Mukai [49]. From these we will consider the 18 which can be represented in toric

varieties (see [50] for a review). From [48][51] we have

(1) IP3

(2) IP1 × IP2

(3) The IP1-bundle IP(OB′ ⊕O(1)B′) over B′ = IP2

(4) The IP1-bundle IP(OB′ ⊕O(2)B′) over B′ = IP2

(5) The IP2-bundle IP(OB′ ⊕OB′ ⊕O(1)B′) over B′ = IP1

(6) (IP1)3

(7) The IP1-bundle IP(OB′ ⊗OB′(f1 + f2)) over B′ = (IP1)2, where f1 and f2 are fibres of

the two projections from B′ to IP1

(8) The IP(OB′ ⊗OB′(f1 − f2)) bundle over IP1 × IP1.

(9) IP1 × F1 where F1 is the Hirzebruch surface.

(10) The IP1-bundle IP(OB′ ⊗O(s+ f)) over F1, where f is the fibre from F1 to IP1, while

s is the minimal cross section for the projection with −1 as self-intersection number.

(13) IP1 ×B2 with B2 as above

(17) IP1 ×B3 with B3 as above

The other cases are equivariant blow ups of the ones mentioned. This can be seen

from the concrete fans below and is depicted in figure 1. Let us denote by e1 = (1, 0, 0),

e2 = (0, 1, 0), e3 = (0, 0, 1) unit vectors which span a rectangular lattice in IR3. Then we

can represent the toric varieties by the complete fans spanned by the following vectors

(1) (e1, e2, e3,−e1−e2−e3), (2) (e1, e2, e3,−e1−e2,−e3),

(3) (e1, e2, e3,−e2,−e1−e2−e3), (4) (e1, e2, e3,−e2,−e1−2e2−e3),

(5) (e1, e2, e3,−e1−e2−e3,−e1−e3) (6) (e1, e2, e3,−e1,−e2,−e3),

(7) (e1, e2, e3,−e1−e3,−e2−e3,−e3), (8) (e1, e2, e3,−e1−e3, e3−e2,−e3),

(9) (e1, e2, e3,−e2, e2−e1,−e3), (10) (e1, e2, e3,−e1−e3, e1−e2,−e3),

(11) (e1, e2, e3, e3−e2,−e2,−e1−e2−e3), (12) (e1, e2, e3, e3−e2,−e1−e3,−e2),

(13) (e1, e2, e3, e2−e1,−e2, e1−e2,−e3), (14) (e1, e2, e3, e2−e1,−e2, e1−e2, e1−e2−e3)

(15) (e1, e2, e3, e2−e1,−e2, e1−e2,−e2−e3) , (16) (e1, e2, e3, e2−e1,−e2, e1−e2, e1−e3),

(17) (e1, e2, e3,−e1,−e2,−e3, e1−e2, e2−e1) (18) (e1, e2, e3, e2−e1,−e1,−e2, e1−e2,−e1−e3)
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(14) (15)

(6)

(1)

(9)(8)(7)

(2)

(16)(13)

(11) (12)(10)

(17) (18)

(3) (5)(4)

Fig.1:

The net of equivariant blow ups (downs) among the fano bases as in [51]. The blow

ups are either at points ↓ or along one dimensional closed irreducible subvarities l, which

are stable under the torus action. By the construction below, they will be promoted to

transitions between elliptically fibred CY fourfolds.

To construct d-dimensional elliptic fibration Calabi-Yau manifolds X over this base

spaces B we consider polyhedra which are obtained from the toric description of the base

spaces as follows. We define the vectors in the rectangular ZZ
d+1 latticed in IRd+1

vA = (0, . . . , 0
︸ ︷︷ ︸

, 2, 3), vB = (0, . . . , 0
︸ ︷︷ ︸

, 1, 2), vC = (0, . . . , 0
︸ ︷︷ ︸

, 1, 1)

d−1, d−1 d+1

as well as ed = (0, . . . , 0
︸ ︷︷ ︸

, 1, 0) and ed+1 = (0, . . . , 0
︸ ︷︷ ︸

, 0, 1).

d−1 d+1

Let ν(i) i = 1, . . . , r be the vectors of the complete fan of the base space embedded in the

1, . . . , d− 1-plane in IRd+1, and ν(r+1) = (0, . . . , 0) the origin. Then we can define for any

given base space B (1)-(18) three reflexive polyhedra ∆∗
I , I = A, B, C with vertices

{ν(i)∗ = ν(i) + vI · (
∑

j

ν
(i)
j − 1), i = 1, . . . , r + 1; ed, ed+1}. (5.1)

The hypersurfaces as defined by (4.1) in IPd+1
∆∗ correspond to elliptic fibrations over the

base space Σ with generic fibre of the type X6(1, 2, 3), X4(1, 1, 2) and X3(1, 1, 1). The

topological data of these manifolds are summarized in table 6.1:
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Bases X3-fibrations X4-fibrations X6-fibrations

B χB hB
11

(c3
1
)B (c1c2)B χX (cX

2
)2 hX

11
hX
31

χX (cX
2

)2 hX
11

hX
31

χX (cX
2

)2 hX
11

hX
31

IP3 4 1 64 24 4896 2112 4(2) 804 9504 3648 3(1) 1573 23328 8256 2 3878

F
(2)
0

6 2 54 24 4176 1872 5(2) 683 8064 3178 4(1) 1332 19728 7056 3 3277

F
(2)
1

6 2 56 24 4320 1920 5(2) 701 8352 3264 4(1) 1380 20448 7296 3 3397

F
(2)
2

6 2 62 24 4752 2064 5(2) 779 9216 3552 4(1) 1524 22608 8016 3 3757

(5) 6 2 54 24 4176 1728 5(2) 683 8064 3168 4(1) 1332 19728 7056 3 3277

(IP1)3 8 3 48 24 3744 1728 6(2) 610 7200 2880 5(1) 1187 17568 6336 4 2916

(7) 8 3 52 24 4032 1824 6(2) 658 7776 3072 5(1) 1283 19008 6816 4 3156

(8) 8 3 44 24 3456 1632 6(2) 562 6624 2688 5(1) 1091 16128 5856 4 2676

IP1 × F
(1)
1

8 3 48 24 3744 1728 6(2) 610 7200 2880 5(1) 1187 17568 6336 4 2916

(10) 8 3 50 24 3888 1776 6(2) 634 7488 2976 5(1) 1235 18288 6576 4 3036

(11) 8 3 50 24 3888 1776 6(2) 634 7488 2976 5(1) 1235 18288 6576 4 3036

(12) 8 3 46 24 3600 1680 6(2) 586 6912 2784 5(1) 1139 16848 6048 4 2796

IP1 × B2 10 4 42 24 3312 1584 7(2) 537 6336 2592 6(1) 1042 15408 5616 5 2555

(14) 10 4 44 24 3456 1632 7(2) 561 6624 2688 6(1) 1090 16128 5856 5 2675

(15) 10 4 40 24 3168 1536 7(2) 513 6048 2496 6(1) 994 14688 5376 5 2435

(16) 10 4 46 24 3600 1680 7(2) 585 6912 2784 6(1) 1138 16848 6096 5 2795

IP1 × B3 12 5 36 24 2880 1440 8(2) 464 5472 2302 7(1) 897 13248 4896 6 2194

(18) 12 5 36 24 2880 1440 8(2) 464 5472 2302 7(1) 897 13248 4896 6 2194

Tab. 6.1: Elliptic fibred fourfolds over toric Fano bases with fibre X3, X4 and X6. All

topological numbers20 are calculated independently. From (2.2) and χ0 = 1 for Fano d-

folds, follows
∫

B
c1c2 = 24. As further checks serve (2.4) a.) and (2.6). hX

21 = 0 for all fibre

types and all bases.

By construction ∆∗ has a prominent reflexive face Θ∗
B , which is the convex hull of

ν∗(i), with τ = ν∗
r+1 = (0, 0, 0,−2,−3) as the only interior point. B = V (τ) ∩ X gives

divisors of type a.), which describes sections of the fibration in X . The two endpoints

of ΘB are ν± = (−1,−1,−1, a±, b±), with (a+, b+) = (2,−1), (3,−1), (2,−1); (a−, b−) =

(−1, 2), (−1, 1), (−1,−2) for the X3, X4, X6 fibres, i.e. l(ΘB) + 1 = 3, 2, 1 reflecting the

fact that the fibrations have 3, 2, 1 sections. The discussion of the other divisors is equally

simple. For instance for the model IP1 ×B3 (13) we see that all divisors Di = V (ν∗
i ) ∩X ,

(up to Dr+1 = B) with ν∗
i from (5.1) are of type d.), with χ(Di,ODi

) = 1, 1, 1, 0, 0, 0, 0

for i = 1, . . . , r and χ(De4
,ODe4

) = −109, χ(De5
,ODE5

) = −324. Especially D1, . . . , D3
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are divisors which lead to superpotentials while D4, . . . , D7 correspond to embeddings of

Calabi-Yau threefolds in X .

Let us finally comment on the transitions. Model (1)-(3) and (5)-(12) above are

connected by the blow up of a fixed point under the torus action. We can blow up IP3

in generic points by adding successively the vertices −e1, −e2, −e3 and e1 + e2 + e3 to

the IP3 polyhedron. If B̂ is obtained from B by blowing up such fixed points then for the

canonical bundles one has (n = d− 1 = dim(B))

K̂ = π∗K + (n− 1)[E] (5.2)

and since [E] ([E]2 = −1) does not intersect with classes of B one has cn
1 (K̂) = cn

1 (K) +

(n−1)n[E]n so that
∫

B̂
cn
1 (B̂) =

∫

B
cn
1 (B)−(n−1)n. In our case the effect of the transition

is χ(B̂) = χ(B) + 2, h1,1(B̂) = h1,1(B) + 1,
∫

B̂
c3
1(B̂) =

∫

B
c3
1(B) − 8 and since

∫

B
c1c2

is invariant one has χ(X̂) = χ(X) − 8 · 360 for the X6 fibre (360 has to be replaced by

144, 72, 36 for the other fibres). As h1,1(X̂) = h1,1(X) + 1 and h2,1(X̂) = h2,1(X) this

means by the index theorem (2.6) especially that h3,1(B̂) = h3,1(B) − 471 for the X6

fibre (471 has to be replaced by 183, 87, 39 for the other fibres). The seven branes at the

discrimante induce a three brane charge (comp. section 2 and [13]) . The contribution

from the generic member in the class −12[∆̃] is for IP3 Q(X) = −2300 and each blow up

changes this number by Q(X̂) = Q(X) + 286.

For generic moduli values in the above examples we have no codimension three en-

hancements of the elliptic fibre singularities over the base. However if we restrict the

complex 471 moduli as we must do in order to follow a transition, then enhanced singu-

larities at codimension three emerge, which should roughly localize the induced negative

threebrane charges to points in the base were they annihilate with the positive threebranes.

Figure 1 also shows that the F -theory vacua under consideration are multiple connected

by paths in the moduli space. The associated fourfold polyhedra are embedded into each

other, which implies that there are (extremal) transitions among them21[52]. We will

discuss the geometrical aspects of the (5)↔ (1)← (3) transitions in more detail in (9.6).

One might wonder what are in general the allowed modifications of the three dimen-

sional fan ΣB of the base for which the property of the elliptic fibration KB = − 1
12 [∆̃]

is kept. From the Weierstrass form and KB = −
∑

i Di for reflexive polyhedra we expect

this to be the case when ΣB comes from a reflexive polyhedron, which would mean that

any K3 polyhedron can be used in this construction.

21 Such embeddings are expected to connect all fourfolds constructed by reflexive polyhedra .
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5.1. The Weierstrass form of X

To study the elliptic fibration and it’s possible degeneration let us first describe the

Weierstrass forms of X . Recall that the toric variety IPd+1
∆∗ is defined as follows. We

associate to every integral point νi 6= (0, . . . , 0) in ∆∗ a coordinate xi i = 1, . . . , q = l(∆∗)

in Cq. Next we choose a complete triangulation T of ∆∗ in d + 1-dimensional simplices,

whose vertices are the νi points. The Stanley-Reisner ideal is defined as the common zero of

all those coordinate sets {xi1 , . . . , xip
}, for which every subset S of points S ⊂ {νi1 , . . . , νip

}

does not lie on a common k dimensional simplex, we denote these zero sets as S
(k)
j . Linear

relations between points in ∆∗, like
∑

l
(k)
i νi = (0, . . . , 0) define (q − d − 2) independent

C∗-actions on the coordinates xi: (x1, . . . , xq) ∼ (λ
l
(k)
1

(k) x1, . . . , λ
l(k)
q

(k) xq), with λ(k) ∈C∗. The

toric variety is then IPd+1
∆∗ = (Cq − ∪k,jS

(k)
j )/(C∗)q−d−2. For every regular triangulation T

there is a canonical choice of l(k) such that all l
(k)
i are semi-positive. Given such a choice we

can write the hypersurface p = 0 as the polynomial in the xi which scales homogeneously

and with the minimal integers
∑

i l
(k)
i with respect to all the k = 1, . . . , q−d−1C∗-actions.

Suppose such l̂(k) k = 1, . . . , s have been constructed for a triangulation of the fan of B,

then there exist always a triangulation T of ∆∗ such that the following scaling vectors l(k)

appear among the l(k) for (∆∗, T ):

l(1) = (0, . . . , 0; 1, n1, n2)

l(k+1) = ( l̂(k) ; 0, n1

∑

I

l
(k)
i , n2

∑

I

l
(k)
i )

, (n1, n2) =







(2, 3) for the E8−fibre
(1, 2) for the E7−fibre
(1, 1) for the E6−fibre,

(5.3)

where k runs from 1 to s.

This implies that p can be written, at least in a certain patch, in the following Weier-

strass 22 form (y := xq, x := xq−1 and z := xq−2)

y2 = x3 + xz4f(x1, . . . , xq−3) + z6g(x1, . . . , xq−3), (5.4)

with discriminant

∆ = 27g2 + 4f3. (5.5)

As one can see from the table 6.1 the Euler number of X fulfills always (3.11), so one

expects that the elliptic fibre does not degenerate over codimension one or two in the base.

This can in fact easily be checked in the Weierstrass models.

22 Here one omits the first sub-leading terms in x and y to avoid redundant deformations of

the equation as it is familiar in singularity theory. Writing down normal forms compatible with

(5.3) for the other cases is straightforward: E7 : y2 = x4 + x2z2e(xi) + xz3f(xi) + z4g(xi) with

∆ = 28g3 − 27e2g2 + 2432egf2 + 24e3f2 − 33f4 and E6 : y3 + x3 = yz2e(xi) + xz2f(xi) + zg3(xi)

with ∆ = 24(f6 + e6) − 2333g2(e3 + f3) − 25e3f3 + 36g4.
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6. Gauge groups in four dimensions and more general degeneration of the

elliptic fibres

The degenerations of the fibre are described by Kodaira (table A.1) and a practical way

to identify or construct such degenerations from the functions f and g of the Weierstrass

form is Tate’s alogarithm [53]. This was used in [4], to analyze the physics associated to the

degenerations of the elliptic fibre for F -theory compactifications to six dimensions. Here

we will be interested in the simplest situation were the fibre degenerates homogeneously

over a codimension one locus B′ in the base. In this situation the enhancement of the

gauge group in four dimensions can be, at least for An singular fibres, explained with

parallel 7-branes whose world-volume fills B′ × IR4. We will study situations in which B

admits a itself a fibration IP1 → B → B′, such that we get a N = 1 heterotic theory on

E ′ → Z → B′.

Let us consider for this purpose a generalization of the models (2)-(3), i.e. we consider

as base B the fibration IP(OIPr ⊗ OIPr(n)) → B → IPr, which we denote as F
(r)
n , such

that F
(1)
n are the ordinary Hirzebruch surfaces Fn. The fan ΣB for F

(r)
n is spanned by

(ei, i = 1, . . . , r + 1;−er+1,−e1 − . . . − er − nek+1). For the relevant case r = 2 we have

the following topological properties of the base

χ(F (2)
n ) = 6,

∫

F
(2)
n

c1c2 = 24,

∫

F
(2)
n

c3
1 = 54 + 2n2. (6.1)

From (5.3) with

l̂(1) = (1, . . . , 1, n, 0)

l̂(2) = (1, . . . , 0, 1, 1)

follows (y := xq, x := xq−1, z := xq−2)

y2 = x3 + xz4

[
4(n+r+1)

n

]

∑

l=0

vlu8−lf4(n+r+1)−nl +z6

[
6(n+r+1)

n

]

∑

l=0

vlu12−lg6(n+r+1)−nl,

where u = xr+3, v = xr+2 are the coordinates of the IP1(OIPr ⊗ O(n)IPr) fibre, [a/b]

denotes the integer part of a/b and fk and gk are polynomials homogeneous of degree k

in the coordinates of the IPr (x1, . . . , xr+1). To discuss the simplest degenerations of the

the fibres, which lead to generic gauge groups in space time, we have now just to look at

the leading behavior of the Weierstrass form near (z, u) = (0, 0). The basic behavior is
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determined by the divisibility properties of 4(n + r + 1), 6(n + r + 1) by n; the leading

singularity is

xf(4(n+r+1) mod n)u
8−

[
4(n+r+1)

n

]

+ g(6(n+r+1) mod n)u
12−

[
6(n+r+1)

n

]

. (6.2)

The general discussion is exactly as in [53][3] for r = 1 apart from the fact that one gets for

the four-folds much richer singularity structure if the functions fk, gk are not forced to be

constant over the IP2 for the leading term in u. Let us focus on the simple cases with pure

gauge group and no additional matter. As it is obvious from (6.2) the pure SO(8), E6, E7

and E8 singularities which occur for r = 1 over the base IP1 in F
(1)

n(1) for n(1) = 4, 6, 8, 12,

will occur in general over the base IPr of F
(r)

(r+1)n(1)/2
. Especially in four dimensions r = 2

this gives the following examples

B B′ X6-fibrations

B
∫

B
c1(B)3 B′

∫

B′ c2
1(B

′) G χ(X) hX
11 hX

21 hX
31

F
(2)
6 126 IP2 9 D4 44136 7(2) 0 7341(0)

F
(2)
9 216 IP2 9 E6 69624 9(2) 0 11587(0)

F
(2)
12 342 IP2 9 E7 101862 10(0) 0 16959(0)

F
(2)
18 702 IP2 9 E8 186048 11(0) 0 30989(0)

Tab. 6.3: Elliptic fibrations over F
(2)
n , with pure gauge groups. Note that χ = 24 ·4244+ 1

4

for the E7 case.

The enhancement of the gauge group can easily studied in detail if we recognize that

this cases are closely related to the hypersurfaces X6(n+3)(1, 1, 1, n, 2(n+3), 3(n+3)) which

in turn are K3 fibrations with generic fibre X2(n+3)(1, n/3, 2(n + 3)/3, (n + 3)) over IP2 of

the type discussed in section (2.3). That is the intersection form, which lead to the gauge

symmetry enhancement comes from vanishing of the corresponding cycles in the K3. We

can also see this from the embedding of the polyhedra. Notice that the points in the 3, 4, 5

plane cutting ∆∗

ν∗
1 = (0, 0,−n/3,−2(n + 3)/3,−(n + 3)), ν∗

2 = (0, 0, 1, 0, 0), ν∗
3(0, 0, 0, 1, 0), ν∗

4(0, 0, 0, 0, 1),

span the K3 polyhedron. E.g. in the case of the E8 K3 (n = 7) one has six points on the

edge between ν∗
1 and ν∗

2 , two between ν∗
1 and ν∗

3 and one between ν∗
1 and ν∗

4 . Together

with the hyperplane class the V (τ) ∩K3 the divisors associated to these points make up
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Pic of the K3 in question and have the intersection form E8 × U [54] (for the other cases

see Kondos’s list [55][54]). The nine points on the edges of the K3 gives rise divisors

D = V (τ)∩X of the four fold of type b.) in addition the point ν∗
1 gives rise to a divisor of

type c.). All of them have χ(D,OD) = 1 from (4.7). One is horizontal w.r.t. π of (1.5) the

other are are IP1 bundles over IP2 and vertical w.r.t. π and but horizontal w.r.t. π′′ of

(1.7), i.e. they will lead to a non-perturbative superpotential of the heterotic string. In

fact we have here a realization of the situation described in [15][16] for the E8 group.

As a further simple generalization23 of (7), we chose B such that is it is a IP1 bundle

IP(OB′ ⊗ O(bf1 ⊗ cf2)B′) over B′ with IP(O ⊗ O(a)IP1) → B′ → IP1. This base B , say

F
(2)
k,m,n has as fan (−e1−ke2−me3,−e2−ne3, e1, e2, e3,−e3) with coordinates (p, s, q, t, v, u)

and the topological properties

χ(F
(2)
k,m,n) = 8,

∫

F
(2)

a,b,c

c1c2 = 24,

∫

F
(2)
n

c3
1 = 48 + 4mn− 2m2k. (6.3)

In particular if k = 0 (B′ = IP1 × IP1) and m = n the elliptic fibre degenerates homoge-

neously over IP1 × IP1 as can be seen from the Weierstrass form

y2 = x3 + xz4

[
4(n+2)

n

]

∑

l=0

vlu8−lf
(s,t;p,q)
4(n+2)−nl;4(n+2)−nl +z6

[
6(n+2)

n

]

∑

l=0

vlu12−lg
(s,t;p,q)
6(n+2)−nl;6(n+2)−nl,

(6.4)

such that we get as before the matter free degenerations, but this time at n = 3, 4, 6, 8, 12.

The case n = 8 leads however not to reflexive polyhedra hence not to a model with a

geometrical resolution.

B B′ X6-fibrations

B
∫

B
c1(B)3 B′

∫

B′ c2
1(B

′) G χ(X) hX
11 hX

21 hX
31

F
(2)
0,3,3 84 IP1 × IP1 8 A2 30336 6(1) 0 5042(0)

F
(2)
0,4,4 112 IP1 × IP1 8 D4 39264 8(2) 0 6528(0)

F
(2)
0,6,6 192 IP1 × IP1 8 E6 61920 10(2) 0 10302(0)

F
(2)
0,12,12 624 IP1 × IP1 8 E8 165498 12(0) 0 27548(0)

Tab. 6.3: Elliptic fibrations over IP1 × IP1, with pure gauge groups.

23 The generation of a superpotential in ten examples of this kind with generically I1 degener-

ation are discussed in great detail in [29].
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Again the X3(n+2)(1, n/2, (n+2), (n/2+1)3) K3 is embedded in the (2, 3, 4) plane and

the divisors of X leading to the enhanced gauge symmetry have very similar properties to

the ones discussed before.

The general formula for the Euler number for the elliptic fibred four fold X for which

the X6-fibration degenerates to a singularity of type G over a codimension one subspace

B′ in the base B is

χ(X) = 12

∫

B

c1(B)c2(B) + 360

∫

B

c3
1(B)− δd=4(B′, G), with

δd=4(B′, G) = r(G)c(G)

(

c(G)

∫

B′

c1(B
′)2 + (6−

∫

B′

c2(B
′))

∫

B′

c2(B
′)

)

.

(6.5)

For d = 3 the correction term is

δd=3 = r(G)c(G)

∫

B′

c1(B
′), (6.6)

while for d = 5 we observe for B′ = IP3

δd=5 = r(G)

(

c3
(G)

∫

B′

c3
1(B

′) + 3c2
(G)

∫

B′

c1(B
′)c2(B

′) + 2(3c(G) − c2
(G))

∫

B′

c3(B
′)

)

,

(6.7)

e.g. the elliptic fivefold fibration over the four dimensional base F
(3)
18 for which the generic

fibre X6 degenerates over a IP3 has by (3.10),(6.7) the Euler number χ = −55556832.

If the degeneration of the fibre is not of the same type over a subspace of codimension

one in the base, but there are codimension two loci where the degeneration increases,

a positive correction to the Euler number (3.10) is expected. As example we consider

F
(2)
0,0,n. Now the functions f ′

8(p, q), g′
12(p, q) do not become constants, when we consider

the leading singularity around (x, u) = (0, 0) and we get extra singularities when these

functions vanish. Application of (3.10) gives χs = 17568, while the actual data are

B B′ X6-fibrations

B
∫

B
c1(B)3 B′

∫

B′ c2
1(B

′) G χ(X) hX
11 hX

21 hX
31

F
(2)
0,0,3 48 IP1 × IP1 8 A2 18240 5(0) 5 3032(0)

F
(2)
0,0,4 48 IP1 × IP1 8 D4 19680 6(0) 10 3276(0)

F
(2)
0,0,6 48 IP1 × IP1 8 E6 23328 8(0) 10 3882(0)

F
(2)
0,0,12 48 IP1 × IP1 8 E8 35808 24(11) 0 5936(0)

Tab. 6.4: Elliptic fibrations over F
(2)
0,0,n.
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In F
(2)
n and the F

(2)
0,n,n cases we considered a specific point p = (u = 0, v = 1) in the

rational fibre over B′ and configurations such that the degeneration of the elliptic fibre was

homogeneous over B′. B′ is of course just one component of the discriminant locus and

away from p the fibre will degenerate over codimension one to I1, but more complicated in

higher codimensions. If we allow for special values of the moduli, there will be also more

complicated degenerations over codimension one surfaces in the base, which will lead to

non generic gauge group enhancement. In particular one can design examples with ADE

sphere tree’s over a IP2 in the base in which non generic gauge groups arise in M theory

compactifications to three dimensions similarly as in [56].

Let us discuss in extension of the last examples in table 3.3 situations where we have

a generic ADE fibre over B′, but additional enhancements over lines and points in B′.

These cases can be designed, by “upgrading” the corresponding Fn fibrations in three

dimensions, which were studied in great detail in [4][57] to four dimensions.

These three dimensional Calabi-Yau spaces Y are elliptic fibration over Fn: E →

Y → Fn and K3 fibrations K3 → Y → IP1. Furthermore the the K3 is itself a elliptic

fibration over the fibre IP1 of Fn, i.e. E → K3 → IP1. These fibration structure24 are

reflected in the geometry of the four dimensional polyhedron ∆∗ (cf. [57]). It has the

polar polyhedron of the Newton polyhedron of X6(1, 2, 3) in the (say) (4, 5) plane, which

is augmented to a K3 polyhedron in the (3, 4, 5) plane. Now in the threefold polyhedron

there are two points p1 = (0,−1, 0, 2, 3) and p2 = (0, 1, 2n, 2, 3) outside the (3, 4, 5) plane

such that a corner of the K3 polyhedron c = (0, 0, n, 2, 3) is in the middle of the line p1p2.

The coordinates associated to p1 and p2 are the homogeneous coordinates of the base IP1.

It is now very easy to replace the base IP1 by a rational surface S. E.g. we can replace it

by IP2 by adding instead of p1, p2 the points p0 = (−1, 0, 0, 2, 3), p1 = (0,−1, 0, 2, 3) and

p2 = (1, 1, 3n, 2, 3) so that e represents the canonical class of IP2 (or S). It is important that

the only modification in the scaling relations (5.3) from the three to the four dimensional

case is that the Mori generator with the two 1’s on the IP1 coordinates l = (1, 1, n, 0, . . . , 0)

is replaced by l = (1, 1, 1, n, 0, . . . , 0) with three 1’s on the IP2 coordinates, all other linear

relations between the points K3-plane are obviously the same. This implies that the

Weierstrass form is essentially the same but f and g depend now homogeneously on three

coordinates. That is the generic codimension one singularity at (u = 1, v = 0) is as

24 The complete process is the generalization of (3.7) with X
(0)
6 (1, 2, 3), r(1) = 2, r(2) = 2, and

r(3) = 3 to the polyheder description.
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analysed in [4][20]and indicated in table (6.5), while the additional singularities which give

matter in the six dimensional compactification are now at codimension one in the IP2. Let

us “upgrade” a couple of examples from table 3.2 of [57] to four dimensions in order to

demonstrate the effect of “unhiggsing” of the (u = 1, v = 0) locus in the fibre of F
(2)
n .

B0 SU(1) SU(2) SU(3) SU(4) SU(5)

F
(2)
3 (026208; 3, 1) (317082; 4, 1) (013032; 5, 1) (210116; 6, 1) (37578; 7, 1)

F
(2)
6 (044136; 7, 0) (324642; 8, 0) (016704; 9, 0) (011520; 10, 0) (07416; 11, 0)

F
(2)
9 (069624; 9, 0) (335874; 10, 0) (022752; 11, 0) (214652; 12, 0) (28604; 13, 0)

Tab. 6.5: Topological invariants (χ; h1,1, h1,2) of the chains of elliptic fibrations over F
(2)
n .

We indicate by the prefix n on the Euler number it’s divisibility 6n = χ mod 24.

We will discuss in section (9.6) in detail how the aspects of the discussion of the

transitions [20] carries over.

7. Euler number of Elliptic CY manifolds

For a complex manifold M , we denote the tangent bundle, canonical bundle, the total

Chern class of M by TM , KM and c(M) respectively.

Lemma 1. Let M be a m-dimensional compact complex manifold, and D be an irreducible

smooth divisor of M such that OM (D) is the d-th power of the canonical sheaf of M for

some rational number d, OM (D) = ωd
M . Then

χ(D) = −
m∑

k=1

dkck
1cm−k,

where cj is the j-th Chern class of M .

Let N be the normal bundle of D in M . It is known that the Chern class of D, 1+c1(D)+

· · ·+ cm−1(D), is related to c1(N) and cj ’s bt he following relations:

cj(D) + c1(N)cj−1(D) = cj|D ,

hence

cj(D) =

j
∑

k=0

(−1)kc1(N)kcj−k|D
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for 1 ≤ j ≤ m − 1. By c1(N) = −dc1|D, the result follows from the above relation for

j = m− 1.

Lemma 2. Let X be a n-dimensional CY manifold, which is a l-fold cyclic cover of a

manifold Y for l ≥ 2. Then

1

l − 1
χ(X) =

l

l − 1
χ(Y ) +

n∑

k=1

(
−l

l − 1
)kc1(Y )kcn−k(Y )

Proof. Let D be the branched locus for the double cover of X over Y . D is a smooth

divisor with OY (D) = ω
−l

l−1

Y . The result follows immediately from Lemma 1.

Let E be a vector bundle over a complex manifold M of rank r, and IP be the associated

projective bundle,

π : IP = IP(E) −→M .

Note that IP = IP(E ⊗ L) for any line bundle L over M . We have the exact sequence of

vector bundles over IP(E):

0 −→ IP×C −→ π∗E(1) −→ TIP −→ π∗(TM ) −→ 0 .

where (π∗E)(1) is the tensor bundle π∗E ⊗O(1) with O(1) the inverse of the tautological

bundle over IP for the bundle E. Hence

KIP = π∗(KM ⊗ det(E∗))⊗O(−r) (7.1)

We have the relation

c(IP) = c(M)c(π∗E(1)) .

Consider the cohomology ring H∗(M) as a subring of H∗(IP). H∗(IP) is a H∗(M)-algebra

generated by the Chern class

η = c1(O(1))

with the relation

cd(π
∗E(1)) =

r∑

k=0

ck(E)ηr−k = 0 . (7.2)

As c(π∗E(1)) is a projective invariant in H∗(IP),( i.e. an invariant under changing E to

E ⊗ L), one can in principal derive all the projective invariants of E in H∗(M). For later

purpose, let us work out the cases for r = 2, 3. For r = 2, we have

c1(π
∗E(1)) = c1(E) + 2η .
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Using (7.2) to eliminate η, we have the well-known projective invariant E in H∗(M):

i(E) := c1(E)2 − c2(E) = c1(π
∗E(1))2 ∈ H∗(M) . (7.3)

For r = 3, by

c1(π
∗E(1)) = c1(E) + 3η , c2(π

∗E(1)) = c2(E) + 2c1(E)η + 3η2 , (7.4)

we obtain the the projective invariant of E:

i2(E) :=c1(E)2 − 3c2(E) = c1(π
∗E(1))2 − 3c2(π

∗E(1)) ,

i3(E) :=2c1(E)3 − 9c1(E)c2(E) + 27c3(E) = 2c1(π
∗E(1))3 − 9c1(π

∗E(1))c2(π
∗E(1)).

(7.5)

One can always express the Chern numbers of IP in terms of those of M and projective

invariants of E. We are going to derive the relations for r = 2, 3. For r = 2, we have

ci(IP) = ci(M) + ci−1(M)(c1(E) + 2η) ,

which implies χ(IP) = 2χ(M) for i = m + 1. Using (7.3), we have

ck(IP)cm+1−k(IP) = 2ck(M)cm−k(M) + 2ck−1(M)cm+1−k(M) for 1 ≤ k ≤ m .

All the relations of Chern numbers for r = 2, m = 2, 3 are given by

m = 2 :

{

c2(IP)c1(IP) = 2c2(M) + 2c1(M)2

c3
1(IP) = 6c1(M)2 + 2i(E) ;

m = 3 :







c3(IP)c1(IP) = 2c3(M) + 2c2(M)c1(M)
c2(IP)2 = 4c2(M)c1(M)
c2(IP)c1(IP)2 = 4c2(M)c1(M) + 2c1(M)3 + 2c1(M)i(E)
c1(IP)4 = 8c1(M)3 + 8c1(M)i(E)

(7.6)

For r = 3, we have

ci(IP) = ci(M) + ci−1(M)c1(π
∗E(1)) + ci−2(M)c2((π

∗E)(1)) ,

which implies χ(IP) = 3χ(M) for i = m + 1. By (7.5) we have

ck(IP)cm+2−k(IP) =3ck(M)cm−k(M) + 3ck−2(M)cm+2−k(M) + 9ck−1(M)cm+1−k(M)

+ ck−2(M)cm−k(M)i2(E)
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The relations of Chern numbers for r = 3, m = 2, 3 are given as follows:

m = 2 :







c3(IP)c1(IP) = 9c2(M) + 3c1(M)2 ,
c2(IP)2 = 6c2(M) + 9c1(M)2 + i2(E) ,
c2(IP)c1(IP)2 = 9c2(M) + 21c1(M)2 + 6i2(E) ,
c1(IP)4 = 54c1(M)2 + 27i2(E) ;

m = 3 :







c4(IP)c1(IP) = 9c3(M) + 3c2(M)c1(M) ,
c3(IP)c2(IP) = 9c3(M) + 12c2(M)c1(M) + c1(M)i2(E) ,
c3(IP)c1(IP)2 = 9c3(M) + 18c2(M)c1(M) + 3c1(M)3 + 6c1(M)i2(E) ,
c2(IP)2c1(IP) = 9c1(M)3 + 24c2(M)c1(M) + 13c1(M)i2(E)− i3(E) ,
c2(IP)c1(IP)3 = 27c2(M)c1(M) + 30c1(M)3 + 45c1(M)i2(E)− 3i3(E) ,
c1(IP)5 = 90c1(M)3 + 135c1(M)i2(E)− 9i3(E) .

(7.7)

We now discuss the n-dimensional CY manifolds X which is either a hypersurface or

a cyclic branched cover of a projective bundle IP(E) over a complex manifold M . Such X

is always an elliptic fibration over M . By Lemma 1 and 2, the Euler number χ(X) can be

expressed by the Chern numbers of M and the projective invariants of E. By (7.6) and

(7.7), we have the following results for n = 3, 4:

Proposition 1. Let X be a n-dimensional CY manifold.

(I) If X is a double cover of a projective bundle IP associated to a rank 2 bundle E over a

(n− 1)-dimensional complex manifold M for n = 3, 4, then

χ(X) =

{
−28c1(M)2 − 8i(E) for n = 3 ,

12c2(M)c1(M) + 72c1(M)3 + 72c1(M)i(E) for n = 4 .

(II) If X is a hypersurface of a projective bundle IP associated to a rank 3 bundle E

over a (n− 1)-dimensional complex manifold M for n = 3, 4, then

χ(X) =

{
−18c1(M)2 − 6i2(E) for n = 3 ,

12c2(M)c1(M) + 27c1(M)3 + 39c1(M)i2(E)− 3i3(E) for n = 4

Remarks. (1) For n = 4 in (I), by 12|c2(M)c1(M), we have

72|χ(X) .

When E = K−2
M ⊕ 1, one obtains the formula (2.12) in [13].

(2) For n = 4 and E = the trivial bundle in (II), we have the following criterion for the

integral property of χ(X)
24

:

24|χ(X) ⇐⇒ 8|c1(M)3 .

Note that above condition do not hold for M = IP1 × IP2, in which case, c1(M)3 = 54 and

X is an elliptic CY 4-fold in IP1 × IP2 × IP2 with χ(X) = 1746
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8. Elliptic CY manifolds with sections

In this section we consider the structure of elliptic CY n-fold π : X −→ M with an

involution σ, and a (holomorphic) section s : M −→ X . Here the involution σ means an

order 2 automorphism of X commuting with π having the non-empty fixed points on the

general fiber of π, and the section s will always assume its image s(M) lying outside the

critical points of π.

For a line bundle L over M , we shall denote L the IP1-bundle IP(L⊕ 1) over M ,

π0 : L −→M ,

M0 the zero-divisor IP(0 ⊕ 1) and M∞ the infinity-divisor IP(L ⊕ 0) in L. As O(1) and

π∗
0L−1 are the line bundles associated to the divisor M∞ and −M0 + M∞ respectively, by

(7.1) we have

KL = π∗
0KM ⊗O(−M0 −M∞) .

Now set L = K−2
M , and consider a smooth divisor D contained in L such that the restriction

of π0 defines a 3-fold branched covering over M . Then D is defined by the equation:

ξ3 + a1ξ
2 + a2ξ + a3 = 0 , ξ ∈ L , ai ∈ Γ(M, Li) for i = 1, 2, 3. (8.1)

Hence D is linearly equivalent to 3M0 in L and we have

K−2

L
= O(D + M∞) .

The double cover of L branched at D+M∞ becomes an elliptic CY n-fold over M , denoted

by Z(2), with the involution σ and the projection given by the following diagram:

Z(2) −→ L = Z(2)/ < σ >

π ↓ ↓ π0

M = M .

The infinity-section of L over M induces a section of the fibration Z(2) over M fixed by σ.

Proposition 2. The Euler number of Z(2) is given by

χ(Z(2)) = 2
n−1∑

k=1

(−1)k−16kc1(M)kcn−1−k(M)
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Proof. We have

χ(Z(2)) = 2χ(K−2
M )− χ(M∞)− χ(D) = 3χ(M)− χ(D) .

We may assume a1 = a2 = 0, a3 6= 0 in the equation (8.1) of D. Hence D is a 3-fold cyclic

cover of M branched at the zeros of a3, which is a divisor in M for K−6
M . By Lemma 1,

χ(D) = 3χ(M) + 2

n−1∑

k=1

(−6)kc1(M)kcn−1−k(M) ,

hence the result follows immediately

For L = K−1
M , and a smooth divisor D contained in L with the restriction of π0 defining a

4-fold branched covering over M . Then D is linearly equivalent to 4M0 in L, and

K−2

L
= O(D) .

Denote Z(1) the double cover of L branched at D, and σ the involution. Z(1) is an elliptic

CY n-fold over M with the projection

π : Z(1) −→M

induced by π0. Since the infinity-section M∞ of L does not intersect D, it gives rise to two

disjoint sections of Z(1) over M permuted by σ. With the similar argument in Propostion

2, we have the following result:

Proposition 3. The Euler number of Z(1) is given by

χ(Z(1)) = 3

n−1∑

k=1

(−1)k−14kc1(M)kcn−1−k(M)

Remarks

(1) The formulas of χ(Z(i)) for small N are as follows:

χ(Z(2)) =







−60c2
1(M) for n = 3 ,

12c1(M)c2(M) + 360c3
1(M) for n = 4 ,

12c1(M)c3(M)− 72c1(M)2c2(M)− 2160c4
1(M) for n = 5 .

and

χ(Z(1)) =







−36c2
1(M) for n = 3 ,

12c1(M)c2(M) + 144c3
1(M) for n = 4 ,

12c1(M)c3(M)− 48c1(M)2c2(M)− 576c4
1(M) for n = 5 .
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The above χ(Z(2) for n = 4 is the formula in [13].

(2) When M = IPn−1, Z(2), Z(1) are the CY manifolds for the hypersurface X6n(1, · · · , 1
︸ ︷︷ ︸

n

, 2n, 3n)

and X4n(1, · · · , 1
︸ ︷︷ ︸

n

, n, 2n) respectively. In general, a CY n-fold X6k(w1, · · · , wn+2) with

∑n
j=1 wj = k and wn+1 = 2k, wn+2 = 3k has the above Z(2) structure with M

as a non-singular toric variety dominating IP(w1, · · · , wn). Similarly the CY n-fold

X4k(w1, · · · , wn+2) with
∑n

j=1 wj = k and wn+1 = k, wn+2 = 2k for Z(1). However

the construction of Z(2) can also be applied to a non-toric variety M , e.g. a del Pezzo

surface.

The above elliptic CY fibration Z(i) has the following characterization:

Proposition 4. Let X be an elliptic CY fibration over a complex manifold M with an

involution σ such that all the fibers are irreducible.

(I) If there is a section of X over M fixed by σ, and H1(M, K−2
M ) = 0, then X isomorphic

to Z(2) over M .

(II) If there exist two disjoint sections of X over M permuted by σ, and H1(M, K−1
M ) = 0,

then X isomorphic to Z(1) over M .

Proof. Let π be the projection of X onto M , and s a section fixed by σ. The image s(M)

is a smooth divisor of X isomorphic to M . By the irreducibility of fibers of π, π∗O(2s(M))

is a rank 2 vector bundle M , and denote its dual bundle by E. The section of π∗O(2s(M))

determined by 2s(M) gives rise the trivial line sub-bundle of π∗O(2s(M)), hence one has

the extension

0 −→ L −→ E −→ 1 −→ 0

where L is a line bundle over M . The ratio of values of local sections of π∗O(2s(M)) induces

a double cover of X over IP(E), in which IP(L) lies as a component of the branched locus

corresponding to s(M). As the normal bundle of s(M) in X is equal to s∗KM , one obtains

L = K−2
M . By H1(M, K−2

M ) = 0, the above extension of E splits and we have E = K−2
M ⊕1,

hence (I) follows immediately. By the same argument one obtains (II)

9. Topological correlation functions and mirror symmetry

The A and the B models are topological N = 2 supersymmetric σ-models with a

Calabi-Yau d-fold X as their target space. They correspond to two possibilities to twist the

N = 2, c = 3·d superconformal σ-model on the world-sheet [58]. The algebra of observable
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(BRST invariants) of the A model is identified with the quantum deformation of the

classical intersection algebra on A = ⊕n
p=0H

p(X,∧pT ∗). More precisely the corresponding

cubic forms has the form

Q(a, b, c) =

∫

X

a ∧ b ∧ c +
∑

Nd(a, b, c)
qd

1− qd
(9.1)

where Nd(a, b, c) can be defined as certain intersection numbers on a moduli space of

mappings. Here qd = qd1
1 · · · q

dm
m , m = h1,1(X), where q1, .., qm are some local coordi-

nates on the complexified Kähler cone of X . The series above is expected to converge for

small |qi|. The algebra of observables of the B model is identified with an algebra on25

B = ⊕n
p=0H

p(X,∧pT ) ∼ ⊕n
p=0H

p(X,∧d−pT ∗), whose structure constants can be analyzed

using Griffith’s transversality of the Gauss-Manin connection on the middle dimensional

cohomology of X . Especially the marginal operators of the A and B model are identi-

fied with elements of H1,1(X) and Hd−1,1(X) respectively. All correlations functions of

the topological theories can be obtained from these structure constants or equivalently

from the 2- and 3-point correlators. The 2-point correlator in a topological field theory

is purely topological: in the present cases it is simply the Poincaré pairing on A or B

respectively. Relative to any given base, we denote the matrix value of this inner product

〈, 〉 : Hp(X)⊗Hd−p(X)→ C by ηαβ
(p). It’s inverse is denoted η

(p)
αβ . By the identification of

the marginal operators, the 3-point correlators will depend on h1,1(X) complexified Kähler

moduli in the A model and hd−1,1(X) complex structure moduli in the B model. Our goal

here is to show all 3-point correlators of the B model can be written explicitly in terms of

the periods for the middle dimensional cohomology of the Calabi-Yau d-fold X. We give

explicit expression for the periods and 3-point correlators containing two marginal opera-

tors, which are a direct generalisation of the formulas in [26]. Using further properties of

the Frobenius algebra one can derive explicit expressions for all correlators of the B-model

on X from them. By mirror symmetry the formalism can therefore be used to obtain the

A-model correlation functions on X , after suitable identification, from the B-model corre-

lation functions on the mirror manifold X∗. This is in fact the main application we have

in mind. For one moduli Calabi-Yau of arbitrary dimensions this was discussed in [59].

Some aspects of the generalization to multimoduli cases can be found in [60] [61][62],[29].

Here we generalize the d = 4 case treated in [29] to d-folds.

25 The equivalence is due to the unique holomorphic (d, 0)-form Ω present on every Calabi-Yau

d-fold.
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9.1. The B-model algebra

Let π : X → S be a family whose generic fiber is a Calabi-Yau n-fold Xz. One

writes now the 3-point correlators as a cubic form on the groups Hp(Xz,∧
pT ). Put Bz =

⊕Hp(Xz,∧
pT ). The cubic forms are defined by

C(a, b, c) =

∫

Ω(a ∧ b ∧ c) ∧ Ω (9.2)

where Ω(a ∧ b ∧ c) is the contraction along the tangent direction producing an n-form on

Xz.

Mirror symmetry provides a vector space isomorphism φz : Bz → A, a mapping

z 7→ z(q) and a normalization 1
f such that near the large radius limit q = 0, we have

1

f
C(φza, φzb, φzc) = Q(a, b, c)(q(z)), (9.3)

where Q is the quantum corrected cubic form on A. It’s clear that Q should be independent

of the choice of Ω. But C depends on Ω quadratically. Thus we expect that 1
f must be

a holomorphic function near q = 0 which cancels this dependence. Near the large radius

limit, there is a unique holomorphic period ω0(z) =
∫

γ
Ω(z). The choice 1

f
= 1

ω2
0

therefore

provides a natural resolution to this cancellation problem. Equivalently we can replace Ω

by 1
ω0

Ω and set f = 1. This is what we shall do. We shall first fix a base point 0 ∈ S, a

topological base of homology cycles and the dual base γ
(p)
a on Hn(X0) with the property

that 〈γ
(p)
a , γ

(q)
b 〉 = 0 for p+q ≤ n. For fixed p, the label a in γ

(p)
a takes hn−p,p(X0) different

values. Due to mirror symmetry such a base will be the image of a base on A under φ0.

In fact in practice, there is usually a canonical choice of such a base on the A-model side.

There is a filtration of holomorphic vector bundles over S: F(0) ⊂ F(1) ⊂ · · · ⊂ F(n),

where the fiber over z ∈ S of F(k) is the vector space ⊕k
p=0H

p(Xz,∧
pT ). We now provide a

set of frames for the these bundles. We shall express these frames as linear combinations in

the base γ
(p)
a with holomorphically varying coefficients. We shall see that these coefficients

completely determine the cubic form C. For each k, let {α(0) := Ω, α
(1)
a , .., α

(k)
b } be a frame

of F(k) having the following upper-triangular property with respect to the γ
(p)
a :

α(k)
a = γ(k)

a +
∑

p>k

g(p)c
a γ(p)

c . (9.4)

(The g(p) actually depends on k, which we have suppressed in the notation above.) These

frames can be obtained by row reduction on a given arbitrary base of sections. (See
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[59].) Note that for k = 0 the coefficients g(p) are exactly the periods of the above

given homology cycles. These periods are solutions to the Picard-Fuchs equations (in

an appropriate gauge). We will give explicit formulas later for these periods for Calabi-

Yau complete intersections in a toric variety. Note that in α(0) the coefficients ta := g
(1)
a

are regarded as local coordinates on S. These are the so-called flat coordinates. In these

coordinates the Gauss Manin connection ∇a becomes ∂ta
, and the cubic form of type

(1, k, d− k − 1) is given by

C
(1,k,d−k−1)
a,b,c =

∫

X

α(d−k−1)
a ∧ ∂ta

α
(k)
b =: 〈∂ta

α
(k)
b , α(n−k−1)

c 〉. (9.5)

Using the upper-triangular property of the α
(k)
a and the topological basis γ(k), it is

easy to show that

η
(k)
ab := 〈α(k)

a , α
(d−k)
b 〉 = 〈γ(k)

a , γ
(n−k)
b 〉. (9.6)

In particular these matrix coefficients are independent of t. Furthermore we claim that

∂ta
α

(k)
b = C

(1,k,d−k−1)
a,b,c ηcd

(d−k−1) α
(k+1)
d . (9.7)

By Griffith’s transversality, we have ∂ta
α

(k)
b ∈ F(k+1) = Span{α(0), .., α

(k+1)
a }. But because

of the upper triangular form of α
(k)
b , ∂ta

α
(k)
b has zero component along γ(0), .., γ

(k)
a . Thus

it can be expressed as a linear combination (with holomorphically varying coefficients) of

the α
(k+1)
b . To determine the coefficients, we take its inner product with α

(n−k−1)
c and

apply eqns (9.5), (9.6). The claim above then follows.

To summarize, our strategy for computing the A-model cubic form Q on X by mirror

symmetry is as follows. Actually we will only do it for a Frobenius subalgebra A (see

below) of the A-model algebra. First we fix a topological basis on A (In the case of toric

hypersurfaces, this basis will come from toric geometry). We define our isomorphism φz

so that it sends this basis to the holomorphically varying basis α
(k)
a of the B-model with

1 7→ α(0). Then we shall use eqns (9.5),(9.6) and (9.7) as our crucial ingredients for

computing the B-model cubic forms C explicitly. For this we shall need some elementary

theory of Frobenius algebras which we now discuss.
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9.2. Frobenius algebras

In this section, all vector spaces are finite dimensional. A Frobenius algebra is a

commutative graded algebra A = ⊕n
i=0A(i), generated by A(1), has A(0) = C · 1, and

a nondegenerate degree n bilinear symmetric invariant pairing 〈, 〉 : A × A → C. Note

that because we require generation by A(1), this notion is slightly stronger than the usual

notion of a Frobenius algebra. We give some well-known examples from geometry. Let P

be a complete toric variety, and A∗(P) be its Chow ring. Then A∗(P)⊗C is a Frobenius

algebra. The pairing here is the Poincaré pairing. If X is a hypersurface in P, then it can

be shown that the ring

Ã∗(X) := Im(A∗(P)→ A∗(X)) = A∗(P)/Ann([X ]) (9.8)

tensored with C is a Frobenius algebra. More generally, if A is a Frobenius algebra, and

x ∈ A(1) is a nonzero element, then Ã := A/Ann(x) is a Frobenius algebra with the induced

pairing 〈a + Ann(x), b + Ann(x)〉 := 〈a, b · x〉 having degree n− 1.

Let V1, V2, V3 be vector spaces, and C : V1 ⊗ V2 ⊗ V3 → C be a cubic form. It is

call V1-nondegenerate if that C(a,b,c) = 0 for all b, c implies that a = 0. Similar notion of

Vi-nondegeneracy applies. We call the form nondegenerate if it is Vi-nondegenerate for all

i. Now suppose C is V3-nondegenerate. Then we have the following invertibility property.

Let D : V ∗
3 ⊗ V4 → C be any bilinear form. Then the knowledge of the 3-form E(a,b,d) :=

C(a,b,ci)D(γi,d) ({ci}, {γ
i} being dual bases), allows us to determine D completely. In fact,

there exists (in general not unique) a 3-form F such that D(γ,d) = F(γ,αi,βj)E(ai,bj ,d).

This is just the statement that the V3-nondegenerate cubic form C defines an onto map

V1 ⊗ V2 → V ∗
3 , hence choosing a section gives us a left inverse F to this map.

We now return to a Frobenius algebra A. it determines a collection of cubic forms

C(ijk) : A(i) ⊗ A(j) ⊗ A(k) → C with i, j, k ≥ 0, i + j + k = n. These cubic forms are

A(i)-nondegenerate whenever either j = 1 or k = 1 because A(1) ·A(i) = A(i+1).

9.3. Reconstruction

Let A = ⊕n
i=0A(i) be a graded space with A(0) = C and equipped with a degree

n nondegenerate symmetric bilinear form η. Suppose we are given cubic forms: C(ijk) :

A(i) ⊗ A(j) ⊗ A(k) → C, i, j, k ≥ 0 with the following properties:

(a) (Degree) C(ijk) = 0 unless i + j + k = d.

(b) (Unit) C
(0ij)
(1,b,c) = η

(i)
b,c.
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(c) (Nondegeneracy) C(1ij) is nondegenerate in the second slot.

(d) (Symmetry) For any permutation σ of 3 letters, C
(ijk)
(a,b,c) = C

σ(ijk)
σ(a,b,c).

(e) (Associativity)

C
(i,j,n−i−j)
(a,b,cp) ηpq

(n−i−j)C
(i+j,k,n−i−j−k)
(dq ,e,f) = C

(i,k,n−i−k)
(a,e,c′p) ηpq

(n−i−k)C
(i+k,j,n−i−j−k)
(d′

j
,b,f)

where the c and the d are bases of the appropriate spaces.

Then A is a Frobenius algebra with the product

a · b = C(a,b,cp)η
pqdq. (9.9)

The rules above are known as fusion rules. One can also build a k-form by fusing together

2- and 3-forms. The associativity law says that there will often be many ways to build a

given k-form. Similarly the 3-forms are not independent. We claim that the forms of type

(i, j, n− i− j) for i, j > 1 are determined by the those of type (1, r, n− r− 1). To see this

without loss of generality, we can assume 1 < n− i− j ≤ i, j. Now by the associativity law

above with k = n− i− j−1 and the invertibility property of C(i+j,k,n−i−j−k) = C(i+j,k,1),

it follows that C(i,j,n−i−j) are determined in terms of forms of type (i, n− i− j − 1, j + 1)

and (i + k, j, 1). By the symmetry property, (i, n − i − j − 1, j + 1) is equivalent to

(i, j +1, n− i− j− 1). Thus we have reduced the value of n− i− j by 1. By induction, we

see that all (i, j, n− i − j) can be expressed in terms of those of type (1, r, n− r − 1). In

terms of the algebra A itself, an alternative way to state the result is that all the products

A(i) ⊗ A(j) → A(i+j) is determined by those of the form A(1) ⊗ A(r) → A(r+1) because A

is generated by A(1) and that

(a1 · · ·ai)(ai+1 · · ·ai+j) = a1(a2 · · ·ai+j). (9.10)

9.4. Application

Let X be a Calabi-Yau n-fold, and letA be a Frobenius subalgebra of⊕n
p=0H

p(X,∧pT ∗).

Suppose mirror symmetry holds: there is a mirror family X∗ whose B-model algebra co-

incides with the A-model algebra of X . We shall now compute the Frobenius subalgebra

B of the B-model algebra corresponding to A. From our general discussion of Frobenius

algebras, it is enough to compute the cubic forms C of types (1, r, n− r − 1) which come

with B. Once we have a period expansion in the topological base (9.4) these can be easily

obtained using eqns (9.5), (9.6)and (9.7). To obtain the coefficients in (9.4) we will use
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the fact[63][27]that the universal structure of the solution of the Picard-Fuchs equation

on X∗ at the large radius point mirrors the primitive part of the vertical cohomology of

X and the leading structure of logarithm enables us to associate this solutions with the

expansion of the periods in a topological base. This leads to a direct generalisation of the

formulas of [63] to some correlation functions on d-folds.

More precisely there are hr,r
prim(X) solutions 0 < r < d with leading degree r in the

log(zi), which have the form

Π̃
(r)
k =

∑

Π

0Cd−r,1...1
k,i1,...,ir

( 1

r!
li1 . . . lir

S0 +
1

(r − 1)!
li1 . . . lir−1

Sir
+ . . . + Si1,...,ir

)
, (9.11)

here we defined li := log(zi) and the Si1,...ir
are holomorphic series in the zi, whose explicit

form are given below. The map to an specific element of the cohomology Hd−r,d−r of X

can be made precise by noting that the 0Cd−r,1...1
k,i1,...ir

are given by the classical intersection of

that specific element with the intersection of divisors Ji1 · . . . ·Jir
. We discuss the primitive

part of the (co)homology generated by J1 . . . Jh1,1 only and by Poincare duality, this data

fix the element in Hd−r,d−r completely.

As mentioned above the covariant derivative ∇a in [59] becomes the ordinary deriva-

tive in the flat complexified Kähler structure coordinates tk. The coordinate change from

the natural complex structure coordinates za to the tk variables is given by the mirror

map tk =
Π̃

(1)

k
(zi)

Π̃(0)(zi)
= log(zk) + Sk

S0
. If we substitute this coordinate transformation in the

normalized periods Π
(r)
i =

Π̃
(r)
i

Π̃(0)
some simplifications occur as the first subleading terms in

the ti cancel out:

Π
(r)
k =

∑

Π

0Cd−r,1...1
k,i1,...,ir

( 1

r!
ti1 . . . tir

+
1

(r − 2)!
ti1 . . . tir−2

Ŝir−1
Ŝir

+ . . . + Ŝi1,...,ir

)
. (9.12)

Now we notice from the monodromy around zi = 0 (ti → ti + 1) that the periods Π
(r)
k

correspond to a expansion of α(0) = Ω in terms of the topological basis26 γk
(r) of (9.4) α(0) =

∑

k,r Π
(r)
k γk

(r).

The coupling C
(1,1,d−2)
a,b,c : H1,1 ×H1,1 ×Hd−2,d−2 →C is especially simple to obtain.

Applying (9.7) in the case k = 0 we have ∂ta
α(0) = α

(1)
a . This determines α

(1)
a , hence

26 This is actually only true up to the addition of solutions with subleading logarithms, which

however does not affect the holomorphic couplings discussed below. It will affect however the

non-holomorphic Weil-Peterson metric.
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all its coefficients. Now using (9.5) for k = 1, (9.4) for k = 1, d − 2, and the fact that

〈γ
(k)
a , γ

(l)
b 〉 = 0 for k + l > d, we see that

C
(1,1,d−2)
a,b,c = ∂ta

g
(2)d
b η

(2)
dc = ∂tb

∂tb
Π(2)

c , (9.13)

where the g(2) are the coefficients of the γ(2) in the α(1). Note that the last equation follows

from the fact that Π
(r)
a is an expansion in the dual base γa

(r) and that the associativity of

the classical parts in (9.13) is manifest. Eqs. (9.12)(9.13) are direct generalizations of eqs.

(4.9) and (4.18) to the d-fold case. For d = 4 an equivalent description has been given

in [29]. For H1,1 we have always a canonical choice of the basis say J1 . . . Jh1,1 , as there

is a canonical basis for the tangent space of the moduli space corresponding to elements

Hd−1,1(X∗), which is mapped by the monomial divisor mirror map to H1,1(X) and (9.13)

reduces for d = 3 to the expressions given in [63]. For d > 3 there is a priori no canonical

choice for the basis of Hd−2,d−2. However toric geometry can be used as in [27] to show

that the graded ring

R = C[θ1, . . . , θh1,1]/J ,

where J is the ideal generated by the leading θ-terms of Picard-Fuchs equations, gives, by

the identification θi → Ji, a presentation of the primitive part of H∗,∗. Because of Poincare

duality it is of course sufficient to pick a basis of half of H∗,∗ and as mentioned above the

choice of the basis in H1,1 is canonical. It was shown in [63][27] that any element of R can

be mapped to a solution (9.11), i.e. the 0Cd−r,1...1
i1,...,ir

are determined by the principal part of

the Picard-Fuchs equation. This can be viewed as a proof of mirror symmetry at the level

of the classical intersections, which readily generalizes to d-folds.

Now proceed by induction. Suppose we know (the coefficients of) the α(i) and the cubic

forms of types (1, i, n− i−1) for i = 0, 1, .., k. Then by the invertibility property of a cubic

form of type (1, k, n−k−1) in a Frobenius algebra, we can solve for the α(k+1) using (9.7).

Thus the α(k+1) are determined. By (9.4), we can write ∂ta
α

(k+1)
b = ∂ta

g
(k+2)d
b γ

(k+2)
d + · · ·

(which is now known), arguing as before using (9.5) with k replaced by k + 1, and using

the inner product property of the γ, we find that C
(1,k+1,n−k−2)
abc = ∂ta

g
(k+2)d
b η

(k+2,n−k−2)
dc .

Thus the cubic form of type (1, k + 1, n− k − 2) is also determined. This shows that all

cubic forms of type (1, k, n− k − 1) for k = 1, 2, .., n− 1 can be expressed in terms of the

coefficients of α(0) alone.
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9.5. Explicit expressions for periods and instanton sums for complete intersections in toric

varieties

Following [63] we can determine the holomorphic series Si1,...,ir
from the generators

of the Mori cone. Consider a Calabi-Yau d-fold defined as complete intersection with p

polynomial constraints in a toric variety of dimension d + p. The generators of the Mori

cone will be of the form

l(i) = (l̂
(i)
0 , . . . , l̂

(i)
p−1; l

(i)
1 , . . . , l(i)q ),

where q = d + p + hd−1,1. The series Si1,...,ir
are obtained by the Frobenius method from

the coefficients of the holomorphic function ω(~z, ~ρ)

ω(z, ~ρ) =
∑

c(~n, ~ρ)
h1,D−1
∏

j=1

z
nj+ρj

j

c(~n, ~ρ) =

∏p
k=1 Γ(1−

∑h1,D−1

i=1 l̂
(i)
k (ni + ρi))

∏q
k=1 Γ(1−

∑h1,D−1

i=1 l
(i)
k (ni + ρi))

Si1,...,ir
= ∂ρi1

. . . ∂ρir
ω(~z, ~ρ)|~ρ=~0

Notably with leading behavior S0 = 1 + . . ., Si = zi + . . ..

This gives the explicit expansion of C
(d−2,1,1)
A,b,c =0 C

(d−2,1,1)
A,b,c + O(qi), with qi = eti .

The latter has a conjectural interpretation as being the counting function for invariants of

maps from the two sphere into X . These maps are defined such that two fixed points Pb,

Pc are mapped to the divisors Db, Dc, while one point PA is mapped to the codimension

r subvariety A in a class of Hr,r(X). And the invariant is the Euler class of the moduli

space of that curve, weighted by (−1)dim M. From the definition of the degree a generic

rational curves of degree dl will pass through the divisor Dl in dl points, but a generic

curve does not pass through the submanifold A of higher codimension then one. If we

require the latter this imposes a restriction and the invariants of that specific curves will

be labeled by the class of A. Moreover in the path integral definition of C
(d−2,1,1)
A,b,c one

integrates over the points Pi and has accordingly to divide by a combinatorial factor of

dbdc in order to extract the invariant for the elementary rational curves n
(A)
~d

from the

three-point function. By a similar reasoning as in [64] is was described in [59] how to

subtract the multiple wrapping contributions from the lower degree curves in order to get
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the invariants of the elementary curves at given multidegree ~d. Taking both effects into

account the expansion of the three-point function in terms of invariants n~d is as follows27

C
(d−2,1,1)
A,b,c =0 C

(d−2,1,1)
A,b,c +

∑

~d

dadbn
(A)
~d

1−
∏h1,1

i=1 qdi

i

h1,1
∏

i=1

qdi

i . (9.14)

9.6. Examples of the quantum cohomology rings and transitions

Let us discuss as the simplest example case (1) of chapter 5, the elliptic fibration with

X6(1, 2, 3) fibre over IP3 and its transition by the blow up at an equivariant fix point in IP3

to model (3) and along the irreducible subvariety to model (5). Evaluation of the explicit

quantum cohomology in other cases can be found in [29].

The toric representation of the mirror of (1) is defined by (4.1) were ∆∗, is given by

(5.1) as the convex hull of the following points

ν∗
0 = ( 0, 0, 0, 0, 0)

ν∗
1 = ( 1, 0, 0, 0, 0)

ν∗
2 = ( 0, 1, 0, 0, 0)

ν∗
3 = ( 0, 0, 1, 0, 0)

ν∗
4 = (−1,−1,−1,−8,−12)

ν∗
6 = ( 0, 0, 0, 1, 0)

ν∗
7 = ( 0, 0, 0, 0, 1)

ν∗
8 = ( 0, 0, 0,−2,−3).

(9.15)

The manifold itself can be described by considering the vanishing of the Newtonpolynom

of the polar polyhedron ∆ in P ∗
∆. It turns out to be a degree 24 Fermat hypersurface in a

weighted projective space X24(1, 1, 1, 1, 8, 12).

There is a unique triangulation of the polyhedron ∆∗ from its origin ν∗
0 = (0, 0, 0, 0, 0).

Note that the points ν∗
1 , ν∗

2 , ν∗
3 , ν∗

4 , ν∗
7 all lie on a codim 2 face of ∆∗, with ν7 the interior

point of that face, while the points ν∗
5 , ν∗

6 , ν∗
7 and ν∗

0 lie on a codim 3 plane, which cuts

the polyhedron. The two linear relation implied by this lead to the two generators of the

Mori cone.

27 For all toric varieties these invariants can be calculated with a updated version of the pro-

gram INSTANTON (which is available on request) from the Mori generators and the classical

intersections.
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l(1) = ( 0; 1, 1, 1, 1, 0, 0,−4)

l(2) = (−6; 0, 0, 0, 0, 2, 3, 1)

The two Kähler classes J1, J2 dual to this Mori generators measure classically the

volume of the base IP3 and the size of the fiber respectively. While the the divisor D1

associated to the first Mori cone represents the section and is horizontally, D2 is a vertical

divisor, which intersects the base IP3 in codim 2. Since three planes do not intersect

generically in IP3 the classical 4-point coupling D1 · D1 · D1 · D2 =
∫

J3
1 J2 is zero. The

other classical 4-point couplings
∫

JiJkJlJm and the evaluation
∫

c2JiJk, and
∫

c3Ji are

summarized by the coefficients in the following formal polynomials

C0 = J2J
3
1 + 4J2

2 J2
1 + 16J3

2J1 + 64J4
2

C2 = 48J2
1 + 182J1J2 + 728J2

2

C3 = −960J1 − 3860J2

The Picard-Fuchs equations for the mirror manifold are

L1 = θ4
1 − (4θ1 − θ2 − 4)(4θ1 − θ2 − 3)(4θ1 − θ2 − 2)(4θ1 − θ2 − 1)z1

L2 = θ2(θ2 − 4θ1)− 12(6θ2 − 5)(6θ2 − 1)z2

,

have the following discriminant

∆1 = (1− 256z1)

∆2 = (1− 432z2)
4 − z1z

4
2 .

The mirror map z2(q1 = 0, q2) = P (J(t2)) is defined by the ratio of two periods

of holomorphic 1-form on the elliptic curve X6(1, 2, 3), while mirror map z1(q1, q2 = 0)

is described by the ratio of periods over a meromorphic differential on the K3 surface

X4(1, 1, 1, 1).

The basis of H1,1 are denoted by J1, . . . , Jr. We choose then a basis of H2,2

b
(2)
1 = J2

1

b
(2)
2 = J1J2 + 4J2

2 .

The intersection matrix between elements of H2,2 in this basis is

η(2,2) =

(
0 17
17 1156

)

.
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If we determine the basis of H(3,3) by the requirement that Poincarè bilinear pairing takes

the simplest form ηi,j
(1,3) = δi,h1,1−i+1 with the canonical basis of H1,1, then we get

b
(3)
1 = J3

1

b
(3)
2 =

1

273
(J2

1J2 + 4J1J
2
2 + 16J3

2 )− 4J3
1 .

The basis for H4,4 is fixed up to a volume normalization of the d-fold, which we choose so

that η1,1
0,d = 1. In our case above b(4) = 1

75C0.

The leading order logarithms in the periods are according to (9.11)

Π
(2)
1 = S0(l1l2 + 2l21) +O(l)

Π
(2)
2 = S0(

17

2
l21 + 68l1l2 + 136l22) +O(l).

The invariants for the genus zero curves from the normalized three-point functions

listed in the two tables below

b
(2)
1 = J2

1 , 1
20

C
(2,1,1)
1,i,j :

m n
(1)
0,m

n
(1)
1,m

n
(1)
2,m

n(1)13,m n
(1)
4,m

0 0 0 0 0 0

1 −1 384 −90000 13919744 31152804996

2 −41 24576 −7990080 1785169920 −301991420880

3 −3403 2812800 −1230118560 369021660288 −84154079407488

4 −374322 397171200 −219729224832 83117668597760 −23932769831261760

5 −48251945 62575303680 −41951914533360 19174105171468800 −6670224866876828160

b
(2)
2 = J1J2 + 4J2

2 , 1
16320

C
(2,1,1)
2,i,j :

m n2
0,m

n2
1,m

n2
2,m

n2
3,m

n2
4,m

0 0 1 2 3 4

1 0 6 −1893 439256 2661669198

2 0 189 −102750 31221300 −6618229812

3 0 14366 −11162250 4632513522 −1326773710832

4 0 1518750 −1537867338 816075268892 −297124091742240

5 0 191238192 −238866784083 154724059936392 −68479975849390752

Adding of the point ν∗
5 = (0,−1,−1,−6,−9) correspond to an blow up of IP3 along

an IP1 and leads to model (5). This transition has a close similarity to the transition by

shrinking (blowing) a Del Pezzo surface studied in [3][42] as in the fourfold a six-cycle

shrinks along the E8 Del Pezzo28 surface to T invariant orbit in the base. In fact we will

see the E8 partition function

Λ̂E8
=

1

2

∑

α=even

θ8
α(τ)

η(τ)12
= 1 + 252q + 5130q2 + . . .

28 Similarly one can observe the shrinking of E7, E6, (D5) Del Pezzo surface in the corresponding

fibrations types.
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appearing as counting functional of the instantons in the appropriate normalized threepoint

functions, marked by the ∗ in the table below (as well as the higher degree invariants of the

shrinking Del Pezzo, marked with the ⋄). This model has two phases and in the first the

Stanley Reisner ideal is given by S = {x2x5, x1x3, x1x3x4, x6x7x8}. The Mori generators

below correspond to the classes of the curve in the IP(O ⊕ OIP1 ⊕IP1 (1)) bundle (2), a

section of the IP1 base in this bundle (1) and the class of the elliptic fibre over B (3):

l(1) = ( 0; 0, 1, 0,−1, 1, 0, 0,−1),

l(2) = ( 0; 1, 0, 1, 1, 0, 0, 0,−3),

l(3) = (−6; 0, 0, 0, 0, 0, 2, 3, 1),

(9.16)

The classical couplings are

C0 = J1J
2
2 J3 + J3

2 J3 + 3J1J2J
2
3 + 4J2

2J2
3 +

9J1J
3
3 + 15J2J

3
3 + 54J4

3

C2 = 36J1J2 + 102J1J3 + 48J2
2 + 172J2J3 + 618J2

3

C3 = −540J1 − 900J2 − 3258J3.

(9.17)

Analogous as in [3] one has to flop the IP1 in B first. As such flops were not discussed in

the fourfolds context let us give the data of this transition to the second phase whose Mori

generators are l′(1) = −l(1), l′(2) = l(1)+l(2) and l′(3) = l(1)+l(3). The Stanley Reisner Ideal

changes to S = {x4x8, x1x3x4, x6x7x8, x1x2x3x5, x2x5x6x7} while the classical couplings

become

C0 = J ′
3J

′3
2 + 4J ′2

2 J ′2
3 + 15J ′3

3 J ′
2 + 54J ′4

3 + J ′
1J

′3
2 + 4J ′

1J
′2
2 J ′

3 + 16J ′
1J

′2
3 J ′

2

+ 60J ′
1J

′3
3 + 4J ′2

1 J ′2
2 + 16J ′

2J
′
3J

′2
1 + 64J ′2

1 J ′2
3 + 16J ′3

1 J ′
2 + 64J ′3

1 J ′
3 + 64J ′4

1

C2 = 48J ′2
2 + 172J ′

2J
′
3 + 182J ′

2J
′
1 + 618J ′2

3 + 688J ′
3J

′
1 + 728J ′2

1

C3 = −900J ′
2 − 3258J ′

3 − 3620J ′
1.

(9.18)

The positive scaling relations on the variables x1, . . . , x8 are

(−18; 1, 0, 1, 1, 0, 6, 9, 0),

(−24; 1, 1, 1, 0, 1, 8, 12, 0),

(−6; 0, 0, 0, 0, 0, 2, 3, 1),

(9.19)
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and the Weierstrass form

x2
7 = x3

6 + x6x
4
8

∑

µ,ν,ρ

xµ
1xρ

3x
ν
2x16−µ−ν−ρ

5 x12−µ−ρ
4 + x6

8

∑

µ,ν,ρ

xµ
1xρ

3x
ν
2x24−µ−ν−ρ

5 x18−µ−ρ
4 .

The singularity at D4, near x2 = x5 = 0 and along (x1, x3) is recognized as the canoni-

cal singularity with crepant blowup which signals the collapse of the E8 Del Pezzo sur-

face [3] and is smoothed to a generic member of the family X24(1, 1, 1, 1, 8, 12) by perturbing

with those terms, which were forbidden by the first scaling relation. This completes the

transition to the fibration over IP3.

With the choice of basis

b
(2)
1 = J1J2, b

(2)
2 = J1J3 + J2

3 , b
(2)
3 = J2

2 , b
(2)
4 = J2J3 + 3J2

3 , (9.20)

we have the following data for the quantum cohomology ring

η2,2 =






0 3 0 10
3 72 5 207
0 5 0 13
10 207 13 580






b
(2)
1 = J1J2, C

(2,1,1)
1,i,j :

m n
(1)
m,0,0

n
(1)
m,0,1

n
(1)
m,0,2

n
(1)
m,0,3

n
(1)
m,0,4

n
(1)
m,1,0

n
(1)
m,1,1

n
(1)
m,1,2

n(1)1m,2,0 n
(1)
m,2,1

n
(1)
m,2,2

0 0 0 0 0 0 3 −1080 143370 −12 5400 −1149120

1 1∗ 252∗ 5130∗ 54760∗ 419895∗ −19 6840 −1578960 344 −182520 5206830

2 0 0 −2 · 9252⋄ −2 · 673760⋄ −2 · 20534040⋄ 1 −360 156060 −798 447480 −140472720

b
(2)
2 = J1J3 + J2

3 , 1
12

C
(2,1,1)
(2,i,j) :

m n
(2)
m,0,0

n
(2)
m,0,1

n
(2)
m,0,2

n
(2)
m,1,0

n
(2)
m,1,1

n
(2)
m,1,2

n
(2)
m,2,0

n
(2)
m,2,1

n
(2)
m,2,2

0 315 630 945 0 −630 167265 0 1575 −670320

1 0 249 9495 0 1890 −577485 0 34020 16320375

2 0 0 −17268 0 0 56970 0 59535 −31350510

b
(2)
3 = J2

2 , 1
2C

(2,1,1)
3,i,j :

m n
(3)
m,0,0

n
(3)
m,0,1

n
(3)
m,0,2

n
(3)
m,1,0

n
(3)
m,1,1

n
(3)
m,1,2

n
(3)
m,2,0

n3
m,2,1

n
(3)
m,2,2

0 0 0 0 4 −1260 236520 −19 7920 −1624950

1 0 0 0 −10 3600 −831600 256 −133560 38111040

2 0 0 0 0 0 20520 −410 230400 −72511020

b
(2)
4 = J2J3 + 3J2

3 , 1
12C

(2,1,1)
4,i,j :

m n
(4)
m,0,0

n
(4)
m,0,1

n
(4)
m,0,2

n
(4)
m,1,0

n
(4)
m,1,1

n
(4)
m,1,2

n
(4)
m,2,0

n
(4)
m,2,1

n
(4)
m,2,2

0 0 885 1770 0 −1770 469935 0 4425 −1883280

1 0 489 18945 0 −5310 −1606995 0 −95580 45813825

2 0 0 −34383 0 0 113670 0 167265 −87245010
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The blow up to (3), which is the IP1-bundle IP(O)IP2 ⊗ O(1)IP2 over IP2 is described

torically by adding the point ν∗
5 = (0,−1, 0,−4,−6) to (9.15). For this case we have the

Mori generators:

l(1) = ( 0; 1, 0, 1,−1, 1, 0, 0,−2),

l(2) = ( 0; 0, 1, 0, 1, 0, 0, 0,−2),

l(3) = (−6; 0, 0, 0, 0, 0, 2, 3, 1),

(9.21)

The associated Kähler classes control the volume of the IP2, the volume of the IP1 fibre

and the volume of the elliptic fibre. The Picard-Fuchs equations are :

L1 = −θ3
1 − (−1 + θ1 − θ2)(−2 + 2θ1 + 2θ2 − θ3)(−1 + 2θ1 + 2θ2 − θ3)z1

L2 = θ2(−θ1 + θ2)− (−2 + 2θ1 + 2θ2 − θ3)(−1 + 2θ1 + 2θ2 − θ3)z2

L3 = θ3(−2θ1 − 2θ2 + θ3)− 12(−5 + 6θ3)(−1 + 6θ3)z3

(9.22)

The classical couplings

C0 = J3J
2
1J2 + J3J

2
2 J1 + J3J

3
2 + 2J2

3 J2
1 + 4J2J1J

2
3

+ 4J2
3J2

2 + 12J3
3 J1 + 16J3

3J2 + 56J4
3

C2 = 24J2
1 + 48J1J2 + 138J1J3 + 48J2

2 + 182J2J3 + 640J2
3

C3 = −720J1 − 960J2 − 3378J3.

(9.23)

show that there is also a K3 fibration over the IP2. Basis of H2,2:

b
(2)
1 = J2

1 , b
(2)
2 = J1J2 + J2

2 , b
(2)
3 = J1J3 + 2J2

3 , b
(2)
4 = J2J3 + 2J2

3 , (9.24)

with

η2,2 =






0 0 4 5
0 0 18 18
4 18 274 284
5 18 284 292






The following invariants are read off from the normalized threepoint functions

b
(2)
1 = J2

1 , C
(2,1,1)
1,i,j :

m n
(1)
m,0,0

n
(1)
m,0,1

n
(1)
m,0,2

n
(1)
m,1,0

n
(1)
m,1,1

n
(1)
m,1,2

n(1)1m,2,0 n
(1)
m,2,1

n
(1)
m,2,2

0 0 0 0 0 0 0 0 0 0

1 −1 240 141444 −14 5040 −1096200 51 22800 −5263920

2 1 −240 28200 −6 2640 −703800 −616 356160 −110457000
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b
(2)
2 = J1J2 + J2

2 , 1
2C

(2,1,1)
(2,i,j) :

m n
(2)
m,0,0

n
(2)
m,0,1

n
(2)
m,0,2

n
(2)
m,1,0

n
(2)
m,1,1

n
(2)
m,1,2

n
(2)
m,2,0

n
(2)
m,2,1

n
(2)
m,2,2

0 0 0 0 −1 720 424332 0 0 1440

1 0 0 0 −20 7680 −1716840 −138 −62400 −15292440

2 0 0 0 0 0 0 −820 491520 −155976240

b
(2)
3 = J1J3 + 2J2

3 , 1
24C

(2,1,1)
3,i,j :

m n
(3)
m,0,0

n
(3)
m,0,1

n
(3)
m,0,2

n
(3)
m,1,0

n
(3)
m,1,1

n
(3)
m,1,2

n
(3)
m,2,0

n3
m,2,1

n
(3)
m,2,2

0 0 310 620 0 310 501273 0 0 620

1 0 0 64710 0 1860 −586830 0 9300 −3818580

2 0 0 0 0 0 0 0 58590 −31852500

b
(2)
4 = J2J3 + 2J2

3 , 1
24C

(2,1,1)
4,i,j :

m n
(4)
m,0,0

n
(4)
m,0,1

n
(4)
m,0,2

n
(4)
m,1,0

n
(4)
m,1,1

n
(4)
m,1,2

n
(4)
m,2,0

n
(4)
m,2,1

n
(4)
m,2,2

0 0 130 260 0 130 235266 0 0 260

1 0 −260 69030 0 −2080 761670 0 −7020 3118050

2 0 320 640 0 320 547029 0 0 640

Let us finally discuss the transition between the first two models in table (6.5). The

four parameter model has as polyhedron the convex hull of

ν∗
1 = (−1, 0, 0, 2, 3), ν∗

2 = (0,−1, 0, 2, 3), ν∗
3 = (0, 0, 0, 0,−1), ν∗

4 = (0, 0, 0,−1, 0)

ν∗
5 = (0, 0, 0, 2, 3), ν∗

6 = (0, 0, 1, 2, 3), ν∗
7 = (1, 1, 3, 2, 3), ν∗

8 = (0, 0,−1, 2, 3),

ν∗
9 = (0, 0,−1, 1, 2)

(9.25)

l(1) = (−2; 0, 0, 1, 0, 1, 0, 0,−2, 2),

l(2) = ( 0; 1, 1, 0, 0, 0,−3, 1, 0, 0),

l(3) = ( 0; 0, 0, 0, 0,−2, 1, 0, 1, 0),

l(4) = (−2; 0, 0, 1, 1, 0, 0, 0, 1,−1).

(9.26)

C0 = 12J2J
3
1 + 6J2

2 J2
4 + 18J2

1J2
3 + 324J1J

3
4 + 9J1J

3
3 + 18J4J

3
3+

54J2
4J2

3 + 162J3J
3
4 + 72J4

1 + 54J2J
3
4 + 216J2

1J2
4 + 36J3J

3
1 +

144J4J
3
1 + 2J2

2 J2
1 + 6J2J4J

2
3 + 3J2J1J

2
3 + 36J2J1J

2
4 + 6J2J3J

2
1 +

24J2J4J
2
1 + 18J2J3J

2
4 + 108J1J3J

2
4 + 2J2

2J3J4 + J2
2J3J1 + 4J2

2J1J4+

36J1J4J
2
3 + 72J4J3J

2
1 + 486J4

4 + 12J2J4J3J1

C2 = 216J2
3 + 582J3J4 + 408J3J1 + 72J3J2 + 1746J2

4

+ 1164J4J1 + 198J4J2 + 816J2
1 + 138J1J2 + 24J2

2

C3 = −1674J3 − 5076J4 − 3366J1 − 558J2.

(9.27)
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The transition to the three parameter model is described by the omission of the point

ν∗
9 from the polyhedron (9.25). The Mori generators of the three parameter model are

l(1
′) = 2l(4) + l(1), l(2

′) = l(2) and l(3
′) = l(3). We have adapted our notation to [20], so that

the indices of xi are shifted by one to make place for the additional coordinate of the IP2 (in-

stead of IP1) at x1. The elliptic fibre has again type (1, 0, 0, 2). The conic bundle at D9 = 0

is x2
3f8+x2

4+x2
8f20+x3x4f4+x3x8f14+x4x8f10 over IP2 with x1, x2, x6 coordinates degen-

erates over a curve of genus 351. The contraction of the conic bundle to a singular form of

the parameter model is given by the map (x1, . . . , x9) 7→ (x1, x2, x3x9, x4x9, x5, x6x7, x8x9).

The classical couplings of the three parameter model are essentially obtained by re-

stricting (9.27) to J4 = 0, only C3 changes to C3 = −4338J1 − 720J2 − 2160J3.
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Appendix A: Kodaira’s classification of elliptic fibre singularities.

ord(f) ord(g) ord(∆) fibre singularity ai

≥ 0 ≥ 0 0 smooth none −

0 0 n In An−1
n
12

≥ 1 1 2 II none 1
6

≥ 1 ≥ 2 3 III A1
1
4

≥ 2 2 4 IV A2
1
3

2 ≥ 3 n + 6 I∗
n Dn+4

1
2

+ n
12

≥ 2 3 n + 6 I∗
n Dn+4

1
2 + n

12

≥ 3 4 8 IV ∗ E6
5
6

3 ≥ 5 9 III∗ E7
3
4

≥ 4 5 10 II∗ E8
2
3

Tab. 1 Classification of the singular fibres occurring in an non-singular elliptic surface

with section [65][2]. The last entry is the Euler number of the singular fibre divided by 12.

For ord(∆ > 10) there exist no resolution with trivial canonical bundle.
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Appendix B: Tables of Calabi-Yau manifolds

Table B.1 CY −Fourfolds with negative Euler number

∗ indicates that no reflexive polyhedron exists.

No χ h11 h21 h22 h31 w1 w2 w3 w4 w5 w6 m

1 −240 54 228 308 126 9 9 70 72 80 120 360

2 −198 22 272 424 209 5 5 5 18 24 33 90

3 −198 30 101 82 30 21 24 25 25 25 30 150

4 −192 24 147 178 83 9 9 18 28 32 48 144

5 −192 47 195 274 108 7 13 27 27 27 88 189

6 −192 47 195 274 108 13 14 54 54 54 189 378

7 −168 81 144 188 27 21 24 52 97 97 97 388

8 −144 22 165 246 111 7 7 7 12 18 33 84

9 −144 23 242 400 187 5 5 10 24 32 44 120

10 −144 24 141 198 85 9 11 11 11 15 42 99

11 −144 24 141 198 85 15 18 22 22 22 99 198

12 −144 28 91 98 31 15 18 19 19 19 24 114

13 −144 29 147 210 86 8 14 15 15 15 53 120

14 −144 29 102 120 41 12 15 22 22 22 39 132

15 −144 31 91 98 28 25 25 28 32 40 50 200

16 −144 33 273 462 208 5 5 20 36 48 66 180

17 −144 41 102 120 29 25 25 42 48 60 100 300

18 −144 44 322 560 246 5 5 30 48 64 88 240

19 −138 22 144 208 91 9 9 9 10 16 37 90

20 −138 76 462 844 355 5 5 55 78 104 143 390

21 −120 26 135 202 81 9 9 9 19 23 30 99

22 −120 26 135 202 81 12 12 12 23 33 40 132

23 −120 58 198 328 112 9 9 61 63 71 102 315

24 −120 81 135 202 26 30 33 37 100 100 100 400

25 −96 23 90 128 43 11 13 13 13 16 25 91

26 −96 23 90 128 43 11 15 15 15 21 28 105

27 −96 23 147 242 100 7 7 14 16 24 44 112

28 −96 24 240 428 192 5 5 5 16 23 31 85

29 −96 24 240 428 192 6 6 6 17 32 35 102

30 −96 24 240 428 192 10 10 10 23 32 85 170

31 −96 25 126 200 77 11 11 12 20 22 56 132

32* −96 27 90 128 39 20 20 20 21 24 35 140

33 −96 29 82 112 29 19 19 20 24 32 38 152

34 −96 30 132 212 78 11 11 15 25 33 70 165

35 −96 30 92 132 38 20 24 33 33 66 88 264

36 −96 30 132 212 78 22 22 25 30 66 165 330

37 −96 32 166 280 110 7 7 24 28 36 66 168

38 −96 32 146 240 90 9 9 20 32 36 74 180

39 −96 36 144 236 84 10 18 19 19 38 86 190

40 −96 38 92 132 30 19 19 30 36 48 76 228

41 −96 39 90 128 27 24 25 35 42 42 42 210

42 −96 42 150 248 84 15 15 16 28 60 106 240

43 −96 43 90 128 23 31 35 36 36 42 72 252

44 −96 45 180 308 111 6 13 25 25 25 81 175

45 −96 45 180 308 111 7 12 26 26 26 85 182

46 −96 45 168 284 99 11 11 24 40 66 112 264

47 −96 45 180 308 111 12 13 50 50 50 175 350

48 −96 50 165 278 91 12 22 23 23 69 127 276

49 −96 52 228 404 152 7 7 40 56 60 110 280

50* −96 59 150 248 67 8 15 54 54 54 85 270

51 −96 61 228 404 143 9 9 40 64 90 148 360

52 −96 68 204 356 112 9 17 35 35 70 149 315

53 −96 78 450 848 348 5 5 55 76 103 141 385

54 −90 26 81 114 32 12 17 17 17 18 21 102

No χ h11 h21 h22 h31 w1 w2 w3 w4 w5 w6 m

55 −90 27 92 136 42 9 15 19 19 19 33 114

56 −84 30 126 208 74 9 9 18 26 31 42 135

57 −84 30 126 208 74 12 12 24 31 45 56 180

58* −72 27 84 132 37 16 16 18 21 32 41 144

59* −72 34 90 144 36 16 16 31 37 44 48 192

60* −72 34 90 144 36 20 20 37 48 55 60 240

61* −72 36 90 144 34 12 17 33 33 33 37 165

62* −72 36 90 144 34 15 16 36 36 36 41 180

63* −72 36 90 144 34 16 17 44 44 44 55 220

64* −72 37 84 132 27 22 25 25 29 49 75 225

65* −72 37 84 132 27 27 29 32 32 72 96 288

66 −72 56 144 252 68 7 15 51 51 51 80 255

67 −72 68 144 252 56 16 16 65 75 100 128 400

68 −72 78 135 234 37 17 18 61 96 96 96 384

69 −66 27 220 408 174 5 5 10 22 31 42 115

70 −66 27 220 408 174 6 6 12 23 44 47 138

71 −66 27 220 408 174 10 10 20 31 44 115 230

72 −60 50 96 164 28 20 24 49 49 54 98 294

73 −48 27 73 126 30 16 17 17 24 28 34 136

74 −48 28 83 146 39 12 19 19 20 38 44 152

75 −48 28 83 146 39 16 20 27 27 54 72 216

76 −48 35 82 144 31 17 17 24 36 42 68 204

77 −48 37 94 168 41 18 19 19 30 66 76 228

78 −48 39 83 146 28 19 19 25 30 40 57 190

79 −48 41 94 168 37 20 22 22 25 65 66 220

80 −48 41 94 168 37 25 30 33 33 99 110 330

81* −48 45 114 208 53 13 13 33 48 75 91 273

82 −48 46 153 286 91 11 11 21 35 55 98 231

83 −48 46 280 540 218 6 6 30 41 80 83 246

84* −48 53 210 400 141 7 7 36 49 54 99 252

85* −48 53 114 208 45 14 19 40 40 80 87 280

86 −48 61 120 220 43 14 22 61 61 86 122 366

87 −48 63 108 196 29 12 28 33 73 73 73 292

88 −36 24 80 148 42 11 11 16 20 22 30 110

89 −36 25 82 152 43 9 12 17 17 17 30 102

90 −36 25 182 352 143 5 10 15 36 48 66 180

91* −36 26 120 228 80 10 10 13 20 24 53 130

92 −36 33 71 130 24 25 42 48 50 60 75 300

93 −36 62 108 204 32 12 21 40 73 73 73 292

94* −30 31 120 232 76 10 13 13 19 26 62 143

95* −30 31 120 232 76 11 14 14 20 28 67 154

96* −30 31 120 232 76 19 20 26 26 52 143 286

97 −24 30 78 152 36 10 17 36 36 36 45 180

98 −24 30 72 140 30 16 32 39 45 48 60 240

99 −24 39 117 230 66 9 18 45 56 64 96 288

100 −24 66 192 380 114 8 17 33 33 66 140 297

101 −24 66 192 380 114 9 16 34 34 68 145 306

102 −24 66 117 230 39 12 17 52 81 81 81 324

103 −24 69 108 212 27 24 28 39 91 91 91 364

104 −12 33 108 220 65 9 18 18 35 40 60 180

105 −12 65 108 220 33 18 29 34 81 81 81 324

106 −6 36 74 156 29 17 17 20 30 35 51 170

107 −6 38 85 178 38 15 19 19 25 55 57 190

108 −6 38 85 178 38 20 25 27 27 81 90 270
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Table B.2 CY −Fourfolds with vanishing Euler number

∗ indicates that no reflexive polyhedron exists.

No χ h11 h21 h22 h31 w1 w2 w3 w4 w5 w6 d

109 0 21 75 162 46 9 11 11 11 14 21 77

110 0 23 84 180 53 12 12 12 14 21 25 96

111 0 24 126 264 94 7 7 13 14 23 41 105

112* 0 24 80 172 48 10 10 18 20 23 29 110

113 0 24 126 264 94 8 8 13 16 30 45 120

114 0 24 126 264 94 8 8 15 16 26 47 120

115* 0 24 80 172 48 12 12 22 24 27 35 132

116* 0 24 80 172 48 15 15 23 27 30 55 165

117 0 24 126 264 94 14 14 23 26 28 105 210

118* 0 25 72 156 39 12 13 13 21 26 32 117

119 0 25 111 234 78 7 14 21 24 36 66 168

120 0 26 74 160 40 12 16 17 17 34 40 136

121 0 27 84 180 49 15 15 15 16 24 35 120

122 0 27 96 204 61 11 18 22 30 33 84 198

123* 0 30 72 156 34 16 16 23 28 29 32 144

124* 0 30 72 156 34 20 20 27 28 40 45 180

No χ h11 h21 h22 h31 w1 w2 w3 w4 w5 w6 d

125* 0 30 72 156 34 20 20 29 35 36 40 180

126 0 31 64 140 25 19 30 36 38 48 57 228

127 0 33 108 228 67 12 12 24 29 39 52 168

128 0 34 84 180 42 17 17 18 24 60 68 204

129 0 37 108 228 63 9 18 36 49 56 84 252

130 0 40 120 252 72 12 12 36 37 51 68 216

131 0 41 108 228 59 12 12 38 57 60 61 240

132 0 49 84 180 27 28 32 38 49 49 98 294

133 0 53 84 180 23 35 37 40 56 56 112 336

134 0 56 108 228 44 14 18 55 55 78 110 330

135 0 62 168 348 98 12 12 61 72 87 116 360

136 0 63 108 228 37 12 25 41 78 78 78 312

137 0 63 108 228 37 14 25 52 91 91 91 364

138 0 64 114 240 42 9 20 48 77 77 77 308

Table B.3 Elliptic fibred K3

d w1 w2 w3 w4 P E

6 1 1 2 2 x6
1

+ x6
2

+ x3
3

+ x3
4

E6

9 1 2 3 3 x9
1

+ x4
2

x1 + x3
3

+ x3
4

E6

12 1 3 4 4 x12
1

+ x4
2

+ x3
3

+ x3
4

E6

15 2 3 5 5 x6
1

x2 + x5
2

+ x3
3

+ x3
4

E6

8 1 1 2 4 x8
1

+ x8
2

+ x4
3

+ x2
4

E7

12 1 2 3 6 x12
1

+ x6
2

+ x4
3

+ x2
4

E8E7

16 1 3 4 8 x16
1

+ x5
2

x1 + x4
3

+ x2
4

E7

20 2 3 5 10 x10
1

+ x6
2

x1 + x4
3

+ x2
4

E7

20 1 4 5 10 x20
1

+ x5
2

+ x4
3

+ x2
4

E7

28 3 4 7 14 x8
1

x2 + x7
2

+ x4
3

+ x2
4

E7

9 1 1 3 4 x9
1

+ x9
2

+ x3
3

+ x2
4

x1 E′
8

15 1 2 5 7 x15
1

+ x4
2

x4 + x3
3

+ x2
4

x1 E′
8

21 1 3 7 10 x21
1

+ x7
2

+ x3
3

+ x2
4

x1 E′
8

10 1 1 3 5 x10
1

+ x10
2

+ x3
3

x1 + x2
4

E′′
8

16 1 2 5 8 x16
1

+ x8
2

+ x3
3

x1 + x2
4

E′′
8

18 1 3 5 9 x18
1

+ x6
2

+ x3
3

x2 + x2
4

E′′
8

22 1 3 7 11 x22
1

+ x5
2

x3 + x3
3

x1 + x2
4

E′′
8

28 1 4 9 14 x28
1

+ x7
2

+ x3
3

x1 + x2
4

E′′
8

d w1 w2 w3 w4 P E

12 1 1 4 6 x12
1

+ x12
2

+ x3
3

+ x2
4

E8

18 2 3 4 9 x9
1

+ x6
2

+ x4
3

x1 + x2
4

E8

18 1 2 6 9 x18
1

+ x9
2

+ x3
3

+ x2
4

E8

24 1 3 8 12 x24
1

+ x8
2

+ x3
3

+ x2
4

E8

30 4 5 6 15 x6
1

x3 + x6
2

+ x5
3

+ x2
4

E8

30 1 4 10 15 x30
1

+ x5
2

x3 + x3
3

+ x2
4

E8

36 1 5 12 18 x36
1

+ x7
2

x1 + x3
3

+ x2
4

E8

42 3 4 14 21 x14
1

+ x7
2

x3 + x3
3

+ x2
4

E8

42 2 5 14 21 x21
1

+ x8
2

x1 + x3
3

+ x2
4

E8

42 1 6 14 21 x42
1

+ x7
2

+ x3
3

+ x2
4

E8

48 3 5 16 24 x16
1

+ x9
2

x1 + x3
3

+ x2
4

E8

54 4 5 18 27 x9
1

x3 + x10
2

x1 + x3
3

+ x2
4

E8

66 5 6 22 33 x12
1

x2 + x11
2

+ x3
3

+ x2
4

E8
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Table B.4 Elliptic fibred CY −Fourfolds with small Picard number

∗ indicates that χ not divisible by 24.

No F χ h11 h21 h22 h31 w1w2w3w4w5w6 d

1 E8 ∗13362 2 0 8920 2217 1 3 4 5 26 39 78

2 E8 16176 2 0 10796 2686 1 2 3 5 22 33 66

2 E8 20832 2 0 13900 3462 1 1 2 3 14 21 42

4 E8 22776 2 0 15196 3786 1 1 1 2 10 15 30

5 E8 23328 2 0 15564 3878 1 1 1 1 8 12 24

6 E8 8424 3 0 5628 1393 2 3 4 5 28 42 84

7 E7 ∗8484 3 0 5668 1403 1 1 2 3 7 14 28

8 E7 ∗9276 3 0 6196 1535 1 1 1 2 5 10 20

9 E7 9504 3 0 6348 1573 1 1 1 1 4 8 16

10 E8′ 10992 3 0 7340 1821 1 2 3 5 17 28 56

11 E8 ∗12810 3 0 8552 2124 1 4 5 7 34 51 102

12 E8 14232 3 0 9500 2361 1 3 5 7 32 48 96

13 E8′ ∗14484 3 0 9668 2403 1 1 2 3 11 18 36

14 E8 15240 3 0 10172 2529 1 2 3 4 20 30 60

15 E8 15624 3 0 10428 2593 1 2 2 3 16 24 48

16 E8′ ∗16242 3 0 10840 2696 1 1 1 2 8 13 26

17 E8′ 18528 3 0 12364 3077 1 1 2 3 13 20 40

18 E8′ ∗18954 3 0 12648 3148 1 1 1 1 7 11 22

19 E8 19056 3 0 12716 3165 1 2 3 7 26 39 78

20 E8′ ∗19308 3 0 12884 3207 1 1 1 2 9 14 28

21 E8 19728 3 0 13164 3277 1 1 2 2 12 18 36

22 E8 ∗22122 3 1 14762 3677 1 1 3 4 18 27 54

23 E8 26208 3 1 17486 4358 1 1 1 3 12 18 36

24 E6 4368 4 0 2924 716 1 1 2 3 7 7 21

25 E8 4704 4 0 3148 772 4 5 6 7 44 66 132

26 E6 4776 4 0 3196 784 1 1 1 2 5 5 15

27 E6 4896 4 0 3276 804 1 1 1 1 4 4 12

28 E8′ ∗6228 4 0 4164 1026 2 3 4 5 23 37 74

29 E7 6240 4 0 4172 1028 1 2 3 4 10 20 40

30 E7 6408 4 0 4284 1056 1 2 2 3 8 16 32

31 E8′ ∗6708 4 0 4484 1106 2 3 5 7 29 46 92

32 E7 8064 4 0 5388 1332 1 1 2 2 6 12 24

33 E8′′ 8640 4 0 5772 1428 1 2 3 5 17 23 51

34 E8 8640 4 0 5772 1428 2 4 5 6 34 51 102

35 E8 8856 4 12 5940 1476 2 3 3 5 26 39 78

36 E8 ∗8916 4 1 5958 1475 2 3 5 8 36 54 108

37 E7 9000 4 1 6014 1489 1 1 3 4 9 18 36

38 E8 10248 4 1 6846 1697 2 3 5 11 42 63 126

39 E8′ 10344 4 0 6908 1712 1 3 4 5 22 35 70

40 E8 10608 4 1 7086 1757 2 2 3 5 24 36 72

41 E7 10656 4 1 7118 1765 1 1 1 3 6 12 24

42 E8′ ∗10884 4 0 7268 1802 1 2 3 4 16 26 52

43 E8′ 11376 4 0 7596 1884 1 2 2 3 13 21 42

44 E8′′ 11568 4 0 7724 1916 1 1 2 3 11 15 33

45 E8 11568 4 0 7724 1916 2 2 3 4 22 33 66

46 E8′ ∗11850 4 0 7912 1963 1 2 3 4 17 27 54

47 E8′ 12000 4 0 8012 1988 1 2 3 7 19 32 64

48 E8 12480 4 1 8334 2069 1 4 5 6 32 48 96

49 E8′ ∗12708 4 0 8484 2106 1 2 2 3 14 22 44

50 E8′ ∗12900 4 0 8612 2138 1 2 3 5 19 30 60

51 E8′′ 13200 4 0 8812 2188 1 1 1 2 8 11 24

52 E8 ∗13434 4 10 8988 2237 1 3 3 4 22 33 66

53 E8′ ∗14028 4 0 9364 2326 1 2 3 4 19 29 58

54 E8 14856 4 0 9916 2464 1 2 3 3 18 27 54

55 E8′ 14928 4 0 9964 2476 1 1 2 2 10 16 32

56 E8′ 15168 4 0 10124 2516 1 1 3 4 14 23 46

57 E8 15792 4 1 10542 2621 1 2 4 5 24 36 72

58 E8′′ 16776 4 0 11196 2784 1 1 1 1 7 10 21

59 E8 16776 4 0 11196 2784 1 2 2 2 14 21 42

60 E8′ ∗17082 4 1 11402 2836 1 1 1 3 9 15 30

No F χ h11 h21 h22 h31 w1w2w3w4w5w6 d

61 E8′ 17184 4 0 11468 2852 1 1 2 2 11 17 34

62 E8′′ 17328 4 0 11564 2876 1 1 2 3 13 19 39

63 E8 17328 4 0 11564 2876 1 2 4 6 26 39 78

64 E8′′ 17544 4 0 11708 2912 1 1 1 2 9 13 27

65 E8 17544 4 0 11708 2912 1 2 2 4 18 27 54

66 E8′ 20208 4 0 13484 3356 1 1 3 4 17 26 52

67 E8 20688 4 7 13818 3443 1 1 3 3 16 24 48

68 E8′ ∗22854 4 0 15248 3797 1 1 1 3 11 17 34

69 E8 23328 4 1 15566 3877 1 1 2 4 16 24 48

70 E8 ∗24234 4 0 16168 4027 1 1 4 5 22 33 66

71 E8 24264 4 2 16192 4034 1 1 3 5 20 30 60

72 E8 ∗31194 4 0 20808 5187 1 1 1 4 14 21 42

73 E6 3240 5 0 2172 527 1 2 3 4 10 10 30

74 E6 3336 5 0 2236 543 1 2 2 3 8 8 24

75 E6 3408 5 0 2284 555 1 2 3 5 11 11 33

76 E7 ∗3516 5 0 2356 573 2 3 5 7 17 34 68

77 E6 4176 5 0 2796 683 1 1 2 2 6 6 18

78 E8 ∗4938 5 0 3304 810 4 5 7 13 58 87 174

79 E6 5472 5 1 3662 900 1 1 1 3 6 6 18

80 E7 5976 5 1 3998 984 1 3 4 7 15 30 60

81 E7 ∗6108 5 0 4084 1005 1 2 3 3 9 18 36

82 E8′ 7416 5 0 4956 1223 2 3 5 7 31 48 96

83 E8′ 7440 5 0 4972 1227 2 2 3 5 19 31 62

84 E8′ 7512 5 0 5020 1239 2 3 4 5 26 40 80

85 E7 ∗7764 5 0 5188 1281 1 2 3 7 13 26 52

86 E8 8328 5 7 5578 1382 2 3 5 6 32 48 96

87 E8 8760 5 0 5852 1447 2 3 7 8 40 60 120

88 E8′′ 8856 5 0 5916 1463 1 2 3 4 16 22 48

89 E8′′ ∗8874 5 0 5928 1466 1 3 4 5 22 31 66

90 E8′′ 8928 5 0 5964 1475 1 2 3 7 19 25 57

91 E8 8928 5 0 5964 1475 2 4 6 7 38 57 114

92 E7 9504 5 1 6350 1572 1 1 2 4 8 16 32

93 E7 9864 5 2 6592 1633 1 1 3 5 10 20 40

94 E8′ 10032 5 0 6700 1659 1 4 5 7 29 46 92

95 E8 10176 5 9 6814 1692 2 2 3 3 20 30 60

96 E8 10464 5 0 6988 1731 2 3 7 13 50 75 150

97 E8′ 10704 5 9 7166 1780 1 3 3 4 19 30 60

98 E7 ∗10788 5 0 7204 1785 1 1 2 5 9 18 36

99 E8′ ∗11094 5 0 7408 1836 1 2 4 5 19 31 62

100 E8′′ 11256 5 0 7516 1863 1 2 2 3 14 20 42

101 E8′ 11256 5 0 7516 1863 1 2 3 3 15 24 48

102 E8′′ 11280 5 0 7532 1867 1 2 3 5 19 27 57

103 E8 11280 5 0 7532 1867 2 3 4 10 38 57 114

104 E8′ ∗11748 5 0 7844 1945 1 3 4 7 26 41 82

105 E8′′ ∗11994 5 0 8008 1986 1 1 3 4 14 19 42

106 E8′ 12144 5 0 8108 2011 1 2 2 4 14 23 46

107 E8 12432 5 19 8338 2078 1 4 4 5 28 42 84

108 E8′′ 12624 5 0 8428 2091 1 1 2 2 10 14 30

109 E7 12672 5 0 8460 2099 1 1 1 4 7 14 28

110 E8′′ 13032 5 1 8702 2160 1 1 1 3 9 12 27

111 E8 13032 5 1 8702 2160 2 2 2 3 18 27 54

112 E8 13248 5 12 8868 2207 1 4 5 8 36 54 108

113 E8′ 13320 5 0 8892 2207 1 2 2 2 12 19 38

114 E8 13896 5 6 9288 2309 1 3 4 6 28 42 84

115 E8′′ 14256 5 0 9516 2363 1 1 2 3 12 17 36

116 E8′ ∗15078 5 6 10076 2506 1 1 3 3 13 21 42

117 E8′ 15216 5 1 10158 2524 1 1 2 4 12 20 40

118 E8 ∗15354 5 0 10248 2546 1 4 5 11 42 63 126

119 E8′ 15744 5 0 10508 2611 1 2 3 7 23 36 72

120 E8 ∗16554 5 5 11058 2751 1 3 4 9 34 51 102
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Table B.4 (continued) CY −Fourfolds with small Picard number

No F χ h11 h21 h22 h31 w1w2 w3 w4 w5 w6 d

121 E8′ 16728 5 1 11166 2776 1 1 3 4 15 24 48

122 E8 18288 5 2 12208 3037 1 2 2 5 20 30 60

123 E8 ∗18930 5 0 12632 3142 1 3 4 11 38 57 114

124 E8′ 18960 5 0 12652 3147 1 1 2 4 14 22 44

125 E8′ ∗19044 5 0 12708 3161 1 1 1 4 10 17 34

126 E8 ∗20844 5 0 13908 3461 1 2 3 8 28 42 84

127 E8′ ∗21054 5 0 14048 3496 1 1 2 4 15 23 46

128 E8′′ 21120 5 0 14092 3507 1 1 1 3 11 16 33

129 E8 21120 5 0 14092 3507 1 2 2 6 22 33 66

130 E8′ ∗22374 5 0 14928 3716 1 1 3 5 19 29 58

131 E8 22704 5 13 15174 3784 1 1 4 4 20 30 60

132 E8′ ∗24228 5 0 16164 4025 1 1 2 5 17 26 52

133 E8 26880 5 5 17942 4472 1 1 3 6 22 33 66

134 E8 27072 5 0 18060 4499 1 2 3 11 34 51 102

135 E8 ∗28554 5 0 19048 4746 1 1 4 7 26 39 78

136 E6 1848 6 0 1244 294 2 3 4 5 14 14 42

137 E6 2832 6 0 1900 458 1 3 4 5 13 13 39

138 E6 3192 6 0 2140 518 1 2 3 3 9 9 27

139 E7 3672 6 1 2462 599 2 3 5 8 18 36 72

140 E7 4392 6 1 2942 719 2 2 3 5 12 24 48

141 E7 4440 6 0 2972 726 2 2 3 4 11 22 44

142 E6 4632 6 1 3102 759 1 1 3 4 9 9 27

143 E6 4896 6 1 3278 803 1 1 2 4 8 8 24

144 E6 5064 6 2 3392 832 1 1 3 5 10 10 30

145 E7 5112 6 1 3422 839 1 4 5 6 16 32 64

146 E8′′ 5808 6 0 3884 954 2 3 5 7 29 41 87

147 E8 5808 6 0 3884 954 4 5 6 14 58 87 174

148 E8 6048 6 1 4046 995 3 4 5 6 36 54 108

149 E8 6048 6 2 4048 996 3 4 7 10 48 72 144

150 E8′ 6144 6 0 4108 1010 2 3 5 8 28 46 92

151 E8 ∗6210 6 0 4152 1021 3 4 7 11 50 75 150

152 E7 ∗6612 6 0 4420 1088 1 2 2 2 7 14 28

153 E7 6840 6 0 4572 1126 1 2 5 6 14 28 56

154 E7 6960 6 0 4652 1146 1 2 2 4 9 18 36

155 E8 ∗7002 6 2 4684 1155 3 3 4 5 30 45 90

156 E8′′ 7032 6 0 4700 1158 2 3 4 5 26 38 78

157 E8′ 7080 6 0 4732 1166 2 3 5 8 31 49 98

158 E8 7272 6 3 4866 1201 2 5 6 9 44 66 132

159 E8′ 7320 6 11 4914 1217 2 3 3 5 23 36 72

160 E8 ∗7380 6 0 4932 1216 2 5 8 11 52 78 156

161 E7 7488 6 2 5008 1236 1 2 2 5 10 20 40

162 E8′ ∗7794 6 0 5208 1285 2 3 5 7 32 49 98

163 E8′ 7896 6 8 5292 1310 2 2 3 3 17 27 54

164 E8′′ 7944 6 0 5308 1310 1 3 4 5 21 29 63

165 E8 7944 6 0 5308 1310 2 5 6 8 42 63 126

166 E8′ 8160 6 0 5452 1346 2 3 5 8 34 52 104

167 E7 8496 6 0 5676 1402 1 2 3 8 14 28 56

168 E8′ 8592 6 1 5742 1419 2 2 3 5 21 33 66

169 E8′ 8664 6 0 5788 1430 2 2 3 4 19 30 60

170 E8 ∗8754 6 0 5848 1445 3 4 5 17 58 87 174

171 E8 8928 6 1 5966 1475 2 3 3 4 24 36 72

172 E8′ 9120 6 0 6092 1506 1 4 5 6 26 42 84

173 E8′ ∗9174 6 0 6128 1515 1 5 6 7 32 51 102

174 E8′ ∗9276 6 0 6196 1532 2 2 3 5 22 34 68

175 E8′′ ∗9366 6 0 6256 1547 1 2 2 3 13 18 39

176 E8 ∗9366 6 0 6256 1547 2 3 4 4 26 39 78

177 E8′′ 9528 6 0 6364 1574 1 2 3 3 15 21 45

178 E8 9528 6 0 6364 1574 2 3 4 6 30 45 90

179 E8′ 9672 6 5 6470 1603 1 3 4 6 22 36 72

180 E7 9864 6 0 6588 1630 1 1 4 5 11 22 44

181 E8′′ 9888 6 0 6604 1634 1 3 4 5 23 33 69

No F χ h11 h21 h22 h31 w1w2w3w4w5w6 d

182 E8 9888 6 0 6604 1634 2 3 8 10 46 69 138

183 E8′ ∗10050 6 0 6712 1661 2 2 3 4 20 31 62

184 E8 10128 6 0 6764 1674 2 3 3 3 22 33 66

185 E8′ 10152 6 1 6782 1679 1 4 5 6 28 44 88

186 E8′ 10512 6 4 7028 1742 1 3 4 9 25 42 84

187 E8 10800 6 5 7222 1791 2 3 5 12 44 66 132

188 E8′ 10992 6 0 7340 1818 2 2 2 3 16 25 50

189 E8′′ 11616 6 1 7758 1923 1 1 2 4 12 16 36

190 E8′ ∗11628 6 6 7776 1930 1 3 4 6 25 39 78

191 E8′ 11640 6 0 7772 1926 1 2 5 6 22 36 72

192 E8′′ 11760 6 0 7852 1946 1 2 3 4 18 26 54

193 E8′ 11784 6 0 7868 1950 1 2 4 6 20 33 66

194 E8′ 11904 6 2 7952 1972 1 2 2 5 15 25 50

195 E8 12024 6 3 8034 1993 2 2 3 7 28 42 84

196 E8 12192 6 2 8144 2020 1 5 6 8 40 60 120

197 E8′′ 12432 6 6 8312 2064 1 1 3 3 13 18 39

198 E8 12432 6 6 8312 2064 2 2 3 6 26 39 78

199 E8′ 12432 6 1 8302 2059 1 3 4 7 27 42 84

200 E8′ 12744 6 0 8508 2110 1 2 3 8 20 34 68

201 E8′′ 12792 6 0 8540 2118 1 2 3 5 20 29 60

202 E8 13248 6 1 8846 2195 1 3 4 4 24 36 72

203 E8′ 13344 6 0 8908 2210 1 2 2 6 16 27 54

204 E8 13344 6 6 8920 2216 1 5 8 12 52 78 156

205 E8 ∗13410 6 3 8958 2224 1 4 7 9 42 63 126

206 E8′ 13464 6 0 8988 2230 1 2 4 6 22 35 70

207 E8 13752 6 2 9184 2280 1 3 5 6 30 45 90

208 E8′′ ∗13842 6 0 9240 2293 1 1 1 4 10 13 30

209 E8′ 13896 6 0 9276 2302 1 3 4 7 29 44 88

210 E8′′ 14136 6 1 9438 2343 1 1 3 4 15 21 45

211 E8 14136 6 1 9438 2343 2 2 3 8 30 45 90

212 E8′ 14424 6 0 9628 2390 1 2 2 2 13 20 40

213 E8 14424 6 0 9628 2390 1 3 3 3 20 30 60

214 E8′′ 14424 6 0 9628 2390 1 2 3 5 21 31 63

215 E8 14424 6 0 9628 2390 1 4 6 10 42 63 126

216 E8′ 14664 6 0 9788 2430 1 2 2 4 16 25 50

217 E8′ ∗14754 6 0 9848 2445 1 2 4 5 23 35 70

218 E8′ 15408 6 0 10284 2554 1 2 3 11 23 40 80

219 E8 15408 6 6 10296 2560 1 3 7 9 40 60 120

220 E8′ 15528 6 0 10364 2574 1 2 2 5 18 28 56

221 E8′ 15600 6 0 10412 2586 1 2 2 4 17 26 52

222 E8 15600 6 0 10412 2586 1 3 3 6 26 39 78

223 E8′′ 15864 6 0 10588 2630 1 1 2 2 11 16 33

224 E8 15864 6 0 10588 2630 1 2 4 4 22 33 66

225 E8 16128 6 10 10784 2684 1 4 5 12 44 66 132

226 E8′ 16176 6 12 10820 2694 1 1 4 4 16 26 52

227 E8′ 16464 6 0 10988 2730 1 1 4 5 17 28 56

228 E8′ ∗16806 6 4 11224 2791 1 1 3 6 16 27 54

229 E8 17568 6 1 11726 2915 1 2 3 6 24 36 72

230 E8′ ∗17844 6 0 11908 2960 1 1 4 5 18 29 58

231 E8 17904 6 3 11954 2973 1 2 4 7 28 42 84

232 E8′ ∗17994 6 0 12008 2985 1 1 5 6 20 33 66

233 E8 18672 6 3 12466 3101 1 2 5 8 32 48 96

234 E8′′ 19200 6 0 12812 3186 1 1 3 4 17 25 51

235 E8 19200 6 0 12812 3186 1 2 6 8 34 51 102

236 E8′ ∗22074 6 0 14728 3665 1 1 2 5 16 25 50

237 E8 22560 6 0 15052 3746 1 2 2 7 24 36 72

238 E8 26208 6 3 17490 4357 1 1 4 6 24 36 72

239 E8′ 27744 6 0 18508 4610 1 1 1 4 13 20 40

240 E8 30336 6 0 20236 5042 1 1 2 6 20 30 60

241 E8′ ∗33594 6 0 22408 5585 1 1 1 5 15 23 46
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