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Absract

We provide an explicit desingularization and study the resulting fiber geometry of
elliptically fibered fourfolds defined by Weierstrass models admitting a split Ã4 singularity
over a divisor of the discriminant locus. Such varieties are used to geometrically engineer
SU(5) Grand Unified Theories in F-theory. The desingularization is given by a small
resolution of singularities. The Ã4 fiber naturally appears after resolving the singularities
in codimension-one in the base. The remaining higher codimension singularities are then
beautifully described by a four dimensional affine binomial variety which leads to six
different small resolutions of the elliptically fibered fourfold. These six small resolutions
define distinct fourfolds connected to each other by a network of flop transitions forming
a dihedral group. The location of these exotic fibers in the base is mapped to conifold
points of the threefolds that defines the type IIB orientifold limit of the F-theory. The full
resolution has interesting properties, specially for fibers in codimension three: the rank of
the singular fiber does not necessary increase and the fibers are not necessary in the list
of Kodaira and some are not even (extended) Dynkin diagrams.
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1 Introduction

The theory of elliptic curves is an elegant and vast subject in mathematics that can
be traced back to ancient Greece and beyond. An elliptic curve is a nonsingular
irreducible curve of genus one with a distinguished point on it. It is well known
that elliptic curves play an important role in number theory and are instrumental
in cryptography and geometric modeling. Elliptic curves have also invaded many
branches of theoretical physics through their modular properties. They are also
familiar in several string theory dualities. The ultimate example of applications of
elliptic curves to string theory is probably F-theory.

F-theory was introduced by Vafa [5] as a non-perturbative formulation of type IIB
string theory providing a geometrization of its non-perturbative SL(2,Z) symmetry
known as S-duality. F-theory provides a geometric formulation of type IIB string
theory compactification on a complex variety B with a varying axio-dilaton field τ .
The variation of the axio-dilaton field is geometrically realized in F-theory by an
elliptic fibration π : Y → B where the variety B is the base of the fibration:

T 2 // Y

π
��
B

ι

OO

The period modulus of the elliptic fiber is interpreted as the axio-dilaton field:

T 2 ' C/(Z + τZ), τ = C0 + ie−φ, eφ = gs.

The S-duality group is then geometrically realized as the SL(2,Z) modular group of
the elliptic fiber. The axio-dilaton field can be used to probe the presence of (p, q)-
seven-branes since seven-branes and D-instantons are magnetic duals. In F-theory,
the elliptic fibration is a Calabi-Yau space and the base of the fibration is usually a
complex curve, surface or threefold leading respectively (after compactification) to a
theory in 8, 6 or 4 real spacetime dimensions. There is another road to F-theory by
starting from M-theory, a theory defined in an eleven dimensional spacetime. The
duality between F-theory and M-theory is understood via a chain of dualities. Type
IIB string theory compactified on a circle is T-dual to type IIA on a dual circle,
which is then dual to M-theory compactified on a 2-torus[8]:

M-theory
S-duality←→ IIA

T-duality←→ IIB ←→ F-theory

In F-theory, one usually starts with a singular elliptic fibration given by a singular
Weierstrass model and the smooth elliptic fibration is obtained by a resolution of
the singularities of the elliptic fibration. Starting form a smooth elliptic fibration
Y , the type IIB limit of F-theory is taken in two steps: first, shrink to zero area
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all fiber components not meeting the chosen section, then shrink the remaining
components of each fiber to zero area. For singular fibers over codimension one loci
in the base, the structure of the singular fibers can be deduced without performing an
explicit resolution thanks to Tate’s algorithm. But this is not true for singular fibers
that project to codimension-two or higher in the base. A resolution of singularity
only changes the singular part of the variety while it is an isomorphism on the
smooth part. Even so, a resolution is in general not unique and the singular part
of the variety is usually replaced by a locus of higher dimension, typically a divisor.
Additional requirements can be imposed on a resolution. One can for example ask
the resolution to be small so that a singular locus of codimension k is replaced by a
locus which is smaller than a divisor. A more restricted definition of small resolution
requires that a singular locus of codimension k is replaced by a locus of codimension
less than k/2. Small resolutions are not always possible. One can also ask the
resolution to be crepant. This is very common in string theory as it ensures that the
Calabi-Yau condition is preserved. In this paper, we will analyze a particular model
where F-theory is defined from a singular geometry for which the desingularization
has been conjectured to have a remarkable structure but has never been analyzed
systematically. We will use this specific example as an appetizer to attack a more
general questions also relevant for mathematics.

We will consider an elliptic fibration endowed with a smooth section ι : B → Y .
Fiberwise, the section selects a point on every fiber so that the fiber is a bona fide
elliptic curve. In F-theory, the section provides a concrete embedding of the base
B (on which type IIB is compactified) inside the elliptic fibration Y . An elliptic
fibration with a section has the nice property of being birationally equivalent to a
(singular) Weierstrass model. Our model of interest will be given explicitly by a
Weierstrass model in Tate’s form:

E : zy2 + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3,

where [x : y : z] are projective coordinates of a P2 bundle over the base B and the
coefficients ai are sections of appropriate line bundles. We will come back to the
definition in section 2. In this paper, the base of the fibration is a complex variety
B of complex dimension three (a threefold) so that after the compactification we
end up with a theory in 4 spacetime dimensions.

The elliptic fibration we will be interested in, is given by a singular Weierstrass
model with a specific type of singularities (a Ã4 singularity) over a divisor of the
base. This singularity is motivated by the geometric engineering of SU(5) Grand
Unified Theories in F-theory. We will resolve the singularities and study carefully
the resulting fiber geometry. Over the divisor over which the singularity is defined,
we will get a singular fiber of type I5 in Kodaira’s notation and the singular fiber
will degenerate further over certain curves and points in the base. More precisely,
the fiber is a split I5, meaning that each components of the singular fiber is defined
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without requiring a field extension. We assume that after the resolution, we have a
smooth elliptic fibration with a smooth section and the fibration is required to be flat
(all fibers have the same dimension) and the resolution to be crepant. All the results
will be independent of the Calabi-Yau condition. The structure of the resolved
geometry is conjectured in the physics literature to naturally realize a cascade of
specializations to other types of singular fibers over certain loci of the base in order
to geometrically engineer the matter content and the Yukawa couplings of the SU(5)
Grand Unified Theory.

In this paper, our point of view will be to use the physics as a motivation for
the geometry we are studying. But all the results of this paper rely solely on
a mathematical analysis. We will be able not only to resolve the geometry but
we also present certain transitions between different resolutions of the singularities
not anticipated by physicists. In the rest of the introduction, we will discuss the
fiber geometry in F-theory, present the problem that we want to attack and its
physical origin and summarize our results. The rest of the paper will be a systematic
derivation of these results.

1.1 Fiber degenerations and F-theory

As it is usually the case for fibrations, many interesting properties of an elliptic
fibration are encoded in the structure of its singular fibers. In F-theory, the structure
of the singular fibers is a central piece in the dictionary between geometry and
physics. In the presence of a (p, q)-seven-brane, the axio-dilaton field undergoes
SL(2,Z)-monodromies that determine the type of (p, q)-seven-branes. From the
point of view of the elliptic fibration, such monodromies require the elliptic fiber
to be singular over certain divisors of the base B. It follows that singular fibers
geometrically detect the locations (in the base B) and types of (p, q) seven-branes.
The locus of points of the base over which the elliptic fiber is singular is called
the discriminant locus. For an elliptic fibration given by a Weierstrass model, the
discriminant locus is a divisor in the base B defined by the equation ∆ = 0 ,where ∆
is defined in equation (2.9) or equivalently in equation (2.11). The discriminant locus
can be composed of several irreducible components of different multiplicities ∆ =∏

i ∆
mi
i and can admit a sophisticated structure of singularities. The generic fiber

over a component of the discriminant locus can degenerate further at the intersection
with another component or more generally at a singularity of the discriminant locus.
Such degenerations occur in codimension-two or higher in the base and are called
collisions of singular fibers. Here, we will restrict ourself to flat fibrations so that all
the fibers have the same dimension. In particular, a singular fiber is composed of
a finite number of intersecting irreducible curves. The singular fibers of a smooth
Weierstrass model are nodal and cuspidal irreducible curves. When the Weierstrass
model is singular one can get in addition a rich spectrum of reducible singular fibers
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after resolving the singularities. To each reducible singular fiber, it is convenient
to associate a dual graph representing the intersection structure of the irreducible
rational curves composing the singular fiber. The dual graph can take several shapes.
It is a beautiful aspect of the theory of elliptic fibrations that the dual graph of the
singular fiber over a generic point of a component of the discriminant locus is an
ADE Dynkin diagram plus an extra node. We will denote projective ADE Dynkin
diagrams by the corresponding Lie algebra notation An, Dn and En where the index
n refers to the number of nodes of the diagram and therefore to the rank of the
Lie algebra. The associated affine ADE Dynkin diagrams will be denoted with a
tilde: Ãn, D̃n, Ẽn. In the case of affine Dynkin diagrams, the number of nodes is
(n+1). To cover all the type of diagrams that will occur in this paper, it is useful to
introduce the graphs of type Tp,q,r and T−p,q,r. They are presented in figure 1. They

generalize diagrams of type Ẽn, En , Dn and An.
The common wisdom on the physical meaning of singular fibers in F-theory can

be summarized in three points:
(1) Each irreducible component of the discriminant locus corresponds to a divisor

wrapped by (p, q)-seven-branes. The gauge group associated to branes wrapping a
divisor of the discriminant locus is determined by the type of singular fibers above
that component. In the spirit of Mckay’s correspondence, the type of singular fibers
over a component of the discriminant locus identifies the non-Abelian gauge group
living on the brane wrapping that component1.

(2) Singular fibers in codimension-two in the base are related to charged chiral
matter following Katz-Vafa’s approach and the matter content can be read off fol-
lowing the branching rules of representation theory [11, 12, 9]. When the base is a
threefold, these codimension-two loci are called matter curves. This follows from a
familiar picture in D-brane modeling under which chiral matter can be localized at
D-branes intersections. In F-theory, this point has been supported by direct com-
parisons with the heterotic string in the case of elliptic threefolds leading to theories
in six spacetime dimensions.

(3) Codimension-three singularities are related to Yukawa couplings.

Gauge group

��

Matter fields

��

Yukawa Couplings

��

Codim-1 sing. // Codim-2 sing. // Codim-3 sing.

Table 1: F-theory description of gauge theories.

1If the fiber is not split, there is monodromy that exchange certain components of the singular
fiber and by identifying such components, we can also get non-simply laced gauge groups.
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Tp,q,r

jj̀̀̀̀
j
p

j````j
q

j` ` ` ` j
r

T−p,q,rjj̀̀̀̀ p− 1

j````j
q − 1

j` ` ` ` j
r − 1

Figure 1: Fiber of type Tp,q,r and T−p,q,r with 1 ≤ p ≤ q ≤ r. The fiber of type T−p,q,r
is obtained from Tp,q,r by replacing the central node by a point common to the three
branches. A fiber of type Tp,q,r has rank p+ q+ r− 2, while a fiber of type T−p,q,r has
rank p+ q + r − 3.

When the singularities are more involved, already the second step (identification
of the matter representation) can become delicate to handle[41]. Another approach
based on the field theory on the seven-branes world volume has been developed
recently [25, 26, 27, 32]. However, the relation between the details of the field
theory on the world volume of the seven branes and the singular fibers of the elliptic
fibration is not always clear.

1.2 SU(5) Unification in F-theory

The Standard Model of particle physics describes with great accuracy (up to an
energy scale of few hundred GeVs) all the known non-gravitational fundamental
interactions of Nature; namely the electromagnetism force, the weak and the strong
force . Mathematically, the Standard Model is described by a gauge theory based
on the semi-simple gauge group GSM = SU(3)× SU(2)×U(1). Fundamental parti-
cles are described by irreducible representations of the gauge group. The Standard
Model interactions are mediated by gauge bosons transforming in the adjoint repre-
sentation of GSM and fermionic particles (quarks and leptons) transforming under
representations GSM that seem at first look rather complicate and arbitrary. The
Standard Model has also several unexplained properties, like for example the quan-
tization of the electric charge, which beg for a more fundamental explanation.

In the 1970s, theoretical physicists pursued an ambitious program called “Grand
Unification” with the goal of finding a simple and elegant reformulation of the Stan-
dard Model of particle physics that would make sense of its puzzling structure while
providing at the same time a description of physics above its energy scale. The Stan-
dard Model being a gauge theory, representations of Lie algebras and Lie groups were
the main mathematical tools for unification. This is reviewed for example in [2] or
for a mathematical audience in [1]. Grand unified theories ( GUTs) are based on
the idea that the different interactions of the Standard Model are all unified at high
energy and described by a unique gauge theory with a Lie group GGUT containing
GSM as a subgroup. The Grand Unified gauge group GGUT , is usually required to
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be a simple group so that it depends on a unique coupling constant. A compact
unified gauge group would also automatically explain the quantization of the elec-
tric charge, one of the most famous unexplained aspect of the Standard Model. A
Grand unified theory naturally reorganizes the Standard Model particles into fewer
but larger representations. This usually implies subtle relations between apparently
independent parameters of the Standard Model. It also introduces new interactions
leading to prediction of new physical processes, like for example the decay of the
proton (that has not yet been observed).

In the quest of the ultimate theory, string theory provides an even more ambi-
tious program of unification since it includes a quantum description of gravity. The
geometry of spacetime itself, through its extra dimensions, can geometrically gener-
ate the gauge group of a Grand Unified Theory. The idea of geometric engineering
of physical models is the source of rich dialogues between theoretical physics and
mathematics. The first example of a Grand Unified Theory was the SU(5) model
proposed by Georgi and Glashow in 1974 [3]. SU(5) is the smallest simple group
containing the Standard Model gauge group GSM and able to contain the Standard
Model representation for a given generation of particles. Supersymmetric versions of
the Georgi-Glashow SU(5) model have been the center of important efforts to embed
Grand Unified Theories in string theory. F-theory, one of the most geometric corner
of string theory, has recently played a leading role in providing phenomenological
models of SU(5) unification. Describing Grand Unified Theories by F-theory models
is not only a geometrically elegant construction but is also believed to be a powerful
approach to phenomenology[9]. SU(5) Unification was also studied from the point
of view of M-theory on manifolds with G2 holonomies by Friedman and Witten [4].

1.3 The conjectured fiber geometry of SU(5) models

The first step to implement an SU(5) model in F-theory is to have a component of
the discriminant locus over which the elliptic fiber admits a dual graph of type split
Ã4. The “split” condition ensures that the different curves that compose the singular
fiber are individually well defined without having to perform a field extension. The
second step is to have the proper representations for the Standard Model fermions.
It is a remarkable fact that one generation of Standard Model fermionic particles
can be elegantly summarized by only two representations of SU(5), namely the
complex conjugate of the fundamental representation and the second exterior power
of the fundamental representation. We will denote them respectively as 5 and 10
following the tradition in particle physics where representations are denoted by their
dimensions and complex conjugation is denoted by an overall bar. In the spirit of
Katz-Vafa proposal, these two representations can be respectively realized by the
enhancement Ã4 → Ã5 and Ã4 → D̃5 over two distinct curves in the component of
the discriminant over which we have the generic Ã4 fiber. Such curves have to be
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singularities of the discriminant locus. One way they could occur is as intersection
with a different component of the discriminant locus. Interestingly, imposing a Ã4

fiber ensures that the support of the discriminant contains at least two components.
Finally, the third step is to accommodate the Yukawa couplings of a (supersymmetic)
SU(5) model: it requires further enhancements to D̃6 and Ẽ6 singular fibers at the
points of intersections of the two matter curves. The first one (D̃6) gives the Yukawa
couplings of the down-type quarks and the second one (Ẽ6) gives the Yukawa of
the up-type quarks. There are additional important requirements that should be
imposed to have a realistic model that takes care of the Higgs field, the number
of generations, the breaking of the GUT group, etc. We will not consider them
here. There are mostly specialisation of the geometry that we will analyze. Since
we are looking at the fiber geometry resulting from the condition of having a split
Ã4 structure, we will refer to the elliptic fibration simply as the SU(5) model.

Ã4j
j j
jj

D̃5

j jj
jj j

Ã5

j
j j
j j
j

Ã6

j j
j j
j

jj

Ẽ6

j
jj j j j j

D̃6

j jj
j
j jj

Figure 2: Conjectured singular fiber enhancements of a SU(5) GUT. Start-
ing with codimension one in the base, the codimension increases from left to right.
Thinking in terms of dual graphs, the rank of the associated Dynkin diagrams in-
creases as we move in codimension.

The enhancement to D̃5, Ã5 in codimension-two and D̃6 in codimension-three
are well understood in perturbative string theory since they can be realized by sim-
ple configurations of D-branes and orientifolds. However, the enhancement to Ẽ6
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necessary for the description up-type quarks Yukawa couplings does not have a de-
scription in perturbative type IIB string theory. It is a typical example of strongly
coupled phenomena which requires a F-theory treatment. One of the early attractive
aspect of F-theory phenomenology is the belief that these successive enhancements
which are crucial for the physics are realized very naturally by the geometry of a
split Ã4. This is a highly non-trivial statement:

The discriminant should have two components, one with a singular fiber of type
Ã4 and another with a nodal curve. The intersection of these two components is
composed of two curves over which the singular fiber will degenerate further to Ã5

and D̃5. Finally, the two curves should intersect at two different types of points
leading respectively to an additional degeneration of the fiber to D̃6 and Ẽ6.

Since we assume the existence of a section, the elliptic fibration admits a bira-
tional equivalent (singular) Weierstrass model and Tate’s algorithm provide a sys-
tematic way to specialize the coefficients of the Weierstrass model to impose a split
Ã4 fiber over a specific divisor of the base. The Weierstrass model will be singular,
but the split Ã4 fiber will naturally emerge after resolving its codimension-one sin-
gularities. There will be several left-over singularities in higher codimensions in the
base. In the context of SU(5) Unification, these extra-singularities are a blessing
in disguise since they open the door to a sequence of enhancements of the singu-
lar fiber that can provide the matter fields and Yukawa couplings required for a
realistic physical model. The structure of the discriminant locus of a SU(5) model
has been carefully analyzed by Andreas and Curio [24]. They gave several indica-
tions supporting the existence of the successive enhancements demanded by SU(5)
phenomenology (Ã5 and D̃5 in codimension-one, D̃6 and Ẽ6 in codimension-three).
Their analysis also indicates that there might be an additional Ã6 enhancement
in codimension-three. All together, we have the following list of degenerations of
singular fibers as we move in codimension in the base:

Ã4 → (Ã5, D̃5)→ (Ã6, D̃6, Ẽ6)

Starting from a fiber of type Ã4, one can retrieve the same structure by assuming
that all singular fibers are extended ADE Dynkin diagrams and as we move in higher
codimension, the fiber enhancement is realized by increasing the rank of the dual
ADE graph by one unit each time we increase the codimension by one unit. Starting
from Ã4 in codimension-one, we can then expect fibers with dual graphs Ã5 and D̃5

in codimension-two since they are the only extended ADE Dynkin diagrams of rank
5. In the same spirit, we can expect dual graphs fibers with rank 6 in codimension-3,
namely Ã6, D̃6 and Ẽ6.

Although the fiber geometry is the backbone of any F-theory model, there has
been no systematic analysis of the actual fiber structure of SU(5) models. This is
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mostly due to a common misconception in the physics literature according to which
the fiber structure (even in higher codimension in the base) follows from Tate’s
algorithm. Tate’s algorithm is useful to identify the singular fiber over a compo-
nent of the discriminant locus of a Weierstrass model without the need to perform
the explicit desingularization by just analyzing the vanishing order of the coeffi-
cients of the Weierstrass model. Unfortunately, Tate’s algorithm does not apply to
codimension-two or higher. It is easy to construct examples where a singularity of
the discriminant locus does not generate a change in the fiber structure of a smooth
elliptic fibration or where the change that it generates does not correspond to what
is expected by “applying” Tate’s algorithm. It follows that the fiber structure of
SU(5) Grand Unified Theories in F-theory is very much a conjecture although it is
at the core of many phenomenological constructions2. From the point of view of
resolution of singularities, there is no reason to assume that the fiber structure of
an SU(5) model follows the conjectured singularities: the singular elliptic fibers in
codimension-two and three in the base don’t have to be (extended) ADE Dynkin dia-
grams and the rank does not have to increase with the codimension. Since the SU(5)
model has a clean definition using a (singular) Weierstrass model, studying its fiber
geometry is a well posed mathematical problem that can be attacked systematically
by constructing an explicit desingularization. We will provide desingularizations by
constructing explicit resolutions of singularities. We ask the resolution to be small
(and therefore crepant) in order to preserve the Calabi-Yau condition. We also ask
the resolution to preserve the flatness of the fibration in order to ensure that all
fibers have the same dimension.

1.4 Mathematical interests of the SU(5) model

Mathematically, the conjectured fiber geometry of the SU(5) model in F-theory is
an interesting structure to analyze for several reasons. Although singular fibers in
codimension-one of an elliptic fibration are well understood and classified, singular
fibers above higher codimension loci are only understood under conditions that are
evaded by many interesting physical models. Resolution of singularities is a branch of
mathematics where examples have always play a crucial role. The SU(5) model, with
its sophisticated cascade of degenerations of singular fibers is a beautiful geometry
to explore. As we will see along the paper, studying the details of its resolution
provides a surprisingly rich geometry.

In order to put things into perspective, let us quickly review some history on
singular fibers of elliptic fibrations. We will have a more detailed analysis in section
2. In the 1960s, Kodaira [14] and Néron [15] have studied the singular fibers that
can occur for an elliptic surface. Their analysis can be generalized to case of singular
fibers above codimension-one points of an elliptic fibration over a higher dimensional

2 For particular toric examples see [43, 44, 44].
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base (see for example [20]). Miranda has studied the fiber structure of elliptic
threefolds by providing a systematic method to obtain flat elliptic fibrations from
(singular) Weierstrass models [16]. His results were later generalized to n-folds
by Szydlo [17]. We will call M iranda models the elliptic fibrations with a simple
normal crossing divisors obtained by Miranda (and generalized by Szydlo) by an
explicit regularization of Weierstrass models. In their regularization of Weierstrass
models, Miranda and Szydlo blow-up the base for example to get rid of collisions of
fibers admitting different values of the j-invariant or to avoid collisions that do not
admit small resolutions. In F-theory, the elliptic fibrations are Calabi-Yau spaces
and blowing-up the base can destroy the Calabi-Yau condition depending on the
dimension of the base and the dimension of the centers of the blow-up. Blowing-up
the base can also add new divisors in the discriminant locus and therefore change
the structure of the gauge groups and the physics of the model. We will review
Miranda models and their collisions of singularities in sections 2.3 and 2.4.

The question we address in this paper is a particular case of the following one:

Problem 1 Consider an elliptic fibration over a complex n-fold, described by a
(singular) Weierstrass model admitting a (split) singularity of a given Kodaira type
at the generic point of a divisor of the discriminant locus and a fiber of type I1

otherwise.

1. Can we obtain a crepant resolution describing a flat fibration3?

2. What is the tree of fiber enhancements for such a resolution?

Néron has solved the problem when the base is a curve by constructing regular
models for elliptic surfaces defined by Weierstrass equations [15]. If we remove the
condition to have a crepant resolution but ask to have a simple normal crossing
divisor as the discriminant locus, the problem has been solved by Miranda [16] in
the case of elliptic threefolds and generalized later by Zlydlo for n-folds [17]. Grassi
and Morrison have attacked the problem for Calabi-Yau elliptic threefolds [23] under
some assumptions on the type of singularities that can occur. They also discussed
the F-theory interpretation of the fibers (gauge group and matter representation)
while providing purely mathematical proofs. The analysis of Grassi and Morrison
generalizes the results of [11] where the base is restricted to be an Hirzebruch surface
Fn and the proofs rely heavily on the existence of an heterotic dual.

In this paper we treat in details the case of a split Ã4 singularity (split I5) and we
assume that the base is a complex threefold. We will construct a crepant resolution
and study the resulting singular fibers. Finding one small resolution will be enough
to make some strong statement. In the category of projective algebraic varieties,

3 By a crepant resolution we mean that the pull back of the canonical divisor of the singular
space is the canonical divisor of the smooth resolution.
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Batyrev proved in [21] that any two n-folds related by a birational map preserving
their canonical class have the same Betti numbers. It follows in particular that
distinct small resolutions have the same Betti numbers. Finding a small resolution
of the SU(5) model might tell us important information on the conjectured fiber
structure of such spaces.

1.5 Summary of results

The SU(5) model in F-theory is defined by the singular Weierstrass model:

E : y2 + β5xyz + β3w
2yz2 = x3 + β4wx

2z + β2w
3xz2 + β0w

5z3,

where w is a section of a line bundle Lsu(5) and βj (j = 0, 2, 3, 4, 5) is a section of

L ⊗(6−j)⊗L ⊗(j−5)
su(5) . This structure ensures that over a generic point of Dsu(5) : w = 0,

we have a singularity leading to a dual graph Ã4 after a desingularization by blow-
ups. The dual graph Ã4 will be split: it is composed of curves that are individually
well defined so that they are not subject to monodromies as we circle around the
divisor w = 0.

In this paper, we construct a crepant resolution of the SU(5) model geometry.
The resolution we obtain defines a flat elliptic fibration so that all the fibers have
the same dimension. The singular Weierstrass equation defining the SU(5) model
admits a quite complicate discriminant, but we can resolve all the singularities in two
easy steps by working directly with the Weierstrass equation. In the first step, we
resolve the singularity that generates the Ã4 fibers over a generic point of the divisor
Dsu(5). This is done by two successive blow-ups of the singular locus. The generic
fiber over Dsu(5) is then a Kodaira fiber of type I5 with its dual graph the extended

Dynkin diagram Ã4. After the resolution of the generic singularity, there are still
some left-over singularities in codimension-two and codimension-three in the base.
In a second step we define a simultaneous resolution of these higher codimension
singularities. One cannot just blow-up the singular locus since in codimension-
two and three it will destroy the flatness of the fibration by introducing higher
dimensional components on the fibers. We construct instead a small resolution
by using the fact that after resolving the singularities over the codimension-one
locus, the remaining singularities are described by a binomial variety. The binomial
variety admits as its singular locus three lines of conifold singularities intersecting at
a common point where the singularity worsen. There are six small resolutions of this
geometry related to each other by a network of flop transitions that form a dihedral
group Dih6 of twelve elements. These binomial transformations are induced from
the symmetry of the binomial variety before the resolution. The small resolution
of the binomial geometry leads to two possible types of fiber enhancement Ã4 →
(Ã5, D̃5) → (D̃6, E6) or Ã4 → (Ã5, D̃5) → (D̃6, E

−
6 ). The two possibilities differ in
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Figure 3: Degeneration of singular fibers of a small resolution of the SU(5) model.
Starting with codimension-one in the base, the codimension increases from left to right. In com-
paraison with the conjecture fiber structure, there are no fibers of type Ã6 and the fibers of type
Ẽ6 are replaced by (non-Kodaira) fibers of type E6 or Ẽ−6 (:= T−3,3,3) according to the choice of the
resolution. We obtain six different resolutions, four of which have fibers of type E6 in codimension-
three while two have fibers of type Ẽ−6 .

codimensio-three by the fiber over the points where a Ẽ6 enhancement is usually
expected. Here we see that at these points , we have instead a projective Dynkin
diagram E6 or a a fiber with dual graph Ẽ−6 := T−2,2,2. The Ẽ−6 diagram is not ADE

and can be better described as a Ẽ6 diagram with the central node contracted to a
point. The physical meaning of such fibers is not clear at all. We note that they
appear at points in the base where the string coupling is of order 1, more precisely
τ = exp(πi/3). We also note that the fiber E6 we obtain in codimension-three, is
really an exotic version of a D̃5 fiber since once we remove the node that touches the
section, we get a dual graph D5. Interestingly, in the degeneration of singular fibers
from codimension-two to codimension-three, the rank of the dual graph increases
only for the D̃6 fiber while in the case of the the E6 and the Ẽ−6 fibers have there is
no increase of rank.

The results of this paper can then be summarized by the following propositions
and the fiber degenerations are illustrated in figures 3 and 4.

Proposition 1.1 (Resolution in codimension-one) The resolution of the sin-
gularities in codimension-one is obtained by two successive blow-ups leading to a
split I5 fiber over the divisor Dsu(5).
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z jC2−
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q
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Π3 : β5 = β3 = 0 Π4 : β5 = β4 = 0

Figure 4: Fiber degeneration of a small resolution of the SU(5) model. The node C0 is the one
that touches the section. The nodes C1± and C2± are coming from the resolution of the singularities
over a generic point of the divisor Dsu(5). The remaining nodes Cx, Cw and Ct are obtained from
the resolution of the higher codimensional singularities. We have 6 possible resolutions Exw, Ewx,
Ext, Etw and Ewt.

Proposition 1.2 (The binomial geometry) After resolving the singularities in
codimension-one, we are left with higher codimensional singularities all visible in a
unique patch where the variety is locally described by the following affine binomial
variety in C[x,w, t, y, s]:

ys− xwt = 0,

where s = y + β5 + wβ3 and t = x + β4 + wβ2 + w2β0. The singular locus y = s =
xw = wt = xs = 0 of the binomial variety is composed of three lines of conifold
singularities meeting at a common point where the singulary enhances.
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Proposition 1.3 (A network of small resolutions) Using the binomial geome-
try, we determine six small resolutions {Exw,Ext,Ewt,Ewx,Etx,Ewt}:

Eu1u2


u1α− − σ−y = 0,

u2α+ − σ+s = 0,

α−α+ − σ−σ+u3 = 0

where (u1, u2, u3) is a permutation of (x,w, t) and [α− : σ−]× [α+ : σ+] are projective
coordinates of F0 = CP1 × CP1. The singular fibers4 are at wx = 0.

Proposition 1.4 ( Fiber enhancements in codimension-two) In codimension-
two, we have an enhancement of the fiber I5 to a fiber with dual graph D̃5 over the
curve Σ10 : β5 = 0 and an enhancement to a fiber with dual graph Ã6 along the curve
Σ5 : P = 0.

Proposition 1.5 ( Fiber enhancements in codimension-three) In codimension-
three, we have a fiber enhancement at the intersection of the two curves Σ5 and
Σ + 10. This intersection contains two types of points that we call Π3 and Π3 (
Σ5 ∩ Σ10 = Π3 ∪ Π4):

1. Over Π3 : β5 = β3 = 0, we get a fiber with dual graph D̃6.

2. Over Π4 : β5 = β4 = 0, we get exotic fibers which don’t increase the number
of nodes of the graph. The precise dual graph of these exotic fibers depends on
the choice of the resolution. For the resolutions Ext and Ext the fiber is of a
new type that we call Ẽ−6 while it is a projective E6 fiber for the other 4 small
resolutions. The fiber Ẽ−6 is not an ADE fiber. It is a bouquet of three 2-chains
intersecting at a common point.

3. Over Π7 : P = R = 0, there is no enhancement, the fiber is still a Ã5.

Proposition 1.6 ( Flop transitions) All the six different resolutions are connected
to each other by a network of flop transitions forming a discrete dihedral group Dih6

of 12 elements.

Finally, we can rule out the existence of the conjectured resolution in a large
class of varieties:

Proposition 1.7 ( Birational invariance and a no-go theorem) In the cate-
gory of smooth projective complex algebraic varieties, two varieties related by a bira-
tional map that does not change the canonical class have the same Betti numbers as

4 This describe all the fibers above the divisor Dsu(5) with the exception of the node C0 that
touches the section.
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proven by Batyrev [21]. It follows immediately that it is impossible to find a resolu-
tion of singularities that will have the same fibers as those obtained in the six small
resolutions Ẽ6, but will have fibers of type Ẽ6 over the points Π4 : β5 = β4 = 0 or
fibers of type Ã6 over Π7 : P = R = 0.

If the Weierstrass model we start with is modified by specializing some of the sections
βi, one can end up with a very different structure of singular fibers. We are currently
exploring such options.

1.6 Structure of the paper

In section 2, we review several mathematical results on the structure of elliptic
fibrations; Weierstrass models, Kodaira classification, Tate algorithm and Miranda
models. In section 3, we introduce in details the specific Weierstrass model that
describes SU(5) models. We will also review the conjecture on its fiber geometry in
section 3.1. In section 4, we resolve the singularities in codimension-one over the
base and present the underlying binomial geometry in section 5. We also discuss the
toric structure of the binomial variety and study its small resolutions both torically
and algebraically. We will also analyze the network of flop transitions between the
different possible small resolutions we have obtained. In section , we present the
small resolution of the codimension-two and codimension-three singularities of the
SU(5) by exploiting the resolution of the binomial variety. We also analyze the
resulting fiber geometry. Finally we conclude in section 7.

2 Elliptic fibrations and collisions of singularities

In this section, we review some important results on elliptic fibrations and their sin-
gular fibers in different codimensions. This will put into perspective the conjectured
fiber structure of SU(5) models in F-theory. In subsection 2.2, we review Kodaira
classification and Tate algorithm. Section 2.3 is an introduction to Miranda models.
Miranda models describe certain elliptic threefolds which are flat fibrations with a re-
stricted list of possible collisions of singular fibers. They provide (counter)examples
to several common believes on the nature of colliding singularities. In particular,
over loci of codimension two or higher in the base, the singular fibers don’t have to
be Kodaira fibers and the rank of the singular fiber at a collision of singularities does
not necessary increase, it can even decrease. We also quickly describe in section 2.4
the generalization of Miranda models to n-fold by Szydlo. We will start by a quick
review on elliptic curves over C.
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2.1 Elliptic fibrations and Weierstrass models

An elliptic curve is a smooth complex curve of genus one with a marked point
on it. Topologically it is a two-torus T 2 = S1 × S1 with a selected point. It
is also an Abelian variety with the mark point as its neutral element. Modulo
a similitude transformation, an elliptic curve over the complex number is always
equivalent to the complex torus C/(Z+τZ) described as the quotient of the complex
plane by the double-lattice generated by 1 and the complex number τ (the period)
. Geometrically, the period τ , characterizes the shape of the complex-torus and by
convention, is restricted to live on the upper-half plane H = {τ ∈ C| Im(τ) > 0}.
Two 2-tori are equivalent modulo similitude if their period ratios are related by a
modular transformation:

τ 7→ aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z). (2.1)

τ τ + 1

10

Figure 5: A torus seen as the quotient C/(Z + τZ).

Using the Riemann-Roch theorem, it is easy to show that an elliptic curve can
always be expressed by a cubic equation in CP2. When the characteristic is different
from 2 and 3, the cubic equation can be reduced to a (reduced) Weierstrass equation:

y2z = x3 + Fxz2 +Gz3, (2.2)

where [x : y : z] are the projective coordinates of CP2. We take z = 0 to be the
line at infinity. It cuts the Weierstrass equation at the rational point [0 : 1 : 0]
which is considered as the origin of the elliptic curve. The elliptic curve is regular
if and only if 4F 3 + 27G2 6= 0.The moduli space of complex tori modulo similitudes
is given by the quotient of the upper-half plane by modular transformations. There
is a function, called the Klein j-invariant which does not change under modular
transformations and maps the moduli space of complex tori modulo similitudes to
the complex plane C. Two elliptic curves are isomorphic if and only if they have the
same j-invariant. The j-invariant can be computed from the Weierstrass equation
as follows:

j(τ) = 1728
4F 3

4F 3 + 27G2
or equivalently j(τ) = 1728− 27G2

4F 3 + 27G2
. (2.3)
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It admits the following expression as a Laurent series:

j(τ) =
1

q
+ 744 +

∑
n>0

cnq
n, cn ∈ N, q = exp(2πiτ). (2.4)

The modular group admits as a fundamental domain the closure of the region :

RΓ = {τ ∈H : |τ + τ | < 1 and |τ | > 1},

with a Z2 identification on the boundary given by τ ∼ −τ . When we have to make
a choice between two points on the boundary, we will take the one with negative
real part. It is common to use the following normalization:

J(τ) =
1

1728
j(τ) =

4F 3

4F 3 + 27G2
. (2.5)

We recall some additional properties of the J-invariant:

J(i) = 1, J(e
2π
3

i) = 0, J(−τ) = J(τ), lim
Im(τ)→+∞

|J(τ)| =∞. (2.6)

If is useful to also include tori admitting an infinite value for the j-invariant. This
corresponds to allowing an infinite value for the imaginary part of τ . By the action
of the modular group, we should then also include all the cusps (rational points of
the real line). The j-invariant is then an isomorphism between the moduli space of
tori (modulo similitude) and the complex sphere CP1:

J : H → CP1 : J(τ) 7→ [U, V ] = [4F 3 : 4F 3 + 27G2], (2.7)

where [U : V ] denotes the projective coordinates of CP1. In F-theory, since the imag-
inary part of τ is the inverse of the string coupling, infinite value of τ corresponds
to the weak coupling limit of F-theory[10].

An elliptic fibration is a proper surjective morphism π : Y → B between complex
varieties with connected fibers such that the general fiber is an elliptic curve. Here we
consider elliptic fibrations with a smooth section. In F-theory, the section identifies
the physical space seen in type IIB string theory while the elliptic fiber determines
the value of the type IIB axio-dilaton field. An elliptic fibration with a section is
birationally equivalent to a (singular) Weierstrass model.

Let L be a line bundle defined over B. We define E = O ⊕L ⊗(−2) ⊕L ⊗(−3),
and we consider the projectization P(E), with tautological line bundle O(1). A
Weierstrass model is defined as an hypersurface Y of P(E), with equation:

Y : zy2 + a1xyz + a3yz
2 − (x3 + a2x

2z + a4xz
2 + a6z

3) = 0. (2.8)

Here z, x and y are sections of O(1), O(1)⊗L ⊗(2) and O(1)⊗L ⊗(3), respectively.
Each variable ai (i = 1, 2, 3, 4, 6) is a section of the line bundle L ⊗(i). One can
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always write the Weierstrass model in its reduced form by completing the square
in y and the cube in x in the expression of the generalized Weierstrass model (2.8).
The section of the fibration is given by z = 0 and defines a divisor in Y isomorphic
to B. The conormal bundle of the section is isomorphic to L . Following Deligne’s
formulaire [13], it is useful to introduce the following variables:

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6,

c4 = b2
2 − 24b4, c6 = −b3

2 + 36b2b4 − 216b6,

∆ = −1
4
b2

2(b2b6 − b2
4)− 8b3

4 − 27b2
6 + 9b2b4b6,

(2.9)

from which we can express the reduced Weierstrass form (2.3) with:

F = − 1

48
c4, G = − 1

864
c6. (2.10)

In terms of the reduced Weierstrass model, the discriminant ∆ is simply:

∆ = −16(4F 3 + 27G2). (2.11)

The discriminant locus is the set of points of the base over which the elliptic fiber is
not regular. An elliptic curve in the Tate’s form (2.8) always admits the following
Z2 symmetry, which corresponds to the inverse law of the torus group[13]:

(x, y) 7→ (x,−y − a1x− a3). (2.12)

This involution plays an central role in the description of orientifolds in F-theory.
It is related to the discrete operator (−1)FLΩ defined in perturbative string theory.
Here FL is the left-hand fermion number and Ω is the worlsheet parity inversion.
From the point of view of the modular group, it is just minus the identity (−I2) and
acts trivially on the period [10].

2.2 Kodaira classification and Tate algorithm

In the early 1960s, Kodaira has classified singular fibers of (minimal) elliptic surfaces
[14]. Kodaira’s classification can be extended to singular fibers over codimension-one
points in the base modulo mild assumptions. He identified 8 types of singular fibers,
including two infinite series (I1, In(n > 0), II, III, IV, I∗n, II

∗, III∗). Each fiber is
constituted of intersecting rational curves and the dual graph of such singular fibers
are closely related to simply-laced (affine) Dynkin diagrams. In Kodaira list, there
are only two irreducible singular fibers : nodal curves (type I1) and cusp (type II).
All the remaining fibers are reducible. There are three that are not extended ADE
diagrams: type I2 is composed of two rational curves meeting transversally at two
points, type III consists of wo rational curves tangent at a point and type IV is
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composed of three rational curves meeting transversally at a common point (type
IV ). The remaining types are extended ADE Dynkin diagram: the dual graph
Ãn gives type In (n ≤ 3), the dual graph D̃4+n corresponds to type I∗n, the dual
graphs Ẽ6, Ẽ7 and Ẽ8 correspond respectively to type IV ∗, III∗ and II∗. In 1964,
André Néron has reproduced Kodaira’s list by explicitly constructing regular models
for elliptic surfaces defined by Weierstrass models[15]. In 1975, Tate, using Néron
results, has developed an algorithm which gives the type of singular fibers of an
elliptic surface by manipulating the coefficients of the Weierstrass equation [18].

In F-theory, Tate’s algorithm has been refined to determine the gauge groups
(even non-simply laced ones) associated to seven-branes wrapping divisors of the
discriminant locus [11]. Non-simply laced Dynkin diagrams are included in a Ko-
daira fibers those nodes that are exchanged by the action of monodromies. Some
specific examples also extended Tate’s algorithm to certain codimensions two loci in
order to predict the matter contents at the intersection of two divisors of the dis-
criminant locus. Unfortunately, in the physics literature, Tate’s algorithm is often
used outside of its domain of validity. This has created important misconceptions
on the structure of singular fibers over points located in higher codimensions in the
base.
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Type ord(F ) ord(G) ord(∆) J Monodromy Fiber
I0 ≥ 0 ≥ 0 0 R I2 Smooth torus

I1 0 0 1 ∞
(

1 1
0 1

)
(Nodal curve)

In 0 0 n > 1 ∞
(

1 n
0 1

) i
@@i i i i��i1

1 1 1 1

1 1 1 1i i i

II ≥ 1 1 2 0

(
1 1
−1 0

)
Cuspidial curve

III 1 ≥ 2 3 1

(
0 1
−1 0

)

IV ≥ 2 2 4 0

(
0 1
−1 −1

)

I∗n 2 ≥ 3 n+ 6 ∞
(
−1 −n
0 −1

) i
i��@@i i i i@@

��

i
i

1

1

2 2 2 2

1

1

≥ 2 3 n+ 6

IV ∗ ≥ 3 4 8 0

(
−1 −1
1 0

) j j j j jjj1
131 2 2

2

III∗ 3 ≥ 5 9 1

(
0 −1
1 0

) j j j j j j jj 331 2 4 2 1

2

II∗ ≥ 4 5 10 0

(
0 −1
1 1

) i i i i i i i ii531 2 4 6 4 2

3

Table 2: Kodaira Classification of singular fibers of an elliptic fibration. The fiber of
type I∗0 is special among its family I∗n because its J-invariant can take any value in C. A fiber of
type In or I∗n (n > 0) has a pole of order n over the divisor on which it is defined.
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type group a1 a2 a3 a4 a6 ∆

I0 — 0 0 0 0 0 0
I1 — 0 0 1 1 1 1
I2 SU(2) 0 0 1 1 2 2
Ins3 unconven. 0 0 2 2 3 3
Is3 unconven. 0 1 1 2 3 3
Ins2k Sp(k) 0 0 k k 2k 2k
Is2k SU(2k) 0 1 k k 2k 2k
Ins2k+1 unconven. 0 0 k + 1 k + 1 2k + 1 2k + 1
Is2k+1 SU(2k + 1) 0 1 k k + 1 2k + 1 2k + 1
II — 1 1 1 1 1 2
III SU(2) 1 1 1 1 2 3
IV ns unconven. 1 1 1 2 2 4
IV s SU(3) 1 1 1 2 3 4
I∗ns0 G2 1 1 2 2 3 6
I∗ ss0 SO(7) 1 1 2 2 4 6
I∗ s0 SO(8)∗ 1 1 2 2 4 6
I∗ns1 SO(9) 1 1 2 3 4 7
I∗ s1 SO(10) 1 1 2 3 5 7
I∗ns2 SO(11) 1 1 3 3 5 8
I∗ s2 SO(12)∗ 1 1 3 3 5 8
I∗ns2k−3 SO(4k + 1) 1 1 k k + 1 2k 2k + 3
I∗ s2k−3 SO(4k + 2) 1 1 k k + 1 2k + 1 2k + 3
I∗ns2k−2 SO(4k + 3) 1 1 k + 1 k + 1 2k + 1 2k + 4
I∗ s2k−2 SO(4k + 4)∗ 1 1 k + 1 k + 1 2k + 1 2k + 4
IV ∗ns F4 1 2 2 3 4 8
IV ∗ s E6 1 2 2 3 5 8
III∗ E7 1 2 3 3 5 9
II∗ E8 1 2 3 4 5 10

non-min — 1 2 3 4 6 12

Table 3: F-theory Tate’s algorithm. The superscript (s/ns/ss) stands for
(split/non-split/semi-split), meaning that (there is/there is not/ there is a partial)
monodromy action by an outer automorphism on the vanishing cycles along the
singular locus.
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2.3 Miranda models and collisions of singular fibers

Singular fibers of an elliptic fibration over loci in codimension-two or higher codi-
mension in base are not well understood, except when strong conditions like simple
normal crossing of the discriminant locus and preservation of the j-invariant at
collisions are imposed. Under such conditions, Miranda has analyzed in 1983 the
singular fibers for elliptic threefolds defined by Weierstrass models [16]. His con-
struction was generalized to n-folds by Szydlo in 1999 [17]. Miranda showed that
it is always possible to obtain a regular model for an elliptic threefold defined by
a Weierstrass equation. We will refer to such elliptic fibrations as Miranda models.
The strategy of Miranda consists of blowing-up the base over intersections of divi-
sors that would lead to “bad collisions” of singularities, then pull-back the fibrations
to the new base and he then desingularizes the total space. After enough blow-ups,
the discriminant locus is a simple normal crossing divisor with only a very limited
number of collisions admitting small resolutions. A Miranda model only has the
following 8 collisions:

J =∞ : In + Im → In+m

I2n + I∗m → I∗n+m

I2n+1 + I∗m → I∗+n+m+1

j
j��@
@ j j j j1

1

2 2 2 2

( a total of n+m+ 5 nodes)

J = 0 : II + IV −→ j j1 2

II + I∗0
−→ j j j1 2 3

IV + I∗0
−→ j j j j j1 2 3 4 2

II + IV ∗ −→ j j j j1 2 4 2

J = 1 : III + I∗0
−→ j j j j j1 2 3 2 1

(2.13)

Only the first two collisions (namely In + Im and I2n + I∗m) leads to Kodaira fibers.
The others are not Kodaira fibers but admit Dk and Ak projective Dynkin diagrams
as dual graphs. The new fiber of type I∗+n has the shape of a diagram of a projective
Dynkin diagram of type Dn+4. We summarize all the allowed collisions of Miranda’s
models in table 4. The last column of that table shows the fiber that would have
been obtained if one had resolved an elliptic surface with base a general smooth
curve passing through the collision. It illustrates that abusing Tate’s algorithm
already in codimension-two leads to a misinterpretation of the fiber structure and
that the rank of the ADE fiber does not necessary increase at a collision, it can
actually decrease.
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j-inv Collision Dual graph
if the base was a smooth curve

through the collision point

∞ IM1 + IM2

i
@@i i i i��i1

1 1 1 1

1 1 1 1i i i
IM1+M2

same

∞ I2n + I∗m

j
j��@
@ j j j j

@@

��

j
j

1

1

2 2 2 2

1

1I?n+m

j
j��@
@ j j j j

@@

��

j
j

1

1

2 2 2 2

1

1I?2n+m

∞ I2n+1 + I∗m

j
j��@
@ j j j j1

1

2 2 2 2

I∗+n+m

(n+m+ 4) components

j
j��@
@ j j j j

@@

��

j
j

1

1

2 2 2 2

1

1I?2n+m+1

0
II + IV

j j1 2

j jjj j11 2

1

1I?0

0
II + I∗0

j j j1 2 3

j j j j jjj1
131 2 2

2

IV?

0
II + IV ∗

j j j j j1 2 3 4 2

j j j j j j j jj531 2 4 6 4 2

3II?

0
IV + I∗0

j j j j1 2 4 2
j j j j j j j jj531 2 4 6 4 2

3II?

1728
III + I∗0

j j j j j1 2 3 2 1
j j j j j j jj 331 2 4 2 1

2III?

Table 4: Colliding singularities in an elliptic threefold as constructed by Mi-
randa. The non-Kodaira fiber I∗+n has the shape of a diagram of type Dn+4. The last
column shows the fiber that would be obtained for an elliptic with base a smooth
curve passing through the point of collision.
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2.4 Szydlo generalization of Miranda models

Assuming the same conditions as Miranda, Szydlo has analyzed the general case
of collisions in higher codimensions. Interestingly, starting from codimension-three,
the only collisions possible are those with J =∞ ( type In and I∗n) with the following
restrictions: there are at most one fiber of type I∗n and at most one fiber of type
I2m+1, the number of fiber of type I2n is bounded by the codimension of the collision.
Taking this into account we have the following 4 types of collisions:

J =∞ : I2n1 + · · · I2nk −→ I2n, n = n1 + · · ·+ nk
I2n1 + · · · I2nk + I2r+1 −→ I2n+2r+1,
I2n1 + · · · I2nk + I∗m −→ I∗n+m+1,
I2n1 + · · · I2nk + I2r+1 + I∗m −→ I∗+n+r+m+1.

(2.14)

The resolution of the singularities at the collisions depends on some discrete
choices. In particular, the order in which the blow-ups are performed is crucial for
the final result. For example Miranda and Szydlo don’t have the same results for
the collision IV +I∗0 and the justification can be traced back to different conventions
on how to order the blow-ups:

(Miranda) (Szydlo)

IV + I∗0 : j j j j1 2 4 2 I∗0 + IV : j j j j1 2 3 2

(2.15)

2.5 F-theory vs Miranda models

The results of Miranda and Szydlo provide an algorithm to obtain regular mod-
els from singular Weierstrass models satisfying some conditions like simple normal
crossing for the discriminant locus. Miranda models have been used in F-theory in
cases where blowing-up the base did not destroy the Calabi-Yau condition. How-
ever, for applications of F-theory to Grand Unification, the assumptions of Mi-
randa and Szydlo are very naturally violated5. For example, the enhancement
D̃5 → Ẽ6 which is very natural in the context of Grand Unified Theories is not
allowed within Miranda or Szydlo’s framework since it involves fiber of different
J-invariant (J = ∞ → J = 0). Even the transition Ã4 → D̃5, which is allowed in
perturbative type IIB, is not allowed in a Miranda’s collision since the only fiber of
type I∗n that can be obtained in codimension-two have n ≥ 2. These examples il-
lustrate that in F-theory, one has to include wilder singularities in the discriminant

5Even in a purely geometric context one can argue that asking for normal crossing is too strong
since the discriminant locus of a general Weierstrass model has always a cusp singularity and this
is not really an invitation for normal crossing. But the condition of normal crossing often occurs
in mathematics since it makes life easier in proving theorems. However, in physics, one does not
always the freedom to choose his assumptions.
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locus and relax the requirement of a well behaved J-invariant. But at the same
time, one has to be careful with blowing-up the base since it can lead to violation of
the Calabi-Yau condition. Finally, we would like to point out that even the flatness
condition is not required in F-theory. Flatness of the fibration is equivalent here
to the requirement that all the fibers are of pure dimension one. But there are
interesting physical phenomena when a fiber contains a higher dimensional compo-
nent [33]. We have seen that the assumption of flatness, normal crossing and well
defined J-invariant would eliminate interesting physics. However, once we remove
these very friendly conditions, it is not clear how one will achieve a classification at
all.

3 Geometric engineering of SU(5) models in F-

theory

In section 2 we have reviewed the basic notions of elliptic fibrations . In this short
section, we will present the construction of the SU(5) model in F-theory and intro-
duce formally the conjecture on its singular fibers.

An SU(5) Grand Unified Theory is geometrically engineered in F-theory by a
Weierstrass model admitting a split I5 fiber over a general point of a divisor of the
discriminant locus:

split I5 =⇒ SU(5) GUT.

We recall that a Weierstrass model Y → B over the base B is given by the following
cubic equation written in a P2-bundle over the base B:

zy2 + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3, (3.1)

where the variables x, y and z are the projective coordinates of a P2-bundle. Each
variable ai (i = 1, 2, 3, 4, 6) is a section of the line bundle L ⊗(−i). Supposed that
Dsu(5) is the divisor over which we want to have a split I5 singular fiber. We will
assume that Dsu(5) is the zero locus of a section w of a line bundle Lsu(5):

Dsu(5) : w = 0. (3.2)

We can now consider the coefficients of the Weierstrass equation as polynomials in
w. It follows from table 3 that after resolving the singularity, we will have a split I5

fiber over w = 0 if we impose the following specialization of the coefficients ai:

a1 = β5, a2 = β4w, a3 = β3w
2, a4 = β2w

3, a6 = β0w
5. (3.3)

Here, each βj (j = 0, 2, 3, 4, 5) is a section of the line bundle L ⊗(6−j) ⊗ L ⊗(j−5)
su(5) .

We assume each βj does not vanish identically over w = 0. The resulting (singular)
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Weierstrass model is given by the following equation:

E : zy2 + β5xyz + β3w
2yz2 − (x3 + β4wx

2z + β2w
3xz2 + β0w

5z3) = 0, (3.4)

where w and βj (j = 0, 2, 3, 4, 5) are respectively sections of Lsu(5) and L ⊗(6−j) ⊗
L ⊗(j−5)

su(5) . The Weierstrass model admits the following factorization of its discrimi-
nant:

∆ = −w5∆′. (3.5)

The discriminant locus is the union of two divisors, namely Dsu(5) : w = 0 and
D : ∆′ = 0 where

∆′ = β4
5P + wβ2

5(8β4P + β5R) + w2(16β2
3β

3
4 + β5Q) + w3S + w4T + w5U. (3.6)

Here P,R,Q, S, T and U are polynomials in βj (j = 0, 2, 3, 4, 5):

P = β2
3β4 − β2β3β5 + β0β

2
5 , R = 4β0β4β5 − β3

3 − β2
2β5, (3.7)

Q = −2(18β3
3β4 + 8β2β3β

2
4 − 15β2β

2
3β5 + 4β2

2β4β5 − 24β0β
2
4β5 + 18β0β3β

2
5),

S = 27β4
3 − 72β2β

2
3β4 − 16β2

2β
2
4 + 64β0β

3
4 + 96β2

2β3β5 − 144β0β3β4β5 − 72β0β2β
2
5 ,

T = 8
(
8β3

2 + 27β0β
2
3 − 36β0β2β4

)
, U = 432β2

0 .

The reduced Weierstrass model corresponding to equation (3.4) is given by:

c4 = −48w3β2 + 16w2β2
4 − 24w2β3β5 + 8wβ4β

2
5 + β4

5 ,

c6 = −864w5β0 − 216w4β2
3 + 288w4β2β4 − 64w3β3

4 (3.8)

+ β5(144w3β3β4 + 72w3β2β5 − 48w2β2
4 + 36w2β3β5 − 12wβ4β

2
5 − β5

5).

3.1 Conjectured fiber geometry

The support of the discriminant locus ∆ of the elliptic fibration that we have intro-
duced to describe an SU(5) GUT is the union of two divisors, namely Dsu(5) : w = 0
(of multiplicity 5) and D′ : ∆′ = 0 (of multiplicity one). Over a general point of
Dsu(5), we have a split I5 fiber corresponding to a SU(5) gauge group. Over a general
point of D′ we have a I1 fiber (a nodal curve):

Dsu(5) : w = 0 (I5), D′ : ∆′ = 0 (I1). (3.9)

Since in general ∆′ does not factorize further, we have 5 D7-branes wrapping the di-
visor Dsu(5) : w = 0 and one D7-brane wrapping the divisor D′ : ∆′ = 0. The divisor
D′ is actually singular and all its singularities are supported on the codimension-2
locus w = Pβ5 = 0 which is the union of two curves of Dsu(5), namely Σ5 : w = P = 0
and Σ10 : w = β5 = 0. Interestingly the singular locus of D′ is exactly its intersection
with Dsu(5): We have

Dsu(5) ∩D′ = Σ5 ∪ Σ10. (3.10)
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It is conjectured that the I5 fiber enhances to a I6 fiber over Σ5 and to a I∗1 fiber
over Σ10 (see for example [24, 31]):

Σ5 : w = P = 0 (I6?), Σ10 : w = β5 = 0 (I∗1 ?). (3.11)

In codimension-three, at the intersection of Σ5 and Σ10 the singularity is expected
to enhance further. The intersection of Σ5 and Σ10 is the union of two codimension-
three loci in the base, Π3 and Π4:

Σ5 ∩ Σ10 = Π3 ∪ Π4. (3.12)

Over Π3 and Π4, it is conjectured that the fiber enhances to a fiber I∗2 and IV ∗ (or
more generally to a fiber with dual graph D̃6 and Ẽ6):

Π3 : w = β3 = β5 = 0 (I∗2 ?) ∪ Π4 : w = β4 = β5 = 0 (IV ∗?). (3.13)

The curve Σ5 contains additional points Π7 : w = P = R = 0 over which the singular
fiber I6 is conjectured to enhance further to a fiber of type I7 [24, 31]:

Π7 : w = P = R = 0 (I7?). (3.14)

These points are also codimension-three points in the base. there are not coming
from the collisions of two curves, but they contain as a proper subset the points Π3.
The conjectured tree of singular fibers enhancement is summarized in figure 6 and
figure 5.

4 Resolution over codimension-one loci in the base

In this section we resolve the singularities that project to codimension-one loci in
the base. The variety E is singular at x = y = w = 0. Fiberwise, we have a singular
point on the elliptic fiber above the divisor Dsu(5) : w = 0 in the base. The divisor
Dsu(5) is a component of the discriminant locus of multiplicity 5. The resolution is
obtained by two successive blow-ups after which the singular fiber is replaced by a
cycle of 5 rational curves defining the Kodaira type I5 over Dsu(5).

4.1 Blowing-up the codimension-1 singularity

Our starting point is the defining Weierstrass equation of the SU(5) GUT model:

E : zy2 + β5xyz + β3w
2yz2 − (x3 + β4wx

2z + β2w
3xz2 + β0w

5z3) = 0. (4.1)
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Figure 6: Conjectured singular fiber enhancements of a SU(5) GUT. Starting
with codimension one in the base, the codimension increases from left to right.
Thinking in terms of the dual graph, the rank of the associated Dynkin diagram
increases by 1 as we move in codimension.

The support of all the singularities of the variety E is:

Sing(E ) : x = y = w = 0. (4.2)

Over the divisor Dsu(5) : w = 0, the elliptic fiber degenerate into the nodal curve:

C0 : zy2 + β5xyz − x3 = 0, (4.3)

This nodal curve degenerate further to a cuspidial curve over the codimension-two
locus β5 = w = 0 of the base.

We will blow-up this singular locus x = y = w = 0. For that matter we introduce
the projective coordinates [U1, U2, U3] of a CP2 together with the following relations:

xU2 = yU1, xU3 = wU1, yU3 = wU2. (4.4)

Working first in a patch defined U1 defined by U1 6= 0, we have y = U2

U1
x, w = U3

U1
x.

Defining x1 = x, y1 = U2/U1 and w1 = U3/U1, the blow-up can be expressed in U1

by the morphism ϕ1 : (x, y, w) 7→ [x1, x1y1, x1w1]. We can proceed in a similar way
in the patches U2 and U3 defined respectively by U2 6= 0 and U3 6= 0. Alltogether,
the blow-up is computed using the three morphisms:

ϕ1 : (x, y, w) 7→ [x1, x1y1, x1w1], (4.5)

ϕ2 : (x, y, w) 7→ [y2x2, y2, y2w2], (4.6)

ϕ3 : (x, y, w) 7→ [w3x3, w3y3, w3]. (4.7)
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∆ = Dsu(5) ∪D′
w5∆′ = 0

vv ((
Dsu(5) : I5 Ã4

w = 0

((

D′ : I1 U(1)
∆′ = 0

vv

Dsu(5) ∩D′ = Σ5 ∪ Σ10

vv ((
Σ5 : I6 Ã5

w = P = 0

((

��

Σ10 : I∗1 D̃5

w = β5 = 0

uu

Σ5 ∩ Σ10 = Π3 ∪ Π3

�� %%

Π7 : I7 Ã6

w = P = R = 0
// Π3 : I∗2 D̃6

w = β3 = β5 = 0

Π4 : IV ∗ Ẽ6

w = β5 = β4 = 0

Table 5: Conjectured singular fiber enhancements of a general SU(5) GUT model.

The different patches are glued together along their intersection by requiring the
morphism to match. For example, along U1 ∩U2, the gluing is based on matching
ϕ1 = ϕ2 and gives (x1, y1, w1) = (x2y2, 1/x2, w2/x2). Before the blow-up, the special
fiber is obtained by cutting E along w = 0. After the blow-up, we have to keep track
of the fiber function in every patch. In the patch U1, U2 and U3, we get respectively
the fiber function w1x1, w2y2 and w3. The fact that the irreducible w is replaced
by reducible fiber function is responsible for the new cycles that will constitute the
singular fiber I5.

Let us analyze the fiber structure after the first blow-up. In the patch U1, the
fiber is obtained by cutting along w1x1 = 0. The component w1 = 0 gives the proper
transform of the original fiber C0 while x1 = 0 gives a new reducible component
which is the union of two rational curves C1+ and C1−; each intersecting C0 at one
point. These two components are disjoint in the patches U1 and U2. The proper
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Patch Proper transform of the defining equation E Fibers
U1 E : y2 + w2β3xy + β5y = x+ w5x3β0 + w3β2x

2 + wβ4x xw = 0
U3 E : y2 + β5xy + wβ3y = wx3 + w3β0 + w2β2x+ wβ4x

2 w = 0
U3,1 E : y2 + β5y + wβ3y = wx2 + w3β0x+ w2β2x+ wβ4x xw = 0
U3,3 E : y2 + β5xy + β3y = w2x3 + wβ0 + wβ2x+ wβ4x

2 w = 0

Table 6: Defining equations for the blow-ups generating the fiber I5.

transform of the Weierstrass equation E is smooth in the patches U1 and U2. In the
patch U3, we don’t see C0, but we can see both C1+ and C1− and their intersection
point w3 = x3 = y3 = 0, which is the singular locus of the proper transform of E .

U1 :


C0 : w = y2 + β5y − x = 0

C1+ : x = y = 0

C1− : x = y + β5 = 0.

, U3 :

{
C1+ : w = y = 0

C1− : w = y + β5x = 0.

(4.8)
To completely smooth the variety up to codimension-two ( codimension-one in the
base), we have to perform an additional blow-up in the patch U3 at the x3 = y3 =
w3 = 0. We introduce an additional P2 with projective coordinates [U3,1, U3,2, U3,3]
and the relations

U3,2x3 − U3,1y3 = 0, U3,2w3 − U3,3y3 = 0, U3,1w3 − U3,3x3 = 0.

Defining x3,1 = x3, y3,1 = U3,2/U3,1, w3,1 = U3,3/U3,1,etc, the blow-up of x3 = y3 =
w3 = 0 is defined by the following three morphisms:

ϕ3,1 : (x3, y3, w3) 7→ [x3,1, x3,1y3,1, x3,1w3,1], (4.9)

ϕ3,2 : (x3, y3, w3) 7→ [y3,2x3,2, y3,2, y3,2w3,2], (4.10)

ϕ3,3 : (x3, y3, w3) 7→ [w3,3x3,3, w3,3y3,3, w3,3]. (4.11)

where ϕ3,k is defined in the patch U3,k : U3,k 6= 0 (k = 1, 2, 3). The special fiber in
the patch U3,1 is given by the fiber function w31x31 = 0 which gives two reducible
components C1 and C2 that are composed of the rational curves C1± and C2±.
Alltogether C0, C1±, C2± define the fiber I5. Alltogether all the components of the
fiber I5 can be seen in the patch U1 (where the can see C0, the only component
touching the section) and in the U3,1, where we have all the other components:

U3,1 :


C1+ : w = y = 0

C1− : w = y + β5 = 0

C2+ : x = y = 0

C2− : x = y + β5 + wβ3 = 0

(4.12)
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After this blow-up, the variety is smooth in codimension-one. As we will see next,
there are singularities above loci in higher codimensions in the base. But they are
all visible in the patch U3,1 : U3,1 6= 0 where the components C1± and C2± are
visible. The patch U3,1 will play a central role in the rest of this paper since this is
the ground where all the additional enhancement will take place. The two blow-ups
yielding the fiber I5 are summarized6 in equations (4.8) and (4.12) and in tables 6
and 7.

U : C0

Sing:

x = y = w = 0

{{ ��
$$

U1 :
C1±, C0

U2 :
C1± + C0

U3 : C1±
Sing:

x = y = w = 0

yy �� ##
U3,1 :

C2±, C1±

U3,2 :
C2±, C1±

U3,3 :
C2±

C0

C1−C1+

C2−C2+

j
j j
jj

Table 7: Atlas of the blow up of the I5 singularity. Each patch is indicated by
its name and we name the components visible from that patch. In case the variety is
still singular and need an additional blow-up in a given patch we indicate explicitly
the singular locus.

4.2 Fiber mutation over higher codimension singularities

After resolving the singularity above Dsu(5), there are still extra singularities left in
higher codimension in the base. With the exception of C0, all the components of
the I5 fiber are visible in the patch U31. Since there are no singularities on C0 and
we will see that all the singularities are visible in the patch U31:

E in U31 : y2 + β5y + wβ3y = wx2 + w3β0x+ w2β2x+ wβ4x. (4.13)

In order to understand the higher codimension enhancement of the fiber, it is neces-
sary to first analyze the extra singularities present in higher codimension. We have

6To simplify notations, we don’t put the indexes and we work just with (x, y, w). This is usually
enough when we specify explicitly in which patch we are working.
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summarized the singular structure in table 8. We have recovered all the singular
loci expected from the analysis of the discriminant with the exception of the points
Π7. We will see later that there is actually no enhancement of the fiber above these
points.

Sing. Locus of E in U3,1 Codim in the base of E
Located on the

components

Lt : x = y = w = β5 = 0 2 (Σ10 : β5 = 0 in Dsu(5)) C1 ∩ C2+ ∩ C2−
Lx : x+ β4 = y = w = β5 = 0 2 (Σ10 : β5 = 0 in Dsu(5)) C1

Lw

{
y = x = wβ3 + β5 = 0

w2β0 + wβ2 + β4 = 0
2 (Σ5 := P = 0 in Dsu(5)) C2+ ∩ C2−

p3

{
x = y = β5 = β3 = 0

w2β0 + wβ2 + β4 = 0
3 (Π3 : β5 = β3 = 0 in Dsu(5)) C2

p4 : x = y = w = β5 = β4 = 0 3 (Π4 : β5 = β4 = 0 in Dsu(5)) C1 ∩ C2

Table 8: Singular loci in higher codimensions The first column indicates the singular
loci, the second column expressed the location of the singularity in the base and mention the
codimension. Finally the third column indicate which components of the I5 contain the singularity.
We denote by C1 (resp. C2) the node obtain when C1± (resp. C2±) coincide.

The I5 fiber changes dramatically over the loci in the base corresponding to higher
dimensional singularities. For example, over Σ10 : β5 = 0 and the components C1+

and C1− coincide and form a unique component C1 which intersect C2+ and C2− at
a common point Lt. There is another singularity Lx sitting on C1 away from C2±
(as long as β4 6= 0). Over Π3 : β5 = β3 = 0, C2+ and C2− also coincide with each
other. The mutation associated with the specialization β5 = 0 and β5 = β3 = 0
is illustrated in figure 7. Over Σ5 : P = 0, the fiber keeps its I5 structure but it
develops a singularity at Lw corresponding to the intersection of C2+∩C2− over the
locus Σ5.

5 The binomial geometry of SU(5) GUTs

In this section, we introduce the binomial geometry that naturally appears after
resolving the singularities of the SU(5) in codimension one. We will study care-
fully the singularities of the binomial variety and their desingularization by explicit
resolutions. We will do it both using the natural toric description of the binomial
variety and a direct algebraic description.The binomial variety we are dealing can be
seen as a higher dimension generalization of the conifold. We will review therefore
the small resolution of a conifold and Atiyah’s flop in some details. For a conifold
singularity, there are two small resolutions connected by a flop. For the binomial
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Figure 7: Higher co-dimension specialization of the I5 singularity. As we go to higher
codimension, there are singularities over which the I5 fiber changes its shape due to
component superposition.

variety we consider, we will have six small resolutions related by a networks of flop
transitions forming a dihedral group of order 12. We will use this analysis to fully
resolve the SU(5) model and describe its fiber in every codimensions.

In order to resolve the higher codimension singularity of the elliptic fibration, we
will work in the patch U3,1 where all these singularities are visible. After introducing
the variables s and t defined by:

s = y + β5 + wβ3, t = x+ β4 + w2β0 + wβ2, (5.1)

we see that the fibration E has the structure of an affine binomial variety:

E in U3,1 : ys− wxt = 0, x, w, t, y, s ∈ C. (5.2)

An affine binomial variety is the vanishing locus of a binomial polynomial( the sum
of two monomials). In this section we will spend some time understanding this ge-
ometry. Binomial ideals are reviewed for example in the lectures of Bernard Teissier
[37]. Binomial varieties have the nice property of being affine toric varieties. Their
singularities are considered to be the simplest class of non-degenerate singularities.
There are several binomial varieties that naturally occur string theory. A cusp
(y2 = x3) is an example of a dimension-one binomial variety, a surface with a Ak
singularity (xy = zk+1) is also a binomial variety. The conifold (xy − wz = 0) is
probqbly the most famous binomial variety in string theory. A pinch point singu-
larity is described by The Whitney’s umbrella (x2 = zy2) and is a binomial variety
that appears naturally when we take the orientifold limit of F-theory [28, 29]. The
binomial variety that we are interested in (xwt − ys = 0) is a beautiful example
of higher dimensional singular variety. Its singular locus is composed of a bouquet
of three double lines and the singularity enhances at the origin of the bouquet. In
other words, we have three conifold lines all intersecting at one point where the sin-
gularity worsens. Its intersection with different linear spaces reproduce the Whitney
umbrella, the cusp or the A2 singularity. We will review the small resolution of the
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conifold in the next subsection as a warmup before attacking the resolution of the
higher codimension singularities of E .

Name Defining equation Dimension
A curve with a cusp x2 − y3 = 0 1

A surface with a Ak-point xy − zk+1 = 0 2
The Whitney’s umbrella y2 − zw2 = 0 2

The conifold xy = zw 3

Table 9: Examples of common binomial varieties.

5.1 Atiyah’s flop and the small resolution of the conifold

A conifold is the double point singularity of the tip of an affine quadric cone:

C : u1u2 − v1v2 = 0, ui, vi ∈ C. (5.3)

The quadric cone is smooth in codimension-one and codimension-two but admits
a double point singularity at the origin. It can be smoothed by a small resolution
or by a blow-up. The blow-up π : Ĉ → C of the origin resolves the singularity
by replacing the origin by a ruled surface F0 = CP1 × CP1 defined by a quadric
equation in CP3. This ruled surface F0 can be contracted to a rational curve CP1 in
two different ways corresponding to the two different rulings of F0. Each of these two
contractions π̄i : Ĉ → Ĉi (i = 1, 2) defines a small resolution of the original quadric
cone. These two small resolutions are related to each other by a flop transition
Ĉ1 L9999K Ĉ2. Alternatively Ĉi can be obtained by blowing up the (non-Cartier)
Weil divisor u1 = v1 = 0 or u1 = v2 = 0:

Ĉ1 :

{
u1α− σv1 = 0,

v2α− σu2 = 0,
, Ĉ2 :

{
u1α− σv2 = 0,

v1α− σu2 = 0,
(5.4)

where ui, vj ∈ C and [α : σ] are the projective coordinates of a CP1. The flop
transition of the small resolution of the conifold was described by Atiyah in 1958
[38].

5.2 Toric description of the binomial variety

A binomial variety is always toric. Ebin : u1u2u3 − v1v2 = 0 is an affine toric variety
as it can be seen by describing it as the variety defined by the semi-group M gen-
erated by the four-vectors mu1 = (1, 0, 0, 0), mu2 = (0, 1, 0, 0), mu3 = (0, 0, 1, 0),
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Figure 8: Flop transition Ĉ1 L9999K Ĉ2 betwen the two small resolutions of the
conifold.

mv1 = (0, 0, 0, 1) and mv2 = (1, 1, 1,−1) since they satisfy the relation mu1 +
mu2 + mu3 = mv1 + mv2 . We can also describe its algebraic torus explicitly:
E∗ = {(u1, u2, u3, v1, v2) ∈ Ebin : u1u2u3v1v2 6= 0). It is a four-torus as can be
seen by the isomorphism:

T4 := (C∗)4 → E∗ : (u1, u2, u3, v1) 7→ (u1, u2, u3, v1, u1u2u3v
−1
1 ). (5.5)

Every lattice point m = (a, b, c, d) ∈ Z4 defines a 1-parameter subgroup as follows:

C∗ → E∗ : λ 7→ λm = (λa, λb, λc, λd, λa+b+c−d). (5.6)

These 1-parameter subgroups form a lattice equivalent to the semi-group M defined
above. The dual lattice N of M defines the fan of the toric variety. It can alterna-
tively be defined as the set of conditions for which the 1-parameter subgroups are
well defined on Ebin. That is, when the following inequalities hold:

a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0, a+ b+ c− d ≥ 0. (5.7)

These inequalities define a cone σ∨ in R4 with apex at the origin. The cone σ∨ is
generated by the rows of the following matrix:

ā
b̄
c̄
c
b
a


1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1
0 1 0 1
0 0 1 1


a

ā

b

b̄

c

c̄

(5.8)

This matrix above has a very simple geometric interpretation: the rows correspond
to the vertices of a triangular prism inside the three dimensional hyper-plane:

(x0, x1, x2, x3) ∈ R4 : x0 + x1 + x2 = 1.
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The cone is completely specified by the prism. We can visualize the cone by draw-
ing the prism in a three dimensional space simply by discarding the first column.
By doing so, we have to keep in mind that a point (x1, x2, x3) ∈ Z3 in the three
dimensional drawing space corresponds to an actual point of the prism if we can
find an x0 ∈ Z such that x0 + x1 + x2 = 1.The different faces of the cone are also in
one-to-one relation with the invariant loci of the torus action. A face of dimension d
in the prism corresponds to a face of dimension (d+ 1) of the cone σ∨ and therefore
to a torus of dimension 4 − (d + 1) = 3 − d. In particular, the prism itself corre-
sponds to an invariant point of the torus action, a facet of the prism corresponds to
an invariant curve, an edge of the prism corresponds to an invariant surface of the
torus action and a vertex corresponds to a toric divisor.

5.3 Small resolutions and network of flop transitions

a

ā

b

b̄

c

c̄

Figure 9: The small resolution T (ā, b) of the binomial variety ys − wxt = 0 is
obtained by a refinement of the triangular prism (a, b, c, ā, b̄, c̄) into a sum of three
3 tetrahedra, namely (ā, a, b, c), (ā, c̄, b, c) and (ā, b̄, c̄, b).

The singular locus of the variety Ebin is a bouquet of 3 lines of conifold singu-
larities enhancing at the center of the bouquet where the three lines meet at one
point. In the toric description, the dual cone of the variety Ebin is determined by
a triangular prism as explained above. The three conifold lines of Ebin correspond
to the three rectangular facets of the prism while the center of the bouquet is the
interior of the prism. A resolution of all the singularities of Ebin is obtained by a
simplicial refinement of the prism with cells of unit lattice volume. In particular,
a small resolution occurs when the refinement does not add any new vertex. This
is because a vertex corresponds to an invariant divisor and by definition a small
resolution does not have any divisor in its exceptional locus. It is possible to get a
simplicial subdivision of any rational polytope by performing a succession of star-
subdivisions of its fan. A star-subdivision is defined by a choice of a point v and
the following algorithm: any cone that contains v is replaced by the joins of its
faces with the ray through v; each cone not containing v is left unchanged. A star
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Tetrahedron (ā, a, c, b)

a

ā

b

c

Pyramid (ā, c̄, b̄, c, b)

ā

b

b̄

c

c̄

Tetrahedron (ā, c̄, c, b)

ā

b

c

c̄

Tetrahedron (ā, c̄, b̄, b)

ā

b

b̄
c̄

Figure 10: The resolution T (ā, b). We split the prism into a tetrahedron (ā, a, b, c)
and a rectangular pyramid (ā, b, c, b̄, c̄) using the plane (ā, b, c). We then split the
rectangular pyramid into the two tetrahedra (ā, c̄, c, b) and (ā, b̄, c̄, b) using the plane
(ā, c̄, b).

subdivision defines a proper birational map since after the subdivision, the fan still
has the same support. If the center of the star subdivision is already a point of the
polytope, the birational map is small since there are no new vertices created.

A small resolution of Ebin is given by the classical subdivision of the prism into
three tetrahedra. Such a subdivison can always be expressed as two star-subdivisions
with centers v1 and v2 where the two centers are the end points of the diagonal of
one of the three rectangular facets of the prism. We will denote such a resolution
T (v1, v2). Let us consider as an example the resolution T (ā, b) defined by the vertex
ā and b. This is illustrated in table 10. The star-subdivision determines by the
vertex ā generates a subdivision of the prism into a tetrahedron (ā, a, b, c) and the
rectangular pyramid (ā, c̄, b̄, b, c) as illustrated in the first two picture on the left of
table 10. The second star-subdivision is determined by the vertex b. It does not
modify the tetrahedron (ā, a, b, c) but it subdivides the rectangular pyramid into two
tetrahedra (ā, c̄, b, c) and (ā, b̄, b). Alltogether, the small resolution T (ā, b) defines
the following subdivision of the prism into three tetrahedra as illustrated in table
10:

T (ā, b) = {(ā, a, b, c), (ā, c̄, b, c), (ā, b̄, c̄, b)}. (5.9)

We could have also considered the small resolution

T (ā, c) = {(ā, a, b, c), (ā, b, c, b̄), (ā, b̄, c̄, c)}.

The first star-subdivision with center ā gives the same splitting into a tetrahedon and
a rectangular pyramid as in T (ā, b). But the second star-subdivision uses the other
possible splitting of the pyramid into two tehtrahedrons. The difference between
the resolutions T (ā, b) and T (ā, c) is then a choice on how to split the rectangular
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T (ā, c)

a

ā

b

b̄

c

c̄

T (b̄, c)

a

ā

b

b̄

c

c̄

T (ā, b)

a

ā
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b̄

c

c̄
T (c̄, b)

a

ā

b

b̄

c

c̄

T (b̄, a)

a

ā

b

b̄

c

c̄

T (c̄, a)

a

ā

b

b̄

c

c̄

Figure 11: The six small resolutions of the binomial variety ys−wxt = 0. Each of
the small resolution is obtained by a subdivision of the prism into 3 tetrahedra. All
the possible choices are connected by a sequence of such flop transitions on which
the symmetric group S3 acts transitively.

pyramid into two tetrahedra. This is exactly the same difference between the two
small resolutions of the conifold. More generally,two resolutions T (ū, v) and T (p̄, q)
are related by a (conifold) flop transition defined by switching the choice of a diagonal
plane if and only if u = p or v = q. Altogether, we have a total of 6 small resolutions
as represented in figure 11

T (ā, b), T (ā, c), T (b̄, c), T (b̄, a), T (c̄, a), T (c̄, b).

The group S3 of permutations of 3 letters {a, b, c} acts transitively on this set of
resolutions. They are connected to each other by a network of flop transitions as
represented in table 11. The exceptional locus over a given cone is the union of
all the minimal cones intersecting its relative interior. For the six resolutions we
obtained, each rectangular facet admits as its exceptional locus a CP1-bundle over
the singular lines and the CP1 fiber enhances to two intersecting CP1 at the common
intersection of the three lines. The structure of the exceptional locus is illustrated
in figure 12.

5.4 Algebraic description of the network of small resolutions

The toric description shows that a small resolution can be obtained by blowing-up
two Weil divisors corresponding to two vertices that are opposite ends of the same
diagonal of a given rectangular facet of the prism. This can be easily implemented
algebraically. We will derive it slightly differently using an analogy with the small
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L1

L2L3

p

Figure 12: The exceptional locus of the small resolution of the binomial variety
u1u2u3 = v1v2 is a CP1-bundle with a fiber which enhances at the origin to two CP1

intersecting at a point.

resolution of the conifold. Consider the defining equation of the binomial variety:

u1u2u3 = v1v2, (u1, u2, u3, v1, v2) ∈ C5. (5.10)

Assuming for a moment that v1v2 6= 0, we can rewrite it as the following fractional
relation

u1

v1

u2

v2

u3 = 1. (5.11)

We then introduce two projective lines P1 with projective coordinates [α±, σ±] and
we identify their affine coordinates with u1/v1 and u2/v2:

σ+

α+

=
u1

v1

,
σ−
α−

=
u2

v2

. (5.12)

Using the defining equation of the binomial variety, we get the small resolution:

B12 :


u1α+ − σ+v1 = 0,

u2α− − σ−v2 = 0,

α+α− − σ+σ−u3 = 0.

where [α+ : σ+]× [α− : σ−] ∈ F0 = CP1 × CP1.

(5.13)

Since the Jacobian has maximal rank, this is a smooth variety. The exceptional
locus over a general point of L1∪L2∪L3 is just a CP1 inside F0 = CP1×CP1. More
precisely, L1 gives a CP1 that represents a ruling of F0, while L2 gives a CP1 that
represents the other ruling and L3 is given by a diagonal CP1 which is not a ruling
of F0 but the conic α+α−−σ+σ−u3 = 0 in F0. At the point p = L1∩L2 = L2∩L3 =
L1∩L3 = L1∩L2∩L3, where the three lines meet, the exceptional locus enhances to
two CP1 intersecting transversely. Using this algebraic description, we can also see
that there are six different small resolutions. Indeed, the small resolution B12 can
be replaced by a different “flop dual” resolution defined by permuting (u1, u2, u3).
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In total there are six possibilities. If we denote by (i, j, k) a permutation of (1, 2, 3),
we define the resolution πij : Bij → B as follows:

Bij :


uiα+ − σ+v1 = 0,

ujα− − σ−v2 = 0,

α+α− − σ+σ−uk = 0.

where [α+ : σ+]× [α− : σ−] ∈ F0 = CP1 × CP1.

(5.14)
The resolution πij : Bij → B is obtained by blowing-up the two Weil divisors
ui = v1 = 0 and uj = v2 = 0. Since these Weil divisors are not Cartier, they actually
don’t lead to an exceptional divisor, the exceptional locus being in codimension-two.
These two divisors correspond to some vertex ā and b of the prism and therefore
the resolution πij is the same as the toric resolution T (ā, b). The flop transition
between the resolutions Bij and Bik can be understood as a geometric procedure
under which the CP1 fiber of the exceptional locus coming from the blow-up of
uj = v2 = 0 is blown-down and replaced by the CP1 coming from the blowup of
uk = v2 = 0. We can give a similar description for the flop transition between Bij

and Bkj. Any resolution Bij can be mapped to to any other Bi′j′ by a succession
of such flop transitions as described by the loop(compare with figure 11):

(12)− (13)− (23)− (21)− (31)− (32)− (12). (5.15)

6 Small resolutions for SU(5) GUTs

The small resolutions πij : Bij → B of the binomial variety B : u1u2u3 − v1v2 = 0
presented in the previous section can be pulled-back to E to provide small resolutions
for all the higher codimension singularities of the SU(5) GUT geometry E . This
procedure can be summarized by the following diagram:

Eij

π̂ij
��

//Bij

πij
��

E //B

(6.1)

where the map E → B associated to each point p of E , the point (u1, u2, u3, v1, v2)
of B such that:

u1 = x, , u2 = w, u3 = t, v1 = y, v2 = s. (6.2)
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We recall that t = x+β4 +β2w+β0w
2 and s = y+β5 +β3w. Denoting by [α± : σ±]

the projective coordinates of two CP1, the 6 small resolutions are:

Ewx Etw Ext
wα+ − σ+y = 0

xα− − σ−s = 0

α−α+ − σ−σ+t = 0


tα+ − σ+y = 0

wα− − σ−s = 0

α−α+ − σ−σ+x = 0


xα+ − σ+y = 0

tα− − σ−s = 0

α−α+ − σ−σ+w = 0

Ewt Exw Etx
wα+ − σ+y = 0

tα− − σ−s = 0

α−α+ − σ−σ+x = 0


xα+ − σ+y = 0

wα− − σ−s = 0

α−α+ − σ−σ+t = 0


tα+ − σ+y = 0

xα− − σ−s = 0

α−α+ − σ−σ+w = 0

(6.3)

The exceptional locus is a CP1-bundle over the bouquet Lx ∪Lw ∪Lt, but the fiber
enhances to two intersecting CP1 over the center of the bouquet:

π̂−1
ij (x ∈ Lx ∪ Lw ∪ Lt − {p4}) = mCP1

, π̂−1
ij (p4) = m
m
CP1

CP1

It is easy to see (for example, by computing the Jacobian) that all the six resolutions
are smooth. Although the 6 small resolutions Bij of the binomial variety B had a
similar fiber structure, their uplifts Eij to the SU(5) geometry would be significantly
different from each. The dependence of s and t on the base through the sections
β0, β2, β3, β4 and β5 will be responsible for the enhancement of fibers of the SU(5)
model. In the process of adding the extra nodes coming from the exceptional loci,
we will get new types of fibers.

6.1 Codimension-2 singular fibers: Ã5 and D̃5 enhancements.

A general fiber of E over the divisor Dsu(5) is a closed chain of 5 CP1-nodes, namely
C0, C1± and C2±. In order to analyze the structure of the fiber of the resolutions
Eab, we just have to understand what is happening at the singular locus Lt∪Lx∪Lw.
We notice that Lt and Lx are both located above the curve Σ10 : β5 = 0 of the base,
whereas Lw is located above Σ5 : P = 0. The I5 fiber undergoes a topological change
over these two curves. Over the locus β5 = 0, the curves C1+ and C1− coincide to
form a rational curve C1 of multiplicity 2. This rational curve C1 intersects C2+

and C2− at a unique point which corresponds to Lt. When β4 6= 0, there is another
singular point on C1 away from Lt, this is the singularity Lx. The small resolution of
E0 replaces on each fiber over β5 = 0, the singular points Lt and Lx by the rational
curves Ct and Cx. The resulting fiber has the structure of an affine diagram D̃5.
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This enhancement is reviewed in table 13. Above the curve Σ5, the singular point
Lw corresponds fiber wise to a singular point sitting at the intersection of C2+ and
C2−. Any of the six small resolutions replaces that point by a CP1 that we call Cw.
This leads to an enhancement of the fiber I5 to a fiber I6 with dual graph Ã5. This
is presented in table 14. The curve Cx, Ct and Cw are realized differently for each
resolution Eij 7 .

β5=0−→ Resolution−→
C0×

C1−C1+

C2−C2+

m
m m
mm

m×
m
mm

C0

2C1

C2−C2+

rr
} m×m
}
m m

2C1

2Ct

C2−C2+

C0Cx

Figure 13: The codimension-2 fiber enhancement Ã4 → D̃5. It corresponds to the resolution
of codimension-2 singularities above the curve w = β5 = 0.

P=0−→ Resolution−→
C0×

C1−C1+

C2−C2+

m
m m
mm

C0×

C1−C1+

C2−C2+

m
m m
mm

C0×

C1−C1+

C2−C2+

}

m m
m m

m

Cw

Figure 14: The codimension-2 fiber transition Ã4 → Ã5 above the curve P = 0
(assuming that β3 6= 0). This turns the fiber I5 into a Kodaira fiber I6 which
corresponds to the extended Dynkin diagram Ã5.

6.2 An affine D̃6 enhancement in codimension-3

When we were analyzing the structure of the fibers in codimension-2 we have as-
sumed that β3β4 6= 0 in order to obtain the fiber I6 and that β4 6= 0 to obtain the
fiber with dual graph D̃5. If we allow β3 = 0 or β4 = 0 we are in codimension-3 and
we can expect a enhancement of the singular fibers. The specialization β3 = β5 = 0

7 In general given a curve C` and the resolution Eij , if ` = i, C` is defined by L` together
with the condition uiα+ = α+α− = 0, therefore it is defined by the CP1 : α+ = 0, that is the
line CP1 × [0 : 1] in F0. In the same way if ` = j, C` we be given by α− = 0 corresponding to
the line [0 : 1] × CP1 in F0. Finally if (` 6= i, j), then C` is defined by the quadratic equation
α−α+ − σ−σ+uk = 0 in F0. We call it a diagonal CP1 since it does not correspond to one of the
ruling of F0.
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and β4 = β5 = 0 can be geometrically described as collisions of singular fibers I6

and D̃5 located above P = 0 and β5 = 0. We will first consider the case

Π3 : β5 = β3 = 0

and we will analyze the case β5 = β4 = 0 later. As we specialize to β5 = β3 = 0
in the SU(5) divisor, the curves C1+ and C1− (resp. C2+ and C2−) coincide and
determine a unique curve of multiplicity 2 that we call C1 (resp. C2). Each of our 6
small resolutions replaces on each fiber of β5 = β3 = 0 the points corresponding to
Lx and Lt by a CP1 as it was done already in codimension-2. But something new
happens for the locus Lw. When we specialize to β3 = β5 = 0, the locus Lw : x = y =
β5 +β3w = β4 +β2w+β0w

2 = 0 reduces to x = y = β5 = β3 = β4 +β2w+β0w
2 = 0.

This defines two points Lw± on the component C2 of the fiber above β5 = β3 = 0.
Indeed, the equation β4 + β2w + β0w

2 = 0 gives two different values w± for w in
terms of β4, β2, β0. We can think of this as the splitting of the locus Lw into two
different loci Lw±:

Lw
β3=β5=0−−−−−→ Lw±, w± =

−β2 ±
√
β2

2 − 4β4β0

2β2
0

.

Since we are in codimension-3, we can safely assume that in general β0 6= 0 and
β2

2 − 4β4β0 6= 0 so that we indeed have two values for w which correspond to two
disjoint points on the node C2. In the resolution, each of these points Lw± is replaced
by a CP1 that we call respectively Cw+ and Cw−

8. Alltogether, we see that for any
of our 6 small resolutions, over β5 = β3 = 0 in the SU(5)-divisior, we get a fiber
which has the structure of an affine Dynkin diagram D̃6. The singular points Lw±
are replaced by CP1s that are realized as hypersurfaces in the projective cone F0

with the same equation as Cw.

6.3 Exotic fibers in codimension-three

We will now consider the enhancement of the singular fiber at the points

Π4 : β5 = β4 = 0,

in the SU(5) divisor Dsu(5). These are codimension-three points in the base of the
elliptic fibration. They are a sublocus of the intersection of the curves Σ5 and Σ10.
Above Π4, the nodes C1+ and C1− merge into a unique node C1 of multiplicity 2.
Moreover, the nodes C2+, C2− and C1 all intersect at the same point p4 : β5 = β4 =

8When β3 6= 0, there were a unique value for w since the equation β5 + β3w = 0 had a unique
solution for w. The locus P = 0 was obtained as a compatibility condition with the other relation
β4 + β2w + β0w

2 = 0 by replacing w by the solution −β5/β3.
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Figure 15: Fiber above Π3 : β5 = β3 = 0 in the SU(5) divisor. After the resolution
we get a fiber with dual graph an affine Dynkin diagram D̃6.

x = y = w = 0, which is the common intersection of the three lines Lx, Lw and Lt.
In the toric description of the resolution of the binomial variety, the point p4 is the
interior of the prism. For any of our 6 small resolutions, its proper transform is the
union of two ruling of F0:

α−α+ = 0. (6.4)

This shows that p4 is replaced by the union of two P1s defined respectively by α− = 0
and α+ = 0 inside F0 = P1 × P1. We recall that we parametrize the projective cone
F0 by the projective coordinates [α− : σ−] and [α+ : σ+]. We will denote the node
x = y = w = t = s = α− = 0 and x = y = w = t = s = α+ = 0 respectively
as Cp− and Cp+. These two rational curves intersect transversally at the point
α− = α+ = 0 = x = y = w = β5 = β4 = 0. In order to understand the structure of
the new fiber above the point β5 = β4 = 0 of the SU(5) divisor, we need to clarify
how the two new nodes Cp± connect to the nodes C1, C2+ and C2−. It is easy to
see that in any of the six small resolutions the nodes Cp+ (resp. Cp−) is connected
to C2+ (resp. C2−) so that we have a chain C2−−Cp−−Cp+−C2+. In order to get
the full structure of the fiber, we just need to determine how the node C1 intersects
that chain. We have the following 3 behaviors according the small resolution we
consider: C1 intersects Cp+ but not Cp− (for Etw and Exw), C1 intersects Cp− but
not Cp+ (for Ewt and Ewx), C1 intersects both Cp+ and Cp− (for Etx and Ext). The
corresponding dual graphs are represented in figure 16.

6.4 Flop transitions and codimension-3 singular fibers

The different small resolutions of the binomial variety Ebin lead to 6 different small
resolutions of the SU(5) geometry:

{Ext,Ewx,Etw,Ewt,Etx,Exw}.
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Figure 16: Codimension-3 singularity in the base located at the points Π4 : β5 = β4 = 0 of
the SU(5)-divisor. The first two fibers on the left have the structure of a projective E6 Dynkin
diagram.

Each of them corresponds to a distinct resolution of the original four-fold geometry.
These six fourfolds have different topology and are related to each other by a net-
work of flop transitions under which some rational curves inside codimension-two
and codimension-three singular fibers shrink to a point and get replaced by other
rational curves. These flop transitions do not modify the structure of the fiber above
codimension-2 loci. However in codimension-three in the base, the dual graph is not
necessary preserved over the points Π4. At these points, the rational curves Cp±
can change their intersection with the curve C1 leading in this way to three different
types of fibers. The fiber we get above the point Π4 are not Kodaira fibers. In
the case of the resolutions Ewx,Etw,Ewt and Exw, the fiber is a projective E6 Dynkin
diagram that should not be confused with the affine Ẽ6 which is usually conjectured
to appear in the F-theory literature in order to have the Yukawa couplings of the
up-type quarks 9. For the resolution Ext and Etx, the fiber is not even a Dynkin
diagram but a bouquet composed of three 2-chains meeting at a common point. We
have seen that the discrete group S3 = Dih3 acts transitively on these six fourfolds.
It can be described by the permutation of the three three elements {x, t, w}. This
group acts transitively on the six small resolutions Eab. The group S3 contains 2
elements of order 3 and 3 elements of order 2 which are just transpositions. The
elements of order 3 (that is (xwt) or (twx)) organize the six small resolutions into
two orbits:

{Ext,Ewx,Etw}, and {Ewt,Etx,Exw}.

These two orbits are exchanged by the transpositions (xt), (xw) or (tw). Among
all the permutations, only the transposition (xt) preserves the structure of all dual

9 The projective E6 (resp. affine Ẽ6) is composed of 6 (resp. 7) rational curves. Once the
rational curve C0 is removed, the remaining curves admit a dual graph of type projective D5 (resp.
projective E6) Dynkin diagram.
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graphs. Using the action of the group S3, it is convenient to organize the six small
resolutions into an hexagram as represented in figure 17. The hexagram is composed
of two triangles, each representing an orbit under the permutation of order three.
The Z2 North-South symmetry is given by the permutation (xt) which preserves all
the dual graphs. The central involution which turns any Eij into Eji is induced by the
inverse transformation on the smooth elliptic fibers. From the point of view of the
modular group, that symmetry is given by minus the identity ( −I2) and corresponds
to the perturbative string theory operator (−)FLΩ, where Ω is the worldsheet parity
and FL is the left-moving sector spacetime fermion number on the worldsheet. On
the hexagram, the map Eij ↔ Eji corresponds to the central involution. It enlarges
S3 ' Dih3 to Dih6.

Ext

EwxEtw

Etx

EwtExw

Figure 17: The 6 small and flat resolutions of the SU(5) variety are related to each other by
a network of flop transitions. Each triangles is an orbit of an element of S3 of order 3. These
two orbits are exchanged by any transposition of S3. The group S3 is isomorphic to the dihedral
group Dih3 of the triangle. The only permutation which preserves the structure of all fibers is
(xt). The involution of the smooth fibers generated by the inverse of the group law of the elliptic
fiber induces a birational transformation ι that acts as Eij 7→ Eji on the six resolutions. In string
theory, it corresponds to (−)FLΩ. On the hexagram, it corresponds to the central involution. It
enlarges S3 to Dih6.

6.5 Some comments on the exotic fibers

In this section we will comments on the properties of the resolution we have obtained:
the enhancement of fibers without increase of the rank, the orientifold picture and a
no-go theorem using Batyrev theorem on the birational invariance of Betti numbers
in the category of projective algebraic varieties.

1. Strong coupling. At the points Π4, the j-invariant vanishes. It follows that
the string couplings gs = (Imτ)−1 is strongly coupled. Interestingly, the string
coupling constant is small (j =∞) anywhere else in the SU(5) divisor.

2. Conifold singularities in the orientifold picture. In the type IIB orien-
tifold picture, we consider the double cover over the base ramified at b2 = 0
where b2 = a2

1 + 4a2. Using the original Weierstrass equation of the fourfold
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before the blow-ups, we have X : ξ2 = b2 with b2 = β2
5 + 4β4w and ξ a section

of L :
X : ξ2 = β2

5 + 4wβ4. (6.5)

The elliptic fourfold Y is Calabi-Yau when L = KB and it follows that when
Y is Calabi-Yau, the double cover X is also Calabi-Yau. If we rewrite X as
follows

X : (β5 + ξ)(β5 − ξ)− 4β4w = 0. (6.6)

It is clear that the points Π4 : β5 = β4 = 0 in the divisor Dsu(5) : w = 0
corresponds to conifold singularities of X and these points are located on the
ramification locus (the orientifold). This has been noticed already by Donagi
and Wijnholt [26]. Conifold singularities of threefolds are very well understood
and in the context of Calabi-Yau threefolds their physical interpretations have
been given by Strominger [39]. In the present case, there is a complication
since we are in presence of an orientifold symmetry. The two small resolutions
of the conifolds are

X+

{
λ(β5 + ξ)− µw = 0

µ(β5 − ξ)− 4λβ4 = 0

ξ→−ξ
L9999K X−

{
λ(β5 − ξ)− µw = 0

µ(β5 + ξ)− 4λβ4 = 0

(6.7)
where [λ : µ] denotes projective coordinates of a CP1. These two small resolu-
tions X± are exchanged by the orientifold involution ξ 7→ −ξ. This behavior is
parallel to the one we have discussed for the small resolutions of the fourfold:
a discrete symmetry of the singular space becomes a birational transformation
between two different small resolutions. We could also consider the blow-up
of the conifold points where the singular points are replaced by ruled surfaces
F0 = CP1 × CP1 defined by a quadric equation in CP3:

u1u2 − u3u4 = 0, [u1, u2, u3, u4] ∈ CP3. (6.8)

Here, the involution preserves the resolved space but exchanges the two rulings
of F0 and the quotient is just a projective plane ( F0/ι = P2). It would be
interesting to study the link between the exotic fibers in F-theory and the
conifold points of type IIB orientifolds further.

3. Degeneration without an increase of the rank. The fiber above the
points Π4 are examples of non-transverse collisions without an increase of
the number of node of the fiber. Collisions without increase of the rank of
the singularity has been noticed before [33], but in a different context where
exotic fibers had higher dimensional components. It was deduced that in the
heterotic dual, the codimension-three singularities corresponded to a point-
like degeneration of certain bundles. The model of [33] is studied further in
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appendix G of [27]. The codimension-three singularity we have obtained here
are different from the one studied in [33] because we have a flat fibration(
all the fibers have the same dimension). However, we could easily construct
a non-flat resolution Z → Y by blowing-up the lines Lx, Lw and Lt after
resolving the I5 singularity. We will present the details somewhere else [19].

4. Batyrev theorem and a no-go theorem. Using p-adic analysis on algebraic
varieties, Batyrev proved that birational Calabi-Yau varieties have the same
Betti numbers [21]. This implies in our case that all the six small resolutions
we have constructed have the same Betti numbers. Any other small resolution,
will also have the same Betti numbers since it will be birationally equivalent to
the resolutions we have constructed here. This would implies the impossibility
to obtain a small resolution where the fibers above the points Π4 have a dual
graph of type Ẽ6. In other words, the conjectured fiber structure of SU(5)
models is impossible since it will have a different Euler characteristic than
the birational equivalent resolution obtain in this paper. The difference of
Euler characteristic is due to the difference of fibers above Π4. Obviously, a
no-go theorem is just as strong as its assumptions. Batyrev theorem is very
strong since it only requires the two birational copies Y1 and Y2 to be smooth
irreducible projective algebraic varieties related by a birational map that does
not change the canonical class [21].

7 Conclusions and discussions

We have presented an explicit desingularization of the elliptically fibered fourfold
describing the SU(5) GUT geometry in F-theory. In codimension-one in the base,
the resolution of the generic singularity generates a fiber of Kodaira type I5 over the
SU(5) divisor. After resolving the singularity in codimension-one, there are several
left-over singularities in codimension-two and codimension three. These higher co-
dimension singularities are all visible in a unique patch where they can be described
elegantly by an affine binomial variety. The singular locus of the binomial variety
consists of a bouquet of three lines Lw, Lt, Lx of conifold singularities all intersecting
at a common point p3 where the singularity worsen. The binomial geometry admits
six small resolutions that we describe both torically and algebraically. In each of
these small resolutions, the exceptional locus is a CP1 bundle over the bouquet of
three lines Lw, Lt, Lx. At the origin of the bouquet, the CP1 fiber enhances to two
intersecting CP1s. We then obtain a full desingularization of the SU(5) geometry
by pulling back the resolution obtained for the binomial variety. We end up with
six small resolutions related to each other by flop transitions.

All the six small resolutions have the same fiber structure in codimension-one
and codimension-two in the base and also in codimension-three for the fibers above
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Figure 18: Fiber degeneration of an SU(5) GUTs with a small resolution. nodes Cx,
Cw and Ct are coming from the resolution of the higher codimensional singularities.
We have 6 possible resolutions Exw, Ewx, Ext, Etw and Ewt. They are all related to
each other by flop transitions related to permutation group of 3 elements.

the points β5 = β3 = 0 in the SU(5) divisor. In codimension-one we have the I5 fiber
which described the SU(5) gauge group. In codimension-two, we get enhancement
to Ã5 and D̃5 respectively along a curve P = 0 and β5 = 0 in the SU(5) divisor. The
dual graph Ã5 corresponds to a Kodaira fiber of type I6 while the dual graph D̃5

corresponds to a Kodaira fiber I∗1 . Another interesting aspect of the resolution is
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that there are no fibers of type Ã6 in codimension-three although above the points
P = R = 0 in the SU(5) divisor, the discriminant locus has an enhanced singularity.

The biggest surprise occurs in codimension-three for the fibers above the points
Π4 : β4 = β5 = 0 in the base. Above these points, the six small resolutions don’t
admit the same dual graph as we can see from table 18. More precisely, over the
points Π4 : β5 = β4 = 0 where an affine Ẽ6 is usually expected in the physics
literature, we get a fiber with dual graph E6 for four of the six resolutions while the
remaining two admits singular fibers whose dual graph is not a Dynkin diagram but
a new exotic diagram that we call Ẽ−6 = T−3,3,3: that is a bouquet of three two-chains

intersecting at the same point. Such fiber can be seen as a fiber of type Ẽ6 with
the central node contracted to a point. The dual graphs E6 and Ẽ−6 have the same
number of node as the graph Ã5 or D̃5. This is an example of enhancement of a
singular fiber with conservation of the rank of the fiber. Using Batyrev theorem
on the Betti numbers of birational equivalent Calabi-Yau varieties, once can deduce
that the conjectured fiber structure of SU(5) models is impossible in the category of
projective algebraic varieties. If one specializes the defining equation of the SU(5)
models, the type of fibers will change, we will considering such models in a different
work.
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