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Evolutionary dynamics on any population structure
Benjamin Allen1,2,3, Gabor Lippner3,4, Yu-Ting Chen2,3,5, Babak Fotouhi2,6, Naghmeh Momeni2,7, Shing-Tung Yau3,8 & 
Martin A. Nowak2,8,9

Evolution occurs in populations of reproducing individuals. 
The structure of a population can affect which traits evolve1,2. 
Understanding evolutionary game dynamics in structured 
populations remains difficult. Mathematical results are known for 
special structures in which all individuals have the same number of 
neighbours3–8. The general case, in which the number of neighbours 
can vary, has remained open. For arbitrary selection intensity, 
the problem is in a computational complexity class that suggests 
there is no efficient algorithm9. Whether a simple solution for 
weak selection exists has remained unanswered. Here we provide 
a solution for weak selection that applies to any graph or network. 
Our method relies on calculating the coalescence times10,11 of 
random walks12. We evaluate large numbers of diverse population 
structures for their propensity to favour cooperation. We study 
how small changes in population structure—graph surgery—affect 
evolutionary outcomes. We find that cooperation flourishes most 
in societies that are based on strong pairwise ties.

Ecological and evolutionary dynamics depend on population  
structure13–15. Evolutionary graph theory1,3,7 provides a mathematical 
tool for representing population structure: vertices correspond to indi-
viduals and edges indicate interactions. Graphs can describe spatially 
structured populations of bacteria, plants, animals16, tissue architecture 
in multi-cellular organisms17, or social networks18,19. Graph topology  
affects the rate of genetic change20 and the balance of drift versus  
selection1. The classical setting of a well-mixed population is the com-
plete graph.

Of particular note is the evolution of social behaviour, which can 
be studied using evolutionary game theory21–23. Evolutionary game 
dynamics, which are tied to ecological dynamics22, arise whenever 
reproductive success is affected by interactions with others.

In evolutionary games on graphs3–8,24,25, individuals interact with 
neighbours according to a game and reproduce on the basis of payoff 
(Fig. 1). A central question is to determine which strategies succeed 
on a given graph. In general, there cannot be a closed-form solution 
or polynomial-time algorithm for this question, unless it is unex-
pectedly found that P =​ NP (polynomial time =​ nondeterministic 
polynomial time)9. To make progress, one can consider weak selec-
tion, meaning that the game has only a small effect on reproductive  
success. Weak selection results are known for regular graphs, where each  
individual has the same number of neighbours3–8. Evolutionary games 
on heterogenous (non-regular) graphs have only been investigated 
using computer simulations3,24,25, approximations3,26 and special 
cases25,27,28.

We consider games on any weighted graph (Fig. 1a), with edge weights 
wij. Individuals are of two types, A and B. The game is specified by a 
payoff matrix (see Methods). Each individual i plays the game with each 
neighbour, receiving an edge-weighted average payoff of fi (Fig. 1b). The 
reproductive rate of i is Fi =​ 1 +​ δfi, where δ >​ 0 is the strength of selec-
tion. Weak selection means δ� 1; neutral drift, δ =​ 0, is a baseline.

At each time step, an individual is chosen uniformly at random to 
be replaced. Its neighbours compete for the vacancy proportionally 
to their reproductive rates (Fig. 1c). Offspring inherit the type of 
their parent. This update rule, called death–birth3, also translates into 
social settings: a random individual resolves to update its strategy, 
and adopts one of its neighbours’ strategies proportionally to their 
payoff.

Over time, the population will reach the state of all A or all B. 
Suppose we introduce a single A at a vertex chosen uniformly at ran-
dom in a population of B individuals. The fixation probability, ρA, is 
the probability of reaching all A from this initial condition. Likewise, 
ρB is the probability of reaching all B when starting with a single B 
individual in a population otherwise of A. Selection favours A over 
B if ρA >​ ρB.

The outcome of selection depends on the spatial assortment of types, 
which can be studied using coalescent theory10,11. Ancestral lineages 
are represented as random walks12. A step from i to j occurs with prob-
ability pij =​ wij/wi, where wi =​ ∑​kwik is the weighted degree of vertex i. 
The coalescence time τij is the expected meeting time of independent 
random walks started at vertices i and j (Fig. 1d), which can be obtained 
by solving a system of linear equations (see Methods). We show in 
the Supplementary Information that, if T is the time to absorption  
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Figure 1 | Evolutionary games on weighted heterogeneous graphs.  
a, Population structure is represented by a graph with edge weights wij, 
which are shown next to the edges for this example. b, Each individual 
i plays a game (equation (3) in the Methods) with each neighbour, and 
retains the edge-weighted average payoff fi. The reproductive rate of i is 
Fi =​ 1 +​ δfi, where δ represents the strength of selection. c, For death–birth 
updating, a random individual i is selected to be replaced (indicated by 
a ‘?’); then a neighbour j is chosen with a probability proportional to 
wijFj to reproduce into the vacancy. d, The coalescence time10–13 τij is the 
expected meeting time of random walks from i and j, representing time to 
a common ancestor (yellow circle).
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(fixation or extinction), then T −​ τij is the expected time during which i 
and j have the same type. Of particular note is the expected coalescence 
time, tn, from the two ends of an n-step random walk, with the initial 
vertex chosen proportionally to weighted degree.

Our main result holds for any payoff matrix, but we first study a 
donation game. Cooperators pay a cost, c, and provide a benefit, b.  
Defectors (that is, those who do not cooperate) pay no cost and  
provide no benefit. For b >​ c >​ 0, this game is a Prisoners’ Dilemma. 
We find that cooperation is favoured over defection for weak selection 
if and only if:

− − + − >− − + −c T t b T t c T t b T t( ) ( ) ( ) ( ) (1)0 1 2 3

Intuitively, the above condition states that a cooperator must have  
a higher payoff than a random individual two steps away. These two- 
step neighbours compete with the cooperator for opportunities to  
reproduce3,5 (Fig. 1b). The first term, −c(T − t0), is the cost for being 
a cooperator, which is paid for the entire time, T, because t0 = 0. The 
second term, b(T − t1), is the average benefit that the cooperator 
gets from its one-step neighbours, because for expected time T − t1, 
a one-step neighbour is also a cooperator. The remaining terms, 
−c(T − t2) + b(T − t3), describe the average payoff of an individual  
two steps away. That individual pays cost c whenever it is a cooperator 
(time T − t2) and receives benefit b whenever its one-step neighbours, 
which are three-step neighbours of the first cooperator, are cooperators 
(time T −​ t3).

T cancels itself out in equation (1), leaving −​ct2 +​ b(t3 −​ t1) >​ 0. 
Therefore, cooperation is favoured under weak selection, if t3 >​ t1 and 
the benefit-to-cost ratio exceeds the threshold






 = −

∗b
c

t
t t

(2)2

3 1

The critical threshold (b/c)* is obtained for any graph by solving  
for coalescence times and substituting into equation (2). Although  
equation (2) is derived in the weak selection limit, Monte Carlo simulations  
suggest it is accurate for fitness costs up to 2.5% (Extended Data  

Fig. 1a). Therefore, the result can be used for situations of non-vanishing  
selection intensity, but one must ensure that selective differences are 
sufficiently small.

Positive (b/c)* means that cooperation is favoured when it is suffi-
ciently effective. Positive values of (b/c)* always exceed—but can be 
arbitrarily close to—one, at which point any cooperation that yields a 
net benefit is favoured (Fig. 2a–c). Negative values arise for t3 <​ t1; in 
this case cooperation is not favoured, but spiteful behaviours, b <​ 0, 
c >​ 0, are favoured for b/c <​ (b/c)*. If t3 =​ t1, then (b/c)* is infinite, and 
neither cooperation nor spite are favoured.

Which networks best facilitate evolution of cooperation? We find 
that cooperation thrives on networks with strong pairwise ties  
(Fig. 2a–c). To quantify this property, let =∑p p pi j ij ji denote the prob-
ability that a random walk from vertex i returns to i on its second step. 
In other words, pi is the probability that, if i choses a neighbour for 
interaction, that choice is reciprocated. Cooperation succeeds if  
the pi are large. For large graphs that satisfy a locality property  
(see Methods), / = /∗b c p( ) 1 , where p  is a weighted average of the pi.  
If each individual has k neighbours of equal weight, then pi =​ 1/k for 
each i, yielding the condition3 b/c >​ k.

As an application, consider a population divided into islands of 
arbitrary sizes (Fig. 2d). Edges within an island have weight 1. Edges 
between islands have weight m <​ 1. We derive a closed-form expres-
sion for (b/c)* for the case of two islands. Cooperation appears to be 
most favoured for evenly-sized islands and a small m (see Methods and 
Supplementary Information).

Some population structures are not conducive to cooperation. 
For example, on a weighted star (Fig. 2e), one-step and three-step 
neighbours are equivalent; therefore t3 =​ t1 and cooperation is 
impossible. A similar argument applies to the complete bipartite 
graph (Fig. 2f).

In some cases, small changes in graph topology can markedly alter 
the fate of cooperation (Fig. 3). Stars do not support cooperation, but 
joining two stars via their hubs allows cooperation for b/c >​ 5/2. If we 
modify a star by linking pairs of leaves to obtain a ‘ceiling fan’, coop-
eration is favoured for b/c >​ 8. Therefore, targeted interventions in 
network structure (graph surgery) can facilitate transitions to more 
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Figure 2 | Graphs that promote or hinder cooperation. a–c, If each 
individual has one partner with weight w and all other edges of weight 1, 
any cooperative behaviour is favoured for sufficiently large w. Examples 
include a disordered network (a); a weighted regular graph (b), for which 
(b/c)* =​ (w +​ k)2/(w2 +​ k) for �N k; and a weighted complete graph (c), 

for which (b/c)* =​ (w −​ 2 +​ N)2/((w −​ 2)2 −​ N); here cooperation is 
possible only when > +w N 2 (dashed vertical lines). d, An island-
structured population, with edge weights 1 within islands and m < 1 
between islands. e, f, The weighted star (e) and the unweighted complete 
bipartite graph (f) do not support cooperation, because t3 =​ t1.
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cooperative societies. It is also of interest that a ‘dense cluster’ of stars 
connected by their hubs (Fig. 3f) has a benefit–cost threshold of 3/2, 
which is less than its average degree of 2.

To explore the evolutionary consequences of graph topology on a 
large scale, we calculated (b/c)* for various ensembles: (i) 1.3 million 
graphs of sizes 100–150, generated by ten random graph models (Fig. 4);  
(ii) 40,000 graphs of sizes 300–1,000 generated by four random graph 
models (Extended Data Fig. 1b); (iii) every simple graph of size up to 
seven (Extended Data Figs 2–4); and (iv) seven empirical human and 
animal social networks (Extended Data Fig. 5). In general, as the aver-
age degree, k, increases, cooperation becomes increasingly difficult and 
eventually impossible. However, there is considerable variance in (b/c)* 
for each value of k. The propensity of a graph to support cooperation 
is neither determined by its average degree, nor by its entire degree 
sequence (Extended Data Fig. 4).

So far we have discussed the donation game, but our theory extends 
to any pairwise interaction; see equation (3) in the Methods. The con-
dition for strategy A to be favoured over B, under weak selection, can be 
written27 as σa +​ b >​ c +​ σd. Our result implies that σ =​ (−​t1 +​ t2 +​ t3)/
(t1 +​ t2 −​ t3), from which one can evaluate the success of any strategy 
on any graph, under weak selection. The structure coefficient σ quan-
tifies the extent to which a graph supports cooperation in a social 
dilemma, or the Pareto-efficient equilibrium in a coordination game2,27 
(Extended Data Fig. 1c, d).

Our model can be extended in various ways. Birth–death updating3  
can be studied. Total instead of average payoff can be used25. 
Different graphs can specify interaction and replacement4,7,29. 
Mutations can be introduced7,30. For each of these variations, we 
obtain the conditions for success in terms of coalescence times  
(see Methods).

In summary, we have obtained a condition for how natural selection 
chooses between two competing strategies on any graph for weak selec-
tion. Our framework applies to strategic interactions among humans, 
as well as ecological interactions among other organisms, in any pop-
ulation of fixed structure (Extended Data Fig. 5). Our result helps to 
elucidate which population structures promote certain behaviours, 
such as cooperation. We find that cooperation flourishes most in the 
presence of strong pairwise ties, which is an intriguing argument for 
the importance of stable partnerships in forming the backbone of coop-
erative societies.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Figure 3 | Rescuing cooperation by graph surgery. a, The star does not 
support cooperation; the critical benefit–cost threshold is infinite.  
b, Joining two stars via their hubs gives (b/c)* =​ 5/2. c, Joining them via 
two leaves gives (b/c)* =​ 3. d, A ceiling fan has (b/c)* =​ 8. e, A wheel has 

(b/c)* =​ (429 +​ 90 5 )/82. f, Joining m stars via their hubs in a complete 
graph gives (b/c)* =​ (3m −​ 1)/(2m −​ 2), which is approximately 3/2 for 
large m. The (b/c)* values reported here are for infinite population size; see 
Supplementary Information for finite size.
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Figure 4 | Conditions for cooperation on 1.3 million random graphs.  
a, Scatter plot of critical threshold (b/c)* versus mean degree k. 71% of 
graphs have positive (b/c)* and have the possibility of cooperation; 
negative (b/c)* indicates that spite (b <​ 0, c >​ 0) can be favoured. b, Scatter 
plot of (b/c)* versus knn, the expected degree of a random neighbour of a 
randomly chosen vertex, which is a proposed approximation for (b/c)* on 
heterogeneous graphs26. Although this approximation is reasonable for 
many graphs, there is substantial variation in (b/c)* for each value of knn. 
The success of cooperation depends on features of graph topology beyond 
the summary statistics k and knn. See Methods for graph models and 
parameters.
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Methods
Here we summarize our model and mathematical methods; see Supplementary 
Information for complete derivations. No experiments were performed for this 
study, and no empirical data were collected.
Model. Population structure is represented by a weighted, connected graph of  
size N. Consistent with standard mathematical terminology, a ‘graph’ is understood 
to be undirected. The edge weight between vertices i and j is denoted wij =​ wji. 
Self-loops (wii >​ 0) are allowed, representing self-interaction and replacement by 
one’s own offspring. The weighted degree of vertex i is =∑w wi j ij.

Individuals are one of two types, corresponding to strategies in a game. The 
payoff matrix of a 2 ×​ 2 game can be written as









a b
c d

A B
A
B

(3)

For the donation game, the payoff matrix is




− − 




b c c
b

C D
C
D 0

(4)

The state of the process is given by the vector (s1.…, sN), where si ∈​ {0,1} indicates 
the type occupying each vertex: 1 for A and 0 for B in the game of equation (3);  
1 for C and 0 for D in the donation game of equation (4). In each state, each indi-
vidual i retains the edge-weighted average, fi, of the payoff received from each 
neighbour. For the donation game of equation (4), we have =− + ∑f cs b p si i j ij j. 
The reproductive rate of i is Fi =​ 1 +​ δfi, where δ�1 is the intensity of  
selection.

For death–birth updating, after the game interaction, an individual is selected, 
uniformly at random, to be replaced. A neighbour is then chosen, with probabil-
ity proportional to reproductive rate times edge weight, to reproduce into the 
vacancy. Thus, if i is chosen to be replaced, the probability that j reproduces  
is / ∑w F w F( )ij j k ik k . Offspring inherit the type of the parent, resulting in a new 
state.
Coalescence times. The coalescence times12,31 τij are the solution to the system 
of linear equations

∑τ
τ τ

=







+ + ≠

=

p p i j

i j

1 1
2

( )

0
(5)ij k ik jk jk ik

Equation (5) can be solved for any graph, in polynomial time, using standard 
methods. From the coalescence times, pairwise statistics of assortment can be 
obtained using the formula

τ
− =

N
s s

N
1

2
(6)i j

ij

Above, the brackets 〈〉 indicate an expectation over states arising under neutral 
drift, δ =​ 0.

The n-step coalescence time is defined as π τ=∑t pn i j i ij
n

ij,
( ) , where pij

n( ) is the 
probability that an n-step random walk starting at i terminates at j and 
π = /∑w wi i j j is the relative weighted degree of vertex i.
Derivation of equation (1). Applying recent results on perturbations of voter 
models6, we express the fixation probability of cooperation in the donation game 
of equation (4) as

∑ρ δ π δ= + 〈− − + − 〉+O
N

c s s s s b s s s s1 ( ) ( ) ( ) (7)C
i

i i i i i i i i i
(0) (2) (1) (3) 2

Above, =∑s p si
n

j ij
n

j
( ) ( )  is the expected type at the end of an n-step random walk 

from i. Combining equations (6) and (7), we obtain

ρ δ δ= + − + − +O
N N

ct b t t1
2

( ( )) ( ) (8)C 2 3 1
2

Equations (1) and (2) of the main text follow immediately.
Derivation of / = /∗b c p( ) 1 . From equation (5) we obtain the recurrence relation

∑ π τ= + −+t t p 1 (9)n n
i

i ii
n

i1
( )

Above, τ τ= +∑ p1i j ij ij is the re-meeting time of two independent random walks 
from vertex i. For graphs with no self-loops ( =p 0ii

(1)  for each i), equation (9)  
gives t2 =​ ∑iπiτi −​ 2 and t3 −​ t1 =​ ∑iπipiτi  −​ 2, where pi is shorthand for pii

(2). 
Equation (2) then becomes

πτ
π τ






 =

∑ −

∑ −

∗b
c p

2
2

(10)i i i

i i i i

For a regular graphs of degree k, we find that pi =​ 1/k for each vertex i and 
∑iπiτi =​ N, yielding the condition4,6,7 b/c >​ (N −​ 2)/(N/k −​ 2).

We say that a large graph has the ‘locality property’ if π/ �p 1i i  for each vertex i.  
This condition asserts that the (global) probability πi of choosing i from among all 
vertices, proportionally to weighted degree, is eclipsed by the (local) probability pi 
of reaching i by a random step from a random neighbour. We prove in the 
Supplementary Information that for graphs with this property, the 2’s in the numer-
ator and denominator of equation (10) are negligible. This leads to / = /∗b c p( ) 1 , 
where π τ πτ=∑ / ∑p p ( )i i i i i i i  is the weighted average of the pi with weights πiτi.
Islands. In the island model, edge weights are wij =​ 1 if i and j are on the same island 
and wij =​ m <​ 1 otherwise. For two islands with �m 1 we obtain






 =

− + − + + −
− −

∗b
c

N N N N N D N D
N N N D

( 2) ( 7 8) (2 3)
4 ( 2)( )

2 3 2 2 4

2

Above, N is the total population size and D is the difference in island sizes. The 
critical b/c ratio is minimized when D =​ 0; that is, when the islands have equal size. 
The result for arbitrary m is given in the Supplementary Information, and results 
for up to five islands are discussed there as well. These results suggest that, for any 
fixed number n of islands, cooperation is most favoured when the islands have 
equal size, in which case (b/c)* =​ (N −​ 2)(N −​ n)/(Nn −​ 2N +​ 2n).
Arbitrary games. We extend to the general 2 ×​ 2 matrix game of equation (3) 
using the Structure Coefficient Theorem27. This theorem states that the condi-
tion for A to be favoured over B (in the sense that ρA >​ ρB under weak selection) 
takes the form σa +​ b >​ c +​ σd. The structure coefficient σ can be calculated as 
σ =​ ((b/c)* +​ 1)/((b/c)* −​ 1), leading to σ =​ (−​t1 +​ t2 +​ t3)/(t1 +​ t2 −​ t3) as stated in 
the main text. We prove in the Supplementary Information that the numerator and 
denominator of σ are always positive.
Accumulated payoffs. Accumulated payoff means that the reproductive rate is 
based on the edge-weighted total payoff received from neighbours (instead of the 
edge-weighted average). For the donation game of equation (4), the accumulated 
payoff to vertex i is =− + ∑f cw s b w si i i j ij j. A similar derivation leads to

π τ

π τ τ






 =

∑

∑ −

∗b
c

p

p p ( )
(11)

i j i ij ij

i j k i ij ik jk ik

,
2 (2)

, ,
2 (2)

Different interaction and replacement graphs. We can also suppose that individ-
uals interact according to one graph I and reproduce according to another graph G.  
Equation (2) then generalizes to






 = −

∗b
c

t
t t

(12)2,0

2,1 0,1

Above, tn,m is the expected coalescence time between two ends of a random walk, 
where the initial vertex is chosen with probability πi, then n steps are taken in the 
replacement graph, and finally m steps are taken in the interaction graph. The 
relative weighted degree πi and the coalescence times are computed according to 
the replacement graph.
Birth–death updating. For birth–death updating3, first an individual i is chosen 
to reproduce proportionally to its reproductive rate Fi. The offspring replaces a 
neighbour j chosen proportionally to wij. Birth–death requires a modified coales-
cent process, in which steps from i to j occur at rate wij/wj. We denote the modified 
coalescence times by τ�ij; these are again the unique solution to a system of linear 
equations (see Supplementary Information). The critical benefit-cost ratio for 
birth–death is

τ

τ τ






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∑

∑ −

∗ �

� �

b
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w
w w ij
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w w

w w
jk ik

,
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i j
ij ik

i j
2

Mutation. We introduce mutations with arbitrary probability u per reproduction. 
Mutations are equally likely to result in either type (including that of the parent). 
Spatial assortment is analysed using identity-by-descent4,7,30,32,33. Two individuals 
are identical-by-descent (IBD) if no mutation separates either from their common 
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ancestor. The stationary probability that individuals i and j are IBD is denoted qij. 
The IBD probabilities qij satisfy the linear recurrence relations7,30:

∑
=







=
−

+ ≠
q

i j
u p q p q i j

1
1

2
( )

(14)ij
k ik jk jk ik

From equation (14), all IBD probabilities can be computed for any mutation rate 
on any graph in polynomial time. Let π=∑q p qn i j i ij

n
ij,

( )  denote the expected IBD 
probability for the two ends of an n-step random walk, with initial vertex i chosen 
with probability πi. We show in the Supplementary Information that cooperation 
is favoured, in the sense of having stationary frequency >​50%, when b/c exceeds 
the critical ratio of






 =

−
−

∗b
c

q
q q
1

(15)2

1 3

Random graph investigations. For Fig. 4 we computed (b/c)* for 1.3 million 
unweighted graphs, generated from 10 different random graph models. Parameter 
values were sampled from a uniform distribution on the specified ranges (see 
below). Initial graph sizes were uniformly sampled in the range 100 ≤​ N ≤​ 150; if 
the random graph model produced a disconnected graph, the largest connected 
component was used. The critical (b/c)* ratio was computed by solving equation (5)  
for coalescence times and substituting into equation (10). (No Monte Carlo  
simulations were used for these investigations.)

Random graph models and parameter ranges (see Fig. 4 and Extended Data 
Fig. 1) are as follows: 100,000 Erdös–Rényi (ER)34 with edge probability 0 <​ p <​ 1; 
100,000 small world (SW)35 with initial connection distance 1 ≤​ d ≤​ 5 and edge cre-
ation probability 0 <​ p <​ 0.05; 100,000 Barabási–Albert (BA)36 with linking number 
1 ≤​ m ≤​ 10; 100,000 random recursive (RR)37 (like Barabási–Albert except that 
edges are added uniformly instead of preferentially) with linking number 2 ≤​ m ≤​ 8; 
200,000 Holme–Kim (HK)38 with linking number 2 ≤​ m ≤​ 4 and triad formation 
parameter 0 <​ p <​ 0.15; 200,000 Klemm–Eguiluz (KE)39 with linking number 
3 ≤​ m ≤​ 5 and deactivation parameter 0 <​ μ <​ 0.15; 200,000 shifted-linear preferen-
tial attachment40 with linking number 1 ≤​ m ≤​ 7 and shift 0 <​ θ <​ 40; 100,000 forest 
fire (FF)41 with parameters 0 <​ pf <​ pb <​ 0.15; 100,000 Island Barabási–Albert; and 
100,000 Island Erdös–Rényi. Island Barabási–Albert is a meta-network of islands42, 
in which each island is a shifted-linear preferential attachment network with the 
same parameters as above. The number of islands varies from 2 to 5. Considering 
the islands as meta-nodes, the meta-network among the islands is an Erdös–
Rényi graph with edge probability 0 <​ pinter <​ 1. Island Erdös–Rényi is the same as 
Island Barabási–Albert, except that each island is an Erdös–Rényi graph with edge  
probability 0 <​ pintra <​ 1.
Code availability. Code that supports the findings of this study is available in 
Zenodo with the identifier http://dx.doi.org/10.5281/zenodo.276933.
Data availability. This study analysed publicly available datasets from the Stanford 
Large Network Dataset Collection, http://snap.stanford.edu/data/, and the Koblenz 

Network Collection, http://konect.uni-koblenz.de/, as well as datasets provided 
by S. R. Sundaresan and D. I. Rubenstein, which are available upon request from  
D. I. Rubenstein (dir@princeton.edu).
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Extended Data Figure 1 | Further numerical and simulation results.  
a, To assess accuracy of our results for empirically plausible selection 
strength, we performed Monte Carlo simulations with δ =​ 0.025 and c =​ 1. 
This corresponds to a fitness cost of 2.5%, which was determined to be the 
cost of cooperative behaviour in yeast43. Markers indicate population size 
times frequency of fixation for a particular value of b on a particular graph. 
Dashed lines indicate (b/c)* as calculated from equation (2). All graphs 
have size N =​ 100. Graphs are: Barabási–Albert (BA) with linking number 
m =​ 3, small world35 (SW) with initial connection distance d =​ 3 and edge 
creation probability p =​ 0.025, Klemm–Eguiluz39 (KE) with linking 
number m =​ 5 and deactivation parameter μ =​ 0.2, and Holme–Kim38 
(HK) with linking number m =​ 2 and triad formation parameter P =​ 0.2.  
b, We computed (b/c)* for 4 ×​ 104 large random graphs (sizes 300–1,000) 
using four random graph models: Erdös–Rényi34 (ER) with edge 

probability 0 <​ p <​ 0.25, Klemm–Eguiluz with linking number 3 ≤​ m ≤​ 5 
and deactivation parameter 0 <​ μ <​ 0.15, Holme–Kim with linking 
number 2 ≤​ m ≤​ 4 and triad formation parameter 0 <​ P <​ 0.15, and a meta-
network42 of shifted-linear preferential attachment networks40 (Island 
Barabási–Albert) with 0 <​ pinter <​ 0.25; see Methods for details. c, d, We 
computed the structure coefficient27 σ =​ ((b/c)* +​ 1)/((b/c)* −​ 1) for the 
same ensemble of random graphs as in Fig. 4 of the main text. Strategy A is 
favoured over strategy B under weak selection if σa +​ b >​ c +​ σd; see 
equation (3) of Methods. c, Plot of σ versus + / −k k( 1) ( 1), which is the  
σ-value for a regular graph of the same mean degree k. d, Plot of σ versus 
+ / −k k( 1) ( 1)nn nn , which is the σ-value one would expect if the condition 

/ >b c knn (as described in ref. 26) were exact. Here, knn is the expected 
degree of a neighbour of a randomly chosen vertex.
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Extended Data Figure 2 | The critical benefit–cost threshold for all 
graphs of size four. There are six connected, unweighted graphs of size 
four. Of these, only the path graph has positive (b/c)*. Two others have 

infinite (b/c)* and three have negative (b/c)*. For size three (not shown), 
there are only two connected, unweighted graphs: the path, which has 
(b/c)* =​ ∞​, and the triangle, which has (b/c)* =​ −​2.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 3 | The critical benefit–cost threshold for all graphs of size five. There are 21 connected, unweighted graphs of size five. Critical 
ratios in the range 0 <​ (b/c)* <​ 30 are shown. Overall, seven of the (b/c)* values are positive, twelve are negative, and two are infinite.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



letterRESEARCH

Extended Data Figure 4 | The critical benefit–cost threshold for all graphs of size six. There are 112 connected, unweighted graphs of size six. Of 
these, 43 have positive (b/c)*, 65 have negative (b/c)*, and four have (b/c)* =​ ∞​. Notably, there are graphs with the same degree sequence (for example,  
3, 2, 2, 1, 1, 1) but different (b/c)*.
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Extended Data Figure 5 | Results for empirical networks. The benefit–
cost threshold (b/c)*, or equivalently the structure coefficient2,27 σ, gives 
the propensity of a population structure to support cooperative and/or 
Pareto-efficient behaviours. These values should be interpreted in terms of 
specific behaviours occurring in a population, and they depend on the 
network ontology (that is, the meaning of links). They can be used to 
facilitate comparisons across populations of similar species, or to predict 
consequences of changes in population structure. a, Unweighted social 
network of frequent associations in bottlenose dolphins (Tursiops spp.)44. 
b, Grooming interaction network in rhesus macaques (Macaca mulatta), 
weighted by grooming frequency45. c, Weighted network of group 
association in Grevy’s zebras (Equus grevyi)46. Preferred associations, 
which are statistically more frequent than random, are given weight 1. 
Other associations occurring at least once are given weight �ε 1.  
d, Weighted network of group association in Asiatic wild asses (onagers)46, 
with the same weighting scheme as for the zebra network. For both zebra 

and wild ass, the unweighted networks, including every association ever 
observed, are dense and behave like well-mixed populations. By contrast, 
the weighted networks, which emphasize close ties, can promote 
cooperation. e, Table showing data from a–d as well as a social network of 
family, self-reported friends, and co-workers as of 1971 from the 
Framingham Heart Study47,48, a Facebook ego-network49, and the  
co-authorship network for the General Relativity (gr) and Quantum 
Cosmology (qc) category of the arXiv preprint server50. Average degree is 
reported for unweighted graphs only; for weighted graphs it is unclear 
which notion of degree is most relevant. Note that large (b/c)* ratios, 
which correspond to σ values close to one, do not mean that cooperation is 
never favoured. Rather, the implication is that the network behaves 
similarly to a large well-mixed population, for which cooperation is 
favoured for any 2 ×​ 2 game with a +​ b >​ c +​ d. The donation game does 
not satisfy this inequality, but other cooperative interactions do51,52.
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