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Let f be a Lipschitz map between two compact  Riemannian manifolds (M, dS~) 
and (M', dS2,). Then the energy of f is defined to be 

E(f) = ~ tras~ (f* aS2,). 
M 

Hence the energy defines a functional on the space of Lipshitz maps between M 
and M'. Critical points of this functional are called harmonic maps. These maps 
were studied by Bochner, Morrey, Rauch, Eells and Sampson, Hartman, Uhlen- 
beck, Hamilton, Hildebrandt and others. The first fundamental result was due to 
Eells and Sampson [3] who proved that, in case M'  has non-positive sectional 
curvature, each map from M to M' is homotopic to a harmonic map. (This 
result was then extended by Hamil ton [8] to the case where both M and M'  are 
allowed to have boundary.) Later Har tman  [7] was able to prove the harmonic 
map is unique in each homotopy class if M'  has strictly negative curvature. 

This last result of Har tman  leads one to believe that harmonic maps between 
compact  manifolds with negative curvature must enjoy a lot of nice properties. 
In fact, a few years ago, B. Lawson and the second author conjectured the 
following statement: If f is a harmonic map between two compact Riemannian 
manifolds of negative curvature and if f is a homotopy equivalence, then f is a 
diffeomorphism. 

In this paper, we demonstrate that the above statement is true at least when 
dim M = d i m M ' = 2 .  In other words, we prove that when M' has non-positive 
curvature and genus M = g >  1, then every degree one harmonic map from M 
into M' is a diffeomorphism. We also generalize this theorem to the case where 
both M and M'  have boundary, ~M' has non-negative geodesic curvature and 
the harmonic map restricted to ~M is a homeomorphism from OM to t~M'. 

It should be noted that in case both M and M'  are bounded simply 
connected domins in the plane, the last theorem was an old theorem and was 

* Partially supported by the Sloan Fellowship. 
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due to Rado [10] and Choquet [11]. In this case, harmonic maps are simply 
pairs of harmonic functions and the linear structure is available. For the 
properties of univalent harmonic maps, one should mention the result of 
H. Lewy [1] and E. Heinz [4]. Lewy proved the Jacobian of such a map does 
not change sign while Heinz gave an estimate of the Jacobian from below for a 
certain class of harmonic maps. 

At least, we should mention that in 1963, K. Shibata [5] claimed to prove 
that every diffeomorphism between two compact  Riemann surfaces (without 
boundary) is homotopic to a harmonic diffeomorphism. However there are 
serious gaps in several crucial steps of his argument. For  example, in Lemma 3 
of page 180, he ignored the fact that M'  is not a plane domain and the standard 
argument cannot be applied. His paper, which is hard to comprehend, is 
therefore subject to various criticism. 

w 1. Notation and Basic Formulae 

We let M and M'  be Riemann surfaces. Suppose f :  M ~ M'  is a C ~ map. Let z 
= x l + i x  2 be a local complex coordinate on M and u = u l + i u  2 a complex 
coordinate on M'. Let a(z)Idzl 2 and p(u)JduJ 2 be conformal metrics on M and 
M'. In this section we express the condition that f be a harmonic map, and 
derive important  local formulae. 

Define local one-forms 0=]/ tr(z)  dz on M and 09 = I / P ~  du on M'. We write 
the first structural equations 

dO=O~^O on M 

and 

dm = c.oc A m on m ' .  

(1) 

Here 0c and 09 c are the Riemannian connection one-forms given by 

o=Olog~d~ al~ dz 
8"~ Oz 

and 

ogc=Ol~ ]/p(u) dfi Ol~ l/p(U) du" 
d~ 8u 

(2) 

The curvature functions K on M and K'  on M'  are defined by 

K 
dOc= --- fO AO 

and 
K'  

do~c= --~-~o ^ eS. 

(3) 
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are independent of choice of 

e ( f )  = [Uo[ 2 + ]u~[ 2 

and 

J ( f )  = ]Uo[ 2 - lus[  2 

(6) 

where [ I denotes the absolute value of complex numbers. It follows that e ( f )  and 
J ( f )  are globally defined functions on M independent of coordinate choice on 
M and on M'.  We next define the second covariant derivatives of f by the 
equations 

duo + uo O c - uo f * ~ c = Uoo O + uoo 0 

and (7) 

dus + us Oc - us f * co c = uso O + uso O. 

By conjugating (7) we also have Uoo, uos, Uso, ~ss defined locally on M. Exterior 
differentiating (5), rearranging, and applying (7) we obtain Uos 0 ix 0 + usoO ^ O= O, 
i.e. 

uos=Uso. (8) 

We say that f is a harmonic map if the following equation is satisfied 

Uos=O. (9) 

Equation (9) is independent of coordinate change on M and M'. Moreover, it is 
shown in [3] that f is a harmonic map if and only if f is a critical point of the 
energy functional E ( f ) =  ~ e ( f ) d V  m where dVm denotes the volume element of 

M 

M. A direct computation shows that (9) can be written explicitly as 

uz~ -~ ~ log p(u(z)) uzue = 0. (10) 
du 

It is straightforward to check that K and K' 
coordinates. More explicitly we have 

4 ~2 log 1//~ - K' 4 ~2 log 1/P 
K = and = 

a ~z ~ p ~u ~ 

We now consider the map f :  M-~ M' and define the first derivatives of f by the 
equations 

f *  e)=uoO + uoO 

and (5) 

where f *  denotes pullback of differential forms, and Uo, us, Uo, us are locally 
defined functions. By conjugating the first equation of (5) we see that u o = u s and 
u o = u o. We define the energy density and Jacobian of f by 
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We remark that  (10) implies that f being harmonic does not depend on the 
metric crtdzl 2 on M, but only on the conformal structure of M. It follows from 
(10) that i f f  is harmonic, then the quadratic differential ~(z)dz 2 defined by 

~k (z) dz  2 = p (u (z)) u z ftz dz  2 (11) 

is a holomorphic quadratic differential on M. 
We now compute the Laplacian of the (well-defined) function luol 2 and ]fi0} 2 

on M. Before doing so, however, we need to define the third covariant de- 
rivatives o f f  

duoo + 2 uoo 0 c - uoo f *  co c = Uoo o 0 + Uoo o 0 

and (12) 

duo~ - uoo f *  co c = uoo o 0 + uoo ~ O. 

Exterior differentiating the first formula in (7) we have 

du o A O~ + U o dO~- du  o A f *  C, ~ -- Uo f *  dog~ = duoo ^ 0 + Uoo dO + duo~ A O+ uoo dO. 

Applying (1), (3), (5), (7), and rearranging terms we obtain 

K' 
(uooO+uo~O)^Oc--(UooO+UooO)A f * o 2 c - - u o K  O A O + U o ~ - ( f * o 2 ) A ( f * c o )  

=(duoo + Uoo Oc) A 0 + (duoo + Uo~ 0~) A O. 

Using (10), (5), and the fact that 0c = -0~ this becomes 

K - K' 
Uoo~O ̂  0 + Uo~oO ̂  O= - U o -  ~ 0 A 0 + U o ~ - ( f *  cO) A ( f*  02). (13) 

It follows from (5) and (6) that (f*~o)A ( f ' c o ) = J ( f ) 0  A 0, SO (13) implies 

K '  K 
Uoo~ - Uo~o = - Uo-~- J ( f )  + Uo-~. (14) 

We let A denote the Laplacian on M and note that for a function Z on M we 
have A X = 4Zoo where X0, Z0 are defined by dz  = Z0 0 + Z~ 0 and the Hessian of  X by 
dxo+ZoO~=gooO+XooO. We now assume that  f is a harmonic map (i.e. u00=0) 
and compute 

A l uol 2 = 4 ( u  o ft~)oo = 4(uoo fio)o = 4 u ooo rio + 4 Uoo ftoo. 

Applying (14) in this formula we have 

A [u0] 2 -- 4lu00] 2 - 2 K ' J ( f ) ] U o ]  2 " ] - 2 K ] u o ]  2. (15) 

If ]uo] 2 4:0, then (15) can be written more concisely 

A log lUo] 2 = - -  2 K '  J ( f )  + 2 K .  (16) 
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It  is a similar computa t ion  to show tha t  if I~012 +0  we have 

A log It012 = 2 K '  J( f )  + 2K.  (17) 

Tha t  is, whether  or not Ir0[ 2 = 0  we have  

A [rio [2 = 4 Ifi00[ 2 + 2 K '  d(f)I~,ol z + 2K [fi0[ 2. (1 8) 

Adding (15) and (18), noting (6), we obta in  the formula  for A e( f )  derived in [-3] 

A e( f )  = 4(luool z + ]fiool z) - 2K'(J( f))  2 + 2K e( f ) .  (19) 

w 2. Singularities and Some Local Results 

In this section we derive a few basic facts concerning singular points of  
ha rmon ic  maps, and analyze the zeroes of  [uoL 2 and {fi012. 

Proposition 2.1. Let  M and M '  be R iemann  surfaces, and let p(u)ldu[ 2 be a 
conformal  metric on M'.  Let  f2 be an open connected subset of  M, and 
f :  f2-~ M'  be a ha rmonic  map.  The function ]u0[ 2 (resp. Ifi012) vanishes identi- 
cally or has at most  isolated zeroes on f2. Moreover ,  if it does not  vanish 
identically, there exist integers nv > 0 (resp. mv> 0) with nv = 0 (resp. m p =  0) except 
for isolated points per2 such that  if z is a coordinate  centered at p, then Izl-"P [uol 2 
(resp. [zl -m,  [fi012) is a nonzero C ~ funct ion in a ne ighborhood  of p. 

Proof We see f rom (1.10) that  in a ne ighborhood of any per2 we have 
I(uz)~l < cl lull for some constant  c 1. It  follows f rom the similarity principle (see 
[2]) that  in a ne ighborhood,  say O = { z :  Iz[<a},  of p we have uz(z)=~(z)h(z) 
where h(z) is an analytic function of  z, and ~(z) is a nonvanishing H~51der 
cont inuous  function. The analyticity of h enables us to shrink D so for zeD with 
z4=0 we have ~(z)=Uz(Z)/h(z ) is a C ~ function of z. Therefore, it follows f rom 
(1.16) that  on D \{0} we have 

A logl(] 2 =  - 2 K ' J ( f ) + 2 K .  (1) 

To  show that  ]~t 2 is C ~ on D, let r/ be the solution of the Dirichlet problem, 
A q = - 2 K ' J ( f ) + 2 K  on D 

q = log l ( I  2 on ~gD. 

It  follows from (1) that  r/-log[([ 2 is ha rmonic  on D\{0} and HSlder cont inuous 
on all of  D. Therefore, by a s tandard  theorem on removable  singularities q- 
log[(I 2 is ha rmonic  and C ~ on D. So we have  logl ({z=q is smoo th  which 
implies [([2 is C ~ on O. Thus  we have 

luo]2=PJu~12=P-1~12Jhl~ in D. 
o- o" 



270 R. Schoen and S.-T. Yau 

Since h is analytic, this proves Proposition 2 for [UO[ 2. The proof for [~0} 2 is 
analogous. 

The next proposition appears also in J. Wood's thesis, but we prefer to give a 
different proof which has more potential to generalize to higher dimensions. 

P r o p o s i t i o n  2.2. I f  f :  Q ~ M '  is a harmonic map defined on an open connected 
subset ( 2 ~ M  satisfying J(f)>=O on ~, then either J is identically zero or the 
zeroes of J ( f )  are isolated. Moreover, if there is a number l so that #~( f - l (q))<l  
for each regular value q~M' o f f  then each isolated zero of J ( f )  is a nontrivial 
branch point of f 

Proof Suppose J is not identically zero on (2. We claim that for any point p6~2, 
J( f ) (p)=O if and only if Uo(p)=fio(p)=O. The first statement will then follow 
from Proposition 2.1. 

By (1.16) and (1.17), we have 

A log ju~ - 4 K ' J ( f )  (2) 
i~012 = 

when both lUol: and I~ol 2 are not zero. 
Suppose now J(f)(p)=O. Then ]Uo(p)l 2 =l~to(p)l 2. If our assertion were false, 

luo(p)lZ=Jfio(p)12>O and we can choose a small neighborhood V around p so 
that the inequalities continue to hold. 

Since J > 0  on ~, and both fi0 and K' are smooth, we can find positive 
constants g and c so that 

[lu012 1 
- 4 J K ' < e  [ l f i ~ -  1 ] 

< c l o g ~  (3) 
- I~01 

holds in 1,(. 
Putting (2) and (3) together, we see that the non-negative function h 

- l o  lu~ 
- g lfi--~ verifies the inequality 

A h < c h  (4) 

in V. 

By Lemma 6' of [4], we find 

h(z)<=~h(O) (5) 
Izl6R 

for some constants ~>0 and R >0. Here z is a coordinate system around p. 
Since h is non-negative and h(0)=0, h is identically zero in a neighborhood 

of p. This fact easily demonstrates the claim. 
To prove the final statement of Proposition 2.2, we suppose peQ is an 

isolated zero of J(f) .  Consider the set f - l ( f ( p ) ) .  It follows from the fact that 
J > 0 near p, and our assumption # ( f - ~ ( q ) ) < l  for each regular value q off ,  that 
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p is an isolated point of f - l ( f (p) ) .  We choose a neighborhood U of p containing 
no other points of f - l ( f (p) ) .  If the local degree o f f  at p is greater than one, then 
p is a nontrivial branch point o f f  If the local degree o f f  at p is one, then f is 
one-one in a neighborhood of p, and by a theorem of Lewy [1] we have 
J(f)(p) > 0, a contradiction. This completes the proof of Proposition 2.2. 

In case M, M' are compact surfaces of genus g, g' and f : M - - . M '  is a 
harmonic map of degree s, one may derive the following formulas by a standard 
residue argument from formulas (1.16), (1.17), and Proposition 2.1. These for- 
mulas have also been derived by Eells and Wood I-6]. 

n p = - s ( 4 g ' - 4 ) + ( 4 g - 4 )  provided [u012~0 on M 
pEM 

(6) 

m v = s ( 4 g ' - 4 ) + ( 4 g - 4  ) provided lUo[2~_O on M. (7) 
peM 

(np, mp are defined in Proposition 2.1.) 

3. Harmonic Diffeomorphisms of Compact Surfaces 

In this section we examine the case M, M'  compact, s = 1, and K ' <  0. We prove 
that in this case the harmonic map f is in fact a diffeomorphism. Note that we 
do not assume a priori that f is homotopic to a diffeomorphism, but only a 
degree one map. 

Theorem 3.1. Suppose f :  M ~ M' is harmonic and suppose M, M' are compact of 
genus g, g' with g = g ' > l ,  s = l ,  and K'<O. Then f is a diffeomorphism with 
J ( f )  > 0 on M. 

Proof. Since s =  1, it follows that [u0[ 2 is not identically zero, so formula (2.6) 

becomes ~ n v = 0. That  is, we have 
peM 

lu012 > 0  on M. (1) 

We will now show that J( f )>O on M. Suppose to the contrary that D 
= {peM: J(f)(p)<0} is not empty. We recall that lu012 = l ( e ( f ) + J ( f ) )  and I~012 
=�89 so that [~0l 2 > 0  on O. Moreover, (1) implies that I~012 > 0  on OD 
since J ( f ) = 0  on ~D. We subtract (1.17) from (1.16) to obtain 

lu012 
A l o g l ~ o l 2 = - 4 K ' J ( f  ) on DumB. (2) 

lo lu~ superharmonic on lu~ 2 Thus g l ~  is smooth and D. Also l o g ~ < 0  in D and 
lUol 

10 lu~ - 0  g ~ -  on ~3D. By the minimum principle it follows that log [u~ = a i~012 _ v  on D, 

i.e. J(f)=. 0 on D. This contradiction implies J ( f )>  0 on M. 
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To finish the proof we apply Proposition 2.2 which shows that J ( f )  has at 
most isolated zeroes which are nontrivial branch points. Since s = 1 these do not 
exist, so we have J( f )  > 0 on M and f is a diffeomorphism. 

Corollary. Suppose M and M' are Riemann surfaces of genus g > 1. Let p(u)Idul 2 
be a metric of nonpositive curvature on M'. Any map � 9  M --* M' of degree one is 
homotopic to a unique map f: M - ~ M '  which is harmonic with respect to p(u) [du] 2. 
Moreover f is a diffeomorphism with positive Jacobian. 

Proof. A restatement of the existence Theorem [3], uniqueness Theorem [7], 
and Theorem 1. 

w 4. Compact Surfaces with Boundary 

In this section we consider the boundary value problem for harmonic mapping. 
We give conditions under which the solution of this problem is a diffeomor- 
phism (see Theorem 5.1). Let M be a compact Riemann surface with boundary, 
and let M' be a compact Riemann surface (with or without boundary). Suppose 
p(u) I dul 2 is a metric of nonpositive curvature on M', and suppose ~p:M ~ M' is 
a given map such that ~p is a diffeomorphism of M onto its image. Moreover, 
suppose ~0(~3M) is a curve (or union of curves) having non-negative geodesic 
curvature with respect to ~p(M~ where M ~  interior of M. Let f :  M ~ M '  be a 
solution of the boundary value problem: f is harmonic with respect to p, f = t p  
on OM, and f is homotopic to tp relative to 0M. We will show that f is a 
diffeomorphism in M ~ 

It follows from the maximum principle for the heat equation (see Hamilton 
[8]) that f ( M ) c t p ( M ) ,  so we may replace M' by ~o(M)~M' with the induced 
conformal structure. Having done this, we replace M' by its double, thus taking 
M' to be boundaryless. We now consider two cases. If M' has genus zero, our 
task is relatively simple, and we indicate the proof below in the proof of 
Theorem 5.1. We now concern ourselves with the case in which the genus of M' 
is at least one. We take a smooth extension of p(u) Idul 2 to the double, and note 
that although the curvature may not be non positive on all of M', it is still so on 
f (M).  Let 2(u)Idul 2 be the Poincare metric on M' if the genus of M' is greater 
than one, and the flat metric if M' has genus one. 

Lemma 4.1. With respect to 2(u)Idul 2, f (dM)  is a union of closed geodesics. 

Proof. Since M' is the double of ~0(M), M' has an anticonformal automorphism 
which fixes ~0(3M). The lemma thus follows from the invariance of the metric 
R(u) Idul 2 and the fact that the fixed point set of an isometry is a union of 
geodesics. 

We now consider the conformal structure on ~o(M) given by pulling back the 
conformal structure from M via ~0-1. Let M" denote the double of this Riemann 
surface. Having done this, we consider a smooth path of conformal structures on 
~0(M) so that, denoting the doubles by M' t for t~[0, 1], we have 

M ~ = M "  and M' I = M ' .  
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Let  )'t be the Poincare  metric  on M~. As in L e m m a  5.1 we conclude that  q)((3M) 
is a union of closed geodesics relative to 2t for each t~[0,  1]. Let  fz: M ~ M '  be a 
solut ion of  the bounda ry  value p rob lem for 2(u)Idul e, and for each t~[0,  1], let 
f :  M ~ M'  t be a solution for 2 t on M'  r 

L e m m a  4.2. The family ~ = { f :  t~[0,  1]} is a smooth family o f  maps satisfying fo 
=~0 and f l  =f~.  

Proof  In order  to p rove  smoothness,  we prove that  ~ is compact  in the C ~ 
topology,  and we prove  a uniqueness theorem. 

To  prove  compactness ,  we note  that  E( f )<E, (q ) )  where Et(. ) means energy 
taken  with respect to ).~. Thus it follows that  E ( f O < c  1 for t~[0, 1]. The work of 
H ami l t on  [8] could now be used to prove  compactness,  but we prefer to give a 
direct  proof. 

We first establish a uniform HiSlder estimate on f .  The interior estimate 
follows f rom the inequali ty 

d e(f,) > - c 2 e ( f )  (1) 

which holds under  our curvature  condit ion by (1.19). Standard estimates (see 
[13, Thm. 5.3.1]) imply that  e ( f )  is pointwise bounded  on the interior of  M, so 
that  

sup e ( f )  < c 3 (2) 
K 

for any compac t  K c M ~ where c 3 depends on the distance f rom K to ~M. 
To give an est imate near ~M, we consider the function d defined on M as 

follows: Let  M~ be the universal  cover  of M'  t, f/1 the universal cover  of M, and F, 
F t be groups of isometries on M," M '  t -  so that  M =)QI/F and M t' = M J F  t . ' '  Consider 
the function d: ~/'t x M ' t ~ I R  given by d(p, q)=distance(p,q).  N o w  F t acts on M't 
x A~t' t by acting jointly on each factor, and d is invariant  under this action, so we 

Mr ~ /  --'9" have  an induced function 6: (M t x Mr)IF t N. By lifting ft,q) we get maps  f~, ~: 
_.~ ~ !  A~t M t, and we consider the m a p  ~t  ~ / ~ t  x AT/, given by 

p ~(f,(p), ,~(p)). 

Since f and ~o are homotop ic  relative to ~M, we get an induced map  a: M 
~ t  = f l / F - *  (2(/I~ x Mt) /F . N o w  define d: M ~ lR by d = 6 o ~. Now d has the proper ty  

tha t  d---0 on ~M, and a direct calculat ion which we will give in a later paper  
implies that  

A d 2 >= e ( f )  - c4(1 + d) (3) 

where c 4 is a positive constant  depending on an upper  bound for first and 
second derivatives of (p. (Note tha t  d depends on t. But since the metric varies 
smooth ly  for tE[0, 1], the constant  c4 can be chosen independent  of t.) Choose  a 
bounda ry  coordinate  z on M centered at  p ~ M ,  and multiply (3) by a non- 
negative function ~2 to give 

~2 A d 2 -> ~2 e ( f )  - Ca ~2 (1 + d). 
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Integrating this over M, and integrating by parts we have 

5f2e(f)dVM< - 2  ~ dV~ 2. VddVM+c, , ~ (2(1 +d)dV M 
U M M 

where we choose ( to be a function satisfying 

(4) 

10 for Izl<a/2, tV~l~ c5 
~(z) = 

for Izl>G, 

Since l V d[ 2 < e(f,) + ~5, inequality (4) implies 

I e(ft)dVM<-~S f d2dVu+c6 o 2 + 0  d 2 (5) 
Ho/2 Ha ~ Ha~2 

where we let H,=Mn {z: [zl<r} for any r > 0  which is sufficiently small. Since d 
vanishes on OM, the Poincare inequality gives 

f d2dVM~C7 ~2 ~ I ~ d l 2 d V M  �9 
H a  ~ H o / 2  H a  ~ H~/2  

Using the fact that [Vd[ 2 < e ( f ) + g s ,  we have 

I d2 dVu < cs a2 S e ( f )  + c 8 a.  (6) 
H a  ~ Her~2 H a  ~ Her/2 

Combining (5) and (6) we obtain 

e(f)dVu<=c9 ~ e(f)dVM+C9a 
Hal2  H a  ~ Ha~2 

which implies 

e(ft) dVM ~ c9 
Ho-/2 1+c9 n~ ~ e(ft)dVM+l+c9 c9 o-. (7) 

C 9 
Since ] + c9 < 1 is independent of a, we can iterate (7) starting with some fixed 

value a = a o, and we obtain 

S e( f )dVu~qo r2~ ~ e(ft)dVu+clor 
H r  H a o  

~CI1F2a (8) 

for some number ~e(0,1). It follows from a well known lemma of C.B. Morrey 
that (8) implies a Holder estimate on f with exponent ~. Combining this with 
the interior estimate (2) we have 

IIf, ll, <c12 (9) 
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where I[. Ib represents the Holder norm with exponent c~. In particular d is 
bounded and in (3) %(1 + d) can be replaced by a constant, so that (3) implies 

A d 2 > e ( f ) -  ~4. (Y) 

We next give a pointwise bound on e(f). To estimate the normal derivatives 
of f on 0M, we use a device Hildebrandt, Kaul, Widman [12] which they 
attribute to Bochner. Let paOM, and let n be the outward unit normal on M. 
The normal derivative Of/On at p represents a vector at f (p)eM;,  so we move 

O f , ,  
along the geodesic through f (p)  tangent to ~n tp) a fixed positive distance r to a 

point p'eM', and we consider the function g defined on a neighborhood of peM 
by g(q)=distance (f(q), p'). Because of our H61der estimate on f ,  the function g 
is defined on a fixed neighborhood V (independent of t) of p. We note that since 
the distance function to P'eM'  is convex on f (V)  (provided z is sufficiently 
small, we have 

Ag>=0. 

Following [12] we write g = h + s where h is harmonic on V and satisfies h - g  on 
0V, while s is subharmonic on V and vanishes on 0V. We note that 

~ (p) = _ ~{p) 

and that 

0s ~(p)>O 

by the maximum principle. We therefore have 

~ ( p )  Oh 
_-<Un(p). (lO) 

Since h is harmonic on V, Schauder boundary estimates imply that 

where c 1 a depends on a H/51der estimate for the tangential derivative of h along 
OV~OM. Now h=-g on 0V, and it is easily checked that the tangential de- 
rivatives of g are bounded along 0M by the corresponding derivatives of (p (with 
the bound depending on ~). We therefore have 

~(p)  _-<c14 (11) 

where q4  is independent of t. Combining (10) and (11) gives the desired bound 
on the normal derivative o f f .  To complete our bound on e ( f )  we note that (1) 
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and (3') can be combined to give 

A (e(f) + c 15 d2) > - cl 6 (12) 

so that if 7 is the solution of the Dirichlet problem 

A7+c~6=0  on M 

7 = 0  on ~M 

we have e(ft)+c~sd2-7 is a subharmonic function on M, so by the maximum 
principle 

sup e(ft) < sup [71 + sup e(f) 
M M M O  

which by (11) implies 

sup e(f) < c 17- (13) 
M 

It is now a standard matter to estimate all higher derivatives of ft. This 
completes the proof of compactness of ~-. 

To prove uniqueness of f ,  we suppose there are two maps f and f '  both 
harmonic with respect to 2 t, and satisfying 

f = f ' = ~ o  on OM 

f ,  f '  homotopic to cp relative to 0M. 

Constructing the function d for f ,  f '  in the same way that d was constructed for 
f ,  q~, we find 

AdZ>0, 

and ~ - 0  on OM. Therefore d ~ 0  on M, and f t = f t  '- 
To prove that ~ is a smooth family, we suppose to~[0, 1], and t i ~ t  o. Then 

every subsequence of {f,} has a subsequence which converges in C ~ topology to 
fro by compactness and uniqueness. This implies that f , ~ f o  in C ~ topology, 
proving that o ~ is a smooth family. This completes the proof of Lemma 3. 

Lemma 4.3. If f is a harmonic map on M with f[~M an orientation preserving 
homeomorphism onto a curve having non-negative geodesic curvature with 
respect to ~o(M), then 

J(f)  > 0 on t3M. 

Proof It follows from the fact that f can be gotten from the heat equation, and 
from the maximum principle for the heat equation (see Hamilton [8]) that 
f (M) c qg(M) which implies the lemma. 

Proposition 4.1. fx is a diffeomorphism of M ~ 
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Proof We use the family i f ,  and let 

S =  {te[0, 1] : f  is a diffeomorphism of M~ 

Note that 0~S, and we show that S is both open and closed. To prove S is 
closed, let ti~S and ti~to, then by Lemma 5.2 we have J(fo)>O which implies, 
by Proposition 2.2, that J ( f o ) > 0  on M ~ and hence toeS. (See also the last part 
of Section 2.) This proves S is closed. 

To prove S is open, let totS, and note that (as e(fo)~eO on 0M) we have 
e(fo)+J(fo)>O on M, so by Lemma 5.2 it follows that e ( f t )+J ( f t )>0  for t in a 
neighborhood of t o. Thus we have [(ut)o[ 2 > 0  on M, so we let D =  {peM: J(f i)<0}.  
By Lemma 4.3 we have D c M ~ so the argument of Proposition 4.1 is applicable, 
and we conclude that J ( f ) > 0  on M ~ i.e. teS for t in a neighborhood of t o. This 
proves that S is open. 

Therefore S = [0, 1], and fz is a diffeomorphism on M ~ finishing the proof of 
Proposition 4.1. 

To prove that f is a diffeomorphism, we consider a one-parameter family of 
conformal metrics on M' given by 

,~,(u) ldul 2 = p '(u)  2 -'(u)Idul ~ 

Lemma4.4.  2t(u)ldu] 2 is a conformal metric on M' satisfying 20(u)=2(u ) and 
21(u)=p(u ). Moreover, for te[0,  1], the curvature of 2 t is nonpositive, and q~(0M) 
has non-negative geodesic curvature relative to 2 t with respect to ~o(M). 

Proof The first statement is clear, and (1.4) implies that 

K't=tK'-(1-t)<O for t~[0, 1]. 

Now if 7(t) is a parametrization of the curve ~0(OM), we note that the geodesic 
curvature of (p(0M) is given by 

V"+linear term in connection form, 

and since the connection form co c becomes additive for 2 t (see (1.2)), we see that 
up to a positive function, the geodesic curvature is a convex linear combination 
of that for 2 and p. This proves the last statement of the lemma. 

We now consider the family ~ o = { f t :  t~[0,1]} where f : M ~ M '  is the 
harmonic map with respect to 2 t satisfying 

f = ~o on ~M 

f homotopic to ~o. 

Now the same reasoning as that in Lemma 4.2 implies that o~o is a smooth 
family of maps with fo =fx and fl  = f  We now prove the main result for the 
boundary value problem. 

Theorem 4.1. Let M be a compact Riemann surface with boundary. Let M' be a 
compact  Riemann surface (with or without boundary), and let ~o:M-~ M' be a 
diffeomorphism of M ~ onto its image, and a homeomorphism of OM onto its 
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image. Suppose M' has a metric p(u)Idul 2 of nonpositive curvature, and that 
~o(OM) is a union of curves each having nonnegative geodesic curvature with 
respect to q~(M). There exists a unique map f :  M ~ M' which is harmonic with 
respect to p, which is a diffeomorphism of M ~ onto its image, and which satisfies 

f=q~ on M 

f homotopic to ~o relative to 0M. 

Proof The existence of f is due to Hamilton [8], and the uniqueness follows 
from the uniqueness part of the proof of Lemma 4.2. To prove that f is a 
diffeomorphism of M ~ we first consider the case in which M' has genus at least 
one. This case follows from the argument of Proposition 4.1 with the family Z o 
in place of f t .  

In case M' has genus zero, we note that q~(M) is simply connected, so that 
the uniformization theorem implies the existence of a conformal map 0: 
M ~  ~o(M) (anti-conformal if ~o reverses orientation). We then choose a smooth 
family of homeomorphisms %: ~M ~ q~ (~M) for t e [0, 1] so that qo o = ~ and q01 = (p 
(for example write 0, q~ in terms of arclength along ~0(OM) and take a convex 
combination). Let f :  M ~ M '  be the solution of the harmonic mapping problem 
with 

f = ( o  t on OM and f homotopic to ~o. 

Let o~ ={fA te[0,  1]}. Thus we have fo = 0  and fl = f  The proof now follows by 
the techniques used in the proof  of Proposition 4.1. 

This completes the proof in case go is a diffeomorphism of M, and the case 
where q~ is merely a homeomorphism of ~?M follows by approximation. 
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