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Introduction

In my previous paper [2] with I. M. Singer, B. Wong and StephenYau, I gave a lower estimate
of the gap of the first 2 eigenvalues of the Schrödinger operator in case the potential is convex. In
this note we note that the estimate can be improved if we assume the potential is strongly convex.
In particular if the Hessian of the potential is bounded frombelow by a positive constant, the gap
has a lower bound independent of dimension. We also find gap when the potential is not necessary
convex.

1 Convex potential

Let λ1 andλ2 be the first and second eigenvalues of the operator∆− V , andu1 andu2 be their
corresponding eigenfunctions:

∆u1 − V u1 = −λ1u1,(1.1)

∆u2 − V u2 = −λ2u2.

It is well known that the first eigenfunctionu1 must be a positive function (a theorem of Courant).
On the other hand, the second eigenfunction changes sign since

∫

u1u2 = 0. Thereforeu2 changes
sign.

One can estimateλ2 − λ1 by the following formula:

(1.2) λ2 − λ1 = inf
R

fu1=0

∫

|∇f |2 u21
∫

f2u21
,

Here, we take another approach to derive the estimate onλ2 − λ1.

Sinceu1 > 0, u = u2

u1

is a well-defined smooth function onΩ. Using the Hopf lemma and the
Malgrange preparation theorem, one has the following

LEMMA 1.1. u = u2

u1

is smooth up to the boundary. It satisfies the Neumann condition on the
boundary.
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When (1.1) are Neumann problems, Lemma 1.1 is trivial, when (1.1) are Dirichlet problems, we
argue in the following way.

Note ∂
∂νu1|∂Ω 6= 0. Therefore, by using the equation,

∆u =
∆u2
u1

− u2∆u1
u21

− 2∇ lnu1 · ∇
(u2

u1

)

(1.3)

=
u1∆u2 − u2∆u1

u21
− 2∇ lnu1 · ∇

(u2

u1

)

= −(λ2 − λ1)
u2

u1
− 2∇ lnu1 · ∇

(u2

u1

)

= −(λ2 − λ1)u− 2∇ lnu1 · ∇u.

We have the Neumann boundary condition∂u
∂ν |∂Ω = 0. Let

(1.4) ϕ1 = − lnu1

so that

(1.5) ∆u = −(λ2 − λ1)u+ 2∇ϕ1 · ∇u.

THEOREM 1.1. Suppose the Ricci curvature ofΩ is nonnegative and∂Ω is convex, and

(1.6)

{

∆u = −(λ2 − λ1)u+ 2W · ∇u
∂
∂νu|∂Ω = 0,

whereW is a vector field such that

(1.7) Wi,i ≥
√

c

2
> 0

then

(1.8) λ2 − λ1 ≥ θ2(β)

diam(Ω)2
+ β

√
c,

whereθ(β) = sin−1 1
q

1+ β
√

2−β

and0 < β <
√
2 arbitrary.

PROOF. Consider

(1.9) F = |∇u|2 + αu2 with α ≥ 0.

By computation, we have

(1.10) Fi = 2ujuji + 2αuui,
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∆F = Fii = 2ujiuji + 2ujujii + 2αuiui + 2αuuii(1.11)

= 2 |∇∇u|2 + 2∇u · ∇∆u+
∑

i,j

Rijuiuj + 2α |∇u|2 + 2αu∆u

= 2 |∇∇u|2 + 2∇u · ∇(−(λ2 − λ1)u− 2W · ∇u) +
∑

i,j

Rijuiuj

+2α |∇u|2 + 2αu(−(λ2 − λ1)u− 2W · ∇u)
= 2 |∇∇u|2 +

∑

i,j

Rijuiuj − 2
(

(λ2 − λ1) |∇u|2

+
∑

i,j

(Wi,j +Wj,i)uiuj + 2
∑

i,j

Wiuijuj

)

+2α |∇u|2 − 2α((λ2 − λ1)u
2 + 2u∇W · ∇u)

= 2 |∇∇u|2 +
∑

ij

Rijuiuj − 2(λ2 − λ1 − α) |∇u|2

+2
∑

i,j

(Wi,j +Wj,i)uiuj − 2α(λ2 − λ1)u
2 + 2W · ∇F.

If Rij ≥ 0 and

(1.12) Wi,i ≥
√

c

2
,

then

∆F − 2W · ∇F ≥ 2 |∇∇u|2 − 2
(

λ2 − λ1 − α− 2

√

c

2

)

|∇u|2(1.13)

−2α(λ2 − λ1)u
2.

First, we need to derive a universal lower bound forλ2 − λ1.

(1) Letα = 0.

If F attains the maximum at the boundary point, sayx0, then ∂
∂νF (x0) ≥ 0.

Take a local orthonormal frame(e1, . . . , en) nearx0 such thatν = en. From the definition of
Hessian and second fundamental form, we have

uin = eienu− (∇eien)u(1.14)

= −(∇eien)u since uν = 0

= −
n−1
∑

j=1

hijui.

Fν = 2
∑

j

ujujν(1.15)

= −2
∑

hijuiuj

≤ 0 by the convexity of∂Ω.

This implies thatu1 = . . . = un−1 = 0, hence∇u = 0 atx0. Therefore, we have

F ≡ 0.

Thusu is a constant which is impossible.
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If F attains the maximum at the interior point, sayx0, then∇u(x0) 6= 0. Otherwise, we have
the same conclusion as above.

At x0,

0 ≥ ∆F (x0)(1.16)

≥ 2 |∇∇u|2 − 2(λ2 − λ1) |∇u|2

+4

√

c

2
|∇u|2 since ∇F (x0) = 0.

The last inequality is equivalent to the following:

(1.17)
(

(λ2 − λ1)− 2

√

c

2

)

|∇u|2 ≥ |∇∇u|2 ≥ 0,

which says that

(1.18) (λ2 − λ1) ≥
√
2c since ∇u(x0) 6= 0.

(2) Now, takeα = λ2 − λ1 − β
√
c > 0

From the universal lower bound, we can takeβ =
√
2 − δ for any smallδ > 0 in the following

argument.

Case 1. If x0 ∈ ∂Ω, then ∂
∂νF (x0) ≥ 0.

Fv = 2
∑

j

ujujν + 2αuuν(1.19)

= −2
∑

hijuiui

≤ 0 by the convexity of∂Ω.

This implies thatu1 = . . . = un−1 = 0, hence∇u = 0 atx0. Therefore, we have

(1.20) F ≤ supαu2.

Case 2. x0 ∈
◦
Ω and

(1.21) (a) ∇u(x0) = 0.

Then by the definition

(1.22) F (x0) = |∇u|2 (x0) + αu2(x0) = αu2(x0) ≤ α supu2.

Hence

(1.23) |∇u|2 + αu2 = F ≤ α supu2.

Case 3. x0 ∈
◦
Ω and

(1.24) (b) ∇u(x0) 6= 0.

Using

(1.25) 0 = Fi(x0) = 2ujuji + αuui = 2uj(uij + αugij)

and rotating normal coordinates centered atx0, we may assume

u1(x0) 6= 0,(1.26)

ui(x0) = 0, i = 2, . . . , n.
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Then

(1.27) u11 + αu = 0

which implies

(1.28) u211 = α2u2

so that

(1.29)
∑

u2ij ≥ α2u2.

Hence

0 ≥ 2 |∇∇u|2 − 2(λ2 − λ1 − α) |∇u|2 − 2α(λ2 − λ1)u
2 + 4

√

c

2
|∇u|2(1.30)

≥ −2(λ2 − λ1 − α−
√
2c) |∇u|2 − 2α(λ2 − λ1 − α)u2

Then

0 ≥ −2(λ2 − λ1 − α−
√
2c) |∇u|2 − 2α(λ2 − λ1 − α)u2(1.31)

= 2(−β
√
c+

√
2c) |∇u|2 − 2αβ

√
cu2,

which implies

(1.32) (−β +
√
2) |∇u|2 − αβu2 ≤ 0

and ifβ <
√
2, atx0

(1.33) |∇u|2 ≤ αβ

−β +
√
2
u2.

Hence, ifβ <
√
2, then atx0

(1.34) F = |∇u|2 + αu2 ≤ α
(

1 +
β√
2− β

)

u2

so that

(1.35) F = |∇u|2 + αu2 ≤ α
(

1 +
β√
2− β

)

supu2,

which covers all the cases.

Hence

(1.36)
|∇u|

√

α(1 + β√
2−β

) supu2 − αu2
≤ 1.

Normalizing so thatsupu2 = 1 and integrating along a shortest straight lineγ from x1 where
|u(x1)| = sup |u| to the nodal set{u = 0}, we obtain

diam(M) ≥
∫

γ

|∇u|
√

α(1 + β√
2−β

)− αu2
(1.37)

≥ 1√
α

∫ 1

0

du
√

1 + β√
2−β

− u2

=
1√
α
sin−1 1

√

1 + β√
2−β

so that

(1.38) λ2 − λ1 − β
√
c = α ≥

(

sin−1 1
√

1 + β√
2−β

)2
1

diam(M)2
,
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(1.39) λ2 − λ1 ≥ θ2(β)

diam(M)2
+ β

√
c,

where

(1.40) θ(β) = sin−1 1
√

1 + β√
2−β

This finishes the proof of Theorem 1.1.

Formula (1.5) will satisfy the hypothesis of Theorem 1.1 if the Hessian ofϕ1 has a lower bound
(1.7). This will be proved in section two for convex domain.

THEOREM 1.2. For a convex domainΩ with a potentialV whose Hessian has a lower bound
c > 0. Then (1.8) holds.

2 Nonconvex Potential

For the first eigenfunctionu1 defined on the domainΩ in Euclidean space, we know that the
Hessian ofϕ = − logu1 tends to infinity if∂Ω is strictly convex andu1 = 0 on∂Ω. Since

(2.1) ∆ϕ = |∇ϕ|2 − V + λ1,

we deduce

(2.2) ∆
∂2ϕ

∂x2i
= 2

∑

( ∂2ϕ

∂xi∂xj

)2

+ 2∇ϕ · ∇
(∂2ϕ

∂x2i

)

− ∂2V

∂x2i
.

If ∂2V
∂x2

i

≥ c > 0 in Ω, then we can argue from (2.1) that at pointx ∈ Ω where∂2ϕ
∂x2

i

is minimum,
∂2ϕ

∂xi∂xj
= 0 for j 6= i and

(2.3) 2
(

min
i

∂2ϕ

∂x2i

)2

≥ ∂2V

∂x2i
≥ c > 0.

The continuity argument here was used by me in 1980 to handle the log concavity ofu1. By

looking attV +
(1−t)c

P

x2

i

2n , we know that whent = 0, mini
∂2ϕ
∂x2

c
≥
√

c
2 > 0. It follows from (2.3)

that this must be valid whent = 1 also.

THEOREM 2.1. For a Dirichlet problem with∂2V
∂x2

i

≥ c > 0, the first eigenfunctionu1 satisfies

the inequality−∂2 log u1

∂x2

i

≥
√

c
2 > 0.

We shall now treat the case whenV is not necessary convex. We shall assume Neumann bound-
ary condition.

First of all, we give an upper bound for for∆ϕ. From (2.1), it is trivial to verify that

(2.4) ∆(∆ϕ) = 2∇ϕ · ∇(∆ϕ) + 2 |∇∇ϕ|2 −∆V.

Since|∇∇ϕ|2 ≥ 1
n (∆ϕ)

2, we conclude that if∆ϕ achieves its maximum in the interior ofΩ,

(2.5) (∆ϕ)2 ≤ n sup∆V

2
.
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On the other hand, if∆ϕ achieves its maximum on the boundary∂Ω,

(2.6)
∂(∆ϕ)

∂ν
≤ 0.

From (2.1) and that∂ϕ∂ν = 0, we conclude that

(2.7)
∑

i6=ν

ϕiϕiν ≤ ∂V

∂ν
.

If the second fundamental of∂Ω has eigenvalue greater thanλ > 0, we conclude from (2.7) that

(2.8) |∇ϕ|2 ≤ 1

λ

∂V

∂ν
.

Therefore

∇ϕ = |∇ϕ|2 − V + λ1(2.9)

≤ 1

λ

∂V

∂ν
− V + λ1.

THEOREM 2.2. For the Neumann problem on a convex domainΩ whose boundary have prin-
ciple curvature greater thanλ > 0. Then either

∇ϕ ≤ n

2

√

sup
Ω

∆V or

∆ϕ ≤ sup
∂Ω

( 1

λ

∂V

∂v
− V

)

+ λ1.

In particular forϕ = − log u1, |∇ϕ|2 − V + λ1 ≤ n
2

√

supΩ∇V or sup
(

1
λ

∂V
∂v

)

+ λ1.

In order to obtain lower estimate of the Hessian ofϕ, we argue as follows.

For simplicity we shall assume that our domain is the ball inRn. We shall use polar coordinate
so that

(2.10) ∆ =
∂2

∂r2
+
n− 1

r

∂

∂r
+

1

r2
∆θ.

Therefore the operator∆θ commutes with∆ and we obtain

∆(∆θϕ) = 2ϕr(∆θϕ)r + 2r−2
∑

i

ϕθi(∆θϕ)θi(2.11)

+2(n− 2)r−2
∑

ϕ2
θi + 2

∑

ϕ2
rθi

+2r−2
∑

ϕ2
θiθj −∆θV.

Since we assume the Neumann boundary condition,ϕr = 0 along the boundary and so
(∆θϕ)r = 0 along the boundary. By the sharp maximum principle, we can assume that∆θϕ
achieves its maximum in the interior ofΩ which implies by (2.11) that

(2.12) sup∆θϕ ≤ (n− 1)1/2√
2

r sup
Ω

(∆θV )
1/2
+ .

If we compute the upper bound of the spherical Hessian ofϕ, we can apply the same argument
to find

(2.13) sup
Ω

∂2ϕ

∂θ2i
≤ 1

8
+ r sup

Ω

(r∂2V

∂θ2i

)1/2

+
.
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In order to obtain estimate of the full Hessian ofϕ, we use the equation

∆
(r∂ϕ

∂r

)

= 2∆ϕ+
r∂(∆ϕ)

∂r
(2.14)

= 2∆ϕ+ 2∇ϕ · ∇
(r∂ϕ

∂r

)

− 2 |∇ϕ|2 − r∂V

∂r

= −2V + 2λ1 −
r∂V

∂r
+ 2∇ϕ · ∇

(r∂ϕ

∂r

)

.

Similarly

∆
[

r
∂

∂r

(

r
∂ϕ

∂r

)]

= 2∆
(r∂ϕ

∂r

)

+ r
∂

∂r
∆
(

r
∂ϕ

∂r

)

(2.15)

= −4V + 4λ1 − 2r
∂V

∂r
+ 4∇ϕ · ∇

(r∂ϕ

∂r

)

−2r
∂

∂r
(V − λ1)− r

∂

∂r

(

r
∂V

∂r

)

+2
∣

∣

∣
∇
(

r
∂u

∂r

)∣

∣

∣

2

+ 2∇ϕ · ∇
(

r
∂

∂r

(

r
∂u

∂r

))

−4∇ϕ · ∇
(

r
∂ϕ

∂r

)

.

Hence ofr ∂
∂r

(

r ∂ϕ∂r

)

achieves its maximum in the interior ofΩ,

(2.16) 2
∣

∣

∣
∇
(

r
∂ϕ

∂r

)∣

∣

∣

2

≤ r
∂

∂r

(

r
∂V

∂r

)

+ 4r
∂V

∂r
+ 4V − 4λ1.

Hence in this case,

(2.17) sup r
∂

∂r

(

r
∂ϕ

∂r

)

≤ sup
Ω

√

(1

2
r
∂

∂r

(∂V

∂r

)

+ 2r
∂V

∂r
+ 2V − λ1

)

.

If r ∂
∂r

(

r ∂ϕ∂r

)

achieves its maximum at the boundary ofΩ, we note that

r
∂

∂r

(

r
∂ϕ

∂r

)

=
d2ϕ

dr2
+
n− 1

r

∂ϕ

∂r
− n− 2

r

∂ϕ

∂r
(2.18)

= ∆ϕ− 1

r2
∆θϕ− n− 2

r

∂ϕ

∂r

= |∇ϕ|2 − V + λ1 −
1

r2
∆θϕ− n− 2

r

∂ϕ

∂r
.

Since∂ϕ
∂r = 0 along the boundary and∂∂r

(

r ∂
∂r

(

r ∂ϕ∂r

))

≥ 0 at the maximum point,

0 ≤ − 2

r3
|∇θϕ|2 −

∂V

∂r
+

2

r3
∆θϕ− n− 2

r

∂2ϕ

∂r2
(2.19)

= − 2

r3
|∇θϕ|2 −

∂V

∂r
+

2

r

(

∆ϕ− ∂2ϕ

∂r2

)

− n− 2

r

∂2ϕ

∂r2

= − 2

r3
|∇θϕ|2 −

∂V

∂r
+

2

r

( 1

r2
|∇θϕ|2 − V + λ1

)

− n

r

∂2ϕ

∂r2
.
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Hence in this case

(2.20) sup r
∂

∂r

(

r
∂ϕ

∂r

)

≤ 1

n
sup
∂Ω

[

− r3
∂V

∂r
− 2r2(V − λ1)

]

.

Hence either (2.17) or (2.20) hold.

Note that since∆ϕ is the sum of the Hessian ofϕ in radial and spherical directions and sum we
have upper estimate of Hessian in these directions, we have also lower estimate of them in terms of
∆ϕ.

THEOREM 2.3. For the Neumann problem whenΩ is a ball, andϕ = − logu1, (2.13) holds
for spherical Hessian and either (2.17) or (2.20) hold for radial Hessian.

To obtain the full Hessian estimate ofϕ, we need to controlϕrθ and then can be accomplished
as follows:

Call ψ = r ∂ϕ∂r . Then according to equation (2.14), we compute

∆(|∇ψ|2 + cψ2) = 2
∑

ψ2
ij + 2∇ψ∇(∆ψ) + 2c |∇ψ|2 + 2cψ∆ψ(2.21)

= 2
∑

ψ2
ij − 4∇ψ · ∇V − 2∇ψ · ∇

(

r
∂V

∂r

)

+4
∑

ϕiψijψj + 4
∑

ψiϕijψj

+2c |∇ψ|2 + 2c
(

− 2V + 2λ1 − r
∂V

∂r

)

ψ

+4cψ∇ϕ∇ψ.

If sup(|∇ψ|2 + cψ2) occurs in the interior, we obtain from (2.21)

0 ≥ 2
∑

ψ2
ij − 4∇ψ · ∇V − 2∇ψ · ∇

(

r
∂V

∂r

)

(2.22)

+4
∑

ψiϕijψj + 2c |ψ|2

−4cV ψ + 4cλ1ψ − 2cr
∂V

∂r
ψ.

Note that

(2.23)
∑

ψiϕijψj = ψ2ϕrr + 2ψr

∑

ϕrθjψθj + 2
∑

ψθiϕθiθjψθj .

Since we have already estimateϕrr,ψr andϕθiθj , we conclude that
∑

ϕiϕijϕj can be estimated

by |∇ψ|2. By choosingC large enough, we conclude from (2.23)|∇ψ|2 + cψ2 can be estimated
from the information ofV , ∇V and∇∇V .

If |∇ψ|2 + cψ2 achieves its maximum on the boundary ofΩ,

(2.24) 0 ≤ 2
∑

ψjψjν + 2ψψν.

Noteψ = 0 on∂Ω, and hence

0 ≤
∑

j

ψjψjν(2.25)

= ψνψνν

= ψν(∆ψ)−Hψ2
ν

= ψnu

(

− 2V + 2λ1 − r
∂V

∂r

)

+ 2ϕvψ
2
ν −Hψ2

ν

9



whereH is the mean curvature of∂Ω.

Asϕν = 0 on∂Ω, we conclude that if|∇ψ|2 + cψ2 achieves its maximum on∂Ω,

(2.26) ψ2
ν + cψ2 ≤ sup

∂Ω

1

H2

(

− 2V + 2λ1 − r
∂V

∂r

)2

THEOREM 2.4. If ψ = r ∂ϕ∂r , |∇ϕ| can be estimated byV , ∇V , ∇∇V using (2.22), (2.23) and
(2.25).

This completes estimates for the full Hessian ofϕ.

Incidently (2.14) shows that

(2.27) ∆
(

r
∂ϕ

∂r
− 2ϕ

)

= 2∇ϕ · ∇
(

r
∂ϕ

∂r
− 2ϕ

)

+ 2 |∇ϕ|2 − r
∂V

∂r
.

Suppose we want to find an upper estimate ofr ∂ϕ∂r − 2ϕ, we can proceed as follows. For any
functionf such that

(2.28) ∆f − 1

2
|∇f |2 − r

∂V

∂r
≥ 0

we find that at an interior maximum point ofr ∂ϕ∂r − 2ϕ+ f , we have

0 ≥ 2 |∇ϕ|2 − 2∇ϕ · ∇f − r
∂V

∂r
+∆f(2.29)

= 2
∣

∣

∣
∇ϕ− 1

2
∇f
∣

∣

∣

2

− 1

2
|∇f |2 − r

∂V

∂r
+∆f.

Hence the maximum ofr ∂ϕ∂r − 2ϕ + f must occur on the boundary of∂Ω which is at most
max∂Ω(−2ϕ+ f).

THEOREM 2.5. For the Neumann problem withϕ = − log u1,

(2.30) r
∂ϕ

∂r
− 2ϕ+ f ≤ max

∂Ω
(f − 2ϕ)

wheref is any function satisfies (2.29).

If we normalizeu1 so thatu1 ≤ 1 on∂Ω thenmax∂Ω(−2ϕ) ≤ 0 and (2.30) gives a good growth
estimate ofϕ.

For example, if∂V∂r ≥ 0, we can then takef = 0 and (2.30) says thatϕr2 is monotonic decreasing
which means thatu1 decays like a Gaussian.

3 Estimate of gap for more general potential

We shall improve the estimate that we obtained in section one.

Let c be any constant greater thansupu whenu = u2

u1

. Let α be a positive constant to be
determined. Then consider the function

10



(3.1) F =
|∇u|2

(c− u)2
+ α log(c− u).

Then

(3.2) Fi = 2(Σujuji)(c− u)−2 + 2|∇u|2ui(c− u)−3 − αui(c− u)−1,

∆F = 2(
∑

u2ji)(c− u)−2 + 2(
∑

uj(∆u)j)(c− u)−1(3.3)

+8(
∑

ujujiui)(c− u)−3 + 2|∇u|2∆u(c− u)−3

+6|∇u|4(c− u)−4 − α(∆u)(c− u)−1

−α|∇u|2(c− u)−2.

Sinceu satisfies the Neumann condition and∂Ω is assumed to be convex,F can not achieve its
maximum at the boundary ofΩ as its normal derivative would have to be positive. So we assumeF
achieves its maximum in the interior ofΩ where∇F = 0.

If ∇u 6= 0 at this point, we can choose coordinate so thatu1 6= 0 andui = 0 for i > 1. Then

(3.4) u11(c− u)−1 + |∇u|2(c− u)−2 =
α

2
.

Hence

∆F ≥ 2|∇u|4(c− u)−4 − 2α|∇u|2(c− u)−2(3.5)

+
α2

2
− 2(λ2 − λ1)|∇u|2(c− u)−2

+4(inf ϕii)|∇u|2(c− u)−2

+4α|∇u|2(c− u)−2 − 2|∇u|4(c− u)−4

−2(λ2 − λ1)u(c− u)−1|∇u|2(c− u)−2

+α(λ2 − λ1)u(c− u)−1 − α|∇u|2(c− u)−2.

If we chooseα so that

(3.6) α ≥ 2(λ2 − λ1)− 4 inf ϕii + 2(λ2 − λ1)(sup u)(c− supu)−1,

(3.7) α > 2(λ2 − λ1)(sup u)(c− supu)−1.

Then∆F > 0 which is not possible. Hence at∇F = 0, ∇u = 0 and we obtain

(3.8) supF ≤ α log c.

If we choosec = (1 + ε) supu with ε > 0, we can choose

(3.9) α = 2(λ2 − λ1)(1 + ε−1)− 4 inf ϕii.

(Here we assumeinf ϕii ≤ 0, otherwise we can apply section 1.)

11



THEOREM 3.1. Chooseα to be (3.9), then

(3.10)
|∇u|
c− u

≤
√
α(log(c)− log(c− u))

1

2 .

Therefore

(3.11)
∣

∣

∣
∇
(

log
( c

c− u

))
1

2

∣

∣

∣
≤ 1

2

√
α.

Integrating this inequality fromu = supu to u = 0, we find

(3.12)

√

log
(

1 +
1

ε

)

≤ 1

2

√
αd(Ω).

Hence

α ≥ 4 log
(

1 +
1

ε

)

d(Ω)−2.

In particular

(3.13) (λ2 − λ1)(1 + ε−1) ≥ 2 log
(

1 +
1

ε

)

d(Ω)−2 + 2 inf ϕii.

Hence

(3.14) λ2 − λ1 ≥ 2d(Ω)−2 exp[(inf ϕii)d(Ω)
2].

THEOREM 3.2. LetΩ be a convex domain so that for the first eigenfunctionu1 of the operator
−∆+ V , the Hessian of− log u1 is greater than−a. Then the gap of the first eigenfunction of the
operator−∆+ V is greater than

(3.15) λ2 − λ1 ≥ 2d(Ω)−2 exp(−ad2(Ω)).

Note that we have estimatea in section 2 already and (3.15) does give a gap estimate for arbitrary
smooth potential.

Note that Theorem 3.2 shows that it is possible to estimateλ2 − λ1 from below depending only
on the lower bound of the Hessian of potential as long asΩ is convex andd(Ω) is finite. The estimate
may not be optimal and it is possible thatd(Ω) should be replaced by integral of some function.

4 Behavior of the ground state

It is clear from the above discussions that the behavior of the Hessian of the functionϕ =
− logu1 is important. Since

(4.1) ∆ϕ = |∇ϕ|2 − V + λ1.

It is clear that upper estimate of∆ϕ can be used to control the growth ofϕ and hence the growth of
u1.

Clearly,

(4.2) ∆(∆ϕ) = 2
∑

ϕ2
ij − 2

∑

ϕj(∆ϕ)j −∆V.

Let ρ be a nonnegative function which varnishes on∂Ω, then

∆(ρ2∆ϕ) = 2(ρ∆+ |∇ρ|2)∆ϕ+ 2ρ∇ρ · ∇(∆ϕ)(4.3)

+ρ2(2
∑

ϕ2
ij − 2

∑

ϕj(∆ϕ)j −∆V ).
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At the point whereρ2∆ϕ achieves its maximum,∇(ρ2∆ϕ) = 0 and

(4.4) ρ∇(∆ϕ) + 2(∆ϕ)∇ρ = 0.

Hence

∆(ρ2∆ϕ) = 2(ρ∆ρ− 3|∇ρ|2)∆ϕ(4.5)

+2ρ2
∑

ϕ2
ij − 4ρ∆ϕ(ρ · ∇ϕ)− ρ∆V.

Note

(4.6) |∇ρ · ∇ϕ| ≤ |∇ρ|(
√

|∇ϕ|2 − V + λ1 +
√

(V − λ1)+),

where(V − λ1)+ is the positive part ofV − λ1. Therefore whenρ2∆ϕ achieves its maximum,

0 ≥ 2(ρ∆ρ− 3|∇ρ|2)ρ2∆ϕ+
2

n
(ρ2∆ϕ)2(4.7)

−4(ρ2∆ϕ)|∇ρ|(
√

ρ2∆ϕ+
√

(V − λ1))+ − ρ4∆V.

THEOREM 4.1. For any functionρ vanishing at the boundary ofΩ, ρ2∆ϕ is bounded from
above bysup(ρ∆ρ− 3|∇ρ|2), sup |∇ρ|2, sup ρ2

√

(∆V )+ andsup |∇ρ|
√

(V − λ1)+.

Note that ifV grows at most quadratically, Theorem 4.1 shows that∆ϕ can be bounded from
above in terms of(∆V )+. Since∆ϕ = |∇ϕ|2−V −λ1, |ϕ| can not grow faster than the integral of
√

(V − λ1)+ along paths tend to infinity. In particular for the first eigenfunctionu1 = exp(−ϕ1),
it cannot decay too fast.

References

[1] R. Schoen and S.-T. Yau,Lectures on differential geometry, International Press, 1994.

[2] I. Singer, B. Wong, Stephen Yau and S.-T. Yau,An estimate of the gap of the first two eigen-
values in the Schrödinger operator, Ann. Scuola Norm. Sup. Pisa,12 (1985), 319-333.

13


	Convex potential
	Nonconvex Potential
	Estimate of gap for more general potential
	Behavior of the ground state

