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OF A COMPLETE RIEMANNIAN MANIFOLD

By Sru YuBN CrrBNc, Prrnn Lr lxo SnrNc-TuNc Ynu

Let M be a complete non-compact Riemannian manifold whose sec-

tional curvature is bounded between two constants -k and K. Then one

expects that the heat diffusion in such a manifold behaves like the heat

diffusion in Euclidean space. The purpose of this paper is to give a justi-

fication of such a statement.

In [5], J. Cheeger and the third author found a lower estimate of

the heat kernel by "comparing" it with the heat kernel of the space

form whose curvature is the lower bound of the curvature of the mani-

fold. This lower estimate is sharp if we insist the dependence should be

on the lower bound of the Ricci curvature alone. It remains to give an

upper estimate of the heat kernel.
One does not, however, expect to have a comparison theorem for

the upper bound because it is more sensitive to the geometry of the mani-

fold. In fact, the heat kernel of the upper half space and the heat kernel of

the complete hyperbolic manifold with finite volume have quite different
behavior. This is reflected by the fact that the Laplacian has no discrete

spectrum in the first case while infinite number of discrete eigenvalues

may exist in the latter case.

What we will prove here is that in any case, the heat kernel has to

decay in a manner similar to the Euclidean heat kernel. Thus we will
prove that for any constant C > 4, there exists C1 depending on C, Z, the

bound of the curvature of M and x so that for all r e [0, ?]

H(x, y,t) < Cr(C, T, x)t

wheren is the dimension of M and r is the distance between x andy'
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This inequality shows that heat diffusion decays very fast when / I 0

and r tends to infinity. The constant C1 accounts for the spectral dif-
ference between the upper half space and the hyperbolic space with finite

volume. In our estimate, it arises from the fact that the injectivity radius

decays exponentially for the latter manifold. In fact, we spend a sub-

stantial part of the paper proving that for complete manifolds with
bounded curvature, injectivity radius decays at most exponentially. Then

we derive suitable Sobolev inequality for this class of manifolds. We feel

that this has interest in its own right. Based on the Sobolev inequality, we

make use of a method of Aronson-Serrin [1], Moser [10] and Nash [11] to

estimate the heat kernel. We also estimate the higher derivatives of the

heat kernel in a similar mdnner.

We wish to express our gratitude to Professor A. Borel who brought

the problem to us. He also mentioned that R. Beals has already proved the

estimate holds for the heat kernel of G/l where G is semi-simple Lie

group and I is a discrete subgroup. Finally, we point out as a corollary

of our estimate here and the result of [4], we can derive that

lim 4t log H(x, y, t) : -r2./-0

This was derived by Varadhan in [13] by different methods.

We also want to thank Professor J. Cheeger for discussions on the

use of the triangle inequality in estimating the injectivity radius.

1. Injectivity radius estimate for non-compact manifolds. The in-
jectivity radius 6(x) at a point x € M is defined to be the distance fromx
to its cut locus. In the event when we consider the injectivity radius of a
point on a curve'y(r) parametrized by /, we will write

6(t):6("y(r)). (1.1)

The distance between any two points x, y ( M will be denoted by r(x, y).
When ambiguity does not arise, the distance function from a fixed point
p tox will be written as r(x). It is known thatr(x) is a Lipschitz function
defined on M.

In order to study the analy'tic aspect of a non-compact manifold, it is
important to know how the geometry behaves at infinity. One of the most

important quantities which reflects greatly on the analltic properties of M



UPPER ESTIMATE OF THE HEAT KERNEL 1023

is the concept of injectivity radius. This section is devoted to study the

decay rate of 6(x) on a manifold with bounded curvature. We recall our

notation that K and -k, with K, k - 0, are the upper and lower bounds

of the sectional curvature of M.

TnBonrru 1. Let 7 be a minimal geodesic.ioining two points, p and

x, in M. Suppose y is parametrized by arclength such that

t(0): p and t(d):x,

where d : r(p, x).If 6(t) < VqA : r/l2rK, for alt / ( [0, d], thenJor
any0<T<d,

6(d -?) = 6(o).,.n[-(* + $)u- r,]

where C > 0 rJ some universal constant.

Proof. One verifies easily that the concept of injectivity radius 6(r)

is continuously defined on 7(r). Moreover by a standard argument in-

volving the first variation formula for arclength one concludes that there

exists a smooth geodesic loop 4,(s) with vertex att(t) which realizes

We now claim
such that

l(q,) : length of 4,

: 26(t).

that there exists at most

,]

f r,(0) : !t'Q).

(r.2)

two values t1, t2 € 10, dl

(1.3)

where 4,(s) is assumed to be parametrized by arclength with

rl,(0) : t(t) : n,Q6(t)).

Indeed, if (1.3) holds, then by uniqueness of geodesic, 4,(s) must be

part of y(r). On the other hand, since 4,(s) is a geodesic loop, and'y(r)
is minimal, this can only happen if the loop 4, is located at one of the

ends of 7. However 7 has only two ends; this establishes the claim.
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We will proceed to estimate the left derivative of 6(r) at points not

equal to ty or t2. Let /e be such a point. We consider B, the geodesic

ball centered at lQo) with radius 2A. The exponential map

r:TrqloyM n BQA): TB + B

is a covering map because A : r/3'lK implies B lies completely within
the conjugate locus of "y(rs). The lifted geodesic segments 4ro of 410 is a

straight line joining the origin 0 < TB to a point

t : i,o(26(t)) < r - t (n, oQa (t))).

We denote the geodesics ]s and "y1to be the lifts of "y in TB which con-

tain 0 and ! respectively. By the assumption that ts I t; for i : 1,2,
and the fact that'ye is just a straight line passing through 0, "Yr I "lo.

We will parametrize "ye and 'y t by t, the induced parameter from 'y.

We claim that for allt e lto - A/8, ts], there exists a unique mini-

mal geodesic 4,(s) in ZB joining lo(r) to yr(r). The proof of this claim

will be postponed until after we complete this theorem and will be pre-

sented as Lemma 1. This asserts that in the interval fts - A/8, tg],

there exists a smooth 1-parameter family of geodesics f, joining lo(/) to

t tQ).In fact, this family defines a Jacobi field V(s) along fr'o(s)'
Let us consider the first variation formula for arclength at /e with

respect to this 1-parameter family f ,. Computation shows that

*,@,)1,-,0
di,\ l' '(t')* ll, ,

: (u, (1.4)

(1.s)

(1.6)

However, since r(f ,) are geodesic loops with vertices at 1(t),

l(7,) -- 26(t)'

Therefore,

6(r) - 6(ro) l(i,) - l(7,0)

t - to t - to
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e < t < rs. This implies that the left derivative of 6(r) at rofor /s -
satisfies

lim
t'to

6(r) - 6(ro)

t-to
drl,o \ rs 

/(i,o)

* i 1",
- +(,, (r.7)

- 1,

(1.8)

By definition of V, ly(0)l : l: lV(l(r1,.))1, and alsoldrl,o/dsl
therefore the right hand side of (1.7) gives

1

-j(cosa*cos0)

where cv and B arc angles between

d.
alo " 4rs)1,:s. 'y'Gi and -ft<".4r0)1":11n,0 1, 'y'(to)

respectively. To estimate (1.8), we apply Toponogov's comparison theorem.

Consider the geodesic triangle with sides 1to,'yfto, tg * Tl and

"ylt1 + T, tsl in M. This triangle has two identical sides with length Z.

Also, since t(nil : 26(til < r/^JK, the comparison theorem applies.

Let ABC be the geodesic triangle in Hz(k) : the hyperbolic disk of

constant curvature -k, such that BC and AC have length T and AB
has length 26(to). If cr and B are the angles BAC and,4BC respectively,

then Toponogov's comparison theorem (see [3]) asserts that

a>a and P>9.

Hence

-cos cY > -cos cr (1.e)

and

-cosB > -cosB.

On the other hand, in H2(k), one has the formula
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-cos cY - -cos p

Lt (1.r1)

for all /e ( [0, d - Tl.
We are now ready to estimate 6(d - T) in terms of 6(0). Let us

first assume that 6(t) is a decreasing function of t. Since we do not
know a priori that 6 is Lipschitz, we have to mollify 6 as follows: For any
0 < h ( T, we define the mollifier

for some universal constant C > 0. Therefore we conclude that the left
derivative of 6(t) at /s has a lower bound. In fact, for any e > 0, then
for small enough A/,

6(to)-6(ro-Ar)

- cosh(VftT) . (1 - cosh(2Vk6(ro)))

sinh(VkZ) sinh(r,Ea(ro))

cosh(VEr)
- tttrt(,[.71 vkd(ro)

-('* #)\86(/0)

= -(* . +)6(rs) - e

. Pnls)
p h\s) : 

",.t\ o,@a,
,ls

where pa(s) is a smooth cut-off function satisfying

dr(r): \'' or,, - s)6(s)ds
,ls

(1.10)

(t.r2)

(t.r4)

(1 if --4 h

\ t<s< 2
pr,(s) : 1(o ir I'l>ll

(1.13)

and p1,(s) < I for all s. The mollified function 6r,(t) will be defined by
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for h < t < d - ?. Clearly 6r,(r) is a Cl function. Its difference quotient

6nG)-6hQ-At)
Lt

: *LJrrr,r - s)6(s)ds - Joooor,- 
s - arratsrasl

: 
-tI Joooof, 

- s)6(s)ds - J^, 
^' pn(I -s)6(s - arlasl

f't 6(s) - 6(s - A1) ,: I pn?- s):sffds (1.15)
Jo

for small L,t < h. By the assumption that 6 is decreasing and equation
(1.12), we obtain, as A/ --+ 0,

6n'(t) - -loor,u- ',[(* . +)aor + .]a,

:-(uo.;) 6nft)-e

for all h < t < d - T. Since e is arbitrary, this yields

flog6r,(r)l '>-

(1.16)

(1.t7)

Integrating both sides with respect to / from h to d - ?, we conclude

6ntd - r) > 6n&)..01-(* . +)@ - r - rrl

Letting h - 0,6y, becomes 6, and the above inequality gives

6(d - r) > 6(0)""e[-(* * i), - rl (1.18)

When 6 is not a decreasing function, we simplv break the interval
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[0, d - T] into subintervals ltzi-r, tzil, | - i < n, such that 6 is de-

creasing in each and non-decreasing outside. We may then apply (1.19)

to each subinterval and obtain

However, by assumption 6 is non-decreasing outside, this means

6(tzi t) - 6(tz;-).

Putting all these inequalities together, we derive

(1.1e)

as to be shown.

LnvrM.q. 1. Let x ( M such that 6(x) < A/4 : r/l2llK' Suppose

the exponential map r:TB t B is defined as in Theorem l, and !0 and.

! 1 are geodesics in TB Jrom lifting a minimal geodesic 7 which passes

through x with f (0) : x. If itois the lift of q, the geodesic loop at x with

l(q) : 26(x), such that 0 : 4o(0) ( 7s and 4o(26(x)) € 71, then for
t (. l- A /8,0f , there exists unique minimal geodesics joining I o(t) to I r(t).

Proof. Let us first define the notion of e-homotopy. A curve Ce

with endpoints at r1 and x2 is said to be e-homotopic to another curve

C1 with the same endpoints if there exists a homotopy C(t, s) with end-

pointsxl andx2, suchthatC(0,s) : Cs,C(l,s): Cr,andl(C(t, s)) < €

for any / ( [0, 1]. Of course Ce is said to be e-homotopically triviai if
xt -- x2, andC0 is e-homotopic to the trivial curve Cr: x with length

l(c1): g.

Under this notation, we claim that if p ( M is a point such that
6(p) < 3A/4, then the minimal geodesic loop a with vertex at p which

realizes

l(i) : 26(p).

is 2,4-homotopically non-trivial. If not, by lifting the homotopy to T,,B

by r, this provides a homotopy which is completely contained in T,,B

6(tz) = b(tz,-t,".n[-(* * *)Ur,- rr,-')].

6(d - ") 
> 6(0) ".n[ (* * i), - ,r)
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and it deforms n,,-t{i) to a point. However n,,-t{i) is a straight line

segment passing through the origin. This is a contradiction. Hence 17 is a

2A-homotopically non-trivial loop.

To prove the lemma, we first observe that by the triangle ineguality

r(^to0), yr(r)) < r(?0(0),'yr(r)) + lrl

< too) + 2ltl

< l(10)

for all t < [-A/8,0]. If there exists more

joining fo(r) to 'y1(t), this implies that the

yo(r) in ZB is less than or equal to

(r.20)

than one minimal geodesics

injectivity radius 6(ro(t)) at

A_f-
4

A3A
4- 4

26(0) +

By the above discussion, we conclude that the geodesic loop o with vertex

at ro(r) which realizes

l(o) : 26(toft))

is 2,4-homotopically non-trivial.
We now claim that the curve formed by the geodesic segments

^yo[0, r], o, and ro[r, 0] denoted by 0 is 7A/4-homotopically non-trivial.

If not, let0(u,s) be a homotopy such that 0(0, s) : 0(s) and 0(l,s) : 0

with l(0(u, s)) < 7A/4 for all u ( [0, 1]. However if we combine the

homotopy with the geodesic segments fo[t, 0] and'ye[0, rl, we obtain a

homotopy which deforms o to the curve 70[/, 0] * f [0, t]. The latter

certainly is 2,4-homotopically trivial. Hence together with the fact that

Zltl : l(tolt, 0l) * /(ro[0, r])

and 0(u, s) is a7A/4 homotopy, this provides a2A-homotopy from o to 0,

which is a contradiction.
We can now minimize among all curves with endpoints at lo(0) and

arc 7A/4-homotopic to g. This way we obtain a non-trivial shortest geo-
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desic loop with vertex at 7s(0) and its length is less than or equal lo 7A/4.
This contradicts the fact that the injectivity radius at fo(0) is atleast2A,
and the lemma follows.

Conor-r.,q.nv 1. If p is afixed point in M, and tf t it a minimal
geodesic joining p to another point x Q. M such that f(0) : p and

y(d) : x. Thenfor any T < (0, d),

6(d-T)>

where 5(p): min {r/12^,1K,6(p)}. In particular, iJ 7 is a geodesic ray

emanating Jrom p to inJinity, then

6(r) - 6(p) e*p[-(r&r)]

for all / € [0, o].
The proof of this corollary follows directly from Theorem 1 and will

be omitted. In case if K :0, i.e., M is non-positively curved, one

obtains a more direct estimate for 6(r).

Conor-r-lnv 2. Let M be a complete non-positively curved Rieman-
nian manifold withfinite volume. Then there exists a compact set N C M,
suchthatforallx(M - N

6(x) = 6(N) exp[-rft"(r, lr)]

where 6(N) : infperu 6(p), and l(x, N) is defined to be the maximum
distance from x to N.

Proof. By a theorem of Siu and Yau |21, such a manifold contains

a compact set N with the property that for all x C M - N, there exists

a unique geodesic ray emanating from N passing through x to infinity.
They have only discussed the case when M is strongly negatively curved,

however the proof can be carried over to our situation. Clearly the corol-

lary follows by applying Corollary 1.

2. Sobolev inequalities. The Sobolev inequality for compactly
supported functions defined on a ball B (p, R) centered at a fixed point p
with radius R asserts that

;rpr "*p[-(* * +), - ',]
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I t"rt
J Btp.R)

(2.r)

for all functions f ( Ht,r(B(p, R)) such that f lan@.n = 0, where the

Sobolev constant Cs depends only on the geometry of B(p, R).
It is known that the Sobolev inequality is equivalent to the isoperi-

metric inequality

A(N) - Co(v(Mt11tu t)/n, (2.2)

where N is any codimension -1 submanifold in B(p, R), and M1 is the
part in B(p, R) - Nwhich does not contain }B(p, R).In fact, it was

demonstrated [2] that the Sobolev constant is equal to the isoperimetric
constant.

In [6], it was shown that

co - a(n)a(tr+l)/tr(R) (2.3)

for some universal constant cv(lr) which depends only on n. From here on,

cv(n) will denote a constant which depends on n alone though its specific

value may vary in other situations. c.r(R) in (2.3) is defined to be

o(R) : inf <,t(x, R),
x$(p, R)

(2.4)

c,l(x, R) : measure of U(r, R)

: measure of {v € T,M, lvl : l lthe geodesic

from x emanating in the direction

of v is minimal up to AB@, R)|.

The measure is the canonical (n - 1)-measure on the unit tangent sphere

.S'-1. The next three lemmas give estimates of co(R) from below, hence

combining with (2.3) enable us to obtain lower bounds for the Sobolev

constant.

Ln:"a:"at 2. Let M be a complete Riemannian manifold with sectional

/ I r (n-l) r

= co( I ,r ''t" 't))
\J8(p R) /
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curyature bounded Jrom above by K. If R < 6(p)/8, where 6(p) :
min {d(p), r /I2..1 K}, then

c,.,(R) > c(z)

for some universal constant a(n).

Proof. By the definition of <,r(R), it is clear that if ,B(p, R) lies

inside the cut locus of any point r < n @,R ), then co (x, R ) : A(S'-1) :
<r(R). Hence it suffices to show that for all x C n@, R), 6(x) > 2R.
However this follows directly from the proof of Lemma 1.

LsMruA.3. Let M be a complete Riemannian manifoldwith bounded
curyature. If a(R) < a(n), then

or(R) > a(n)k"/21'FkR sinho'-r)(4fftRl ' x a"(p) exp[-2ntFkRl.

Here - k is a lower bound Jor the sectional curvature.

Proof. Let q be an arbitrary point in M such that r(p, q) : 2R.
We considerthe ball n@, R) of radiusR around q. For anyx € B(p, R),
we define the set

W: {, ( T,M, lrl : tlthere exists a point y e B(q, R)

such that v is the tangent vector al x to the minimal

geodesic joining x and y\.

Clearly B(p, R) andB(q, R) are disjoint, and any geodesic with tangent
vector in W must intersect 0B(p, R) before it connects with y e B(q, R),
hence W c U (x, R ). The cone C (W, 4R ) is defined to be the set of points
in M which are contained in a geodesic segment of length 4R from x with
tangent vector in W. One verifies Ihat B(q, R) = C(W, 4R), therefore

V(B(q, R)) < v(C(w, 4R)).

On the other hand

r'4R r'

V(C(W,4R)) : I I .ls,tO,t)t'-td0dt
Jo Jw

(2.s)
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r'4R r'

= I I t.,Ir-r sinh tFkt)"-tdodt
.l 6 Jw

1033

(2.8)

< m(W)a(n)Rk-(o-r)tz) sinh('-r)(4fkR), (2.6)

where m(W) stands for the measure of W in (^ , the unit sphere in T'M.
Since I{ c U(x, R), this implies,

cr(x, R) > m(W)

- v(B (q, R))a(n)k"/2[f,kR sinh("-r)(4rfkR)] -r. Q.7)

It remains to estimate V(B(5, R)) from below. Since we assume

il,(R) < a(n), in view of Lemma 2, this implies R > 6(p)/8. If we define

R(q) : min{6(q), R}, obviously

g R(q\ ,'

v(B(q,R))=l I tnrr-'sin(JktD"-td0dt
lo J,s" I

l, JKR(c)
: a(n)K ' 2 

Jn 
sin(" t\rdt

> a(n)R"(q).

To complete the proof of this lemma, we will need to estimate R(q). Let

7 be a minimal geodesic ray emanating from p to infinity. By complete-

ness of M, such 7 always exists. Since the choice of q is arbitrary on

0B(p, 2R), we may pick q to lie on "y. By Corollary 1, the injectivity radius

of q satisfies

6(q) > 5(p) e*pt-z\fkRl. (2.e)

Obviously, the fact that R > 6(p)/8 and (2.7), (2.8) and (2.9) imply the

lemma.

Lnrvrrvrl 4. Let p, z ( M such that 4 : r(P, z). Suppose the hy-

pothesis of Lemma 3 is satisfied with o:(R) < a(n), then:

(i) When 0 < R < d/2,

o(R) > a(n) min {1,k"/26"(2)} exp[-3(n - l)'lEd]
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(ii) WhenR > d/2,

o(R) > a(n)k"/2['FkR sinh('-I)(4fftR] '6"(r)
x exp(-ntE(d + 2R)).

Proof. The proof of Lemma 3 can be carried through up to equation -

(2.7). rffe will now give an alternate way of estimating V(B(q, R)).

(i) When 0 < R < d/2. By monotonicity of o, it suffices to estimate .
a(d/2).In this case we pick q : z. If d/2 < 6(q) :6(z) then by com-
putation similar to (2.8)

,('(", +)) = atu)R.

Hence combining with (2.7), we get

"(+) = "t"r[;ff;'l

(2.t0)

(2.r1)- o,(n) exp(-2(n - l)llEd).

On the other hand, if d/2 > 6(z), then by (2.8), we have

,('(",+)) . a@)6^(z),

and (2.7) implies

/d\
" l; ) - a (n) k " 

/ 2 
l',8 d sinh?' - t ) (z'Fn il) - t 6" (").

> a(n)k"/26"(z) exp(-3(n - t),,|Eil. Q.l2)

(ii) When R > d/2. Since r(p, q): d, z e B(p,2R).Letybe a '
geodesic ray emanating from z to infinity. We now pick q to be a point
in 7 O |B(p, 2R). By Corollary 1, and the fact that

6(q) > 5(r).*pl-,,EU + 2R)1, (2.13)
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together with (2.7) and (2.8) yields

o(R) > a(n)k"/2[tFkR rtnnt" t)14r[kR)l-t

x 6"(2) exp[-nttE(d + 2R)],

and the lemma is proved.

For all practical purposes, we will consider the following two weaker
- versions of the Sobolev inequality. Suppose / is any function with

J I as@,N = 0 and also rf € H r,z@ @, R )). Then

I - /f th-2)n
I I vI 12 > ctp, n)( I 1112n/tn-z\) e.r+t
Jstp.nt \Jarp,Rr /

and

I / t' -\ (nl 2)/n / I y -4/n
I tv.f 12 > c(p,R)( I f') (l l/l) (2.rs)
.t B(p.R) \JB(p.R) t xJ B(p,Rl /

are valid. It was demonstrated in [5] and [7] that both Sobolev constants

can be estimated below by a(n)Cs2, hence are denoted by C(p, R).
Applying (2.3) and Lemmas 2,3, and 4, we have proved:

TnBonrrvr 2. Let M be a complete Riemannian maniJold with
bounded curvature. There exists a universal constant q.(n), such that if
C(p, R) < a(n), then

(1) c(p, R) - cx(n)kn+t 62(n+t)(p)(rFt n\-za+t)/" expf-o(n)rFtcnl.
In case tJ " < M such that 4 : r(p, z), then

(1i) for 0 < R < d/2,

' c(p, R) - a(n) min{1, 7rn+152(n+t)12)} exp[-o(")rlEa].

- (iii) for R > d/2

C (p, R) - o!n) k"+ | 62(' + t) 
Q)(\fkR1-2(n* 

t)/ n

X exp [-a(z),lk(d + 2R)].

Remark. The estimates in Lemmas 2 and 3 arc all local, except in
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the proof of Lemma 3 where we pick a geodesic 'y to be a ray emanating

from p to infinity. One can modify this and apply Corollary 1 to the

minimal geodesic segment of length 4R emanating from p. We then

obtain the estimate

t
6(q) > a(pl.*pl -f[ +

L

Now all the argument that we employed in Section 1 and Lemmas 2 and 3

can be restricted to the ball of radius 4R around p. Hence we obtain the

local estimate:

Conor-rlnv 3. Let M be a complete Riemannian maniJold. Suppose

K(4R) and -k(4R) are upper and lower bounds oJ the sectional curva'

ture of B(p, 4R). Then iJ C(p, R) < a(n),

C (p, R) - o(n)k"+l(4R)62("+r) @)(..ltrgnlnl 2(n*t)/n

X exp[-c(nlnttt+n)Rt.

In view of Theorem 2 in [5], we obtain estimates on the i th eigenvalue

for the Laplace operator defined on B(p, R) with Dirichlet boundary

condition.

Conoll,lnv 4. Let M be a complete Riemannian maniJold. Suppose

K(4R) and -k(4R) are the upper and lower bounds of the sectional

curvature of B (p, 4R). If p;(R) denotes the irh eigenvalue for the Laplace

operotor on B(p, R) with Dirichlet boundary condition, then

rl
z'(R)>l ' r' I v(B(p. R)) 

_J

.a(n ) min {r,k'+1(4R) x 62('+t)(p) exp[-a(n)rfLt+nX]

x (Vk(4R )R y-2(n+l)/ny.

Remark. In [14], the third author gave estimates on the Il-type
Poincar6 inequality for functions which are not compactly supported.

Later it was indicated that this implied the standard L2-type Poincar6

inequality for functions which are not compactly supported (see [8]). It is

then rather standard to see that this together with the estimate we obtain

in the section imply an estimate for the Sobolev constant C(p, R), where

rl
m1r*: 6(p) exp[-(2r[kR + C)]. (2.t6)
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I - /f \(n'2\/tt
I lvf 12 > etp,n)( I lll2il/\n-2))
J stp.znl \,laip.Rt /

for all functions/ € H t,z@@, 2R)) which satisfy .\o1u,r^1.f 
: 0.

3. HeaJ kernel estimates. In this section, we will demonstrate some

applications of Theorem 2 to obtain estimates on the fundamental solution

of the heat equation (heat kernel),

trF(r, rl = (a - U")tO, /) : o. (3.1)

Standard properties of the heat kernel will be assumed.

TnBonBv 3. Let M be a complete Riemannian manifold. Suppose

H(x, y, t) is the heat kernel defined on M X M x 10, a)' Then

,' t -p2-l
\., " ..H'(p, 

y, t)dt - e (p. P. T)t- "'' "*vlfilJ M-B(p.R)

for all A ) l, where

e @, F,,r = ..n("f , )ov)c-ea,(, F)
Jor some 0(n) - n/2, and C@, Jd) is the Sobolev constont.

Proof. Let us define the function

.1r, ,1 : I H@. t. t)H(y, t, ildt. G.z)
J u-stp,n\

By the fact that the heat kernel is a delta function at t : 0,

( 0 if y<B(p,R)
F(Y' 0) : I

lH(p, y. rl if y ( B(p, R).

We define the Lipschitz function

(3.3)
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- r2(p, y)
g(v' s) : 

2rU, - ,r. 
to, s < t.

for anyfixed B > I and t > 0. One verifies easilythat

tl"tl2*s":o
almost everywhere. Consider the cut-off function

,,(r) :fo outside B(P' ')
(l on B(p, v - 1)

where0 s p,(y) < lfor aLly (M andlvp,l < 2,withu > 2.

Since F(y, s) satisfies (3.1), one derives that

r : 
J; l,c.'",rnFdyds

: -J; I,,}"'tvpt'

-J; J" e,2esF(Yg,

On the other hand,

lJ;J" e,2eEF(Yg, vrr 
| 

<

1038

and also integration by parts gives

- 2l'I p,"'F(Y,p,, YFI
Jo Ju

vr')-+['I e,2"'(F2),.
' Jo JM

(3.4)

(3.s)

(3.6)

(3.7)

vF2

s,2esFzlvslt,

[' I e,2ee1F21,: IJO,'M JM l rc,'"'Ftl,-o

2

9,

J;

2esF2 
,-, -

e12eBgrFI,
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Substituting these into (3.7) yield

+ t s,2esF2l":, = * [ e,zeeFzl,:s. JM . JM

. + J; l,e;,,r,(!to,r, + g")

ttT ntt
-2|1 | e,eEFlYs,,YF).

JO JM

The second term on the right-hand side vanishes because (3.5), and the
last term approaches to zero as v + o, therefore

I "rrt.,)F2(y, 
rl = [ ,ctr'otpz1r, 91 (3.g)

J nlp.Jtt+t J u

for all 0 < r < /. However when y e B(f, tltA) and r < f0, t),
50, r) > -l/8(0 - 1), also when y ( B(p, R), g(y, 0) - -R2/2Pt.
SinceF(y, 0) satisfies (3.3), we have

""n( S)ttr<r' ottt,'

> max I n't' iF2(y, ,)
l0r) J sb.Jt tq t

/ -t \ u* [ F2g, r). (3.e)> 
"*P(8ffi - t %,,, .,r,o,u,,.,

An iteration argument of Moser [10] (also see [1]) asserts that

lF(0, t)l = e ",(p. ilt-t',+ztu(lt I a,(r, ,))'", (3.10)
\Jo Jsrp.Vruqr /

where e (p, t) = ot (n) C - e {") 1p, .,1 t A) with C (p,'l t t q Aeing the Sobolev

constant described in (2.14), and 0(n) > n/2 is some universal constant.
This together with (3.9) shows that

F2(p, t) - e @, a,t)t,,/2 "-r?fru) llr(y, 0)llz,

1039

(3.11)
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But (3.2) and (3.3) imply

which proves the theorem.

Conor.r,,lny 5. Let M be a complete Riemannian manifold (not

necessarily with bounded curvature). Then

lim[-4tlogH(p, x, t)]: r2(p, x)
/-0

for all p, x ( M.

Proof. By Theorem 3,

I'
F(p, t) : \ u21p 1, t)a{

J M-B(p,Rt

: llr0, o) lz2,

Ir-rrr'*,H2(P' Y' i' etP'o''t'-''' *'l#l' Q'12)

To prove the corollary, clearly one only need to consider small enough /.

In particularwe may assume r < min{a1p)ZA,5(x),zS}, e2 where e is to
be chosen later. If p : x, the well known asymptotic formula for the
heat kernel gives the corollary trivially. lf r(p, x) I 0, we pick e to be

any small fixed constant between 0 and r(p, x). Let p : r(p, x) - e,

then by Lemma 2, (3.12), and the assumption on /

f' _ _ H2@.y. t) < 't,r "-n(*fJr "' (3.r3)
J u-atp.nt

t -nllx exl[ n, )

On the other hand,

0t
\ n'(p, y t) - \ H2(p. y, r) (3.14)
J M-Brp,Rt J Bk ,lr, t
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because t < e2. Applying Moser's iteration argument and Lemma 2

again, we have

a(n)1 h+ztD j, 
Jr,. r,r. ,r'(r.-v, 

s) > Hz(p, x, t).

Combining (3.13) and (3.15), we obtain

H2(p.x, rl s u(n)t-ttt*z\/2lr r-"'"-o(# r))

,.".0[#]r"

One can easily check that for any 0 < I

J'; ' "",,01#l = cm' o' *)'.P['e4:-]'

where the constant C (P, 0 , R ) only depends on B, 0, and R. Clearly

lim l- 4t log H (p, x, t)l : lim [-2t log Hz(p, x, t)]
r-0 /-0

nl2, 0R2f
- 2 toct- 2r,t)

0R2 0(r(p, x) - e)2:-: t3p

However, since B, e , and d are arbitrary constant with B ) 1, e

0 < l, taking limits as A - I, € '0, and0 - 1, we obtain

= lT - ttl^, ot(n) * tos c(A,0, R)

(3.ls)

(3.16)

(3.17)

>0and

(3.18)liml-4t logH(p, x, t)l > r2(p, x).
t+0
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In order to get an upper bound, we apply a theorem of Cheeger and

Yau [4]. Let d : 2r(p, x), we consider the heat kernel with Dirichlet
boundary condition on B(p, d), denoted by Hd(y, z, t). Let (n - l)K
be the lower bound of the Ricci curvature of B(p, d), then according to
the comparison theorem in [4],

Ha@, y, t) - H r.a(r(p, y), t) (3.1e)

where Hp.a(r(p, y), r) is the heat kernel on a ball of radius d in the space

form of constant curvature k, which satisfies the Dirichlet boundary
condition. On the other hand, it is known that

H(P' Y, t) - Ha@, Y, t), (3'20)

therefore

lim[-4t logH(p, y, t)l = lim [-4r logHp.a(r(p, y), t)1.
r'0 r-0

However, one readily checks that the upper bound is true for geodesic

balls in constant space forms (see Appendix). This gives the desired

upper bound and the proof of the corollary is completed.

The estimate in the proof of Corollary 5 is not quite sharp when

r is large. ln order to establish a good upper bound f.or H(x, y, t) f.or all
time t, we will employ another method. First we prove the following:

LBvrua 5. Let M be a complete Riemannian maniJold. For any

point p ( M, and t e. L0, Tl,

H(p, p, t) -

n/2 is a constant depending only on n.

By the semi-group property of the heat kernel

a(n)c od)((,

where 0(n) >

ProoJ.

H(p, p, t): \ ,,(o ,,t)0,
,tM \ - /

: \ ,,(0.t, L)ay +
,tR\p.R) \ -/ \^. ,, ,, 

,'(, , +)*,)M-lJlp R) \ -,
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= J,,u 
^, 

H'Q,, r,+) * ,Q,t),-,,'".n[-u]r, ] e.2t)

where the last inequality follows from Theorem 3 by setting A : 2.

Let q(y) be a cut-off function with the properties that

,rr, :f 
t on 'B(p' R)

(0 outside B(p, 2R),

and0 < q0) s lforall y CM. Also lv4l'- 2tn2. Consider

* ,1u,o r*,"tilH'Q' ' +)

: 
I,,,,^, "tt'tn(''' 

+)o''Q''' +)' Q'22)

This is due to the fact that H(p, y, t/2) satisfies (3.1). Integration by
parts a few times, we conclude that

*1u,,,^,n'rrtn'Q'', +): -J,,o,^r l"(,trrt(o , +))

+ 
J,,o,^, 

H'Q'' 
'' +)lvnu)l'

(3.23)

Since I Vnl = 0 on B(p, R), and l7nl2 < 2/R2 on M - B(p, R),
the second term on the right-hand side of (3.23) is dominated by

#Iu,,,*,H'(e, r'+) = #'Q't)'-", *rl-nl), Q'24)

where we apply Theorem 3 again. By (2.15), and the fact that

J,,,,^, l"''{r' '' +) I = J, "Q''' t) : t'
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we conclude that

Ju,o,^, | "('t'rt(o''' nl'
> c(p. r*l(.[,,,,,^ 

,n,<t)ar(n 
, +))(nt2)/n. (3.2s)

Substituting (3.24), (3.25) into (3.23) gives

*I^or*,n'ttln'(n', +)

< -c\p. rR)(\., _..,n'\r)tr'(n, ,. +))"'*""' (3.26)
\Ja(p,2R)

*#rQ +), " "-rl+).
By the monotonicity of the Sobolev constant and the fact that x exp(- l/x)
is an increasing function, h(t) : I"(r.r.*) ,tt\)U'(p, y, t/2) therefore
satisfies the differential inequality

h'(t) - -C(p, 2R1ht'+2)/"117

+ e 
/ T\ 2T r -R]l , (n t 2ttn. Q.27)\r.Z) " exvl zr )

Setting 2R : ^JT/8, this becomes

h'(t) < -r(r,Gl p\nt2)'zn1,y + e (r, L), -'"*" '. (3.28)

Now we claim that there exists a constant C1 which satisfies

(3.29)



UPPER ESTIMATE OF THE HEAT

for some a(n) and 0(n) > n/2, such thal

forallre[0,

fr\c,, "''l

h(t) ' Cr1-utz

?]. To see this, we consider

1045

(3.30)

:l-+,,
By definition
such that the
the function

* ,Q. Gi lc,t-"/21tn+"'' - e Q,L),-o'*'t''

* rQ,Gl c,'rz)r. - ,(, +)11-"*2)/2. (3.31)

of e @, T/2), clearly Cy can be chosen to satisfy (3.29)

right-hand side of (3.31) becomes positive. Now consider

f (t): h(t) - c1s-nrz.

By definition of

h(t): 
J''r''*' n'{tln'Q'' 

'' +) =

and the asymptotic formula for H(p, p,

f (t)1,:o < 0. On the other hand,

.f'(t): h'(t) - fCtt-"/21'

(3.32)

l' ,"Q','
/)as/-0,

+) : H(p' p' t),

C1 can be chosen so

(3.33)

because of (3.28) and (3.31). If inequality (3.30) is violated, let re be the

first/ > 0suchthat

h(ti : C rto-"/2,

then at re, (3.33) gives

f '(to) < o.

. -rQ, Fl 1p".+2)/,1t1 - (ci n/2ytu+2\/n1
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However, this is impossible because.f(to):0 and f(t) < 0 for all
0 < t < rs. This proves (3.30). Putting (3.21), (3.29) and (3.30) together
with the definition of h(t), they imply the lemma.

The following theorem gives a global estimate for H(p, x, t) for all
time t.

TnBonnrvr 4. Let M be a complete Riemannian manifold with
bounded curvature. Suppose H(p, x, t) is the heat kernel for the heat
equation (3.I). Then there exists a constant C(n, k, T) depending only
on n, k, and T, such that for all t < [0, T]

H(p,x,t) < C(n, k,z75-"t"t1p)t-"r2"-n(--At )\ 16r ,/

Jor some universal constant a(n) > 0, where

5(p) : ^1"f # r, atr)] , and d: r(p, x).

Proof. We will consider the following cases:

(i) When d2/8 - t < T. We write

H(p,x.,): [..r(r, +)rQ, +)JM

= (J, H,Q,, , +))"'(l' ,r,(., ,,+))"' (3.34)

Now applying Lemma 5, we conclude

H(p,x,t) - Ht/2(p, p, t)Ht/2(x, x, t)

< a(n)e-0(n"(", F) r-eatrz(x, .rF),-"'

s a(n)e,'(n"p,F) ,-e<,trz(x,u[) {,,, "*el-ef.

(3.3s)
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By Theorem 2,

1047

(3.36),(, G) - c(n' k' r)az{'+rt*'

and

z fFrt('' 

^/ 
; ) 

-- c(n' k' 7;6-2('+r)1p;. (3.37)

which completes the proof for this case.

(ii) When 0 < r < d2/8 andt < T. We follow the proof of Corol-
lary 5, but here we have to keep track of the constants. Similar as

before, by Theorem 3, we have

-..r I -tu21
,\r'uro,oo'r,H2(p' 

y' t)dy < e tp' P' I)t'il/2 x t-pl 50fr1 t;':at

for all B > 1. Pick 0 : 32/zs, (3.38) becomes

,\ r-u,r.oo,r,tt2(p' 
v' r) ' e (p' t)t " ' '*'l4l r'''sl

However, applying Moser's iteration argument again, gives

I I H2\p, y, t)d.y > e -'@, t17(n+2)/2g21p, x, t). (3.40)
Jo JaG,Jrtqt

Combining (3.39) and (3.40), we obtain

H2(p,x,t) - e &, t)7-.\ttt-t2ttzt 
J, 

a,, s)s-il/2 *t(()^

- e &, De @.T;r-rt,+zrzzr {/ , 
,,, 

""v(f)a, (3.41)

where the last inequality follows from the mononicity of the Sobolev

constant. One verifies directly that
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J.,-""."t(#) a, = o<n>(+)-u"*"'" *r(+)

3 a(n)7-\("+t"'' "*r(4), Q.42)

since / < d2/8. Applying Theorem 2, (3.41) and(3.42) imply that

H(p, x,t) < C(n, k, T)8-"\'t1p)t-"/2

However, we observe that

hence

* "*o[- * * ,@tE4. G.43)

".e[- # * *@),,ft4= 
""n[ -# * d(n)*T'/'zd). 

e.44)

Clearly, if

a(n)tETt/2d d2

tld-' t6r'

then

lla(il,ltTt'z - ]^ '

".n[# . ry] - c @, k, r) "-pl-Ld. (3 4s)

On the other hand, if
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..n[ #*^ry,+l =..'[*f]

1049

then

(3.46)

Therefore the theorem follows for both cases.

If we fixed another point 0 ( M, we can apply part (ii) and (iii) of
Theorem 2 to estimate C(p, t/TA) and C(x, .rE-f tq in terms of infor-
mation at 0. In that case, the proof of Theorem 4 implies:

TnBonBrvr 5. Let M be a complete Riemannian manifold with
bounded curvature. Let dy, d2, and d denote the distances r(0, p), r(0, x),
and r(p, x) respectively. Then

H(p,x,t) < c(n, k, DE a(rr)10)/ "" "*n( -# * a@){k(dr +D)

Jor all t e [0, T].

Conou,q,ny 6. Let M be a complete Riemannian manifold with
bounded curvature. Suppose I < L2(M) is an eigenfunction satisfuing the
equatrcn

LQ : -l'9

for some }. > 0. Then 9 is oJ at most exponential growth.
More precisely, if 0 € M is a fixed point and d : r(0, x), then

le@)l < C(n, k.5tol. xl exp(a(n),,lEd)llellz

wherc C(n, k, 5(0), X) is a constant depending on the quantities pre-
scribed. Moreover if x 4 B (0 , "EAl. The estimate takes the form

le(r)l < C(n, k, 5(0)) exp(c("),lEa)X"'allpllz

where the constant C(n, k,5(0)) AepenOs only on n, k, and 5(0) alone.

Proof. Since 9 is an eigenfunction and g ( Lz(M), one verifies that

t, 
J, 

H@, y, t)p(y) : o (3.47)
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and also

Z,e ^tp(t) : 0.

By the fact that H(x, y,r) is a delta function when /

I

lim I H(x, y, t)p(y) -- p(x): lim e
r-0 ,1 1,1 t '0

Hence by uniqueness of parabolic equation

[' tft, Y, t)P(Y) : "-\'e(*)'I
,) M

However, the left-hand side of (3.49) satisfies

| \ ",' v't)p(v) I = (l H2$' v.,r' '(J

: Ht/2(x, x, 2t)llell2.

Now applying Lemma 5, we have

-0,

\'p(*).

t l/2

,'ty))

(3.48)

(3.49)

(3.s0)

le(x) I
(3.s1)

Clearly, the corollary follows if we set t : 2/)t and apply Theorem 2.

When x 4 B(0, JZtX), using Theorem 2(ii) we obtain the estimate

I e(r) I < C(n, k, 5(0)) exp(a(D,,rEil)r"'allpllz (3.s2)

as claimed.

Remark. Estimates similar to that of Theorem 4 can be obtained

for compact manifolds with or without boundary. In that case Theorem 3

still holds, where we take r to be the length of the shortest curve con-

tained in M joining two points. In fact the introduction of the cut off
function g, presented in the proof of Theorem 3 can be omitted. To

finish the proof of Theorem 4 for the compact case, instead of using
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Lemma 5, one simply applies a similar estimate obtained for compact
manifolds in [5]. Since the estimates of Cheeger and Yau holds for com-
pact manifolds without boundary. Corollary 5 is hence valid for the case

also.

4. Higher order estimates. For general applications, sometimes it
is essential to derive estimates for the derivatives of the heat kernel. In
view of the upper bounds obtained for compact manifolds from the para-

metrix method, one would expect the derivatives of II(x, y, t) to satisfy

similar inequalities to that of H(x, y, t), except now the magnitudes in
time are different and the constants will depend on the curvature of M and
its covariant derivatives. In fact, the purpose of this section is to demon-

strate that all higher order estimates follow from the upper bound for
H(x, y,r) itself.

Since it is more convenient to set up the problem in an intrinsic
manner, instead of deriving estimates for each partial derivative of
H(x, y,r), we will consider the totality of its derivatives, i.e., lVAl,
I hess 11l, etc. The estimate for I vfl l&, y, t) can be obtained as follows:

LBrvrM,q. 6. Suppose x denotes the lower bound of the Ricci curyature
of M, then the function I v ,H l@, y, t) satisfies the differential inequality

E, I v,fll@, y, t) - xlv ,H l(x, y, t) - 0

for all x, y ( M and t ( (0, -).
Proof. By the Bochner's formula

LlvH12:2lhessrll'+ z&n, vAH) * 2 Ric(vH, vH)

> 2lhess Hl'+ (lvf/l21, + zxlvnl' (4.t)

other hand,where we have used that fact that H satisfies (3,1). On the

LlvH12 : 2l vr/lal vHl + 2lv lvHll2

One checks easily that

lhessfll'> lvlvnllt,

(4.2)
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hence (4.1) and (4.2) imply

2lvn lalvHl > 2lvHl(l vHl), t 2rclvHl2

Therefore

(4.3)

alvHl -lvf1l,-KlvHl >0
as asserted.

Lervrrvu 7. Let M be a complete Riemannian manifold (not neces-

sarily with bounded curvature). Then

Proof. Let {O;},1 1 be a compact exhaustion of M. In particular,
say O1 : B(x, Ri) where R; J @ as r + oo. We denote Hi@, y,r) to be

the heat kernel on B(x, R;) which satisfies the Dirichlet boundary con-
dition. We claim that H ;(x, y, r) converg e to H (x, y, r) uniformly on com-
pact sets of M. In fact, it is known that H i$, y, t) < H.1&, I, t) Ior i < j,
hence fl;(x, y, /) is a monotone increasing sequence of functions. Also,

sincefl;(x, y, t) = H(x, y, t) and Theorem 4, we conclude that

I 
j, to, y, t) L,B H (x, y, t)dy - t-p c (p) 

I 
,'Q, ,, i) *

for any g e Z+, and any x ( M.

(4.4)

for all / ( [0, Z], where d : r(x, y) and k(2d) : lower bound of the
sectional curvature on ,B(r, 2d). Therefore the monotone sequence

Hi&, y, r) which is bounded must converge uniformly on compact sets.

Moreover, the limit must be H(x, y,r) by uniqueness of solution for (3.1)

with initial condition

lim H(x, y, /) : 6,.
r-0

To prove the lemma, we first show that it is true Ior H;(x, y, /) using
its eigenfunction expansion

Hi@, y, t) : e-),",t g oi (x) g ,i (y). (4.s)

Hi@, y, t) < C(n, k(2d),5(i, r)t-"'' "*v(:-41;

D
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Then

l!n@, y, t) : ; (-\o;€"-\"'p,(x)p,(y) (4.6)

where the subscript i is being suppressed. Therefore

I ["o, y, t)all(x.y,r)l : i x"u" -D'"'eo2(x)
lJ 'l o-r

: t-P D (\o/)€s-2\"t go2(x)
a: I

. t-PcG, ,, F, "-'r'-')\.'eo2(x), (4.7)

where the last inequality follows from the fact that

*au 2' 3 c(p, e)s-2(t-')'

for all 0 < € < 1. However, since

fo

I n'@, Y, t)dY: D "-2\''9o2(t), (4.8)
.l - a-l

I [ 
"o, 

y, t)tal(x, y, t)dvl - r-uc(p, dl n'@,y, (1 - dt)dv. @.e)IJ -I 
J

Since this estimate is independent of the compact domain, by setting

e : l/2, we have

tt I

It H;k, y, t)aqHi&. y, idyl
I .latr. R, r I

,' / .\
- t-tsc(p) \ ,,r(x,y,;)dy

,lB1x,R,) \ '/

- t-ac(p) [ "'(' ,,t)*, (4.10)
Ju
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where the last inequality follows from the fact

Ht@, y, t) < H(x, y, t).

On the other hand, integration by parts yields

I Ir,,,^,, 
H i@' Y' r)aBH 

'{x' 
Y' odYl

(4.11)

1.

for a fixed

(4.t2)

(4.13)

H(x, y, t)
ll), (4.t2)

(4.t4)

(A'H(x, y, tD2 if F:2r

lvn'n6, y, t)12 if A:2r I l.
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However, becauseT is arbitrary, (4.14) gives

r-Bc(p) i ,'(.,r, *)
itr,r \ L/

1055

(L'H(x, y, tD2 if F:2r
(4.1s)

il12 if 0:2rll.

Integration by parts again will imply the lemma.

TnBonBrr 6. Let M be a complete Riemannian maniJold with
bounded curvature. Then there exists a constant C(n, k, T), depending

only on n, k and T, such thatfor all p, x ( M and t < [0, T],

lvHl@, x, r) < C(n. k. r)5 ""')(p)r r(4+r) 2).-ol4l"""1 r l

whered:r(p,x).

Proqf. Let n U) be the cut off function defined by

,72HAH

n2HLH. (4.16)

(t 'ld\

l' 4)
'l(y) 

: i o

I

l.-0

y constant stri We also assume that
, and I Vnl!) Using integration by

where z is an

0.rl(y)=1
parts,

l,r'tvHl' '
: -tlr(Hvn,nvn_ IM

= ,,1 vn 'H'* +\,,r2 vH '- 
J' ,
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Therefore

I rr'rv 
H l' - o 

l rrv nl'H' - r 
I ,,12HAH

=4[ "'*rl tH^Ht. (4.t7)
- d' .\ M -B\p..t/2) J M B\p.d/2)

Letting v + @, we have

I rvnf=$l Hz+2[ rH^Hl
J u-atp.3,t qt u ,tM -Btp.d/2) J M-Btp.d/2)

= (.[^,_", ^,,,,r"0' 
,' ,r)t

\J M-B(p.d/2\

l#(1,")" *'(J, 
'*")"']' 

(4 18)

Applying Theorem 3, Lemma 5, and Lemma 7, we obtain,

I' u,o',.'o'lval' ' et 2(P'T)t- 'a'.'l-"P")

"l$c -u''(r. ,E),-"

ln the case when 4/ - a2, G.tg) becomes

('

I t vHl2 - c@, k, T)5-"(')(p)
J M Btp.Jdtqt

1r-((r+2) 2) 

" 
l-rv(nld21-ol-i-]. (4.20\



- 
v H (p,x,t)' et/2(', t)t ta+ztt+t(J, 

Jr*r,,., " ')"

s et/2(x, t)t-w+ztt+t(li ol, _u,, ro,o, 
o r')"

"Q ,'t)
+2)/2)

J, vH 2: Irr* = r-'ot,) 
J,
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However, by Lemma 6,lvH I satisfies

trlvHl - "lvHl > 0, G'2r)

one verifies that the iteration method of Moser applies to subsolution of

the form (4.21) (see [1]), hence

Clearly applying Theorem 2 and, (4.20) the theorem follows for the case

4t < d2, where we have used the fact that -(n - l)k < x'

When 4r > d2, we observe that by Lemma 5 and 7

= o(r)C-u''Q,

Applying the iteration method again, we obtain the desired estimate.

Forthesakeofsimp|icity'wewillonlyoutlinetheproofforthe
upper bound of I hess 11l. Similar methods will yield higher order esti-

mates, which will be pointed out as we proceed. These estimates are

based on the same idea as in the case for I vIl I. It can be divided into

three steps. First, we utilize the commutation formula to show that

lhess fI | : (Dr,; h,.i')t't is a subsolution of some parabolic equation'

Secondly, we use Lemma 7 to obtain an12 estimate of lhessllI' Finally,

we invoke the iteration method in [1] to obtain the pointwise estimate.

Lnuul 8. Let M be a complete Riemannian manifold with bound

curvature tensor and its covariant derivatives' Then

! lhess Hl- Aolhessfll- AtlvAl - 6'
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where As is a bound for the curvature tensor and 41 is a bound for its

c oy ariant deriv ative s.

Proof. Consider

1 - --,) 1

7A lness Hl' : , nfU?.5 : Hiig,Hii * ,?,0

: R11p1,pH1Hi1 * Rp;p1.iH1H;i

I RilplHpHil I Rp;p1H11Hii - RnkiHkHii

RkkiHitHii+ (AH)iiHii + Hlr

- Aolhess f/ l' + ,+1 lhess fIl I vrr 
I

+ l{n,,t), + Hio. g.23)

On the other hand,

't-
jalhess Hl' : lhesslllAlhessfll + lv lhessflll2 (4.24)

where

l v lhess Hll' : t [(l ,,,')"']'o

.' I .' HiH,io 1':LIL 

-I 

< D HI,O,t li i lhess 111 I i..i.k 1/^

Therefore (4.23) and (4.24) imply

Alhess Hl > lhessfll, * lolhesslll + AtlYHl (4.25)

which was to be proved.

Clearly, by the same token, one can obtain differential inequalities
of a similar form for higher order derivatives of 1L However one would
require the equation to depend on the higher order covariant derivatives
of the curvature tensor.
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TrrnonBrvr 7. Let M be a complete Riemannian maniJold. Suppose

C(n, As,Ar, T) is a constant depending on n, As, A1, and T, thenJor all
p,x<Mandt(.10,T1,

lhess fI l@, *, t) - C(n, Ao, At, T)|-'li(p)t ttil+2)/2) *rl-"?Ol

where d: r(p, x).

ProoJ. The only ingredient that we need is the L2 estimates of

lhess fIl on M - B(p, 3d/4). Let r7 be the cut off function defined in
Theorem 6. Then

n2HiiiHi

n2RiH,H.,+ l r'<tnt,u,

-t (n - txl n'lvnl'

n2(t2n)n, (4.26)

n2 vH2lv

-J

I r"r': J 
,r'

I:, 
,\,

.![
-ll LI

J

*[
.l

and

I

\ ,u'
J M-B(p.Jd/4\

=4[ "H2+(n_ DKl vH2
R' ) u -Btp d/2) ) 1a- s1p a,zl

)"' * (1,<o'ur)"'f

/f \ l/2
: 

\),_u,0.0,,,r,)

(4.27)
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Applying the estimates for j, -Btn.r 2t I vH l'and Lemma 7, we obtain an

upper bound for {r-r, p.ta,qt iii2.The theorem then follows from the

iteration method.

Conor.llnv 8. Let M be a complete manifold. Suppose C(n, As,
Ar, ..., Ar,t, T) is a constant depending on the quantities described,

where the Ais are bounds on the ith covariant derivatives of the curvature

tensor. Then if lD ,H I denotes the norm of the lth covariant derivative of H,

lD,Hl@, x, t) t C(n, Ao, " ', A1-1, T)t (tu-tt)/2)$ rt(rt /)1o;

| - a(n)d2 It*PL , l
where d : r(p, x) and / € [0, T].

APPENDIX

Pnoposrrror A. Let B(2R) be a geodesic ball oJ radius 2R in the

hyperbolic spaceform oJ constant curvature -l' Suppose H(r' t) denotes

the heat kernel an B (2R) with Dirichlet boundary condition such that

H(r, 0) is the deltafunction at the origin 0 < B(2R). Then

I.lrr^?qt 
logrl(R' 0l'n2'

Proof. Consider the heat kernel H(r, t) for the simply connected

hyperbolic space form of constant curvature -1 with the pole at 0. By

Duhamel's principle

H(R, t) - E<n, r, : J;* J",*, 
H(0, t,s)rl(x, t, r - s) (A.1)

where r(0, x) : R. On the other hand since f1(0, {, s) and H(x' t' t - s)

both satisfy the heat equation, (A.1) becomes

H(R. t) - ntn, r) : [ [ A8H(O, {. s)Hrx, {, r - s)
Jo Ja(2R)



I'I l'

- I I rrfo, t. s)arl(x, {, r - s)
Jo Jarznr

: I I n,to. t, stE$t, r - s). (A.2)
J o J aarzal

The last equality follows from Green's 2nd identity and the fact that
H(0, t, s) satisfies Dirichlet boundary condition. H,(0, t, s) denotes the
directional derivation of ,FI with respect to the outward normal yector in
the 2nd variable. Since f1(0, t, s) is rotationally symmetric

UPPER ESTIMATE OF THE HEAT KERNEL

H,(0, t, s) : H,(2R, s) - A(2R)

106r

(A.3)

s), (A.4)

for { € ABQR), where.4. Qn) : area of ABQR). However,

\' 
",rr*. 

,r : I al(o,{, s) : l' 9"t0, t,
,laatznr )eenl )aentos

hence

I a,rzn. r)
.l aatzR )

+ I H(0, {, s)
os ,latzRt

I

H(R. /) - Etn,, : 
\.;

(

R)

t,t-

A(2

H(x,
2R)

(A.s)

Since r(0, r) : R, this implies that the ball B(x, R) around x with
radiusR is contained inB(2R), a result of Cheeger and Yau [4], asserts

that(0/0r)H(x, E, t - s) < 0. Therefore

H(x,E, /-s) =H(R, /-s)

for all t e ABQR), where we have used the fact that H(R, t - s) :
H(x, y, r - s) for all y ( 0B (x, R ). By (A.4) and the fact that H,(2R. s) <
0, (A.5) becomes
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rI(R, r) - n<n,,1 = l' -+=(+ [ ",0. 
g,,r)e QR)E@. r - st

,r o A(2R) \ ds J r,r*, /

lt , r t':,lo 
"t*'t - ');Ju,r^, "to'*'"'

H(0, t, s)

t, ,r - rl (^.7)

(A.6)

A probabilistic argument shows that for small enough t, (0/0s)H(R, t - s)

< 0 for all s € [0, r]. In fact, in this case one checks that this is so from
the explicit formula for II(R, t - s) (see [9], also private communication
with J. Cheeger, who has obtained explicit formula for all z). Hence for
small t,

H(R, t) - H(R, t) > H(R, t)

: H(R, t)

This implies that for r small enough

I
I 11(0,
J BQR)

then

j, * J,,,^,

tl He,
L.r 8(2R)

such that

1
E.t)>-.

On

1-
H(R. t) > ,H(R, t).

the formula for II(R, /), we see that

[-4t log n(n, il] : R2.

the other hand, from

lim
/-0

Therefore

as asserted.

lim[-4tlogH(R, t)] - n2
r-0
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Clearly, by scaling, the conclusion of Proposition A remains true for
hyperbolic space form of constant curvature -k, for any k > 0.
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