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RICCI CURVATURE AND EIGENVALUE ESTIMATE ON
LOCALLY FINITE GRAPHS

Yong Lin and Shing-Tung Yau

Abstract. We give a generalizations of lower Ricci curvature bound in the framework
of graphs. We prove that the Ricci curvature in the sense of Bakry and Emery is bounded

below by −1 on locally finite graphs. The Ricci flat graph in the sense of Chung and

Yau is proved to be a graph with Ricci curvature bounded below by zero. We also get
an estimate for the eigenvalue of Laplace operator on finite graphs:

λ ≥
1

dD(exp(dD + 1)− 1)
,

where d is the weighted degree of G, and D is the diameter of G.

1. Introduction

The Ricci curvature plays a very important role on geometric analysis on Rie-
mannian manifolds. Many results are established on manifolds with non-negative
Ricci curvature or on manifolds with Ricci curvature bounded below. For analysis on
graphs, there is no way to define the derivative, so we can’t define the Ricci curvature
in classical sense. However, Bakry and Emery find a way to define the ”lower Ricci
curvature bound” through the heat semigroup (Pt)t≥0 on a metric measure space M .
In fact to say that Ricci curvature is bounded below by a constant −K is equivalent
to say that [

1
2

(
∆− ∂

∂t

)]2

(Ptf)2 ≥ −K

[
1
2

(
∆− ∂

∂t

)]
(Ptf)2 ,

for any f ∈ C∞0 (M), t ≥ 0. In this setting, Bakry, Ledoux and Qian [2] established
several dimension free estimates for logarithmic sobolev constants and constant spec-
tral gap for a diffusion semigroup on a so-called length space. They also proved a
dimension-free version of the famous Li-Yau’s [7] heat kernel upper bound for the
length spaces with non-negative Ricci curvature. We will use the idea of Bakry and
Emery [1] to give a notion of a ”lower Ricci curvature bound” on graphs and to prove
that Ricci curvature on Locally finite graphs is always bounded below by a constant.
Recently Sturm [12] has given the definition of a ”lower Ricci curvature bound” on
metric measure space and prove that it is stable under an appropriate notion of con-
vergence of the spaces. There are some recent works on giving a good notion for a
metric measure space to have a ”lower Ricci curvature bound”, see [8] and [9].
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Suppose G is a unordered graph with vertex set V (V could be an infinite set) and
edge set E. If for every vertex x of V , the number of edges connect to x is finite, we
say that G is a locally finite graph. (x, y) denotes the edge of G connected by the two
vertices x and y. The distance between two vertices is the minimum number of edges
to connect them, the diameter of G is the maximum of all the distances of the graph.
µxy = µyx ≥ 0 is a symmetric weight on V × V . We denote the degree of vertex X
by dx =

∑
(x,y)∈E

µxy. The weighted degree of the graph G is

d = sup
x∈V

sup
(x,y)∈E

dx

µxy
.

Let
V R = {f | f : V → R}.

The Laplace operator ∆ of a graph G is

∆f(x) =
1
dx

∑
(x,y)∈E

µxy[f(y)− f(x)],

for f ∈ V R.
Define a bilinear operator

Γ : V R × V R → V R,

by

Γ(f, g)(x) =
1
2
{∆(f(x)g(x))− f(x)∆g(x)− g(x)∆f(x)}.

According to Bakry and Emery [1], the Ricci curvature operators Γ2 is defined by
iterating the Γ:

Γ2(f, g)(x) =
1
2
{∆Γ(f, g)(x)− Γ(f,∆g)(x)− Γ(g,∆f)(x)}

For simplicity, we will omit the variable x in the following equations. We should
notice that all the equations will hold locally for every x ∈ V .

Definition 1.1. The operator ∆ satisfies the curvature-dimension type inequality
CD(m,K)(m ∈ (1,+∞]) if

Γ2(f, f) ≥ 1
m

(∆f)2 + KΓ(f, f).

We call m the dimension of the operator ∆ and K the lower bound of the Ricci
curvature of the operator ∆.

It is easy to see that for m < m′, the operator ∆ satisfies the curvature-dimension
type inequality CD(m′,K) if it satisfies the curvature-dimension type inequality
CD(m,K).

If Γ2 ≥ KΓ, we say that ∆ satisfies CD(∞,K).
For Laplace operator ∆ on a complete m dimensional Riemannion manifold, the

operator ∆ satisfies CD(m,K) iff the Ricci curvature of the Riemanian manifold is
bounded below by constant K.

In this paper, we will prove the following results.
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Theorem 1.2. Suppose G is a locally finite graph and the weighted degree of the
graph G is finite, ∆ is the Laplace operator of G. Then we have

Γ2(f, f) ≥ 1
2
· (∆f)2 + (

1
d
− 1)Γ(f, f).

i.e.the Laplace operator ∆ satisfies CD(2, 1
d − 1).

If the weighted degree of graph G is not finite, we have

Theorem 1.3. Suppose G is a locally finite graph, ∆ is the Laplace operator of G,
then we have

Γ2(f, f) ≥ 1
2
· (∆f)2 − Γ(f, f).

i.e. the Laplace operator ∆ satisfies CD(2,−1).
Bakry, Ledoux and Qian [2] studied this curvature operator Γ2 on the σ-finite

measure space (M,B(M), µ), where M is a separable Hausdorff space with its Borel
σ-field B(M) and µ is a σ-finite measure on (M,B(M)). They gave a µ-symmetric
diffusion transition semigroup (Pt)t≥0, and its Dirichlet form (E , F ) by definition:

E(f, f) = lim
t→0

1
t

< f − Ptf, f >, f ∈ L2(M,µ),

and F = {f ∈ L2(M,µ) : E(f, f) < ∞}, where < ., . > denotes the scale product in
L2(M,µ).

The generator of the semigroup (Pt)t≥0 is denoted by ∆ with its domain D(∆).
Assume that there is an algebra A consisting of some continuous functions on M ;
densed both in C(M) and Lp(M,µ)(p ≥ 1), and A ⊂ D(∆). Then for the bilinear
operator Γ : A×A → A,

E(f, f) =
∫

Γ(f, f)dµ.

(Pt)t≥0 is called a diffusion semigroup, if its generator ∆ satisfies the chain role:

∆F (u) =
m∑

i=1

∂F

∂xi
∆ui +

m∑
i,j=1

∂2F

∂xi∂xj
Γ(ui, uj),

for u = (u1, ..., um), ui ∈ A and F ∈ C2
b (Rm).

For the Laplace operator ∆ on graphs, the functions in the domain D(∆) are
discrete, so it is not a diffusion operator in the above sense. But from the following
Lemma, it is a correct operator on the definition of Ricci curvature operator on graphs.
In the classic case,

Γ(f, f) = |∇f |2.
For a graph G,

|∇f |2(x) =
1
dx

∑
(x,y)∈E

µxy[f(x)− f(y)]2.

Lemma 1.4. Suppose that G is a locally finite graph and ∆ is the Laplace operator
on G, then

Γ(f, f) =
1
2
|∇f |2 =

1
2
{∆(f2)− 2f∆f}.
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Proof. From the definition of Laplacian ∆,

∆(f2(x)) =
1
dx

∑
(x,y)∈E

µxy[f2(y)− f2(x)]

=
1
dx

∑
(x,y)∈E

µxy[f(y)− f(x)][f(y) + f(x)]

=
2
dx

∑
(x,y)∈E

µxy[f(y)− f(x)]f(x) +
1
dx

∑
(x,y)∈E

µxy[f(y)− f(x)]2

= 2f(x)∆f(x) + |∇f |2(x).

So

Γ(f, f) =
1
2
|∇f |2 =

1
2
{∆(f2)− 2f∆f}.

�

After this paper was finished. We notice that Ollivier [10] gave a notion of Ricci
curvature valid on arbitrary metric spaces, such as graphs. We can also prove that
the Ricci curvature in the sence of Ollivier on graphs also has a lower bound. For
Riemannian manifold with a differential operator associated with a stochastic differ-
ential equation. The Ricci curvature in the sense of Bakry-Emery is comparitive with
the Ricci curvature in the sense of Ollivier, see [10]. However in other case, it is not
clear what is the relation between this two Ricci curvature.

Let (X, d) be a Polish metric space, equipped with its Borel σ-algebra. A random
walk m on X is a family of probability measures mx(·) on X for each x ∈ X, satisfying
the following two technical assumptions: (i) the measure mx depends measurably on
the point x ∈ X; (ii) each measure mx has finite first moment, i.e. for some(hence
any) o ∈ X, for any x ∈ X one has

∫
d(o, y) dmx(y) < ∞.

The Ricci curvature R(x, y) of (X, d, m) along with (xy) defined by Ollivier is:

R(x, y) := 1− τ1(mx,my)
d(x, y)

,

where τ1(mx,my) = supf∈Ω[
∫

fdmx−
∫

fdmy], Ω = {f : X → R | |f(z1)−f(z2)| ≤
d(z1, z2)}.

Ollivier found that (Proposition 19 in [10]) in geodesic space, it is enough to know
R(x, y) for close point, for example, on graphs, we can assume that x is adjacent to
y.

Let G be an infinite weighted and connected graph(for simplicity, we assume all
the weight equal to 1), on which is endowed with a metric d such that d(v1, v2) is the
smallest length of pathes connecting v1 and v2. We denote v1 ∼ v2 if v1 is a neighbor
of v2.

Suppose x, y are vertices of the graph G with their degree dx and dy respectively.
We assume that there is an edge connecting x and y.

Under the above assumption, we have the following proposition.

Proposition 1.5. The Ricci curvature of Ollivier R(x, y) ≥ 2
dx

+ 2
dy
− 2.
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Proof. Let Ω = {f : G → R | |f(z1)− f(z2)| ≤ d(z1, z2)}.
For any vertex v, a probability measure mx related to v is defined by

mv =
1
dv

∑
w∼v

δw,

where dv is the degree of v and δw is the atomic measure centered at w. It follows
from [10] that the Ricci curvature

R(x, y) = 1−
supf∈Ω[

∫
fdmx −

∫
fdmy]

d(x, y)
.

Here d(x, y) = 1. It suffices to show that for any f ∈ Ω,

(1.1)
∫

fdmx −
∫

fdmy ≤ 3− 2
dx
− 2

dy
.

Since f ∈ Ω, we have |f(v1)− f(v2)| ≤ 1 for any v1 ∼ v2. Hence∫
fdmx −

∫
fdmy

= f(x)(0− 1
dy

) + f(y)(
1
dx
− 0) +

1
dx

∑
w∼x,w 6=y

f(w)− 1
dy

∑
u∼y,u 6=x

f(u)

= f(x)(
dx − 1

dx
− 1

dy
) + f(y)(

1
dx
− dy − 1

dy
)

+
1
dx

∑
w∼x,w 6=y

[f(w)− f(x)]− 1
dy

∑
u∼y,u6=x

[f(u)− f(y)]

= (
dxdy − dx − dy

dxdy
)[f(x)− f(y)]

+
1
dx

∑
w∼x,w 6=y

[f(w)− f(x)]− 1
dy

∑
u∼y,u6=x

[f(u)− f(y)]

≤ (
dxdy − dx − dy

dxdy
) +

dx − 1
dx

+
dy − 1

dy

= 3− 2
dx
− 2

dy
.

That means inequality (1.1) holds and thus Proposition 1.5 is proved. �

In [5], Chung and Yau gave a notion of Ricci flat graphs. For a vertex v, the
neighborhood N(v) of v consists of v and vertices adjacent to v. We say graph G has
a local k-frame at v if there are mappings η1, ..., ηk: N(v) → V satisfying

(1) G is k-regular;
(2) u is adjacent to ηiu for every u ∈ V and 1 ≤ i ≤ k;
(3) ηiu 6= ηju if i 6= j.
A graph G is said to be Ricci flat if G has a local k-frame and⋃

j

ηiηjv =
⋃
j

ηjηiv

for any i and vertex v.
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For example, the grid Zn is Ricci flat.
We will show that the Ricci flat graphs are graphs with Ricci curvature bounded

below by zero. That is

Proposition 1.6. (1)Suppose a graph G is Ricci flat, ∆ is the Laplace operator of
G, then we have

Γ2(f, f) ≥ 0.

i.e. the Laplace operator ∆ satisfies CD(∞, 0).
(2)Suppose the graph G is triangle graph with three vertices(a special Ricci flat

graph), then we have

Γ2(f, f) ≥ 1
2
· (∆f)2 +

1
4
Γ(f, f).

i.e. the Laplace operator ∆ satisfies CD(2, 1
4 ).

We can also show that the Ricci flat graphs are graphs with Ricci curvature
bounded below by zero in the sense of Ollivier. In most cases, the Ricci curvature is
zero, except for some very special examples like complete graph(every two vertices of
graph connected by an eage), the Ricci curvature is positive. The proof is similar to
the case of the grid Zn, see Example 5 in [10]. See also the proof of Proposition 1.5.

Suppose a function f : V → R satisfies

(−∆)f(x) =
1
dx

∑
(x,y)∈E

µxy[f(x)− f(y)]

= λf(x),

then f is called a harmonic eigenfunction of Laplace operator on G with eigenvalue
λ.

For Riemannian manifold with lower bound on Ricci curvature, Li and Yau [6]
proved the following result by using the gradient estimate of harmonic eigenfunction.

Theorem 1.7. Let M be a compact Riemannian manifold of empty boundary with
lower Ricci curvature bound −(n− 1)k(k ≥ 0), then

λ ≥ exp{−[1 + (1 + 4(n− 1)2d2k)
1
2 ]}

(n− 1)d2
,

where d = diam(M), n = dim(M).

For finite connected graphs, Fan Chung [4] got a lower bound for the eigenvalue of
Laplace operator, see also Barlow, Coulhon and Grigor’yan [3].

Since for graphs they always have a lower bound on the Ricci curvature, we can
expect a similar estimate for the eigenvalue of Laplace operator. In fact we can also
get a lower bound similar to the bound of Li and Yau by using the gradient estimate of
harmonic eigenfunction on graphs. We expect more results on graphs can be proved
in this direction.

Suppose G is a weighted and connected graph (i.e. any two vertices of G can be
connected by a path on G), let d be the weighted degree of G, and D be the diameter
of G.
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Theorem 1.8. Suppose G is a connected graph with diameter D, then the nonzero
eigenvalue of minus Laplace operator −∆ on G

λ ≥ 1
dD(exp(dD + 1)− 1)

,

Remark 1.9. In [3] and [4], the lower bound for the eigenvalue is λ ≥ 1
DVolG , where

VolG denote the volume of G, given by

VolG =
∑

x

dx.

Suppose G is a d-regular graph(i.e. every vertex of G has same degree d), in [4]
section 6.5, for given d and the diameter D, a graph G can have as many as d(d−1)D

vertices, then the VolG = d2(d − 1)D. So in the denominator of the lower bounded
of the eigenvalue, we can’t expect a polynomial growth in term of diameter D. And
in most cases, the lower bound of Theorem 1.8 is worse than the lower bound in [3]
and [4]. We only get a lower bound similar to the case of manifold by using gradient
estimate. By the way, we think the lower bound of Chung can’t be improved too
much.

2. The proofs of the Theorem 1.2, Theorem 1.3 and Proposition 1.6

First we prove the following Lemma. The idea to use the Laplace operator on the
gradient is from Yau, Li and others, See [6], [7] and [11]. The notations on the graph
are from the book of Chung [4]. Suppose

ρ(x) = |∇f |2(x) =
1
dx

∑
(x,y)∈E

µxy[f(x)− f(y)]2

then we have

Lemma 2.1. Suppose that f ∈ V R, then for all x ∈ V

∆|∇f |2(x) =
1
dx
·

∑
(x,y)∈E

µxy

dy

∑
(y,z)∈E

µyz[f(x)− 2f(y) + f(z)]2 −

2
dx

∑
(x,y)∈E

µxy

dy

∑
(y,z)∈E

µyz[f(x)− 2f(y) + f(z)] · [f(x)− f(y)]

Proof. Let

ρ(x) =
1
dx

∑
(x,y)∈E

µxy[f(x)− f(y)]2,

then

ρ(y) =
1
dy

∑
(y,z)∈E

µyz[f(y)− f(z)]2

and
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(−∆)ρ(x)

=
1
dx

∑
(x,y)∈E

µxy[ρ(x)− ρ(y)]

=
1
dx

[dx · ρ(x)−
∑

(x,y)∈E

µxyρ(y)]

=
1
dx

[dx ·
1
dx
·

∑
(x,y)∈E

µxy(f(x)− f(y))2 −
∑

(x,y)∈E

µxy

dy

∑
(y,z)∈E

µyz(f(y)− f(z))2]

=
1
dx

[
∑

(x,y)∈E

µxy(f(x)− f(y))2 −
∑

(x,y)∈E

µxy

dy

∑
(y,z)∈E

µyz(f(y)− f(z))2]

=
1
dx
·

∑
(x,y)∈E

µxy

dy

∑
(y,z)∈E

µyz[(f(x)− f(y))2 − (f(y)− f(z))2]

= − 1
dx
·

∑
(x,y)∈E

µxy

dy

∑
(y,z)∈E

µyz[f(x)− 2f(y) + f(z)]2 +

2
dx

∑
(x,y)∈E

µxy

dy

∑
(y,z)∈E

µyz[f(x)− 2f(y) + f(z)] · [f(x)− f(y)].

This proves the Lemma 2.1.
�

The proof of Theorem 1.2:

Proof. The Ricci curvature operator

(2.1) Γ2(f, f) =
1
2
{∆Γ(f, f)− 2Γ(f,∆f)},

where

Γ(f, f) =
1
2
|∇f |2.

The bilinear operator

Γ(f,∆f) =
1
2
{∆(f∆f)− f∆(∆f)− (∆f)2},

where
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∆(f(x)∆f(x))

=
1
dx

∑
(x,y)∈E

µxy[f(y)∆f(y)− f(x)∆f(x)]

=
1
dx

∑
(x,y)∈E

µxy[f(y)∆f(y)− f(y)∆f(x) + f(y)∆f(x)− f(x)∆f(x)]

=
1
dx

∑
(x,y)∈E

µxyf(y)[∆f(y)−∆f(x)] +
1
dx

∑
(x,y)∈E

µxy[f(y)− f(x)]∆f(x)

=
1
dx

∑
(x,y)∈E

µxy[f(y)− f(x)] · [∆f(y)−∆f(x)] +

1
dx

∑
(x,y)∈E

µxyf(x) · [∆f(y)−∆f(x)] + (∆f(x))2

=
1
dx

∑
(x,y)∈E

µxy[f(y)− f(x)] · [∆f(y)−∆f(x)] + f(x) ·∆(∆f(x)) + (∆f(x))2.

Then we have,

(2.2) Γ(f,∆f)(x) =
1
2
· 1
dx

∑
(x,y)∈E

µxy[f(y)− f(x)] · [∆f(y)−∆f(x)].

The equation (2.2) can also be implied by Lemma 1.4 and polarization.
Plugging (2.2) into (2.1) and using Lemma 1.4 and Lemma 2.1, we get

Γ2(f, f)(x)

=
1
2
· {∆(

1
2
|∇f |2(x))− 1

dx

∑
(x,y)∈E

µxy[f(y)− f(x)] · [∆f(y)−∆f(x)]}

=
1
4
· 1
dx
·

∑
(x,y)∈E

µxy

dy

∑
(y,z)∈E

µyz[f(x)− f(y)− f(y) + f(z)]2 −

1
2
· 1
dx

∑
(x,y)∈E

µxy

dy

∑
(y,z)∈E

µyz[f(x)− f(y)− f(y) + f(z)] · [f(x)− f(y)]−

1
2
· 1
dx

∑
(x,y)∈E

µxy[f(y)− f(x)] · ( 1
dy

∑
(y,z)∈E

µyz[f(z)− f(y)]−

1
dx

∑
(x,y)∈E

µxy[f(y)− f(x)])
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≥ 1
4dx

·
∑

(x,y)∈E

µxyµyx

dy
[2f(x)− 2f(y)]2 − 1

2
· 1
dx

∑
(x,y)∈E

µxy[f(x)− f(y)]2 +

1
2
· 1
dx
·

∑
(x,y)∈E

µxy

dy

∑
(y,z)∈E

µyz[f(z)− f(y)] · [f(y)− f(x)]−

1
2
· 1
dx
·

∑
(x,y)∈E

µxy

dy

∑
(y,z)∈E

µyz[f(z)− f(y)] · [f(y)− f(x)]

+
1
2
· ( 1

dx
·

∑
(x,y)∈E

µxy[f(y)− f(x)])2

≥ 1
d
· 1
dx
·

∑
(x,y)∈E

µxy[f(y)− f(x)]2 − 1
2
· 1
dx
·

∑
(x,y)∈E

µxy[f(y)− f(x)]2

+
1
2
· ( 1

dx
·

∑
(x,y)∈E

µxy[f(y)− f(x)])2

= (
1
d

+
1
2
) · (∆f(x))2 − 1

2
|∇f |2(x)

=
1
2
· (∆f(x))2 + (

1
d
− 1)Γ(f, f)(x).

where we choose the vertex z that is adjacent to y exactly to be vertex x in the
first term of the first inequality, and use dy

µyx
≤ d in the last inequality.

This proves the Theorem 1.2.
�

The proof of Theorem 1.3 is similar.

Finally we give the proof of Proposition 1.6: The proof of the first part is
similar to the proof of Theorem 1.2 by using a modification of the proof of Lemma
2.1. The idea of the modification comes from the paper [5]. We omit the proof here.

For the proof of the second part of the Proposition 1.6. Suppose the triangle graph
G with three vertices x, y and z. It is easy to imply the following equalities by
definition:

∆(
1
2
|∇f |2(x)) =

1
8
[2(f(z)− f(y))2 − (f(y)− f(x))2 − (f(z)− f(x))2]

and

Γ(f,∆f) = −3
8
[(f(y)− f(x))2 + (f(z)− f(x))2].

Therefore we have:
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Γ2(f, f)(x)

=
1
2
· {∆(

1
2
|∇f |2(x))− 2Γ(f,∆f)}

=
1
16
· [2(f(z)− f(y))2 + 5(f(y)− f(x))2 + 5(f(z)− f(x))2]

≥ 1
16
· [4(f(y)− f(x))2 + 4(f(z)− f(x))2 + (f(y)− f(x))2 + (f(z)− f(x))2]

≥ 1
16
· [2(f(y)− f(x) + f(z)− f(x))2 + (f(y)− f(x))2 + (f(z)− f(x))2]

=
1
2
· (∆f(x))2 +

1
4
Γ(f, f)(x)

This finish the proof of Proposition 1.6.

3. The Proof of Theorem 1.8

In this section, we will prove the Theorem 1.8.
Suppose f is a harmonic eigenfunction of G with eigenvalue λ 6= 0, then∑

x∈V

dxf(x) =
1
λ

∑
x∈V

dx(−∆)f(x)

=
1
λ

∑
x∈V

∑
(x,y)∈E

µxy[f(x)− f(y)]

=
1
λ

∑
x∈V

[dxf(x)−
∑

(x,y)∈E

µxyf(y)]

= 0

So we can assume that
sup f = 1 > inf f = k,

where k < 0. We can also assume that k > −1.
First we prove the following gradient estimate for the harmonic eigenfunction f .

Lemma 3.1. Suppose G is a locally finite graph, then
|∇f |(x)

(β − f(x))
≤
√

d(
1

β − 1
λ + 1),

where β > 1.

Proof. Since f is a harmonic eigenfunction of G with eigenvalue λ 6= 0, then

(−∆)f(x) =
1
dx

∑
(x,y)∈E

µxy[f(x)− f(y)]

= λf(x)

This implies that
1
dx

∑
(x,y)∈E

µxyf(y) = (1− λ)f(x).

Then we have
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|∇f |2(x)
(β − f(x))2

=

1
dx

∑
(x,y)∈E

µxy[f(x)− f(y)]2

(β − f(x))2

=

∑
(x,y)∈E

µxy[(β − f(x))− (β − f(y))]2

dx(β − f(x))2

=

∑
(x,y)∈E

µxy(β − f(x))2 − 2
∑

(x,y)∈E

µxy(β − f(x))(β − f(y))

dx(β − f(x))2

+

∑
(x,y)∈E

1
µxy

µ2
xy(β − f(y))2

dx(β − f(x))2

≤

∑
(x,y)∈E

µxy(β − f(x))2 − 2
∑

(x,y)∈E

µxy(β − f(x))(β − f(y))

dx(β − f(x))2

+

d
dx

(
∑

(x,y)∈E

µxy(β − f(y)))2

dx(β − f(x))2

=
dx(β − f(x))2 − 2dx(β − f(x))(β − (1− λ)f(x)) + ddx(β − (1− λ)f(x))2

dx(β − f(x))2

=
(β − f(x))2 − 2(β − f(x))(β − f(x) + λf(x)) + d(β − f(x) + λf(x))2

(β − f(x))2

=
−(β − f(x))2 + 2(d− 1)(β − f(x))λf(x) + d(β − f(x))2 + dλ2f2(x)

(β − f(x))2

= d− 1 + 2(d− 1)
λf(x)

(β − f(x))
+ d

λ2f(x)2

(β − f(x))2

≤ d− 1 + 2(d− 1)
λ

(β − 1)
+ d

λ2

(β − 1)2

≤ d(
1

β − 1
λ + 1)2.

In the proof of the first inequality, we use the fact that µxy(β − f(y)) > 0 and
dx

µxy
≤ d, then the sum of square of positive numbers is less than the square of the

sum of positive numbers. In the proof of the second inequality, we use the fact that
d ≥ 1 and f(x) ≤ 1.

From this we prove the Lemma 3.1. �

The proof of Theorem 1.8:

Proof. Take x1,xn in G, such that f(x1) = sup f = 1, f(xn) = inf f = k < 0 and
let x1,x2,...xn be a shortest path connecting x1 and xn, where (xi, xi+1) ∈ E. Then
n ≤ D.
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From the Lemma 3.1, we have

( 1
dx

∑
(x,y)∈E

µxy[f(x)− f(y)]2)
1
2

(β − f(x))
≤
√

d(
1

β − 1
λ + 1).

Since

| f(xi)− f(xi+1) |
β − f(xi)

≤
( 1

dxi

∑
(xi,yi)∈E

dxi

µxiyi
µxiyi

[f(xi)− f(yi)]2)
1
2

(β − f(xi))
≤
√

d
|∇f |(xi)

(β − f(xi))
,

we get

n−1∑
i=1

| f(xi)− f(xi+1) |
β − f(xi)

≤ Dd(
1

β − 1
λ + 1).

The left term side
n−1∑
i=1

| f(xi)− f(xi+1) |
β − f(xi)

≥
n−1∑
i=1

log(1 +
| f(xi)− f(xi+1) |

β − f(xi)
)

≥
n−1∑
i=1

log
β − f(xi) + f(xi)− f(xi+1)

β − f(xi)

=
n−1∑
i=1

log
β − f(xi+1)
β − f(xi)

≥ log
β

β − 1

therefore,

λ ≥ (β − 1)(
1

dD
log

β

β − 1
− 1)

To choose the β from the identity

1
dD

log
β

β − 1
− 1 =

1
dD

,

we get

λ ≥ 1
dD(exp(dD + 1)− 1)

,

This proves the Theorem 1.8. �
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