ON THE UPPER ESTIMATE OF THE HEAT KERNEL
OF A COMPLETE RIEMANNIAN MANIFOLD

By S1u YueN CHENG, PETER L1 AND SHING-TuNG YAUu

Let M be a complete non-compact Riemannian manifold whose sec-
tional curvature is bounded between two constants —k and K. Then one
expects that the heat diffusion in such a manifold behaves like the heat
diffusion in Euclidean space. The purpose of this paper is to give a justi-
fication of such a statement.

In [5], J. Cheeger and the third author found a lower estimate of
the heat kernel by ‘“comparing” it with the heat kernel of the space
form whose curvature is the lower bound of the curvature of the mani-
fold. This lower estimate is sharp if we insist the dependence should be
on the lower bound of the Ricci curvature alone. It remains to give an
upper estimate of the heat kernel.

One does not, however, expect to have a comparison theorem for
the upper bound because it is more sensitive to the geometry of the mani-
fold. In fact, the heat kernel of the upper half space and the heat kernel of
the complete hyperbolic manifold with finite volume have quite different
behavior. This is reflected by the fact that the Laplacian has no discrete
spectrum in the first case while infinite number of discrete eigenvalues
may exist in the latter case.

What we will prove here is that in any case, the heat kernel has to
decay in a manner similar to the Euclidean heat kernel. Thus we will
prove that for any constant C > 4, there exists C; depending on C, 7, the
bound of the curvature of M and x so that for all ¢ € [0, T]

2
H(x, y,t) = C{(C, T, x)t " exp(— £—t>

where n is the dimension of M and r is the distance between x and y.
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This inequality shows that heat diffusion decays very fast when ¢ # 0
and r tends to infinity. The constant C; accounts for the spectral dif-
ference between the upper half space and the hyperbolic space with finite
volume. In our estimate, it arises from the fact that the injectivity radius
decays exponentially for the latter manifold. In fact, we spend a sub-
stantial part of the paper proving that for complete manifolds with
bounded curvature, injectivity radius decays at most exponentially. Then
we derive suitable Sobolev inequality for this class of manifolds. We feel
that this has interest in its own right. Based on the Sobolev inequality, we
make use of a method of Aronson-Serrin [1], Moser [10] and Nash [11] to
estimate the heat kernel. We also estimate the higher derivatives of the
heat kernel in a similar manner.

We wish to express our gratitude to Professor A. Borel who brought
the problem to us. He also mentioned that R. Beals has already proved the
estimate holds for the heat kernel of G/T' where G is semi-simple Lie
group and I is a discrete subgroup. Finally, we point out as a corollary
of our estimate here and the result of [4], we can derive that

lirr& 4rlog H(x, y, t) = —r’,
o

This was derived by Varadhan in [13] by different methods.
We also want to thank Professor J. Cheeger for discussions on the
use of the triangle inequality in estimating the injectivity radius.

1. Injectivity radius estimate for non-compact manifolds. The in-
jectivity radius & (x) at a point x € M is defined to be the distance from x
to its cut locus. In the event when we consider the injectivity radius of a
point on a curve v () parametrized by 7, we will write

6(t) = d(y (). (1.1)

The distance between any two points x, y € M will be denoted by r(x, y).
When ambiguity does not arise, the distance function from a fixed point
p to x will be written as r(x). It is known that »(x) is a Lipschitz function
defined on M.

In order to study the analytic aspect of a non-compact manifold, it is
important to know how the geometry behaves at infinity. One of the most
important quantities which reflects greatly on the analytic properties of M
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is the concept of injectivity radius. This section is devoted to study the
decay rate of 6(x) on a manifold with bounded curvature. We recall our
notation that K and —k, with K, k = 0, are the upper and lower bounds
of the sectional curvature of M.

THEOREM 1. Let vy be a minimal geodesic joining two points, p and
x, in M. Suppose vy is parametrized by arclength such that

¥(0) = p and y(d) = x,

where d = r(p. x). If 8(t) < V4A = n/12K, for all t € [0, d], then for
any 0 < T < d,

5d — T) = 5(0) exp[—<@ + %)(d - T)]

where C > 0 is some universal constant.

Proof. One verifies easily that the concept of injectivity radius é(z)
is continuously defined on vy(r). Moreover by a standard argument in-
volving the first variation formula for arclength one concludes that there
exists a smooth geodesic loop 7,(s) with vertex at v (¢) which realizes

l(n,) = length of 7,
= 26().

(1.2)

We now claim that there exists at most two values ¢,, ¢, € [0, d]
such that

< @ = 270, (1.3)

where 7,(s) is assumed to be parametrized by arclength with

7,(0) = y(@) = 1,(26(@)).

Indeed, if (1.3) holds, then by uniqueness of geodesic, n,(s) must be
part of y(z). On the other hand, since n,(s) is a geodesic loop, and v (r)
is minimal, this can only happen if the loop 7, is located at one of the
ends of yv. However vy has only two ends; this establishes the claim.
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We will proceed to estimate the left derivative of 6(r) at points not
equal to t; or t,. Let ¢y be such a point. We consider B, the geodesic
ball centered at v (¢,) with radius 24. The exponential map

T:T'y(ro)M N B(ZA) =7TB - B

is a covering map because 4 = 7/3~K implies B lies completely within
the conjugate locus of y(z¢). The lifted geodesic segments 7, of 7, is a
straight line joining the origin 0 € TB to a point

5 = 7,,(260) € 7 (n,,25(0).

We denote the geodesics v( and v, to be the lifts of y in TB which con-
tain 0 and j respectively. By the assumption that ¢t # ¢; fori = 1, 2,
and the fact that v, is just a straight line passing through 0, v; # vo.
We will parametrize v, and v, by ¢, the induced parameter from .

We claim that for all ¢ € [t, — A/8, o], there exists a unique mini-
mal geodesic 7,(s) in 7B joining vo(z) to v;(z). The proof of this claim
will be postponed until after we complete this theorem and will be pre-
sented as Lemma 1. This asserts that in the interval [ty — A/8, t,],
there exists a smooth 1-parameter family of geodesics 7, joining y(t) to
v1(t). In fact, this family defines a Jacobi field V(s) along ﬁ,o(s).

Let us consider the first variation formula for arclength at ¢, with
respect to this 1-parameter family %,. Computation shows that

L1l = (V. G5) ::) (1.4)
However, since 7 (7,) are geodesic loops with vertices at y(z),
[(7;) = 26@2). (1.5)
Therefore,
5 8(r) = 8(ty) _ 1) — 1(7y,) L.6)

t— iy - t— 1y
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for t; — e < t < to. This implies that the left derivative of 6(¢) at ¢g

satisfies

,‘L‘i}) ot — 1, =2 (.7

5(t) — 8(to) _ 1<V d’?ro>

By definition of V, |V(0)| = 1 = |V(l(71,0))|, and also |dn,o/ds| =1,
therefore the right hand side of (1.7) gives

—% (cos a + cos ) (1.8)

where « and 8 are angles between
d , d ,
g("r ° "ho)|s=0, y'(tg) and _3;(7" ° "'Iro)ls=l(nt0)’ v'(to)

respectively. To estimate (1.8), we apply Toponogov’s comparison theorem.

Consider the geodesic triangle with sides »,, v[to, to + T ] and
v[te + T, to] in M. This triangle has two identical sides with length 7.
Also, since I(n9) = 26(ty) < w/vK, the comparison theorem applies.
Let ABC be the geodesic triangle in H*(k) = the hyperbolic disk of
constant curvature —k, such that BC and AC have length T and AB
has length 26(¢,). If @ and § are the angles BAC and ABC respectively,
then Toponogov’s comparison theorem (see [3]) asserts that

a=>=a and 8= 8.
Hence
—Ccosa = —COs & (1.9)
and
—cos B = —cos B.

On the other hand, in H%(k), one has the formula
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—cosa = —cos f3

_ COSh(\/%T) ) (1 - COSh(Z\/%(S(tO)))
"~ sinh(VKT) sinh(VES(z))

_ _cosh(V&T)
sinn (kD) Kot

v

_C
<1 + T >\@6(t0) (1.10)

for some universal constant C > 0. Therefore we conclude that the left
derivative of 6(z) at ¢ty has a lower bound. In fact, for any ¢ > 0, then
for small enough At,

8(tg) — 6(tg — A?)
At

> —<\/E + %)6()?0) — e 1.11)

forall ¢y € [0,d — T1].

We are now ready to estimate 6(d — T) in terms of 6(0). Let us
first assume that 6(z) is a decreasing function of ¢. Since we do not
know a priori that 6 is Lipschitz, we have to mollify é as follows: For any
0 < h < T. we define the mollifier

51 (5)
ouls) = —22 (1.12)

py(s)ds

J0

where 5, (s) is a smooth cut-off function satistying

h

. h
1 if — ) <s < )
puls) = (1.13)

0 if |s| >nh

and p,(s) < 1 for all s. The mollified function 6, (z) will be defined by

od

o,(t) = \ pnt — 8)o(s)ds (1.14)
Jo
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forh <t <d—T. Clearly§,(t)isa C ! function. Its difference quotient

6,(t) — 0,(t — At)

At
re d
= —H o, — s)o(s)ds — S ot —s — At)é(s)ds}
At 0 0
1 d d+ Al
= A_H p,(t — 5)b(s)ds — S on{t —s)6(s — At)ds]
Lo At
d
_ L\ 6(s) — d(s — Ap)
= SO p,(t —s) At ds (1.15)

for small At < h. By the assumption that § is decreasing and equation
(1.12), we obtain, as At — 0,

d
6,'@) = —S ot — s)[(\/E + %) o(s) + e] ds
0

= —<\Fk+%>5,,(t)—e (1.16)
forallh < t < d — T. Since e is arbitrary, this yields
, C
[log 6,()]’ = —<\/E + 7) (1.17)
Integrating both sides with respect to ¢ from 4 to d — T, we conclude
C
o,(d — T) = 6,(h) exp[—(@ == F) d—T-— h)}
Letting 2 — 0, §, becomes 6, and the above inequality gives
C
8(d — T) = 8(0) exp| —( Vk + 7)d — D). (1.18)

When 6 is not a decreasing function, we simply break the interval
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[0, d — T] into subintervals [t5;—1, ¢3;], 1 < i < n, such that § is de-
creasing in each and non-decreasing outside. We may then apply (1.19)
to each subinterval and obtain

6(ty) = 6(tai—1) eXP[_<\/E + %) (ty — tZi-l)]-

However, by assumption é is non-decreasing outside, this means
0(ti—1) = 6(t2-2).

Putting all these inequalities together, we derive
6(d — T) = 6(0) exp[—<\/E * %) (d — T)] (1.19)

as to be shown.,

LEmMA 1. Let x € M such that §(x) = A/4 = n/12NK. Suppose
the exponential map n:TB — B is defined as in Theorem 1, and v, and
v, are geodesics in TB from lifting a minimal geodesic v which passes
through x with v(0) = x. If g is the lift of m, the geodesic loop at x with
I(g) = 26(x), such that 0 = 7,(0) € vq and 73(26(x)) € v, then for
t € [—A/8, 0], there exists unique minimal geodesics joining vy (t) to v ((t).

Proof. Let us first define the notion of e-homotopy. A curve Cy
with endpoints at x; and x, is said to be e-homotopic to another curve
C, with the same endpoints if there exists a homotopy C(¢, s) with end-
points x, and x;, such that C(0,s) = Co, C(1,5) = Cy, and [(C(z, 5)) < ¢
for any ¢ € [0, 1]. Of course Cy is said to be e-homotopically trivial if
X, = x5, and C, is e-homotopic to the trivial curve C; = x with length
l(c;) = 0.

Under this notation, we claim that if p € M is a point such that
6(p) < 3A/4, then the minimal geodesic loop 7 with vertex at p which
realizes

[(n) = 28(p).

is 2A4-homotopically non-trivial. If not, by lifting the homotopy to T,B
by 7,, this provides a homotopy which is completely contained in T,B
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and it deforms w,,fl(ﬁ) to a point. However w,,_‘(ﬁ) is a straight line
segment passing through the origin. This is a contradiction. Hence 7 is a
2A-homotopically non-trivial loop.

To prove the lemma, we first observe that by the triangle inequality

A

rlyo®), v1(0) < r(ve(0), vi(0) + |t]

A

[(Fg) + 2]t]

< o) + 4 (1.20)

A

for all t € [—A/8, 0]. If there exists more than one minimal geodesics
joining y¢(t) to v,(¢), this implies that the injectivity radius 6(y(z)) at
vo(t) in TB is less than or equal to
2600 + & < 34
4
By the above discussion, we conclude that the geodesic loop ¢ with vertex
at yo(¢) which realizes

l(a) = 26(yo(t)

is 2A-homotopically non-trivial.

We now claim that the curve formed by the geodesic segments
vol0, ], o, and v,[t, 0] denoted by ¢ is 7A/4-homotopically non-trivial.
If not, let (., s) be a homotopy such that (0, s) = 6(s) and 0(1,s) =0
with [(8(u, s)) < 7A/4 for all u € [0, 1]. However if we combine the
homotopy with the geodesic segments o[z, 0] and [0, t], we obtain a
homotopy which deforms o to the curve o[z, 0] + [0, z]. The latter
certainly is 2A-homotopically trivial. Hence together with the fact that

2|t] = I{yolt, OD + I(yol0, ¢])

and 6(u, s) is a 7A /4 homotopy, this provides a 24-homotopy from o to 0,
which is a contradiction.

We can now minimize among all curves with endpoints at y((0) and
are 74/4-homotopic to 6. This way we obtain a non-trivial shortest geo-
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desic loop with vertex at y¢(0) and its length is less than or equal to 7A/4.
This contradicts the fact that the injectivity radius at v4(0) is at least 24,
and the lemma follows.

CorOLLARY 1. If p is a fixed point in M, and if v is a minimal
geodesic joining p to another point x € M such that v(0) = p and
v(d) = x. Then for any T € (0, d),

6d—T) = 6(p) exp[—<\/f+ %)(d — T)]

where 6(p) = min{n/12VK , 8(p)}. In particular, if v is a geodesic ray
emanating from p to infinity, then

8(t) = 8(p) exp[—(Vkr)]

forall t € [0, oo].

The proof of this corollary follows directly from Theorem 1 and will
be omitted. In case if K = 0, i.e., M is non-positively curved, one
obtains a more direct estimate for 6(x).

COROLLARY 2. Let M be a complete non-positively curved Rieman-
nian manifold with finite volume. Then there exists a compact set N C M,
such that forallx € M — N

5(x) = 6(N) exp[—Vk7(x, N)]

where 6(N) = inf .y 6(p), and 7(x, N) is defined to be the maximum
distance from x to N.

Proof. By a theorem of Siu and Yau [12], such a manifold contains
a compact set N with the property that for all x € M — N, there exists
a unique geodesic ray emanating from N passing through x to infinity.
They have only discussed the case when M is strongly negatively curved,
however the proof can be carried over to our situation. Clearly the corol-
lary follows by applying Corollary 1.

2. Sobolev inequalities. The Sobolev inequality for compactly
supported functions defined on a ball B(p, R) centered at a fixed point p
with radius R asserts that
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(n—1)/n

g | vf| = C0<S .fl"“"“’) 2.1)
B(p.R) B(p.R)

for all functions f € H; (B(p, R)) such that f|;p, z) = 0, where the
Sobolev constant Cy depends only on the geometry of B(p, R).

It is known that the Sobolev inequality is equivalent to the isoperi-
metric inequality

AN) = Co(VM )" D™, 2.2)

where N is any codimension —1 submanifold in B(p, R), and M, is the
part in B(p, R) — N which does not contain B (p, R). In fact, it was
demonstrated [2] that the Sobolev constant is equal to the isoperimetric
constant.

In [6], it was shown that

Co =z amu"TV"(R) 2.3)
for some universal constant «(n) which depends only on #. From here on,
a(n) will denote a constant which depends on n alone though its specific

value may vary in other situations. w(R) in (2.3) is defined to be

w(R) = inf w(x R), 2.4)
x€B(p.R)

where

w(x, R) = measure of U(x, R)

measure of {v € T.M, |v| = 1|the geodesic

from x emanating in the direction

of v is minimal up to dB(p, R)}.
The measure is the canonical (r — 1)-measure on the unit tangent sphere
S"~!. The next three lemmas give estimates of w(R) from below, hence

combining with (2.3) enable us to obtain lower bounds for the Sobolev
constant.

LEMMA 2. Let M be a complete Riemannian manifold with sectional
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curvature bounded from above by K. If R < 5(p)/8, where S(p) =
min {5(p), 7r/12\/f}, then

wR) = an)

for some universal constant o(n).

Proof. By the definition of w(R), it is clear that if B(p, R) lies
inside the cut locus of any point x € B(p, R), then w(x, R) = A S =
w(R). Hence it suffices to show that for all x € B(p, R), 6(x) = 2R.
However this follows directly from the proof of Lemma 1.

LemMMA 3. Let M be a complete Riemannian manifold with bounded
curvature. If w(R) < «a(n), then

w(R) = a(n)k™*[VEKR sinh"  P(@4VER] ! X 6"(p) exp[—2nVER].

Here —k is a lower bound for the sectional curvature.

Proof. Let g be an arbitrary point in M such that »(p, g) = 2R.
We consider the ball B(g, R) of radius R around g. For anyx € B(p, R),
we define the set

W={eTl.M,

v] = 1|there exists a point y € B(g, R)
such that v is the tangent vector at x to the minimal

geodesic joining x and y}.

Clearly B(p, R) and B(g, R) are disjoint, and any geodesic with tangent
vector in W must intersect dB(p, R) before it connects with y € B(g, R),
hence W € U(x, R). The cone C(W, 4R) is defined to be the set of points
in M which are contained in a geodesic segment of length 4R from x with
tangent vector in W. One verifies that B(g, R) < C(W, 4R), therefore

V(B(g, R)) = V(C(W, 4R)). (2.5)
On the other hand

V4R
VC(W, 4R)) = j j V.0, D" \dods
w

0
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<

4R o
S (Vk =V sinh Vkt)" ' d6dt
Jo Jw

< m(W)am)Rk ~ Y2 sinh"~D(4VkR), (2.6)

where m (W) stands for the measure of W in ¢, the unit sphere in T, M.
Since W € U(x, R), this implies,

wlx, R) = m(W)

v

V(B(g, R))a(n)k"*[VKR sinh™~ V(4VkR)] ™. (2.7

It remains to estimate V(B(g, R)) from below_. Since we assume
w(R) < a(n), in view of Lemma 2, this implies R > 6(p)/8. If we define
R(g) = min{é(g), R}, obviously

R(g) p o
V(B(g, R)) = s j (WK~ Tsin(VK)"~'dodr
Jo sn—1
“VKR(q)
= a(n)K "? S sin® Vrdr (2.8)
0
> a(n)R"(q).

To complete the proof of this lemma, we will need to estimate R(q). Let
v be a minimal geodesic ray emanating from p to infinity. By complete-
ness of M, such v always exists. Since the choice of g is arbitrary on
dB(p, 2R), we may pick g to lie on y. By Corollary 1, the injectivity radius
of g satisfies

8(q) = 6(p) exp[—2VkR]. (2.9)
Obviously, the fact that R > 6(p)/8 and (2.7), (2.8) and (2.9) imply the
lemma.

LemMMa 4. Let p, z € M such that d = r(p, z). Suppose the hy-
pothesis of Lemma 3 is satisfied with »(R) < a(n), then:

(i) When 0 < R = d/2,

w(R) = a(n) min{1, k"26"(z)} exp[—3(n — 1)Vkd]
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(ii) When R > d/2,

w(R) = a(n)k"?[VKR sinh" " V(4VER] '5"(z)
X exp(—nVk(d + 2R)).

Proof. The proof of Lemma 3 can be carried through up to equation
(2.7). We will now give an alternate way of estimating V(B(q, R)).

(i) When 0 < R < d/2. By monotonicity of w, it suffices to estimate
w(d/2). In this case we pick ¢ = z. If d/2 < 8(q) = 6(z) then by com-
putation similar to (2.8)

V<B<z, %)) > a(n)R". (2.10)

Hence combining with (2.7), we get

(8) = ol ]
2/ sinh(2Vkd)

a(n) exp(—2(n — 1)Vkd). (2.11)

v

On the other hand, if d/2 > §(z), then by (2.8), we have

V<B<z, %)) = a(n)é"(z),

and (2.7) implies

%)

v

a(m)k"?[Vkd sinh”~P(2Vkd)] ~16"(z).

> a(n)k"?8"(z) exp(—3(m — 1)Vkd). (2.12)

\

(ii) When R > d/2. Since r(p, q) = d, z € B(p, 2R). Let y be a
geodesic ray emanating from z to infinity. We now pick ¢ to be a point
iny N dB(p, 2R). By Corollary 1, and the fact that

8(q) = 8(z) exp[—Vk(d + 2R)], (2.13)



UPPER ESTIMATE OF THE HEAT KERNEL 1035

together with (2.7) and (2.8) yields

w(R) = a(m)k"*[VER sinh" D(4VkR)] !
X 6™z) exp[—nVk(d + 2R)],
and the lemma is proved.
For all practical purposes, we will consider the following two weaker

versions of the Sobolev inequality. Suppose f is any function with
f|aB(p,R) = 0 and also f € H| ,(B(p, R)). Then

(n—2)/n
S lvf|2 > C(p, R)<§ |f|2n/(n—2)> (2.14)
B(p.R) B(p.R)

and

5 (n+2)/n —4/n
S | vf1? = Clp. R)Q f2> <S |f|> (2.15)
B(p.R) B(p.R) B(p.R)

are valid. It was demonstrated in [S] and [7] that both Sobolev constants
can be estimated below by «(n)Cy?, hence are denoted by C(p, R).
Applying (2.3) and Lemmas 2, 3, and 4, we have proved:

TueoreMm 2. Let M be a complete Riemannian manifold with
bounded curvature. There exists a universal constant «(n), such that if
C(p, R) < a(n), then

(i) C(p, R) = a(n)k" 182 V(p)WER) 2tV exp|—a(n)VER].
In case if z € M such that d = r(p, z), then
(i) for 0 < R < d/2,
C(p, R) = a(n) min{1, k" T162" D (z)} exp[—a (n)VEd].
(iii) for R > d/2

C(p, R) = am)k" 152+ D(z)VER) ~2ntD/n
X exp[—a(n)Vk(d + 2R)].

Remark. The estimates in Lemmas 2 and 3 are all local, except in
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the proof of Lemma 3 where we pick a geodesic y to be a ray emanating
from p to infinity. One can modify this and apply Corollary 1 to the
minimal geodesic segment of length 4R emanating from p. We then
obtain the estimate

5(q) = S(p)exp[—ﬁe + 2%] 2R = 8(p)exp[— (VKR + C)]. (2.16)

Now all the argument that we employed in Section 1 and Lemmas 2 and 3
can be restricted to the ball of radius 4R around p. Hence we obtain the
local estimate:

CorOLLARY 3. Let M be a complete Riemannian manifold. Suppose
K(4R) and —k(4R) are upper and lower bounds of the sectional curva-
ture of B(p, 4R). Then if C(p, R) < a(n),

C(p. R) = amk" T (4R)5* " N(p)Wk(4R)R) 2T/
X exp[—a(n)Vk(4R)R].

In view of Theorem 2 in [5], we obtain estimates on the i*" eigenvalue
for the Laplace operator defined on B(p, R) with Dirichlet boundary
condition.

CoroLLARY 4. Let M be a complete Riemannian manifold. Suppose
K(4R) and —k(4R) are the upper and lower bounds of the sectional
curvature of B(p, 4R). If u,(R) denotes the i™" eigenvalue for the Laplace
operator on B(p, R) with Dirichlet boundary condition, then

(R) = N S—
i) {V(B(p,R»}
-a(n) min{1, k" 7' (4R) X 62" V(p) exp[—a(n)VE(4R)R]
X (\/WR)*ZM-FI)M}-

Remark. In [14], the third author gave estimates on the L'-type
Poincaré inequality for functions which are not compactly supported.
Later it was indicated that this implied the standard L*-type Poincaré
inequality for functions which are not compactly supported (see [8]). It is
then rather standard to see that this together with the estimate we obtain
in the section imply an estimate for the Sobolev constant C(p, R), where
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. (n—2)/n
| f | 2!1/(n-2)>

B(p.R)

S |vf|? = C(p, R)<
B(p,2R)

.

for all functions f € H, ,(B(p, 2R)) which satisfy .VB(/I.ZR)f =0.

3. Heat kernel estimates. In this section, we will demonstrate some
applications of Theorem 2 to obtain estimates on the fundamental solution
of the heat equation (heat kernel),

OF, £) = <A . %>F(x, 7 = 0. (3.1)

Standard properties of the heat kernel will be assumed.

THEOREM 3. Let M be a complete Riemannian manifold. Suppose
H(x, y, t) is the heat kernel defined on M X M X [0, o). Then

__p2
H*p, y, dy < C(p, 8, )t "? exp[ 2R }
M—B(p.R) Bt

forall B > 1, where

C(p, B,t) < exp(ﬁ)a(ﬂ)c—()w(ﬁ f%>

for some 0(n) = n/2, and C(p, Nt/4) is the Sobolev constant.

Proof. Let us define the function

F(y, s) = S H(p, £, )H(y, &, s)dE. (3.2)
M~—B(p,R)

By the fact that the heat kernel is a delta function at ¢ = 0,

0 if yeB(p, R)
F(y, 0) = { 3.3)
H(p, y. 1) if y¢B(p R).

We define the Lipschitz function
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_ —r(p.y)
gy, s) = 26— ) for s <t (3.4)

for any fixed 8 > 1 and ¢ > 0. One verifies easily that

1
S 1vel?+ g =0 (3.5)
almost everywhere. Consider the cut-off function

0 outside B (p, v)
e, (y) = { (3.6)

1 onB(p, v — 1)

where 0 < ¢, (y) < 1forally ¢ M and | Ve,| = 2, with v = 2.
Since F(y, s) satisfies (3.1), one derives that

OZS i ¢, 2 e FO Fdyds
0JM

= —S S %Ze8|vF|2—2§ S ¢,efF(Ve,, VF)
0JM 0 JIM

—S S 0,2 efF(Veg, VF)——;—S S 0 2e8FY),. (3.7
0 JM 0 M
On the other hand,

X S ¢,2efF(Vg, VF)‘ 5\ \ ¢, ef| VF|?
0JM JO M

TR
® Tll \ \ ¢, lefF?| vg |,
oM

and also integration by parts gives

T
2 2 — 2
S [ Py eg(F )s - S wuzegF s=7 S ﬂavzengls:O
0JM M M

T
- j S (p,,2€ggsF2.
0JM
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Substituting these into (3.7) yield

1 1
7 jM ‘puzeng s=r = 7 SM ‘PvzegF2|s=0

1 (7 1
+ 5| | e (Slver v e)
0JM

—2j S ¢,efF(Vp,, VF).
0JM

The second term on the right-hand side vanishes because (3.5), and the
last term approaches to zero as v = oo, therefore

eV IEY(y, 1) < S eV OF(y, 0) (3.8)

L(p,\ﬁm M

for all 0 < 7 =< t. However when y € B(p, vt/4) and 7 € [0, 1],
g(y, 7) = —1/8(8 — 1), also when y ¢ B(p, R), g(y, 0) = —R?/28t.
Since F(y, 0) satisfies (3.3), we have

R? 2
exp( 55 1FO. Ol

> max et z(y, 7)

©.n L(p,\/:m)

—1 ,
> exp| ——— ) max F(y, 7). (3.9
p<8(6’ - 1)> ©.1) L(p,\/,m) %7 )

An iteration argument of Moser [10] (also see [1]) asserts that

!

1/2
|Fo, )| = C'(p, t)t“‘"““(j FX(y, s)) , (3.10)

0 L(p,\/mt)

where C(p, t) < a(n)C ™ (p, Vt/4) with C(p, Vt/4) being the Soboley
constant described in (2.14), and 6(n) = n/2 is some universal constant.
This together with (3.9) shows that

—R?
28t

F(p, t) < C(p, B, )" exp[ ]HF(y, 0)],2. (3.11)
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But (3.2) and (3.3) imply

F(p, t) = H%(p. &, t)dE
M—B(p.R)

= ||[F(y. 0)]] 7,

which proves the theorem.
COROLLARY 5. Let M be a complete Riemannian manifold (not

necessarily with bounded curvature). Then

lim [—4¢ log H(p, x, )] = r(p, x)

(=0

forall p, x € M.
Proof. By Theorem 3,

~ ) —R?
SM—B( Hz(p; 9 t) < C(p,ﬁ,f)t /2 exp[ Zﬁt :|, (3.12)
p.R)

To prove the corollary, clearly one only need to consider small enough z.
In particular we may assume ¢ < min{g(p)/& 3(x)/8}, ¢ where ¢ is to
be chosen later. If p = x, the well known asymptotic formula for the
heat kernel gives the corollary trivially. If r(p, x) # 0, we pick e to be
any small fixed constant between 0 and r(p, x). Let R = r(p, x) — e,
then by Lemma 2, (3.12), and the assumption on ¢t

1 _
Hp, y, t) < a(n) <—>t n/2 (3.13)
JM—B(p.R) E2¢ LS 8B —1)

_R2
X exp{ 28t }
On the other hand,

Hp y. t) = S H(p, y. t) (3.14)

XM—B(p,R) B(x.t/4)
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because r < e2. Applying Moser’s iteration argument and Lemma 2
again, we have

!

a(n)t("+2)/2§ H*(p, y, s) = H*(p, x, t). (3.15)

0 L(x,\/:/at)

Combining (3.13) and (3.15), we obtain

o

_ _ —1
H2 Lx, 1) < )t (n+2)/2 s s n/2 ex <—_>
(p ) < an) !, p 8G — 1)

_RZ
X exp[ 26s }ds. (3.16)

One can easily check that for any § < 1

ot 2 2
—n/2 —R _0R
Sos exp[ 26s] = C(B, O,R)exp[ 261 ],
where the constant C(3, 0, R) only depends on 3, 8, and R. Clearly

lir% [—4tlog H(p, x, t)] = lin& [—2t log H*(p, x, t)]
11— =

v

lim — Zt[log a(n) + log C(B, 6, R)
t—'

— ——logt —

n+2 6R?
2 208t

6R? _ 60(p.x) — o
B~ B

(3.17)

However, since 3, €, and 6 are arbitrary constant with 3 > 1, ¢ > 0 and
6 < 1, taking limits as 8 — 1, ¢ = 0, and § — 1, we obtain

lin(} [—4t log H(p, x, 1)] = r*(p, x). (3.18)
fnd
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In order to get an upper bound, we apply a theorem of Cheeger and
Yau [4]. Let d = 2r(p, x), we consider the heat kernel with Dirichlet
boundary condition on B(p, d), denoted by H,(y, z, t). Let (n — 1)K
be the lower bound of the Ricci curvature of B(p, d), then according to
the comparison theorem in [4],

Hyp. y. t) = H ,(r(p, ¥), 1) (3.19)

where f]k,d(r(p, y), t) is the heat kernel on a ball of radius d in the space
form of constant curvature k, which satisfies the Dirichlet boundary
condition. On the other hand, it is known that

H(p.y. t) = Hyp, y, 1), (3.20)
therefore

lirr(} [—4tlog H(p, y. 1)] < lim [—4z log Hy 4(r(p. ), 1)].
[ d =

However, one readily checks that the upper bound is true for geodesic
balls in constant space forms (see Appendix). This gives the desired
upper bound and the proof of the corollary is completed.

The estimate in the proof of Corollary 5 is not quite sharp when
t is large. In order to establish a good upper bound for H(x, y, t) for all
time ¢, we will employ another method. First we prove the following:

LEMMA 5. Let M be a complete Riemannian manifold. For any
point p € M, and t € [0, T,

—

- (TN, —ir
H(p, P t) = a(n)C 0(“)<py I|| g )f j /2
N /

where 0(n) = n/2 is a constant depending only on n.

Proof. By the semi-group property of the heat kernel

' t
H(p.p.t) = \ H2<p- ¥, 7) dy
JM

o o

14
H 2<py ¥ 7) dy

. M—B(p.R)

B(p.R)
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1Y p,y. L) + &(p, L) 2 exp| =RZ| 321
Py ) P :

where the last inequality follows from Theorem 3 by setting 5 = 2.
Let n(y) be a cut-off function with the properties that

1 on B(p, R)
n(y) =
0 outside B(p, 2R),

=

v

B(p.R)

and 0 < n(y) < 1forall y € M. Also | vy|? < 2/R?. Consider

at

.

2 2 L
n°(y)H <pv » 2>

B(p.2R)

t t
= j *(WH <p, ¥, 7) AyH<p, V. 7). (3.22)
B(p.2R)

2

This is due to the fact that H(p, y, t/2) satisfies (3.1). Integration by
parts a few times, we conclude that
a 2 2 N _ x
Er! m"MHA Py 5 ) =~ V{iTWH(p. y 5

B(p.2R) B(p.2R)

t
= S H2<p, ¥ 7) | (2.
B(p.2R)

(3.23)

Since | vn| = 0 on B(p, R), and | Vn|?> < 2/R*> on M — B(p, R),
the second term on the right-hand side of (3.23) is dominated by

7 Bpn 5) = 2 6(n ) o] S
— H vy, — | = —Clp —)t ex , (3.24
R? Sﬂ(p,zm Py R \P 7 £ 2t (3.24)

where we apply Theorem 3 again. By (2.15), and the fact that

n(y)H<p, » %) ' = S H<p, » %) =1,
M

L(p,zR)
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we conclude that

S v (n(y)H<p, » %))
B(p.2R)

= C(p, 2R)<§

v B(p.2R)

2

¢ (n+2)/n
() H 2<p, ¥, 7)) . (3.25)

Substituting (3.24), (3.25) into (3.23) gives

2 2 t
= n°(WH <p, » )
ot SB(p.ZR) 2

¢ (n+2)/n
n* () H 2<p, y, 7)) (3.26)

2 A LN —nn —R’®
+R2C<p, 2>t exp[ |

By the monotonicity of the Sobolev constant and the fact that x exp(—1/x)
is an increasing function, A (¥) = SB(p, IR) nz(y)HZ(p, y, t/2) therefore
satisfies the differential inequality

h'(t) = —C(p, 2R)R" D)

~ T\ 27 R?| _
+ C<p, 7>? exp[ ST }t @+ Din (3.27)

Setting 2R = ~/T/8, this becomes

B < —c< , %>h("+2)/"(t) + C<p. %)f“’“”z. (3.28)

Now we claim that there exists a constant C; which satisfies

€ < amC ”l"’(p, N %) (3.29)
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for some a(n) and 6(n) = n/2, such that
h(t) < Cyt "2 (3.30)

for all ¢t € [0, T]. To see this, we consider

da — T —wyntm _ A T\~
Licw 1+ cofp. |5 )ica™ c(r 5
_ [_%Cl N C(p, /%) C oo — é< , %)}t-(:ﬁzw{ (3.31)

By definition of C(p, T/2), clearly C, can be chosen to satisfy (3.29)
such that the right-hand side of (3.31) becomes positive. Now consider
the function

ft) = h@t)y — Cyt "% (3.32)
By definition of

t t

h(t) = S nz(y)H2<p, » 7) = S H2<p, 2 7) =H(p, p, t),
M

B(p.2R)

and the asymptotic formula for H(p, p, t) ast — 0, C; can be chosen so
f(@®)],—o < 0. On the other hand,

f@0) =n'@ = [Ct ™)

< _C< ' ’%) [h('l+2)/”(t) _ (Clt*n/Z)(n+2)/n] (333)

because of (3.28) and (3.31). If inequality (3.30) is violated, let ¢, be the
first + > 0 such that

h(tg) = City™""?,
then at ¢, (3.33) gives

S'o) < 0.
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However, this is impossible because f(ty) = 0 and f(z) < 0 for all
0 <t < ty. This proves (3.30). Putting (3.21), (3.29) and (3.30) together
with the definition of % (¢), they imply the lemma.

The following theorem gives a global estimate for H(p, x, t) for all
time .

THEOREM 4. Let M be a complete Riemannian manifold with
bounded curvature. Suppose H(p, x, t) is the heat kernel for the heat
equation (3.1). Then there exists a constant C{n, k, T) depending only
onn, k, and T, such that for all t € [0, T

H(p, x t) < Cln, k. T)5~"(p)z "2 exp<_ 4 )
16¢

Sfor some universal constant a(n) > 0, where

5(p) = min{ 127:/1? 1, B(p)}, and d = r(p, x).

Proof. We will consider the following cases:

(i) When d?/8 <t < T. We write

¢
H(p, x, 1) = S H<p, ¥ 7>H<y, X, %)
M

<§M H2<p’ ’ %>> I/ZGM H2<xv ». %)) " G

Now applying Lemma 5, we conclude

IA

H(p, x t) =< H”Z(p, D H" ?(x, x, )

a(n)C_g(")/2<p, ’%)C“’(")Q(x,
0{(n)(/~ﬂ<)(,.)/z<p, ’%>C—€(n)/2<x,

IA

>t_"/2
_ —d?
n/2

>t exp[ 16 ]

(3.35)

IA

w8l =R
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By Theorem 2,

C<p‘ /%) > C(n k, T)82"tV(p) (3.36)

and

C<x, /%) = Cn, k, T)6 2"t V(p), (3.37)

which completes the proof for this case.

(il) When 0 < ¢t < d?/8 and t < T. We follow the proof of Corol-
lary 5, but here we have to keep track of the constants. Similar as
before, by Theorem 3, we have

2 5 —n/2 —16d’] .
H(p, y, hydy = C(p, B, 1)t X eXp[ 501 (3.38)

.

M—B(p.4d/S)

for all 3 > 1. Pick 8 = 3%/2s, (3.38) becomes

__ 52
s H*p, y, t) < C(p, t)r "2 exp[ 4d } (3.39)
JM—B(p.4d/5) t

However, applying Moser’s iteration argument again, gives

WP
j j H(p, y, t)ydy = C7'(x, )" 2H*(p, x, t).  (3.40)
0 JB(x.Vi/4)

Combining (3.39) and (3.40), we obtain

f 42
H2(p, x t) < Clx, t)t_((”+2)/2)g C(p. s)s "2 exp<4—f> ds
0

! 2

< Cx. TYC(p, T)f“"“W)s s"/zexp<4—‘:>ds (3.41)
JO

where the last inequality follows from the mononicity of the Sobolev
constant. One verifies directly that
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! —
B d? 42\~ d2
n/2 =
‘\Os exp< 4s >ds a(n)<4> exp< i >

32
a(n)t—((r:+2)/2) exp<—%>, (3.42)

IA

IA

since t < d’/8. Applying Theorem 2, (3.41) and (3.42) imply that

H(p, x, t) < C(n, k, T)8 *"(p)t™"">

2
x exp[—% + a(n)\/%d}. (3.43)
However, we observe that
2 2 172
exp| — L + o(m)VEd| = exp| — L 4 QENETTA| g 4y
8¢ 8¢ t
Clearly, if
a(m)VkT'*d - d>
¢12 16t
then
12 d
16a(n)VET'? = 77
hence

2

d
Tor } (3.45)

_ 2 12
exp[ d e a(m)VET'"?d

81 72 } <Cn k T) exp[

On the other hand, if

a)VkT"?d d?
R
o 167
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then

d’ kT'?d —d?
exp[__&_ n %} < exp[ o ] (3.46)

Therefore the theorem follows for both cases.

If we fixed another point 0 € M, we can apply part (ii) and (iii) of
Theorem 2 to estimate C(p, NT/4) and C (x, NT/4) in terms of infor-
mation at 0. In that case, the proof of Theorem 4 implies:

THEOREM 5. Let M be a complete Riemannian manifold with
bounded curvature. Let d |, d,, and d denote the distances r (0, p), r(0, x),
and r(p, x) respectively. Then

2

H(p, x, t) < C(n, k, T)§ " (0)r "2 exp<—% + am)Vk(d, + d2)>

forall t € [0, T].

CoROLLARY 6. Let M be a complete Riemannian manifold with
bounded curvature. Suppose ¢ € L*(M) is an eigenfunction satisfying the
equation

Ap = —Np

for some N > 0. Then ¢ is of at most exponential growth.
More precisely, if 0 € M is a fixed point and d = (0, x), then

)| = Cn, k, 5(0), \) exp(a(n)Vkd)||¢||,

where C(n, k, 8(0), \) is a constant depending on the quantities pre-
scribed. Moreover if x ¢ B(0, v2/N). The estimate takes the form

le(x)| = C(n, k, 5(0)) exp(a(m)Vkd)N""*| ¢ ||,
where the constant C(n, k, 6(0)) depends only on n, k, and §(0) alone.

Proof. Since ¢ is an eigenfunction and ¢ € L?(M), one verifies that

[ng Hx, vy, )oly) =0 (3.47)
M
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and also
O.e Mo(x) = 0. (3.48)

By the fact that H(x, y, t) is a delta function when ¢t — 0,
lim | H(x y. )e(y) = ¢(x) = lim e Mo(x).
=

=0 )

Hence by uniqueness of parabolic equation
| Hey 000 = e o) (3.49)
M

However, the left-hand side of (3.49) satisfies
: : 12,0 172
‘ \ Hx, y, )e(y) ’ < <\ H(x, y, t)) <§ soz(y))

= H'"?(x, x, 20) || ¢||>. (3.50)

Now applying Lemma 5, we have

|‘/’(x)l = ‘_X(H)C—f-nm,-;!(x. ‘\llll'.le)r i -“'MH@HE' (3.51)

Clearly, the corollary follows if we set ¢ = 2/N\ and apply Theorem 2.
When x ¢ B(0, V2/)\), using Theorem 2 (ii) we obtain the estimate

lo(x)| = Cln, k, 5(0)) exp(a(mIVEd)N'"*]| ||, (3.52)

as claimed.

Remark. Estimates similar to that of Theorem 4 can be obtained
for compact manifolds with or without boundary. In that case Theorem 3
still holds, where we take r to be the length of the shortest curve con-
tained in M joining two points. In fact the introduction of the cut off
function ¢, presented in the proof of Theorem 3 can be omitted. To
finish the proof of Theorem 4 for the compact case, instead of using
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Lemma S, one simply applies a similar estimate obtained for compact
manifolds in [S]. Since the estimates of Cheeger and Yau holds for com-
pact manifolds without boundary. Corollary S is hence valid for the case
also.

4. Higher order estimates. For general applications, sometimes it
is essential to derive estimates for the derivatives of the heat kernel. In
view of the upper bounds obtained for compact manifolds from the para-
metrix method, one would expect the derivatives of H(x, y, t) to satisty
similar inequalities to that of H(x, y, t), except now the magnitudes in
time are different and the constants will depend on the curvature of M and
its covariant derivatives. In fact, the purpose of this section is to demon-
strate that all higher order estimates follow from the upper bound for
H(x, y, t) itself.

Since it is more convenient to set up the problem in an intrinsic
manner, instead of deriving estimates for each partial derivative of
H(x, y, t), we will consider the totality of its derivatives, i.e., | VH|,
| hess H |, ete. The estimate for | VH |(x, y, t) can be obtained as follows:

LEMMA 6. Suppose k denotes the lower bound of the Ricci curvature
of M, then the function | V .H |(x, y, t) satisfies the differential inequality

OV H|x, 1) — x|V, H|x, 3,8) =0

forallx, y e Mandt € (0, ).
Proof. By the Bochner’s formula

A|VH|?> = 2|hess H|?> + 2(VH, VAH) + 2 Ric(VH, VH)

= 2|hess H|* + (|[VH|?), + 2«| VH|? (4.1)

where we have used that fact that H satisfies (3.1). On the other hand,

A|VH|? =2|VH|A|VH| + 2|V |VHI||’. (4.2)

One checks easily that

|hess H|?> = | v | VH||?,
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hence (4.1) and (4.2) imply
2| VH|A|VH| = 2| VH|(| VH|), + 2«| VH|%. (4.3)

Therefore
A\VH| — |VH|, —k|VH| =0
as asserted.

LemMA 7. Let M be a complete Riemannian manifold (not neces-
sarily with bounded curvature). Then

; | .
’ ‘ H(x, y, DA H(x, y, Ddy | < t_ﬁC(ﬁ)S H2<x, B %) dy
IM |

forany B € Z", and any x € M.

Proof. Let {Q,};2, be a compact exhaustion of M. In particular,
say @, = B(x, R;) where R; & o as i = c. We denote H;(x, y, ) to be
the heat kernel on B(x, R;) which satisfies the Dirichlet boundary con-
dition. We claim that H;(x, y, t) converge to H (x, y, t) uniformly on com-
pact sets of M. In fact, it is known that H,(x, y, t) < H,;(x, y, t) fori < j,
hence H;(x, y, t) is a monotone increasing sequence of functions. Also,
since H;(x, y, 1) < H(x, y, t) and Theorem 4, we conclude that

2

Hi(x y 1) < Cln, kQd), 3(x), T)t ™" exp<I—;> (4.4)

for all # € [0, T], where d = r(x, y) and k(2d) = lower bound of the

sectional curvature on B(x, 2d). Therefore the monotone sequence

H;(x, y, t) which is bounded must converge uniformly on compact sets.

Moreover, the limit must be H(x, y, t) by uniqueness of solution for (3.1)
with initial condition

lim H(x, y, t) = 6,.
—0

To prove the lemma, we first show that it is true for H;(x, y, t) using
its eigenfunction expansion

Hioy 0= L e e @ea ). (4.5)
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Then
APH(x 3. ) = L (=Nl 0, (0)ea(y) (4.6)

where the subscript { is being suppressed. Therefore

H H(x, y, )APH(x, y, 1) | = ;l N Pe Pelp 2(x)

t TP L A\ )Pe Palp Xx)
a=1

IA

t7PCB, &) L e MM ), (4.7)

where the last inequality follows from the fact that
xfe > < C(B, e)e 2 79x

for all 0 < € < 1. However, since

| #2650y = £ oo, 0, “8)

H H(x, y, )APH(x, y, t)dy‘ <t PC(g, e)s H?(x, y, (1 — e)t)dy. (4.9)

Since this estimate is independent of the compact domain, by setting
e = Y2, we have

‘ H,(x, y, )AH;(x, y, t)dy‘
JBG.R;)

IA

t7fC(B)

.

Hi2<x, y, %) dy
B(x.R,)

IA

t~fC(B) } H2<x, ¥, %) dy, (4.10)
M
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where the last inequality follows from the fact
H(x, y,t) = Hx, y, t).

On the other hand, integration by parts yields

’ g H[(xr ¥, t)AﬁH,(x, ¥, t)dy ’
JB@.R;)
‘ \ (ATH (x, y. 1))*dy if g=27
= ) Ak (4.11)
l \ | VA H (x, y. 1)|*dy if B=27+1.
v Bl R

Now the integrands on the right-hand side are positive, hence for a fixed
je€Z andfori = j

| @EE@y 0P| @HE 0 (4.12)
JBlR;) JBGR;)
it 3 = 2r, and

| VA'H (x, ». 1)]? = \ | VATH (x, y, 1)|* (4.13)
‘ HL\'.RJ?

JBIGR;)

when 3 = 27 + 1. Either case, since H;(x, y, t) converges to H(x, y, t)
on compact set, in particular on B(x. R,), hence (4.10), (4.11), (4.12)
and (4.13) imply

el .\'M H-’-( % 9 n;—)

\ (AH(x, y, ) it 8=2r
. 8[.II.RJ'J
> - (4.14)

\ |VA'H(x, y, 1)]2 if B =27+ 1.
B R
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However, because j is arbitrary, (4.14) gives

ol \ H2<x, 9, %)
JM

‘['- | @H& 07 it =2
JM

= <4 (4.15)
| \ | VA H(x. v, 0| if B=27+ 1.

|
Ly ¥

Integration by parts again will imply the lemma.

THEOREM 6. Let M be a complete Riemannian manifold with
bounded curvature. Then there exists a constant C(n, k, T), depending
only on n, k and T, such that for all p, x € M and t € [0, T7,

< —a(n)d?
|\VH|(p. x, t) < C(n, k, T)6 “"(p)e =+ exp[%}

where d = r(p, x).

Proof. Let n(y) be the cut off function defined by

1 on B(p, v) — b'(p. %Td>

n(y) =<0 outside B(p, 2»)

0 on B(,’J. %)

where v is any constant strictly greater than d. We also assume that
0 = 9(y) = 1,and | Vn|(y) = 4/d for all y € M. Using integration by
parts,

1)2|VH|2:—2S (HVn,nVH)—S n*HAH

JM M M

1 1 ) )
52§ |vn|2H2+—2—‘ nzlvH|2—j n’HAH. (4.16)
. oM M
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Therefore
n2|vH|zs4S ]ansz—ZS n*HAH
Jm M M
64 2
= —5 H*+ 2 |HAH|. (4.17)
s . M—B(p.d/2) M—B(p.d/2)

Letting » — oo, we have

|VH|25ﬂ

2 g
a Jy—pp.an

1/2
<S H*(p. y, r))
M—B(p.d/2)

64 ' 1/2 1/2
[—ZQ H2> +2<S (AH)2> ] (4.18)
d M M

Applying Theorem 3, Lemma 5, and Lemma 7, we obtain,

H2+2S | HAH |

jM—l.":‘(p.3d/4) M—B(p.d/2)

IA

a(n)d }

XM —B(p.3d/4)

% {a(n)C 0/2 5 /% —n/4

+ a(m)Cc™? 1(;} ‘\/%

In the case when 4t < dz, (4.19) becomes

| VH]2 < C"%(p, T)t "* exp[

S

{ —n4) -H] (41(_)}

| VH|? < C(n, k, T)6~*")(p)
JM—B(p.3d/4)

_ 2
X (202 gy [%] (4.20)
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However, by Lemma 6, | vV H | satisfies
O|vH| —«|VH| = 0, 4.21)

one verifies that the iteration method of Moser applies to subsolution of
the form (4.21) (see [1]), hence

!

172
IVHIE(p, X, t) < C\l/l(x' t)t((n+2)/4)<S |VH|2>

|VH'|2>]/2

0 SB(x Vit/4)

t

< C“I/Z(xy t)t—((n+2)/4)<g S
0 JM—B(p.3d/4)

Clearly applying Theorem 2 and (4.20) the theorem follows for the case
4t < d?, where we have used the fact that —(n — Dk < «.
When 41 > d?, we observe that by Lemma 5 and 7

S |vH|2=H HAHI\St'la(n)S H2<p.y, %)
M M M

IA

freres
. T — L
a(n)C 0(n)<p’ le_g ), ((n+2)/2)

AT

2

/ | N N .
almyC mu_l(P_ ‘\j % ))., — (i 42)/2) exp[‘f“ . (4.22)

1A

Applying the iteration method again, we obtain the desired estimate.
For the sake of simplicity, we will only outline the proof for the
upper bound of |hess H|. Similar methods will yield higher order esti-
mates, which will be pointed out as we proceed. These estimates are
based on the same idea as in the case for | VH|. It can be divided into
three steps. First, we utilize the commutation formula to show that
|bess H| = (&, h,-l,»z)”2 is a subsolution of some parabolic equation.
Secondly, we use Lemma 7 to obtain an L? estimate of | hess H |. Finally,
we invoke the iteration method in [1] to obtain the pointwise estimate.

LemMA 8. Let M be a complete Riemannian manifold with bound
curvature tensor and its covariant derivatives. Then

O |hess H| — Ag|hess H| — A,| VH| = 0.
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where Ay is a bound for the curvature tensor and A, is a bound for its
covariant derivatives.

Proof. Consider
1 h I 2y — + H2
S Alhess H|" = 5 AMH ;) = HyHyj + Hjje

= Ry HHjj + Ry iHHj
+ RyuHyH; + Ry HyHy; — Ry Hy Hy
— RyiHyHy; + (AH);H; + Hj,

= Aglhess H|? + A, |hess H|| VH |
+ %(H{,?), + Hp. (4.23)
On the other hand,
%A|hessH|2 = |hess H|A|hess H| + | v |hess H||? (4.24)

where
2

172
(viness 1= (L a7)
Ly

k

H.H; ?
| ————| < L H}.
3 [i.j | hess H | ik

Therefore (4.23) and (4.24) imply
Alhess H| = |hess H|, + Aglhess H| + A| VH| (4.25)

which was to be proved.

Clearly, by the same token, one can obtain differential inequalities
of a similar form for higher order derivatives of H. However one would
require the equation to depend on the higher order covariant derivatives
of the curvature tensor.
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TueoreM 7. Let M be a complete Riemannian manifold. Suppose
C(n, Ay, Ay, T)is a constant depending onn, Ay, A, and T, then for all
p.x € Mandzt € [0, T],

- _ 2
|hess H|(p, x, t) = C(n, Ay, Ay, T)6 *W(p) 2D exp[%]

where d = r(p, x).

Proof. The only ingredient that we need is the L? estimates of
|hess H| on M — B(p, 3d/4). Let 5 be the cut off function defined in
Theorem 6. Then

j 'rle{fz = S (nz)_r'Hr'.r'HI =+ \ nsz-H,'

= ZS nn HHy + \ n’R;H.H; + S n*(AH)H,

IA

%j 7°H? +2 \ |V |} VH|]* + (n — l)KS n’| VH|?

+ S 2qn(AH);H + S n%(A’H)H, (4.26)
and
s
M—B(p.3d/4)
_6—42S _VH|2+(n—1)K§ | VH|?
R™ ) p—pp.an) M—B(p.d/2)

* : 1/2 64 ' 2 1/2 172
+ (\ 1.;-) ‘ ( 51 VAH|‘> + <j (AZH)2> ]
JM—Bi(p.di2) £ R oM M

64 > R ) 1/2
:l -+ - k| | | vH|?+ H
R JM—=B(p.d/2) M—B(p.d/2)

x '—E- (\'M HA"’H)l 4 (I\.MHA"H) HJ. 4.27)
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Applying the estimates for SM*B(p,dQ) | VH |? and Lemma 7, we obtain an
upper bound for SM,B(pVBd/4) H;?. The theorem then follows from the
iteration method.

CoroLLARY 8. Let M be a complete manifold. Suppose C(n, Ay,
Ay, ..., Ay, T)is a constant depending on the quantities described,
where the A;s are bounds on the it covariant derivatives of the curvature
tensor. Then if | D H | denotes the norm of the ['" covariant derivative of H,

|DH|(p, x. 1) < Cln. A, .., A=y, Tt T0DF 700 (p)

_ 2
exp[ a(tn)d ]

where d = r(p, x) and t € [0, T].

APPENDIX

ProrpositioN A. Let B(2R) be a geodesic ball of radius 2R in the
hyperbolic space form of constant curvature —1. Suppose H (r, t) denotes
the heat kernel on B(2R) with Dirichlet boundary condition such that
H(r, 0) is the delta function at the origin 0 € B(2R). Then

1in01 [—4¢ log HR, 1)] < R”.
e

Proof. Consider the heat kernel H(r, t) for the simply connected
hyperbolic space form of constant curvature —1 with the pole at 0. By
Duhamel’s principle

!

HR, t) — HR, t) = 5 9 HQO, ¢ s)Hx, £t —s) (A1)

95 Jpor)

0 .

where #(0, x) = R. On the other hand since H(0, £, s) and H(x, £t —s)
both satisfy the heat equation, (A.1) becomes

t

HR,t) — HR, t) = S S AH(O, & $)H(x, & t — 5)
B(2R)

0
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— ! S H, & s)AH(x, &, t — s)
0 JB(2R)

= j j H,0, & s)H(xE t — s). (A.2)
0 JAB(2R)

The last equality follows from Green’s 2nd identity and the fact that
H(0, &, s) satisfies Dirichlet boundary condition. H,(0, £, s) denotes the
directional derivation of H with respect to the outward normal vector in
the 2nd variable. Since H(0Q, £, s) is rotationally symmetric

H,2R, s)

v IB(2R)
e A3
A(2R) A3

H,0, ¢ s) = H,Q2R, s) =

for £ € 0B(2R), where A(2R) = area of dB(2R). However,

H,QR, s) = AH(0, £, ) = aiH(o, £, (Ad)
JoBR) JB@R) JBR) 98
hence
L2l HO
HR, t) — HR, 1) = \ % Jyon
' ' Jo AQR)
<\ Hix, &t — s)). (A.5)
JARIZR)

Since r(0, x) = R, this implies that the ball B(x, R) around x with
radius R is contained in B(2R), a result of Cheeger and Yau [4], asserts
that (3/8r)H (x, £, t — s) < 0. Therefore

Hx bt —s)<HR t — s)
for all £ € 3B(2R), where we have used the fact that H(R, t — s) =

ﬁ(x, v, t —s)forally € B(x, R). By (A.4) and the fact that H,(2R, s) <
0, (A.5) becomes
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- ' 1 (49 7 _
HR, t) — HR, t) = | A(2R)<as LQR) H(O, &, s)>A(2R)H(R, t—s)
:\ H(R, t—s)ij H(, &, s). (A.6)
Jo 95 | par)

A probabilistic argument shows that for small enough ¢, (9/ as)H R, t—s)
< 0 for all s € [0, t]. In fact, in this case one checks that this is so from
the explicit formula for H(R, t — s) (see [9], also private communication
with J. Cheeger, who has obtained explicit formula for all #). Hence for
small ¢,

HR, t)— HR, 1) = HR, 1) s aij HQ, £, 5)
Jo 9% Jpor)

v

= H(R, t)[

HQO & 1) — 1}. (A.7)

w

B(2R)
This implies that for ¢ small enough such that
1
g HQO,& 1) = >
JBQR)
then
1 =
HR, 1) = > (R, 1).
On the other hand, from the formula for H(R, t), we see that
lirr(} [—4¢t log H(R, )] = R>.
’—'
Therefore

lim [—4t log H(R, 1)] < R?
pt

as asserted.
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Clearly, by scaling, the conclusion of Proposition A remains true for
hyperbolic space form of constant curvature —k, for any k& > 0.
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