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COMPUTING CONFORMAL STRUCTURE OF SURFACES

XIANFENG GU † AND SHING-TUNG YAU ‡

(a). Genus 0 (b). Genus 1 (c). Genus 2

Abstract. This paper solves the problem of computing conformal structures of general 2-
manifolds represented as triangle meshes. We compute conformal structures in the following
way: first compute homology bases from simplicial complex structures, then construct dual co-
homology bases and diffuse them to harmonic 1-forms. Next, we construct bases of holomorphic
differentials. We then obtain period matrices by integrating holomorphic differentials along ho-
mology bases. We also study the global conformal mapping between genus zero surfaces and
spheres, and between general meshes and planes. Our method of computing conformal struc-
tures can be applied to tackle fundamental problems in computer aid design and computer
graphics, such as geometry classification and identification, and surface global parametrization.

1. Introduction

This paper introduces a systematic way to compute conformal structures of general 2D
surfaces, including computing holomorphic differentials, period matrices and conformal maps
among surfaces. To the best of our knowledge, this is the first paper to give a set of practical
algorithms to compute conformal structures for general closed meshes. This method has the
potential to be generalized to work on meshes with boundaries and other representations of
surfaces, such as implicit surfaces and level sets.
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Computational conformal geometry is an active field in mathematical research. The following
objects are equivalent to one another:

(1) Compact Riemann surfaces;
(2) Projective algebraic curves;
(3) Jacobian varieties of compact Riemann surfaces.

Our goal is to computationally convert these different representations from one to another, and
to compute conformal invariants and conformal mappings among surfaces.

In [11], [14] and [2], Riemann surfaces are represented as algebraic curves or D/G, where
D is the hyperbolic space and G is a Fuchsian group acting in D. The homology bases are
constructed as Mobius transformations, then the holomorphic differentials are found by using
algebraic geometry techniques on algebraic curves. Finally the period matrices are computed
explicitly by integrating holomorphic differentials on homology bases.

In real applications, geometric surfaces are represented as meshes. It is rare to represent
general surfaces as algebraic curves or quotient spaces. With the development of 3D data
acquisition system, large scale meshes for real objects are becoming more and more common.
The above methods for abstract representation of Riemann surfaces can not be applied directly.
In this paper, we assume the input data are general meshes and propose a systematic way to
compute their conformal structures.

In [16] an algorithm is introduced to use circle packing to approximate conformal mappings
between planar regions. For general surfaces, circle packing only considers topological structures
but not geometric structures. It can not find the conformal mapping from a surface to the
plane. However, if the triangulation is equilateral for each face, then the circle packing result is
conformal. But, in general, such triangulation is difficult to construct. Therefore, circle packing
method is not appropriate for our purpose.

In computer graphics, surface parametrization has been studied by many researchers. Hoppe
et al [8] use local harmonic maps for surface simplification and editing. Haker et al [12] develop
an algorithm to conformally map a genus zero surface to a sphere by solving a linear system.
In Haker et al [12], the sphere is stereo-graphically projected to the complex plane implicitly.
The stereo projection is nonlinear in nature, large errors are introduced in the neighborhood of
the north pole by using piecewise linear mapping to approximate it in practice.

In [10], Desbrun et al use conformal mapping to define geometry maps, where they compute
the conformal maps from a topological disk to the complex plane. An equivalent algorithm is
developed by Maillot et al [1], who use conformal mapping for the purpose of non-distorted
texture-mapping. Their method is based on Riemann-Cauchy equation. So far, although
conformal mappings of genus zero surfaces have been studied, no one has tried to compute
global conformal mapping for non zero genus surfaces.

In this paper, we solve the problem of computing conformal structure of surfaces thoroughly.
For genus zero surfaces, we introduce a new method to construct conformal mappings from
them to spheres directly. This method avoids the stereo projection and is more stable and
more accurate. More importantly, this method can be generalized to compute conformal map-
pings between any arbitrary two genus zero surfaces. For surfaces with non zero genus, the
computation is much more complicated. We give a set of general algorithms to compute their
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conformal structures, which include ways to compute holomorphic differentials, period matrices
and conformal mappings.

A map between two surfaces is a conformal map if it just scales the first fundamental form
and preserves angles everywhere. If there is an invertible conformal map between two surfaces
and the inverse is also conformal, then we call these two surfaces conformally equivalent. The
conformal automorphisms form a group. The invariants under conformal transformation group
are called conformal structure. Our goal is to compute these conformal structures. In terms
of surface classification, conformally equivalent classes are finer than topologically equivalent
classes and coarser than isometric classes.

Geometric objects classification and identification have been studied for years. But it is still
an open problem today. It is challenging to classify general surfaces efficiently. A good algorithm
should satisfy the following requirements: The method is intrisincly dependent of geometry and
independent of triangulation; The method is stable in the sense that perturbation of geometry
perturbs the result continuously; The method should also be robust enough to tolerate different
resolution and boundaries; For database indexing, each class index should be small for storage
and easy to compute.

Conformal mapping has many nice properties and it is suitable for classification problems.
Conformal mapping only depends on the Riemann metric and is independent of triangulation.
Conformal mapping is continuously dependent of Riemann metric, so it works well for different
resolutions. Conformal invariants can be represented as a complex matrix, which can be easily
stored and compared. We propose to use conformal structures to classify non-zero genus sur-
faces. For each conformally equivalent class, we can define canonical parametrization for the
purpose of comparison.

Geometry matching can be formulated to find an isometry between 2 surfaces. By computing
conformal parametrization, the isometry can be obtained easily. For surfaces with close metric,
conformal parametrization can also give the best geometric matching result.

1.1. Preliminaries. In this section, we give a brief summary of concepts and notations.

Let K be a simplicial complex whose topological realization |K| is homeomorphic to a com-
pact 2-dimensional manifold. Suppose there is a piecewise linear embedding

(1) F : |K| → R3.

The pair (K, F ) is called a triangular mesh and we denote it as M . The q-cells of K are denoted
as [v0, v1, · · · , vq].

Because M has a simplicial complex structure, we can compute the simplicial homology
H∗(K, R) and cohomology H∗(K, R). We denote the chain complex as C∗K = {CqK, ∂q}q≥0,
and cochain complex as C∗K = {CqK, δq}q≥0, where CqK = Hom(CqK; R), the coboundary
operator satisfies

(2) δqωσ = ω∂q+1σ,

where ω ∈ CqK and σ ∈ Cq+1K. The kernel of ∂q is ZqK, the image of ∂q+1 is Bq, and the q-th

homology group is

(3) HqK = ZqK/BqK.
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Similarly, the kernel of δq is ZqK, the image of δq−1 is BqK, and the q-th cohomology group is

(4) Hq = ZqK/BqK.

The embedding F endows M with a differential structure. We then define the local charts of
M as (Ti, φi),

(5) φi : Ti → R2,

where Ti is a face of M , and φi ◦ F : R3 → R2 is an isometry. Then M is a smooth manifold,
we can compute the De Rham cohomology H∗(Ω(M ; TM), d), where Ω(M ; TM) is the set of
differential forms, and d is the exterior derivative. In our setting, all computations are carried
out on meshes, which are piecewise linear. Therefore, it is enough to just use piecewise linear
differential forms on M . We define the set of piecewise linear forms as

(6) ΩPL(M ; TM) = ΩPL
0 ∪ ΩPL

1 ∪ ΩPL
2

Here ΩPL
0 is the set of piecewise linear functions on M defined on its vertices, ΩPL

1 is the set
of piecewise constant 1-forms which are consistent along the edges,

(7)

∫

[u,v]

ω|[u,v,w] =

∫

[u,v]

ω|[t,v,u], ω ∈ ΩPL
1 ,

where [u, v, w] and [t, v, u] are the two faces adjacent to [u, v], ΩPL
2 is the set of piecewise

constant two forms.

All the computations are defined for De Rham cohomology in concept and for simplicial
cohomology in implementation. We connect differential forms with simplicial cocycles by the
following map: Given ω ∈ ZqK,

Γ : ZqK → ΩPL
q (M ; TM)(8)

ωσ =

∫

σ

Γω, ∀σ ∈ CqK.(9)

It is easy to verify that Γ is well defined, one to one and is also commutative to differential
operators,

(10) d ◦ Γ = Γ ◦ δ.

So in the following discussion, we do not differentiate simplicial cocycles and piecewise linear
differential forms explicitly.

1.2. Harmonic 1-form and Holomorphic 1-forms. According to Hodge theory [13], each
cohomology class in H(Ω(M ; TM), d) has a harmonic representative, which minimizes the har-
monic energy as defined below. Suppose f ∈ Ω0(M ; TM), the harmonic energy of f is

(11) E(f) =
1

2

∫

M

||df ||2dσ.

The norm is Euclidean norm, and dσ is the area element. The harmonic energy for 1-forms is
defined similarly. Suppose ω ∈ Ω1(M ; TM), the harmonic energy of ω is

(12) E(ω) =
1

2

∫

M

||ω||2dσ.
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In the case where M is a mesh, the harmonic energy can be simplified in the format of string
energy and defined on C∗K. Suppose f ∈ C0K, the harmonic energy 11 can be rewritten as

(13) E(f) =
∑

[u,v]∈K

ku,v||f(u)− f(v)||2.

For 1-form ω ∈ C1K, the harmonic energy 12 is reformulated as

(14) E(ω) =
∑

[u,v]∈K

ku,v||ω[u, v]||2.

Suppose edge [u, v] has two adjacent faces Tα, Tβ, Tα = [v0, v1, v2], define parameters

aα
v1,v2

=
1

2

(v1 − v3) · (v2 − v3)

(v1 − v3)× (v2 − v3)
(15)

aα
v2,v3

=
1

2

(v2 − v1) · (v3 − v1)

(v2 − v1)× (v3 − v1)
(16)

aα
v3,v1

=
1

2

(v3 − v2) · (v1 − v2)

(v3 − v2)× (v1 − v2)
.(17)

(18)

aβ
u,v can be defined similarly, then

(19) k(u, v) = aα
u,v + aβ

u,v.

A function f ∈ C0K with local minimum harmonic energy is called a harmonic function. A
cocycle ω ∈ C1K with local minimum harmonic energy is called a harmonic form.

The Laplacian operator ∆PL : ΩPL
0 → ΩPL

0 is defined as the derivative of E(f) with respect
to f

∆plf |u =
∑

[u,v]∈K

ku,v(f(u)− f(v)).(20)

1.3. Complex structure. A 2-dimensional manifold M has a natural complex structure. In
our setting where M is a mesh, the complex structure is constructed explicitly in [17].

Any genus zero surface M is conformally equivalent to S2. u : M → S2 is conformal if and
only if u is harmonic. The conformal automorphism group of S2 is 6 dimensional, which is the
Mobius transformation group defined on the complex plane C. If we fix the images of 3 points,
then there is a unique conformal map from M to S2.

For non-zero genus surfaces, we study the structure of its holomorphic differential group.
The following form

τ +
√
−1ω, τ, ω ∈ Ω1(M ; TM)(21)

is called a holomorphic form if both τ and σ are harmonic and ∗τ = ω. Here ∗ is the Hodge
star operator. Suppose {v1, v2} are orthonormal bases of a tangent space on M , then

(22) ω(v1) = ∗ω(v2).
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The set of holomorphic 1-forms is denoted as H1,0(M, C). Let M be a compact Riemann
surface of genus g and B = {e1, e2, · · · , e2g} be an arbitrary basis of H1(M, Z). The intersection
matrix C of the above basis has entries

(23) cij = −ei · ej,

where the dot denotes the algebraic number of intersections. A basis B∗ = {ω1, ω2, · · · , ω2g} of
the real vector space H1,0(M, C) is the dual of B if

(24) Re

∫

ei

ωj = cij .

From Riemann bilinear relations [5] it follows that the matrix S with entries

(25) Im

∫

ei

ωj = sij .

is symmetric and positive definite. The complex structure in H1,0(M, C) is given by a matrix
R with respect to the basis B and satisfies R2 = −I. The following relation holds

(26) CR = S.

After Weyl [6] and Siegel [15], the matrix R is called the period matrix of M with respect to
the basis B. Let a be a holomorphic automorphism of M , and let [a] denote the matrix of its
action on the homology and cohomology with respect to the above basis, then

(27) [a]−1R[a] = R, [a]T C[a] = C.

The pair (R, C) determines the analytic structure of a given Riemann surface in the following
sense: two such pairs, (R1, C1) and (R2, C2) determine the same structure if and only if there
exists an integral matrix N whose determinant is ±1 such that

(28) N−1R1N = R2, N
tC1N = C2

If the bases B1 and B2 are canonical ones, then both C1 and C2 are identities, and N is an
integral symplectic matrix.

2. Conformal mapping for genus zero surfaces

Given two genus zero meshes M1, M2, there are many conformal mappings between them.
The algorithm for computing conformal mapping is based on the fact that harmonic maps
are conformal for genus zero surfaces. All conformal mappings between M1, M2 form a group,
which is the so-called Mobius group. Our method is as follows: first find a homeomorphism
h between M1 and M2, then diffuse h so that h minimizes the harmonic energy. In order to
ensure the convergence of the algorithm, special constraints are added so that the solution is
unique.
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2.1. Constrained Variational Problem. Suppose M1 and M2 are genus zero meshes, h :
M1 → M2 is a degree one mapping. We would like to minimize the harmonic energy E(h),

(29) E(h) =
∑

[u,v]∈K1

ku,v||h(u)− h(v)||2,h = (h0, h1, h2).

The Laplacian for h is simple

(30) ∆PLh = (∆PLh0, ∆
PLh1, ∆

PLh2).

Then if h is harmonic, the tangential component of ∆PLh is zero. Define projection operator

(31) Pv = I − v ⊗ vT

vTv
,v ∈ R3,

where ⊗ is tensor product and I is an identity matrix. Then h is harmonic if and only if

(32) Pn◦h∆PLh = 0,

where n is the normal on M2.

In order to ensure the process converge to a unique solution, we have to add extra constraints.
We force the center of mass of the surface to be at its origin, that is,

(33)

∫

M2

hdσM1
= 0,

where dσM1
is the area element on M1. This constraint will guarantee the solution is unique

up to a rotation. Then we can construct the partial differential equation

(34)
∂h

∂t
+ Pn◦h∆PLh = 0

with constraints 33. The steady state solution of h is the conformal mapping from M1 to M2.
Equation 34 can be solved by iterative methods.

2.2. Steepest Descendent Algorithm. In our implementation, we fix M2 as S2. In order to
compute the initial homeomorphism from M1 to S2, we first compute the spherical barricentric
embedding, which minimizes the barricentric string energy. The barricentric energy is defined
as in 13, where we let

(35) ku,v ≡ 1.

The corresponding Laplacian is defined as 20 with constant unit ku,v. Then the following
algorithm computes spherical barricentric embedding,

Input mesh M, step length δt, threshold ǫ.
Output sphereial barricentric mapping h.

1. Compute Gauss map n from M to S2,h← n.

2. Compute barricentric energy E(h), if δE < ǫ then return h.

3. Compute tangential Laplacian of h, δh← Pn◦h∆PLh

4. Update h by h← h− δt× δh.
5. Repeat 2 through 4.
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Algorithm 1. Spherical barricentric embedding

In practice, barricentric embedding converges faster than spherical harmonic embedding, and
there are no extra constraints. Hence we use it as the initial embedding to compute spherical
conformal mapping. The spherical conformal embedding algorithm is more complicated. In
each iteration an extra normalization step is inserted so that the mass center of the surface
stays in the origin during the whole process.

Gu-Yau Algorithm for genus zero mesh.

Input mesh M, step length δt, threshold ǫ.
Output spherical conformal map h.

1. Compute spherical barricentric map, b from M to S2, h← b.
2. Compute harmonic energy E(h), if δE < ǫ then return h.

3. Compute tangential Laplacian of h, δh← Pn◦h∆PLh.

4. Update h by h← h− δt× δh.
5. Compute a Mobius transformation m, such that m ◦ h satisfies the center

of mass constraint equation 33.

6. Repeat 2 through 5.

Algorithm 2. Spherical Conformal Embedding

In step 5 above, the Mobius transformation on S2 is in the form φ−1 ◦ f ◦ φ, where φ is the
stereo-graphic projection from S2 to the complex plane.

(36) φ(x0, x1, x2) = (
x0

1 + x2
,

x1

1 + x2
), (x0, x1, x2) ∈ R3

f is a Mobius transformation on C,

(37) f(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad− bc 6= 0

In practice, it is expensive to normalize h by Mobius transformation, we simply shift the center
of mass of h(M1) to the origin and normalize h(v), v ∈ K to the unit vector.

Figure (a) shows a conformal mapping from a bunny model to a sphere, and the bunny is
texture mapped using the spherical coordinates as texture parameters.

3. Computing Conformal Structure for non-zero genus meshes

3.1. Overview. For non-zero genus meshes, the computation of conformal structure is much
more complicated. The goal is to find the complete bases of the holomorphic 1-form group.
The algorithm can be summarized in the following steps:

Gu-Yau Algorithm for non-zero genus mesh

Input a mesh M. Output a set of bases of holomorphic differentials.

1. Compute homology group bases B = {e1, e2, · · · , eg, eg + 1 · · · , e2g}.
2. Compute cohomology group bases Ω = {ω1, ω2, · · · , ω2g}, which are the dual
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of B.

3. Compute harmonic 1-forms ζ = {ζ1, · · · , ζ2g}, such that ζi is homologous to ωi.

4. Apply hodge star on ζi, and compute holomorphic 1-forms ζi +
√
−1(∗ζi).

Algorithm 3. Compute Holomorphic Differentials

The following subsections explain each step in details.

3.2. Computing Homology. There are many methods for computing homology groups H∗K
of a simplical complex K. In our implementation, we use the classic algorithm, which is based
on reducing boundary operator matrices ∂q to their Smith normal form [9]. In order to avoid the
substantial computational cost of the reduction to Simth normal form, the mesh is simplified by
using progressive mesh algorithm introduced in [7]. Once the homology bases B are found on
the coarser mesh, they are mapped back to the finer mesh through a sequence of vertex splits.
At each vertex split step, we check the neighborhood of current split vertex, and preserve the
connectness of each homology base cycle in B. Finally, on the finer mesh, we use Dijkstra
algorithm to shorten each base cycle, and perturb them such that they intersect transversely.

The fundamental domain is also computed by the retraction algorithm described in [4]. The
following is the basic procedure: at the beginning, we remove one aritrary face, record the
boundary. At each step we remove one face attached to the current boundary, all the removed
faces always form a topological disk. The boundary of this disk is kept and updated until all
faces are removed. Then we cut the mesh along the final boundary to get the fundamental
domain.

3.3. Computing Cohomology. Once we obtain homology bases set B, we can compute the
cohomology bases set Ω dual to B, such that

(38)

∫

ei

ωj = δij

We chose a handle and the pair of conjugate homology cycles on it, denoted as {ei, ei+g}.
Then we split the mesh along these 2 cycles. Next, we map the boundary to the boundary
of a unit square, and map the interior of the mesh to the unit square by Floater embedding
algorithm as described in [3]. Then the 1-forms {dx, dy} are the duals of {ei, ei+g}.

Input mesh M, a pair of cycles {a, b}, such that a ∩ b = 1.
Output {ωa, ωb} ∈ C1K, dual of {a, b}.

1. Slice mesh M open along {a, b}. ∂M = aba−1b−1.

2. Map aba−1b−1 to the boundary of D = [0, 1]× [0, 1].
3. Map interior of M to D by Floater embedding.

4. Return ωa ← dx, ωb ← dy.

Algorithm 4. Compute Cohomology
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3.4. Computing Harmonic Forms. Suppose the cohomology bases of mesh M are Ω =
{ω1, ω2, · · · , ω2g}, we deform them to harmonic forms by adding exact 1-forms δfi, where fi ∈
C0K, such that ωi + dfi minimizes the harmonic norm in equation 14.

Input 1-form ω ∈ C1K.

Output harmonic 1-form ω.

1. F ← 0.
2. Compute Laplacian

(39) ∆PLF =
∑

[u,v]∈K

ku,v(F (u)− F (v) + ω[u, v])

3. F ← F −∆F × δt.
4. Compute harmonic energy E(ω + δF ), if δE < ǫ then ω ← ω + δF, return.

5. Repeat 2 through 4.

Algorithm 5. Compute Harmonic Forms

This is the most time-consuming step during the whole procedure. In practice, we perform
local optimization.

3.5. Computing Holomorphic Forms. Given a set of harmonic 1-form bases Ω = {ω1, · · · , ω2g},
we can construct the bases of holomorphic 1-forms directly by pairing ωi with its Hodge star
∗ωi. Given ω ∈ C1K, then Γω ∈ ΩPL

1 (M ; TM), ∗Γω is formulated by:

Γω = fdx + gdy(40)
∗Γω = fdy − gdx(41)

Here (x, y) are local coordinates as defined in equation 5, f, g are constants on each face of M .

Hodge star transforms harmonic forms to harmonic forms. If ω is harmonic, then ∗ω is also
harmonic, and it can be represented as a linear combination of ωi’s. Suppose

(42) ∗ω =

2g
∑

i=1

αiωi,

Then we can compute the integration of wedge product

(43)

∫

M

ωi ∧ ∗ω =

∫

M

Γωi ∧ ∗(Γω), i = 1, 2, · · · , 2g

Equation 43 can be formulated as the following linear system

(44) Aα = b,

where α = (αi), matrix A is with entries

(45) aij =

∫

M

ωi ∧ ωj .
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Because ωi are dual cocyles of ei, so

(46) aij = ei ∩ ej .

Vector b has entries

(47) bi =

∫

M

Γωi ∧ ∗(Γω).

Assume Γωi = fdx + gdy , Γω = pdx + qdy, from 41

(48) bi =
∑

[u,v,w]∈K

(fp + gq)σ[u,v,w].

By our construction, matrix A is also the intersection matrix of homology bases R, so A
is non-degenerated. ∗ω is uniquely determined. The following is the algorithm to compute
holomorphic 1-forms:

Input Bases of harmonic 1-form group, {ω1, ω2, · · · , ω2g},a harmonic 1-form ω.
Output Holomorphic 1-form ω +

√
−1 ∗ω.

1. Compute Γω and Γωi.

2. Compute ∗Γω.
3. Compute bi.

4. Solve linear system 44.

5. Return ζ = ω +
√
−1 ∗ω.

Algorithm 6. Compute Holomorphic Forms

By applying the above algorithm, we can compute the bases of holomorphic differentials of
M . Suppose we treat the holomorphic differentials as a complex vector space, we denote a
set of bases as {ζ1, ζ2, · · · , ζg}, where g is the genus of M . The figure shows the results of
computing holomorphic 1-forms on meshes. Figure (b) shows the result for a genus one mesh.
By integrating a holomorphic 1-form, the mesh is mapped to the plane. Then a checker board
is texture mapped to the mesh using the plane as the texture parameter space. Figure (c) is
constructed similarly for a genus two surface.

By linearly combining ζis, we can construct all holomorphic 1-forms on M . By integrating
holomorphic 1-forms on the fundamental domain, the mesh is globally conformally mapped to
the plane with finite singularities. The number of singularities on M is 2g − 2.

4. Performance Analysis

The algorithm is independent of the choices of geometric realization of homology cycles, but
dependent on their homology classes. In a future paper, we will give a method to compute
global conformal parametrization which is independent of the choice of homology classes too.

It is obvious that the extruding parts, like the ears of the bunny are mapped to relatively small
regions. Those planar regions are very dense. During the optimization process, these regions
converge more slowly. In general, special local optimization is necessary for these regions.

The energy form ku,v||f(u) − f(v)||2 is determined by ku,v. During our experiments, we
find that if ku,v are all positive, then the algorithm converges faster. For the harmonic energy
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minimization, the edge coefficients 19 can be reformulated as

(49) ku,v = cot∠α + cot∠β.

Here there are two faces sharing edge [u, v] and α, β are the two angles in these faces opposite
to the edge. In our implementation, we carry out some preprocessing on meshes, to swap or
split edges with negative ku,v. This process improves the convergence speed.

5. Applications

5.1. Computational Topology. Homology has a group structure, cohomology has a ring
structure, so cohomology can convey more geometric information of the manifolds. The co-
homology bases can be used to detect the homology class of a closed curve. Suppose a set of
cohomology bases {ω1, ω2, · · · , ωg, ωg+1, · · · , ω2g} has been computed, given an arbitrary closed
curve r, if r is homologous to zero, then the following must hold

(50)

∫

r

ωi = 0, ∀i

Once r is homologous to zero, we can find the domain whose boundry is r by the following
simple flooding algorithm. First we label all the faces on the left of r and adjacent to r. Then
we label all the neighboring faces to them. We repeat this process, until no further face can be
labelled. Then all the labelled faces form the domain.

5.2. Geometry Matching. Conformal structure is determined by Riemann metric, so it is
independent of triangulation. Conformal structure is stable in the sense that if we perturbate
the metric, the conformal structure changes continuously. Therefore, it is tolerant of noises and
not sensitive to different resolutions. We perform some numerical experiments to verify this
property of conformal mappings. Suppose we have 2 geometrical similar surfaces M1, M2, in
order to find the best geometric match, we can conformally map them to a canonical domain
D,

(51)

M1 M2

D

-
f−1

2
◦f1

Rf1 	 f2

Then f2 ◦f1 gives the desired geometric matching. In this process, the appropriate boundary
conditions should be set up correctly.

5.3. Geometry Classification. The non-zero genus surfaces can be classified by their con-
formal structures naturally. After the bases of holomorphic 1-form group are computed, it is
straightforward to compute the period matrices. During the construction of homology bases,
we can obtain a canonical set of homology bases, that is

(52)

{

ri ∩ rg+i = +1, i = 1, 2, · · · , g
ri ∩ rj = 0, j 6= g + i
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Then the period matrix is

(53) P =









∫

r1

ζ1

∫

r1

ζ2 · · ·
∫

r1

ζ2g−1

∫

r1

ζ2g
∫

r2

ζ1

∫

r2

ζ2 · · ·
∫

r2

ζ2g−1

∫

r2

ζ2g

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∫

r2g
ζ1

∫

r1

ζ2 · · ·
∫

r2g
ζ2g−1

∫

r2g
ζ2g









If two surfaces M1, M2 are conformally equivalent, then there exists an integral symplectic
matrix N , such that N−1P1N = P2. N is the homology bases transformation matrix.

5.4. Global conformal parametrization. A mesh can be parameterized conformally by in-
tegrating holomorphic 1-forms on it. The parametrization is globally conformal except for
finite singularities. By changing holomorphic 1-forms, the neighborhoods of singularities can
be conformally parametrized too.

By using conformal parameters, many important geometric quantities which are valuable for
geometric analysis can be computed explicitly.

6. Conclusion

This paper introduces a systematic way to compute conformal structure for general surfaces
represented as triangle meshes. The homology is computed by simplicial complex structure.
The dual cohomology bases are constructed explicitly. Each cohomology cocyle is diffused to
a harmonic 1-form by adding an exact 1-form to minimize the harmonic energy. The Hodge
star operation is carried out on the harmonic forms by solving a linear system. Then the bases
of holomorphic differentials are constructed. To the best of our knowledge, this paper is the
first one to solve this problem completely. The methods introduced here are very general.
The harmonic 1-forms, holomorphic 1-forms have much broader applications. The conformal
structure can be applied in many theoretic fields as well as engineering fields.

7. Future Research

Conformal structures of closed surfaces are studied thoroughly in this paper. We would like
to generalize the results to open surfaces. Current computations are based on mesh structures.
We will generalize the algorithms to other surface representations, such as implicit surfaces
and level sets. The optimization of harmonic energy is computationally expensive. In the
future, we will use multi-resolution methods to improve the speed. We will explore more on the
relation between the eigenvalues, eigenfunctions of Laplacian operator and geometry. Current
conformal parametrization is dependent on the choices of homology bases. In a future paper,
we will introduce a new method which is independent of those choices.
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