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As was recently pointed out to us by Thierry Daudé, there is an error on the last page
of our paper [2]. Namely, the inequality (8.3) cannot be applied to the function �(t)
because it does not satisfy the correct boundary conditions. This invalidates the last two
inequalities of the paper, and thus the proof of decay is incomplete. We here fill the gap
using a different method. At the same time, we will clarify in which sense the sum over
the angular momentum modes converges in [1, Theorem 1.1] and [2, Theorem 7.1], an
issue which in these papers was not treated in sufficient detail. The arguments in these
papers certainly yield weak convergence in L2

loc; here we will prove strong convergence.
Our method here is to split the wave function into the high and low energy com-

ponents. For the high energy component, we show that the L2-norm of the wave func-
tion can be bounded by the energy integral, even though the energy density need not
be everywhere positive (Sect. 1). For the low energy component we refine our ODE
techniques (Sect. 2). Combining these arguments with a Sobolev estimate and the
Riemann-Lebesgue lemma completes the proof (Sect. 3).

We begin by considering the integral representation of [2, Theorem 7.1], for fixed k
and a finite number n0 of angular momentum modes,

�n0(t, r, ϑ) :=
∫ ∞

−∞
dω e−iωt �̂n0(ω, r, ϑ), (1)
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where for notational convenience we have omitted the ϕ-dependence (i.e. the factor
e−ikϕ), and �̂n0(ω) is defined by

�̂n0(ω, r, ϑ) = 1

2π

1

ω�

n0∑
n=1

2∑
a,b=1

tωn
ab �a

ωn(r, ϑ) <�b
ωn, �0>

(as in [1], we always denote the scalar wave function by �, whereas � = (�, ∂t�) is
a two-component vector). We recall that for large ω, the WKB-estimates of [1, Sect. 6]
ensure that the fundamental solutions �b

kωn go over to plane waves, and thus, since the
initial data �0 is smooth and compactly supported, the function �̂n0(ω, r, ϑ) decays
rapidly in ω (for details on this method see [3, proof of Theorem 6.5]). As a conse-
quence, �n0 and its derivatives are, for r and ϑ in any compact set, uniformly bounded
in time. Our goal is to obtain estimates uniform in n0, justifying that, as n0 → ∞, �n0

converges in L2
loc to the solution of the wave equation.

To arrange the energy splitting we choose for a given parameter J > 0, a positive
smooth function χH+ supported on (J,∞) with χH+|[2J,∞) ≡ 1. We define
χH− by χH−(ω) = χH+(−ω) and set χL = 1 − χH+ − χH−. We introduce the high-energy
contributions �̂

n0
H± and the low-energy contribution �̂

n0
L by

�̂n0
H±(ω, r, ϑ) = χH±(ω) �̂n0(ω, r, ϑ), �̂n0

L (ω, r, ϑ) = χL(ω) �̂n0(ω, r, ϑ).

1. L2-Estimates of the High-Energy Contribution

We recall from [1, (2.5)] that the energy density of a wave function � in the Kerr
geometry is given by

E(�) =
(

(r2 + a2)2

�
− a2 sin2 ϑ

)
|∂t�|2 + � |∂r�|2

+ sin2 ϑ |∂cos ϑ�|2 +

(
1

sin2 ϑ
− a2

�

)
k2 |�|2 . (2)

Note that the energy density need not be positive due to the last term. However, the next
theorem shows that the energy integral

E(�) :=
∫ ∞

r1

dr
∫ 1

−1
d cos ϑ E(�(t))

(which is independent of time due to energy conservation), in the high-energy region is
both positive and can be bounded from below by the L2-norm. In what follows, we only
consider �

n0
H+ because �

n0
H− can be treated similarly.

Theorem 1.1. There exists a positive constant J0 (depending only on k, but independent
of n0 and �0), such that for all J ≥ J0 the following inequality holds for every t:

E(�n0
H+ ) ≥ J 2

2

∫ ∞

r1

(r2 + a2)2

�
dr

∫ 1

−1
d cos ϑ |�n0

H+ (t)|2.

The remainder of this section is devoted to the proof of Theorem 1.1. We begin with
the following lemma.
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Lemma 1.2. Let g,� be measurable functions, g real and � complex, such that � and
g� are in L1(R). Then

∫
R

dω

∫
R

dω′ min
(

g(ω), g(ω′)
)

�(ω)�(ω′) ≥ inf g

∣∣∣∣
∫

R

�

∣∣∣∣
2

.

Proof. Using a standard approximation argument, it suffices to consider the case that g
and � are simple functions of the form

g(ω) =
A∑

a=1

ga χ(Ka), �(ω) =
A∑

a=1

�a χ(Ka),

where χ(Ka) is the characteristic function of the set Ka , and (Ka)a=1,...,A forms a
partition of R. Then the above inequality reduces to

A∑
a,b=1

min(ga, gb) �a |Ka | �b |Kb| ≥ min g
A∑

a,b=1

�a |Ka | �b |Kb|.

In the case A = 2 and g1 ≤ g2, this inequality follows immediately from the calculation

g1 |c1|2 + g1 (c1 c2 + c1 c2) + g2 |c2|2 ≥ g1 |c1|2 + g1 (c1 c2 + c1 c2)

+g1 |c2|2 = g1 |c1 + c2|2,
where ca := �a |Ka |. In the case A = 3 and g1 ≤ g2 ≤ g3, we get

g1

(
|c1|2 + 2Re(c1c2 + c1c3)

)
+ g2

(
|c2|2 + 2Re(c2c3)

)
+ g3 |c3|2

≥ g1

(
|c1|2 + 2Re(c1c2 + c1c3)

)
+ g2 |c2 + c3|2 ≥ g1 |c1 + c2 + c3|2 .

The general case is similar. ��
The next lemma bounds the L2-norm of �

n0
H+ and its partial derivatives by a constant

depending on n0 and �0.

Lemma 1.3. There is a constant C = C(n0, �0) such that for every t ,

∫ ∞

r1

(r2 + a2)2

�
dr

∫ 1

−1
d cos ϑ

(
|�n0

H+ (t)|2 + |∂r�
n0
H+ (t)|2 +

3∑
k=1

|∂k
t �n0

H+ (t)|2
)

≤ C.

Proof. It suffices to consider one angular momentum mode. For notational simplicity we
omit the angular dependence. Since �

n0
H+ and its derivatives are locally pointwise bounded

uniformly in time, it follows that their L2-norms on any compact set are bounded in time.
Near the event horizon, we work with the fundamental solution φ́ in the Regge-

Wheeler variable u (see [1, (2.18, 5.2)] and [2, Sect. 3]). Then for any sufficiently
small u0, the integral of |�|2 over the region u < u0 can be written as

∫ u0

−∞
du |φ|2,
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where it is now convenient to write our integral representation (1) in the form

φ(t, u) =
∫ ∞

−∞
dω

(
h+(ω) φ́ω(u) + h−(ω) φ́ω(u)

)
e−iωt .

Here the functions h± have rapid decay and, as they are supported away from the
set {0, ω0}, they are also smooth (see [2, Sect. 3.1]). Using the Jost representation
[2, (3.7, 3.10)], the function φ(t, u) can be decomposed as

φ(t, u) = φ+(t, u) + φ−(t, u) + ρ(t, u),

where

φ±(t, u) :=
∫ ∞

−∞
dω h±(ω) e±i(ω−ω0)u−iωt ,

|ρ(t, u)| ≤ C eγ u for all t , where C, γ > 0.

Note that the smoothness of h± implies that φ± decay rapidly in u. From the exponential
decay of the factor eγ u it is obvious that the L2-norm of ρ is bounded uniformly in t .
The L2-norms of φ± can be estimated as

∫ u0

−∞
|φ±(t, u)|2du ≤

∫ ∞

−∞
|φ±(t, u)|2du =

∫ ∞

−∞
|φ±(0, u′)|2du′ =: c,

where u′ = u ∓ t .
Near infinity, we work similarly with the fundamental solutions φ̀ [2, (3.2)]. Again

using the Jost representation [2, (3.15) and Lemma 3.3], we get terms depending only
on t ± u as well as error terms which decay like 1/u and are thus in L2.

The time derivatives can be treated in the same way, since a time derivative merely
gives a factor of ω which can be absorbed into h±. For the spatial derivatives we use
similarly the estimates for the first derivatives of the Jost functions. ��

Our next step is to decompose the energy integral into a convenient form. To do this,
we introduce a positive mollifier α ∈ C∞

0 ([−1, 1]) with the properties α(−ω) = α(ω)

and
∫

α(ω)dω = 1. We define the function �(ω − ω′) by mollifying the Heaviside
function �,

�(ω − ω′) = (� ∗ α)(ω − ω′). (3)

We now substitute the Fourier representation of �
n0
H+ into the formula for the energy

density (2). For simplicity we omit the indices n0 and H+ in what follows. Omitting the
first positive summand in (2), we get the inequality

E(�)(t, r, ϑ) ≥
∫ ∞

−∞
dω

∫ ∞

−∞
dω′ e−i(ω−ω′)t

×
{(

1

sin2 ϑ
− a2

�

)
k2 �̂(ω) �̂(ω′) (4)

+ �(ω − ω′)
(
�∂r �̂(ω) ∂r �̂(ω′) + sin2 ϑ ∂cos ϑ�̂(ω) ∂cos ϑ�̂(ω′)

)
(5)

+ (1 − �)(ω − ω′)
(
�∂r �̂(ω) ∂r �̂(ω′) + sin2 ϑ ∂cos ϑ�̂(ω) ∂cos ϑ�̂(ω′)

) }
. (6)
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We multiply by a positive test function η(u) ∈ C∞
0 (R) and integrate over r and cos ϑ .

Integrating by parts in (5) and (6) to the right and left, respectively, we can use the wave
equation [

− ∂

∂r
�

∂

∂r
− 1

�

(
(r2 + a2)ω + ak

)2

− ∂

∂ cos ϑ
sin2 ϑ

∂

∂ cos ϑ
+

1

sin2 ϑ
(aω sin2 ϑ + k)2

]
�̂(ω) = 0

to obtain∫ ∞

r1

dr
∫ 1

−1
d cos ϑ η(u)

(
(5) + (6)

)
=

∫ ∞

r1

dr
∫ 1

−1
d cos ϑ

∫ ∞

−∞
dω

∫ ∞

−∞
dω′ e−i(ω−ω′)t

×
{
−η′(u) (r2 + a2)

(
� �̂(ω) ∂r �̂(ω′) + (1 − �) ∂r �̂(ω) �̂(ω′)

)
(7)

+ η(u)
(
� g(ω′) + (1 − �) g(ω)

)
�̂(ω) �̂(ω′)

}
, (8)

where

g(ω, r, ϑ) = 1

�

(
(r2 + a2)ω + ak

)2 − 1

sin2 ϑ
(aω sin2 ϑ + k)2,

and we used that

d

dr
η(u) = η′(u)

r2 + a2

�
.

We interchange the orders of integration of the spatial and frequency integrals and let η

tend to the constant function one. In the term corresponding to (4), Lemma 1.3 allows us
to pass to the limit. In (7, 8) the situation is a bit more involved due to the factors of �.
However, since multiplication by �(ω−ω′) corresponds to convolution with its Fourier
transform �̌(t), we can again apply Lemma 1.3 and pass to the limit using Lebesgue’s
dominated convergence theorem. To make this method more precise, let us show in
detail that the expression
∫ ∞

r1

dr
∫ 1

−1
d cos ϑ

∫ ∞

−∞
dω

∫ ∞

−∞
dω′ e−i(ω−ω′)t

(
1−η(u)

)
�(ω − ω′) g(ω′) �̂(ω) φ̂(ω′)

(9)

tends to zero as η converges to the constant function one. Rewriting the factor � with a
time convolution, we obtain the expression∫ ∞

−∞
dτ �̌(τ ) F(τ ),

where F and �̌ are defined by

F(τ ) =
∫ ∞

r1

dr
∫ 1

−1
d cos ϑ (1 − η(u)) �(t − τ, r, ϑ) (ǧ ∗ �)(t − τ, r, ϑ),

�̌(τ ) = 1

2π

∫ ∞

−∞
�(b) e−ibτ db.
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Writing g as a polynomial in ω,

g(ω) = g0 + g1 ω + g2 ω2, (10)

where

g0 = a2k2

�
− k2

sin2 ϑ
, g1 = 2ak

(
r2 + a2

�
− 1

)
, g2 = (r2 + a2)2

�
− a2 sin2 ϑ,

(11)

the function ǧ ∗ � can be expressed explicitly in terms of � and its time derivatives of
order at most two. In order to compute �̌, we first note that the Fourier transform of the
Heaviside function � is

�̌(τ ) = 1

2π

(
−i

PP

τ
+ πδ(τ)

)
, (12)

where “PP” denotes the principal part. Using (3) together with the fact that convolution
in momentum space corresponds to multiplication in position space, we find that

�̌(τ ) =
(

−i
PP

τ
+ πδ(τ)

)
α̌(τ ), (13)

where α̌ is a Schwartz function with α̌(0) = (2π)−1. According to Lemma 1.3, the
function F is uniformly bounded,

|F(τ )| ≤ sup |η| for all τ ∈ R.

Using the rapid decay of �̌, we can for any given ε choose a parameter L > 0 such that
∫

R\[−L ,L]
|�̌(τ )||F(τ )| ≤ ε sup |η|.

On the interval [−L , L], on the other hand, the singularity of �̂ at τ = 0 can be controlled
by at most first derivatives of F , and thus for a suitable constant C = C(L),

∣∣∣∣
∫ L

−L
�̌(τ ) F(τ )

∣∣∣∣ ≤ 2C sup
[−L ,L]

(|F | + |F ′|).

Using the rapid decay of � and its time derivatives in u, locally uniformly in τ , we can
make sup[−L ,L](|F | + |F ′|) as small as we like. This shows that (9) really tends to zero
as η goes to the constant function one.

We conclude that

E(�n0
H+ ) ≥

∫ ∞

r1

dr
∫ 1

−1
d cos ϑ

∫ ∞

−∞
dω

∫ ∞

−∞
dω′ e−i(ω−ω′)t

×
{(

min(g(ω), g(ω′)) +
k2

sin2 ϑ
− a2k2

�

)
�̂(ω) �̂(ω′) (14)

+
(
� g(ω′) + (1 − �) g(ω) − min(g(ω), g(ω′))

)
�̂(ω) �̂(ω′)

}
. (15)
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We apply Lemma 1.2 to obtain

(14) ≥
∫ ∞

r1

dr
∫ 1

−1
d cos ϑ

(
inf
ω≥J

g(ω) +
k2

sin2 ϑ
− a2k2

�

)
|�(t, r, ϑ)|2.

Using the explicit form of g, (10), we find that for sufficiently large J ,

(14) ≥ J 2

2

∫ ∞

r1

(r2 + a2)2

�
dr

∫ 1

−1
d cos ϑ |�(t, r, ϑ)|2. (16)

It remains to control the term (15). We write the ω,ω′-integral of (15) in the form

B :=
∫ ∞

−∞
dω

∫ ∞

−∞
dω′ e−i(ω−ω′)t h(ω, ω′) �̂(ω)�(ω′),

where

h(ω, ω′) = � g(ω′) + (1 − �) g(ω) − min(g(ω), g(ω′)).

Introducing the variables a = 1
2 (ω + ω′) and b = 1

2 (ω − ω′), and using that g(ω) is a
polynomial in ω, a short calculation yields

h(a + b, a − b) = (g1 + 2g2 a) S(2b) where S(b) := b
(
�(b) − �(b)

)
.

Using (12, 13) together with the fact that the factor b corresponds to a derivative in
position space, we obtain

Š(τ ) = 1

2π

d

dτ

(
1 − 2πα̌(τ )

τ

)
= − d

dτ

∫ 1

0
α′(sτ) ds.

This is a smooth function which decays quadratically at infinity; in particular, it is
integrable.

We thus obtain for the Fourier transform of h the explicit formula

ȟ(τ, τ ′) = 1

(4π)2

∫ ∞

−∞
dω

∫ ∞

−∞
dω′ h(ω, ω′) e−i(ωt−ω′t ′)

=
(

g1δ(τ − τ ′) + 2ig2 δ′(τ − τ ′)
)

Š

(
τ + τ ′

2

)
.

Using Plancherel for distributions, we obtain

B =
∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′ ȟ(τ, τ ′) �(t − τ)�(t − τ ′)

=
∫ ∞

−∞
dτ Š(τ )

[
g1 �(t − τ)�(t − τ)

+ ig2

(
∂t�(t − τ)�(t + τ) − �(t − τ) ∂t�(t + τ)

) ]
.

Integrating over space, we can use the explicit formulas for g1 and g2 and apply
Lemma 1.3 to obtain

(15) =
∫ ∞

r1

dr
∫ 1

−1
d cos ϑ B ≥ − C(n0, �0)

∫ ∞

−∞
|Š(τ )| dτ.
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We now let α tend to the Dirac delta; then α̌ tends to the constant function (2π)−1. As
a consequence, the L1-norm of Š tends to zero, and thus (15) becomes positive in this
limit. Hence the energy is bounded from below by (16). This concludes the proof of
Theorem 1.1.

2. Pointwise Estimates for the Low-Energy Contribution

The low-energy contribution can be written as

�n0
L (t, r, ϑ) = 1

2π

n0∑
n=1

∫ ∞

−∞
dω

ω�
e−iωt χL(ω)

2∑
a,b=1

tωn
ab �a

ωn(r, ϑ) <�b
ωn, �0>.

We now derive pointwise estimates for the large angular momentum modes.

Theorem 2.1. For any u0 < u1 there is a constant C > 0 such that for all
ω ∈ (−2J, 2J ) \ {ω0, 0} and for all u, u′ ∈ (u0, u1),

∞∑
n=1

∣∣∣∣∣∣
1

�

2∑
a,b=1

tab φa(u) φb(u′)

∣∣∣∣∣∣ < C. (17)

Proof. From [2, Sect. 5] the coefficients tab have the explicit form

T := (tab) =
⎛
⎜⎝

1 + Re
α

β
−Im

α

β

−Im
α

β
1 − Re

α

β

⎞
⎟⎠ ,

where the transmission coefficients α and β are defined by

φ̀ = α φ́ + β φ́,

and φ1 = Re φ́, φ2 = Im φ́. The estimates of [2, Sect. 4.3] are obviously valid for ω in
any bounded set; in particular for ω ∈ (−2J, 2J ) \ {ω0, 0}. We use these estimates in
what follows, also using the same notation. We choose n1 so large that u+ < u0, and
thus on the whole interval (u0, 2u1) the invariant disk estimates of Lemmas 4.2 and 4.8
in [2] hold.

Rewriting the expression tabφ
aφb with the Green’s function (see the proof of

Lemma 5.1 in [2]), this expression is clearly invariant under the phase transforma-
tion φ́ → eiϑ φ́. Thus we can arrange that φ́(2u1) is real. Then the transmission coeffi-
cients are computed at u = 2u1 by

(
φ̀

φ̀′
)

=
(

φ́ φ́

φ́′ φ́′

)(
α

β

)
= φ́

(
1 1
ý ý

) (
α

β

)
.

We thus obtain

α = − φ̀

2 φ́ Im ý

(
ý − ỳ

) ∣∣∣
u=2u1

β = φ̀

2 φ́ Im ý

(
ý − ỳ

) ∣∣∣
u=2u1

.
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Hence ∣∣∣∣1 +
α

β

∣∣∣∣ = 2
|Im ý|
|ý − ỳ| ≤ 4 |�|

ρ́2 Re (ý − ỳ)
,

where all functions are evaluated at u = 2u1, and where we used the relation

ρ́2 = |�|
Im ý

, (18)

which is an immediate consequence of [2, (4.9)] and w(φ́, φ́)=2i�. From [2, Lemma 4.6
and (4.42)] we know that for λ sufficiently large,

Re (ý − ỳ) ≥ 1

C
.

Using the above formulas for tab, we conclude that∣∣∣∣∣∣
∑

(a,b) �=(2,2)

1

�
tab φa(u) φb(u′)

∣∣∣∣∣∣ ≤ 12 C
ρ́(u)

ρ́(2u1)

ρ́(u′)
ρ́(2u1)

.

The argument after [2, (4.43)] shows that the two factors on the right decay like
exp(−√

λ/c).
It remains to consider the case a = b = 2. Taking the imaginary part of the identity

φ́(u) = φ́(2u1) exp

(∫ u

2u1

ý

)

and using that φ́(2u1) is real, we find that

ρ́(u) = ρ́(2u1) exp

(∫ u

2u1

Re ý

)

and thus

|φ2(u)| = ρ́(u)

∣∣∣∣ sin

(∫ u

2u1

Im ý

)∣∣∣∣ ≤ ρ́(u)

∫ 2u1

u
Im ý.

From [2, (4.40)] we see that Re y is positive on [u, 2u1]. Using the relation ρ′/ρ = Re y,
we conclude that ρ́ is monotone increasing, and (18) yields that Im ý is decreasing.
Hence, again using (18),

|φ2(u)| ≤ ρ́(u) Im ý(u) (2u1 − u0) ≤
√

|�| Im ý(u0) (2u1 − u0).

Using the above estimates for α/β, we conclude that∣∣∣∣ 1

�
t22 φ2(u) φ2(u′)

∣∣∣∣ ≤ 3 Im ý(u0) (2u1 − u0)
2. (19)

The invariant region estimate of Lemmas 4.2 and 4.8 in [2] yield that

Im ý(u0) ≤ c|�| exp

(
−7

8

∫ u0

u+

√
V

)
,

and we conclude that (19) again decays like exp(−√
λ/c).

Since the eigenvalues λn scale quadratically in n [2, (2.11)], the summands in (17)
decay exponentially in n. ��
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This theorem gives us pointwise control of the low-energy contribution, uniformly
in time and in n0, locally uniformly in space. To see this, we estimate the integral
representation (1) by

|�n0
L (t, r, ϑ)| ≤ 1

2π

n0∑
n=1

∫ ∞

−∞
dω |χL(ω)|

2∑
a,b=1

∣∣∣∣ 1

ω�
tωn
ab �a

ωn(r, ϑ) <�b
ωn, �0>

∣∣∣∣ .

In order to control the factor ω−1, we write the energy scalar product on the right in the
form [1, (2.15)], which involves an overall factor ω. Now we can apply Theorem 2.1.

3. Decay in L∞
loc

In this section we complete the proof of Theorem 1.1 in [2]. Let K ⊂ (r1,∞) × S2 be
a compact set. The L2-norm of �n0 can be estimated by

‖�n0(t)‖L2(K ) ≤ ‖�n0
H+ (t)‖L2(K ) + ‖�n0

H−(t)‖L2(K ) + ‖�n0
L (t)‖L2(K ).

According to Theorems 1.1 and 2.1, these norms are bounded uniformly in n0 and t .
Furthermore, our estimates imply that the sequence �n0(t) forms a Cauchy sequence
in L2(K ). To see this, we note that for any n1, n2,

‖�n1 − �n2‖L2(K ) ≤ E
(
�n1

H+ − �n2
H+

)
+ E

(
�n1

H− − �n2
H−

)
+ ‖�n1

L − �n2
L ‖L2(K ),

uniformly in t . The energy terms on the right are the sums of the energies of the indi-
vidual angular momentum modes. All the summands are positive due to Theorem 1.1,
and thus the energy terms become small as n1, n2 → ∞. The same is true for the last
summand due to our ODE estimates of Theorem 2.1. We conclude that �n0(t) converges
in L2

loc as n0 → ∞, and the limit coincides with the weak limit, which in [1,2] is shown
to be the solution �(t) of the Cauchy problem.

To prove decay, given any ε > 0 we choose n0 such that ‖�(t) − �n0(t)‖L2(K ) <

ε for all t . Since �̂n0 is continuous in ω and has rapid decay, uniformly on K , the
Riemann-Lebesgue lemma yields that �n0(t) decays in L∞(K ) ⊂ L2(K ). Since ε is
arbitrary, we conclude that �(t) decays in L2(K ).

Applying the same argument to the initial data Hn�0, we conclude that the partial
derivatives of �(t) also decay in L2(K ). The Sobolev embedding H2,2(K ) ↪→ L∞(K )

completes the proof.
We wish to take the opportunity to correct a few other typos in the article: On page

476, line 12, the text “Proof of Theorem 3.1” should be replaced by “Proof of Theorem

3.2.” On page 477, line 10, the two factors ωµ should be replaced by ωµ− 1
2 . On page

477, line 26, the two factors πu should be replaced by πuω. On page 477, last line, the

two factors ωµ should be replaced by ωµ 1
2 . On page 490, equation (4.37), the summand

− T0
2 should be replaced by − T0

2 |�|. On page 499, line 12, the function η should be
replaced by ηL .
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