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0. Introduction. Let Mn be d n-dimensional minimally immersed

submanifold of. M"*t , [ >
one of the simply connected space forms with curvature 1, 0n or -1, i.e.

1y1n+t - ,Sn*t, R'*r, or gn*t. Given a point p e M,letro&) be the dis-

tance function on M , we denote the restriction of r o to M as the extrinsic

distance function on M. For anq a >
tered at p with radius a by

Do@)-Br(a) nM

where Bo@) - {xeM lro(x) 1 q}. Unless ambiguity arises, the subscript p

will be subpressed.

LetD C M be a compact domain. We consider the fundarnental solu-

tions of the heat equation (heat kernels), H(x, !, t) and K(x, !, r), for the

Dirichlet and the Neumann boundary conditions respectively. They pos-

sess the properties:

(i) JrH(x, !,t): JrK(x, !,t) - 0, for allx, ! e D andr e [0, @).

(ii) H(x, ./, 0) - K(x, !,0)
(iii) H(x, z, t) _ 0, for z e 0D

AK/Avr(x, z, t) : 0, for z e AD.

where A/Av,stands for the differentiation in the z variable in the outward

normal direction to 0D.

The purpose of this paper is to develop comparison theorems fot H
and K.

TnBonrr"r 1 . Let D be a compact domain in M. If Mn*{ : Rn *t (o,

H"+t), andfor any p e D we define the extrinsic outer radius at p by

a: 
:Hr,(z)
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for all y e D and r e [0, @). Here Ho(rp(y), t) stands for the heat kernel

with Dirichlet boundary condition on the ball centered at 0 with radius a in

R" (or Hn respectively)

Tnnonnv-2. Let Do@) be the extrinsic ball centered at p with ra'
dius a in M. If Mn*( - pn *r @r Hn*t), and if K,(ro\), t) is the heat

kernel with Neumann boundary) condition on the ball centered at 0 with

radius a in R" (or H") , then

.fo, all y e Do@) and r e [0, @).

Tnronnrvr 3 . Let Mn+t - 5n*t. Suppose D is a compact domain in

M. For p e D if the outer radius at p is not greater than r/2, then

u(p, !, t) <

.fo, all y e D and r e [0, 6). Ho@oU), t) is the heat kernel with Dirichlet
boundary condition on the ball of radius a in S" centered at the northpole.

TnBonBr'r 4 . Suppose Mn+( - S"+ t 
. L"t Do@) be any extrinsic batt

of M with radius 0 <
Neumqnn boundary condition on the ball of radius a in S" , then

x(p, !, t) <

for all y e Dr(a) and r e [0, @),

TnBonEM 5. Let Mn be a compact manifold without boundary.

Suppose M"- ,S" +t is a minimal immersion of M into 5n*t . If we denote

the heat kernel on M (without boundary condition) by K(x, !, t) and the

heat kernel on Sn by K (x, y , t), then

x(p, !, t) <

for all p, ! € M and r e [0, @).
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Rernark. In the above theorelils, we simply transplanted the heat

kernel of the model space into the domain in question. It is unambiguous

to write the kernels on the model spaces, namely H and K for the ball of

radius a centered at 0 in R" ,Hn, or S', as a function of r,because of the

uniqueness of the kernels and the presence of the group of rotations as

isometries.

In the first section of this work, w€ will prove Theorem 1 and 2, while
Theorems 3 to 5 will be proved in Section 2. The last section consists of

applications and consequences which follow Theorem 1-5.

One of the applications of Theorem and 3 are the mean-value inequal-

ities for subharmonic functions defined on M (also see t10l and [11]).
Lower bounds for the volume of the ball of radius a is obtained as a result.

However in the case of whe n tut : ^S'+t and q >
does not give the mean-value inequality, but volume lower bound still fol-
lows by utilizing the Neumann heat kernel in Theorem 4.

Comparison theorems for the first eigenvalue of Dirichlet bound ary
problem on any compact domain D in M g pn*r (or Hn*t) are derived.

Similar results also hold when 7v1 , 5n*1, but we have to restrict oursetf to

domains which contain in a hemisphere of ^S'*r. These comparisons are

sharp and equality holds iff M is totally geodesic and ^D is an extrinsic ball.
Theorems 1 and 3 also imply lower estimation for high eigenvalues of D.
These estimates are up to a constant comparable to the H. Weyl formula.

The consequences of Theorem 5 are most interesting. By estimating

the heat kernel for J' carefully, we conclude that if the volume V(M) of M
is closed to the volume V(5" ) of Sn , then M is totally geodesic, In fact,

since the closeness requirement increases linearly with respect to the codi-

mensio n [, this implies that if M c-] J:n*t is of maximal dimension (M does

not lie on any hyperplane of R" * t ) then

v>[t+ "Jt1v(,s')L BN J

for some constant Brwhich depends only onn. In general, we also observe

that the number of components of. M-H, where I/ is any hyperplane in
pz*r+l which passes through the origin, is bounded from above by a con-

stant depending on V(M). Lower bounds for all the eigenvalues of M are

also established in terms of the ordered of the eigenvalue and V(M).

F
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1 pJn+t = R'+' or Ho+'. In this section we will mainly deal with
the cases when fi|"+t equals R'*r or gz*r. Before we prove Theorems 1

and 2, we will present the following proposition which can be found in
standard references (also see [3] and [8]).

PnoBosrtron 1. Let M be a compact manifuld with boundary AM.

Suppose p e M, and if G(p, y, t) and G(p, y, t) sre two C2 functions
defined on M X M X [0, @) with the properties that:

(i) G(p, !, t) > 0 for all y e M, r e [0, o)
(ii) G(p, y, 0) : G(p, y,0) :_6p

(iii) lrG(p, !,t):0and1nG(p, !,t) = 0forall y eM andt e
[0, o)

(iv) (1) G(p,z,t):0sndG(p, ",t) > 0foraltz e0M,r e [0, o); or
(2) 0G/0v"(p, z, t) : 0G/0v,(p, z, t) = 0 for alt z e0M and t e
[0, *).

Then

G(p, y, il < G(p, y, t)

foratlyeMandte [0, o).

Proof. By property (ii),

(1.1) G(p, y, t) - G(p, y, t)

= Jl* Jr 
t (p, z, s)G(v , z,t - s)dzds

(properties (i) and (iii)

- [' t +(p, 2, s)G(y , z,t - s)dz ds
Jo Ju, dv,

J: J* G@,2,s)E(y,z,t * s)dzds.
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Clearly if either condition (1) or (2) of property (iv) holds, then the proposi-

tion follows.
We are ready to prove Theorems 1 and 2. Since the proof for the case

M - }tn*t is quite similar to that of R"*/, we will restrict ourself to M *
pn*f.

Proof of Theorem !. M - R'ru*r. In view of the above proposition, it
suffices to check conditions (ii), (iii) and (iv) (1) for the transplanted heat

kernel n b$), t). Due to the asymptotic expansion of n V0), r) for r(y)
near 0 as r --+ 0

(l.z) H(r, t) - (4rt)-n/2exp (#) tt + art + azt\ + . . .1,

and also because of the fact that on M , the extrinsic distance functio n r ,(!)
is asymptotic to the intrinsic distance functiotr, it is apparent that
H(r, t) - 6o as t 0, hence condition (ii) is satisfied. Condition (iv) (1)

follows from the fact that H >
outer radius a. We only need to check that

(1.3) JrnQU), t) <

We observe that by minimality of M in R'+r,

(1.4)

Hence it is convenient

tion shows that

tr|$) _ 2n for all p, ! e M

to writ e n as a function of s(y) - r2(y). Computa-

(1.5) ArH(s, t) - H" l Vr l' + U' As

* H " (4121 vr 12) + 2nH'

where H ' and H " are the first and second derivatives of. H with respect to
the variable s, Since lVtl * I, clearly if H' >
becomes

ArH (s, t) <(1.6)

f

_ a,It (s , t)
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where A is the Laplace operator on the ball B o@) in R". By the fact that FI
is the heat kernel of .86 @), this gives

trrl(s, r) s fi^F(s, r)

:0.

To sho* H" >

Hr: Lfr

- 4sH" + zn*"

(L.7)

and obtain

(1.8)

and

(1.9)

The function A " hence satisfies a second ordered parabolic equation
(1.8), and the maximum principle can be applied. The nonnegativity of

H' will then follow from the nonnegativity of H' on the boundary of 0 <

s s a and t € [0, o). When t T 0ands + 0,I/(s,0) = 0, hence

H"(s, 0) : Q. Ats : e2, sincen satisfies the Dirichlet boundary condition

(1.10) +l : zrn'l <
0r lr=o lr:o

and

(1 .11)

Therefore from (1.6), we get

(L.t2)

H rlr=(t : 0'

u; -4tg{t) + (2n + qfr"

u;' - 4sH@ + 2(n + 4)HQt.

r

4a2fr " l,:o >
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For the case s : 0, we consider the equation

(1.13) fr'(s(r), r) - ry nE'
77

1039

NI , nl Vr/l
:!-

12'13

We will study the limit

However since H(0, y, t): E e->'it6r(0)d;0),

(1.r4) MI + ry: ; -\;e ->,itet(o)di(y)
r r:1 '

+ 
l,!, + r-x;'d;(o)vditrl 

I

This reduces the questions to studying the behavior of each eigenspace at

points near 0.

LBuu A7 . Let M be a manrfold,with boundary. Suppose there exists

a point p e M, such that the metric of M is invariant under rotation around
p, and M can be written as the ball of radius a around p with respect to the

rotationally invariant metric. Then.fo, each eigenspace

E1 : tOl A0 = -\,0)

with eigenfunctions satisfying either the Dirichlet or Neumann boundary
condition, either

(i) 6@) _ 0 for all 6 e E (up to scalar multiple)

or

(ii) there exists a unique (up to scalar multiple) Q e E;which is rota-
tionally symmetric i.e. $ can bewritten as afunction of roU). In pdrticu-
lar, tf we insist that 6@) >
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Proof. Assuming conclusion (i) does not hold, we define the finite
dimensional subspa 

"e 
Ex of Ex by

Er : {d eErld(p) : 0},

then E1 * Ex.We claim that the orthogonal complement of E1 in -81 is

one-dimensional. Indeed, if 6t and $2 are linearly independent in the

orthogonal complement of ,E, and if dr(p) : c and QJd : 0, with
a,B + 0,then

06r@) abz@) - o.

This shows 06r o,|ze E1 , which contradicts the fact that S1 and Q2 arc

in the orthogonal complement of ,81. Clearly thg uniqueness of the nor-

malized 6 which span the orthogonal space of E1 in ,81 is the required

rotationally symmetric eigenfunction in -Etr.

Remark. A similar version of Lemma 1 for homogeneous manifold
can be found in [9]. The unique normalizedfunction 6 is usually known as

the zonal function at p with respect to.Etr.
Returning to the proof of Theorem 1, in view of the lemma, Equation

(1.13) can be written in the form

M + ry:f "-^,dx(o)[rv*xg) l+ xdxtrlJ

T n Edx I
- D e-^',ox(o)l-;i xdxtrlJ

where @1 with ,Or(0) >
The last equality follows from the fact that

Adx@)_ -\dx(p) <

hence ,f1 has a local maximum at p. We will show that for each \, dx
satisfies

tsrl-#r,i'] >
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where the subscript }, is being suppressed. Then Theorem 1 follows.

In fact, we show that the function

n6,s-;+\,0

vanishes to 2nd order as r -+ 0, hence it suffices to check that

LIL*\ol <
0rz L r J

By I'Hopital's rule

(1.16) lt* +_ n6,,1,:0.

Howevet atr - 0, one can easily check that

(t.t7) nfrrlr:o - Ad lr=o

: _ \o(0)

for rotationally symmetric metric around 0, hence

riml "6' + \dl :0.
r*ol r J

Also

0g nQ" nQ'
+ \d,',0rr12

as r + 0, this gives

(1.18) os I - rim Ll 
^-- 

d' I0r l":o ;it i Sv" r J

nlr,,, +.H
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but since

(1.19) -\'O:AO

after differentiating this Yields

-\d,: e,o*+[t--+]
As r -; 0, this implies

6,n1,:o:lgt+F- o-l

therefore substituting into (1.17), we have

oe | : ,rfL- r*1
a, lr-o - rt' 

l- ,' r J

= _n+t
dr lr:0

hence

Finally,

#:\d",++[r,-- +.+)
n l- Q,l

- 7l**- r 1

as r -- 0, we have

(1.20) #1,,-o: -+o(o) + l,$ ?lr,--'rr' . +l

oel :o
0r lr=o
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The second term on the right hand side gives

r:* 1 [* 2Qo r ZQr l
" l\vla*' r t 

r'z )

.. l- 26rr, 4Qr, 4Qr l: "l\lil'* ;*- f}
On the other hand, differentiating Equation (1.17) twice yields

-\drr:6rrrr+ +lfrr, ++ +l
Substituting into the above equatior, then

,,,.. 1 [* ZQo , 2o'1
lgtvlo,,, , +7)

$[-\d" +(r,,, +.+))
: +o(o) (n+r)l,jt llr,- +.+)

Therefore

(n+ 2) rim llr*, - ++ +) : +d(o)r*C

hence combining with Equation (1.19) gives

#1,=o: -+d(o)+ #o(o)
: -#d(o)<

as to be shown.
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In the case where M * gn*t, one simply writes H asa function of s :
cosh r since A cosh r - I cosh r where A is the Laplacian on H'. The

computation on H" will follow similarly to that of Rn.

Proof of Theorem 2. Again we will consider the case when M :
pz*/ only. Similarto the proof of Theorem 1, we can reduce to check if /(
satisfies conditions (ii), (iii) and (iv) (2). Clearly condition (ii) follows from
the remark in the previous proof. Consider

- 0, for z e |Dofu)

since f is the Neumann heat kernel on B o@) in R' . This gives (iv) (2).

To check condition (iii), we again write K as a function of s : 12.

Equation (1.6) asserts that if. K' > 0, then TheoremZfollows. Once again

we differentiate Equation (L.7) twice and obtain (1,9)

x:

+ee),t)_ +0e),t).+dtr, dr dv

In order to apply the maximum principle to K o, we

K'>
t<

need to check that
m. When s * 0, of
is still valid, hence

we will discuss the case when s - a2.

It is known [3] that the heat kernels on a rotationally symmetric ball
satisfies

(t.22) K' :2sl/zKr < o

for all 0 < s 1 q2 and t * 0. On the other hand by the Neumann boundary
conditiononK,K' - 0 whens : a2. HenceK' attains its maximum on

s :. a2. No* consider equation on a2 /2 < s s az and 0 <
apply the boundary maximum principle I17 , pp. lTAl and conclude that

R'(o2,t)>

which proves the theorem.
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2. 1y1n+t: ,S'+r. When 76n+t is 5n*t, one needs to write the ker-
nels H andK as functions of cos rrwhererp is the distance function from
the northpole of Sn.In fact, for convenience sake, w€ will write nG, t) and

,<(s , t) as functions of s _ 2(l cos r) and t. We are now ready to prove

Theorems 3-5.

Proof of Theorem 3. _ Clearly in view of Proposition 1 and the bound-
ary conditions on H and H , it suffices to check that

f'H(s, t) <

However

(2.L) AnG,t)-H"IVrl'+H'As

- H " s(4 - s) I Vr l' zH'(A cos r),

and since cos r is the restriction of the coordinate functions on the sphere,

A cos r : -n cos r.

Hence

Ut(s, t) - H"s(4 - s) lVrlz + 2n cosrH' .

If we can show that H ' > 0, together with the fact that I Vt l' = 1, we have

MI (s, t) <

- H'(s' /)

where A _ Laplace operator on ,S'. We differentiate twice the equation

(2.2) H,- MI

: s(4 - s)H" + n(2 - s)H'
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and apply the maximum principle to H ", since it satisfies

(2.3) n: : s(4 - s)n\t + @+ 4)(2- s)n- 2@+ r)H',.

Similar to Theorem L,

H' _ 0 on {(r, r)ls * 0, t_ 0}

and H'>
2(I cos a) and 0 >

To prove H " (0, t) >

(2.4)
s(4 - s)

which follows from (2.2). Using the eigenfunctions expansion for H and

applying Lemma 1, we get

- / \dx n cos r(\Qs/ 0r) \(2.s) 4H'=T"-^'Ox(o)(-#- )

where dx(0) >
subscript \, we claim that the function

n cos rQ,g- \o+ rint

vanishes in znd order and 02g/0r2 is nonpositive as 7 i 0. Thetheoremwill

then follow.
In fact

cos 16,(2.6) lg sV)_ \,6(0) + "t\-*r-
cos rfn sin r@,: Xd(0) + nlim

by I'Hopital's rule.

r*0 COS l"
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On the other hand, since

with respect to r yields

lim nfn
r+0

* _ \,0(0)

and6r-0asv+0,

lg sv)- o'

Also

(2.7) #:\d"+"1+"'&-#h] ,

as r -'+ 0 this becomes

i. 0g r. I cos 16r, Q, Ilrm--
r+0 dr r-0 L Sln r Stn" r J

_ n riml r,,, r':rlol.' + d'- I
r-o L sin r sint ,-J

= nlim[,n lim +-r-+0 r-0 Of

where the second equality is obtained by I'Hopital's rule. On the other

hand, differentiating the equation

-\O - AO
smr

(2.9)

-\Or: Qrrr+ (n tr[# #h]
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Taking limit as r -+ 0, we have

lgt Q"'_ - 'n =nt' lt* #"
Combining with (2.8) yields

(2.10) tts #- $ e,,,

:0.

Finally, we consider the function

& / cos re,' _2Q,, * 2d, cos r \
ar?: \Q,," + "\,i',,- sit, r , ,in\ ),

as r 0, this gives

(2.r1) riry #_ -+d(o)

+ nlim("tt:$,- _%, 2e,cosr\
r-o\ srnr sin2r 

f W )

trz ,,,n' r' I a4o 26r*-- " d(o)+"!r5l7f ,,",.",,

+4!: 4"o.t\Q, '.0, fsln"r sln"r slnrcosrJ

X2 ,/n\ I ,.\,/n\ I r. A4O: - .-'0(0) + 2\O(0) * n limn 7-\-/ ' t 
"*o \ra

2)\2 ,,,,n\ A r. 0'g- " '0(0) 2lim ift'



Therefore
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r049

a46
n lim

r+o |ra
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3lim a?_ -(Yr-o 0rz \ n
,td(o) +

However differentiating (2.9) twice yields

-|tQ,,- -A:q- + @\ra '

hence

. ,. I cos r6u, zfnr/l---^'L sin r sinzr
, zcos 16, I

J_l' sin3r J'

^2 d(o) - tim -a:q + @ - r) [,,, o's
n d(o) - lgt al - n L,_*g E

This together with (2.12) gives

l'*# ffio(o)

+ +d(o)] .

(2.13)

But on a ball centered at p with radius a <
Dirichlet boundary conditions are known [13] to be no less than n, hence

the right hand side of (2.13) is nonpositive which is to be proved.

Proof of Theorem 4. It is obvious to see that the proof of Theorcm2
together with the computations in the proof of Theorem 3 implies Theorem

4.In fact, w€ only need to check that the eigenvalues on Bo@), a <
which appear in the expansion (2.5) with Neumann boundary condition
satisfied

\>

Lemma 1 asserts that we may assume the eigenfunctions are rotationally
symmetric, in particular, they take constant value on 0Bo(a).Theorem 4
will indeed follow from the next lemma.

LBurvr t 2. Let M be a compact mantfuld with boundary AM. Sup-
pose the Ricci curvature of M is bounded below by (n L)K >
eigenfunction Q with eigenvalue |t satisfies

6lau : constant
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and

ao I ^u lur: o'

then

\>

In. particular , if M = B r(q) with a rotationally symmetric metric and if $ is

a rotationally symmetric eigenfunction, then \ >

Proof. Assume \ <

h- lvdl2 + *Or.

Then

io, - nlleiii 
* nrj,+ +lvdl2 $r'

: (a r) -+^) rvot2

which implies the maximum of h occurs on 0M, s&y xs . By the Hopf maxi-

mum principle, we have

0<

j

However Qlu*: constant and Qrlau: Q means Q1@o) * 0fqr alli. This
contradicts the assumption.



HEAT EQUATIONS 1051

Proof of Theorem 5. Since the heat kernel for the compact manifold

^Sn is the same as the kernel with Neumann condition Br(r) (see t3l), by the
proof of Theorem 4 this implie s K " >
plied. However if the image of M in J"+r does not contain the antipodal
point p' of p, then the transplanted functionK may not be C2 in M. We
will show that this does not create any problem for the purpose of applying
Proposition 1.

Let a - supre,vr ro@) be the extrinsic diameter of M at p. Clearly
M g Bo@): theballof radiusa centeredat pingn*t, Equation(1.1)of
Proposition 1 asserts that for any y e Bo@ e) n M - D(a e).

(2.I4) X(ro0), t) - x(p, !, t)

of n

T \^ \^^ , e)#QoQ)' 
s)K(Y ' z' t - s)dzds

Jo Janb-

x (r p(z),r) + (y, ,, t * s)dz ds
ov"

x (r p("),r) + (y, z, t - s )dz ds
ovt

AK: (y, ,, t - s)dzds
out

+J:
"[rr,"-*,

where we use D(a - e ) instead of M. We will show that the right hand side

of (2.14) converges to zero as € -+ Q. Since for any z e lD(a) is a supremum
point for ro,

+QoQ), s) - R,(roQ), s)' +clu" r ' du,

tends to 0 as € --+ Q. Therefore the first term on the right hand side of (2.I4)
vanishes. On \D(a - e), the transplanted function X takes the constant

value X(o e , s), hence the second term

I J,,,_.,

It
I x(o e,
JO

It
I x(a e,
JO

s)t
J anfu-e)

{'

s) I A"K(y,z,t-s)dzds
J D(a-e)
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which tends to

by the compactness of M. Since y is an arbitrary point in D(a - e) for any

e , this proves the assertion for any y t \D(a). However by continuity of K
and K on M, the theorem follows.

3. Apptications. We will discuss some of the applications of the

comparison theorems (1 to 5). Some of the consequences are the mean-

value inequalities which was proved by Michael and Simon t10l for the

case of M in R"+r, and proved by Mori [11] for the case when M is in,S n*t 
.

ConorLARy 1. Let Mn be a mtnimally immersed submanifold in

7y1n+t := pn *r, Hn*t, or 5n*I . Suppose f is a nonnegative subharmonic

function defined on M. If p e M and Dr(a) - Bo@) n M, then

where

and un : volume of the unit n-ball in R", When M : Sn+t, one has the

restriction that a 5 n /2.

It t'

Jr 
t(a, s) J, 

a,K(y, z, t - s)dzds : 0

r

f (p) < c-t(n, o) \ f @)dx
J |D(a)

(nr,(sin a)"-' tf M - ,Sn*(

c(n, a): I nrnan-t tf Il4 : Pn *r

L.r
\nun(sinh a)"-t tf M : gn*t

proof. Let G(x, y) denote the Green's function with Dirichlet

boundary condition on D(a). Then

e

f (p) - \ c (p, v) 
^f 

(Y)dY
J D(a)

t +@,v)ru)dv
J an@) dvy

J an@) dvy
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by the nonnegativity of G and the subharmonicity of /. We claim that if
GUp(y)) denote the Green's function on B(a) the ball centered at 0 (or
p : north pole) with radius a in R"(Hn or,S"), then

AG / \ AG,+- (p, y) >
ovy oly

for y e TD(a).Indeed, since the Green's functions are given by

r-
G(p, y) * | H@, !, t)dt

Jo

and
nO

Gvp(y)) _ \ B, ro0), t)dt
JO

andH >

H(rp(y), t) - H(p, !, t)

:0 for ye|D(a),

the claim follows. Together with (3.1), we have

f(P)<
J an@) ouy

('* I G,vu))+ry)dy
J an@) ovy

J an@)

since IVtl o 1 and G,' <

f(P)<
J an@)

and the constant C(a, n) can be obtained by explicit computation of G,.
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Remark A consequence of Corollary 1 is the a estimate on the vol-
ume of D(a) from below. Namely, if we let f = 1, then Corollary 1 gives a

lower bound on the area of.LD(r).Integrating the inequality from 0 to a
yields: The volume of D(a) is greater than or equal to the volume of B( a) in
R"(Hn ors"). fn case of M : Sn, a is restricted to be no greater than r/2,

Conor.LARy 2. Let M be a minimatly immersed submanifold of
Sn+t,then Do@): llrl fl Bo@)has volumeno less thanthe balt Bi@)in
Sn, fo, all a <
volume of Sn.

Proof. We consider the kernel X(p, !, /) on Do@). Since

and

X(p, y, t) : D e-t'it 6r@)6{y)

rc7oU), t): D e-xt'di @)Qly)

where \;, rf; and \;, gi arc eigenvalues and eigenfunctions of Do@) and
Bo@) respectively. By Theorem 4, we have

D e-t'itQr@)6ly) <(3.3)

However, the first eigenvalue for Neumann boundary condition is zero

with normalized eigenfunction V-r/2, by taking t -> e in (3.3) we obtain

which is to be showll.

Conor.LARy 3. Let M + tut nt a minimal irnmersed submanifold.
Suppose D is a C2 compact domain in M. We deftne the outer radius of D
by

: inf suprp (z).
peD zert I

If M- St'+Irweassume then
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where B(a) is the batl of radius a inR" (H" or Sn) respective to M -. pn*r
(H+t or Sn+I). Equality holds iff M rs totally geodesic in M and
D - B(a).

Proof. By Theorem 1 and 3, it is clearly that if we compare the heat

kernel H and H andlet t -+ cp, we obtain a comparison for \1 . However for
the sake of the equality case, w€ will adopt another proof.

Let p e D, be the point in D which realized as the center of D :
D o@). Suppose OVI is the first eigenfunction on B (a) in R" (H" or ^S'). It is
unambiguous to writ e O as a function of r because it is known that ,0 is

rotationally symmetric. We rewrite d ur afunction of s : 12 (s : cosh r or
J : -cos r). Then

AO : O'lVr l' + 6'nt

* *6, 
lV, lt + d,a,

where $' and$ " arcfirst and second derivatives of .p with respect to s, and

a is the Laplacian on R' (H" or,S'). Since

I Vr lt = QrlVr l)2(sinh' ,lVr l2 or sin2 r I V ,|,2)

if o" >

AO<

For simplicity we will only demonstrate the case when M
The proofs of the other cases follow roughly along the same idea. Consider

-\t0 : AO

_ 4t6" + ZnQ'.

: 0, we look at the equation

(3.4)

To check 0" >

lim 4O' _ lim
s*0 s-0

- \,0 ZnQ'

,. - \d n6,
: llm ------ - 

-.
r-0 r' 13



1056 sgru-yuEN cHENG, pETER Lr AND sHrNG-TUNG yAu

However by the proof of Theorem 1 this is

_ 2)\2

"f, + zl'0(o)

Now let so be the first s >
implies at ss , the function.f ' has either a maximum or a point of inflection.
On the other hand, if we differentiate Equation (3.4), we have

\ot :4s46r + 2@ + Z)O' ,

At so, w€ see that

0<
because

2'6t : 6, <

for the first eigenfunction O.This is a contradiction. Therefore AO <

-I,d'
To compare the first eigenvalues, first we consider the comparison

\r (D) > \r (tl (a))

since D(a) =' D. Equality holds iff

D - p(a),

hence we have reduced to the case when D : D(a). ^A.n observation of
Bafta gives (see t4l)

\r (P(a)) - - 
3q 

k)
a

__aAl--\r 6AO*OtO 
I

6 ttlr dd L
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However since both g and$ arc positive and also

t-
I (dA,o + OAil- 0
J D(a)

1057

by the boundary conditions on d and,0, the function OAO OtO must
change sign. Therefore

as asserted. Equality holds iff

OA6- Ot/|

- -\ JD(a))QQ

-[ 166'

On the other hand, the proof of

AO<

implies that equality holds iff

lvrl - I,

which is equivalent to the condition that D(a) is a minimal cone. However

by the assumption that M is C2 , this implies D (a) : B(a). Analytic contin-
uation then asserts that M is totally geodesic.

Conolr,Any 4. Let M + U Ut a minimally immersed submanifutd
of M : R'+I or gn*t. Suppose D rs a compact domain in M, and if
{\r }p 1ar€ the eigenvalues of Aon D with Dirichlet boundary condition,
then

tft''> e v(D)

for all k >

04.6..:
6Q

6AO

"lts8,I
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Proof. By Theorem 1, the heat kernel on D satisfies

H(x, x, t) <

where

zeD

However it is known that [7]

n"Q, A, t) s (4rt)-n/2.

This together with the eigenfunction expansion of H(x, x, t) yield

D e-x;t <

Taking r : I />\k and using the fact that \; = },p for I <

ke-l < L e-t\i/t\kj:1

/ \L \n/2

which proves the Coroll ary.
We will consider the case when M" is a minimally immersed submani-

fold of Sn*t . In order to draw conclusions from Theorem 5, we need to
estirnate the trace of the heat kernel on ,S'.

Lpur"rA 3. Let R (*, ! , t) be the heat kernel on Sn , then there e*ists a

constant Cn depending only on n with

n
2

such that

fo, all t >

rr ^r(r) _ 
Jy 

U (x, x, t)dx

r--
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Proof. It is known that [1] the eigenvalues of ,S" are given by

Xk:k(n + k 1)

with multipl

m(k) _

Therefore

icities

n + 2k 1).
k

@

E e-\rt- 1+(n+L)s-"t + D m(k)e-xftf.
i:0 i:2

Now we claim that m(k) <
induction on k. Clearly the claim is true f.or k : ). For general k >
consider

(3.77 m(k) 
- 

n+*-2( m(k 1) \
(tx+2k- 1) k \ffi1

by induction hypothesis. We need to show that

(3.8) (n + k z)(tc l)n-z <

When n _ 2, this obviously holds. We will show the validity of (3.8) by

induction on rz. Differentiating (3.8) as a function of k, w€ obtain for the

left hand side

(3.9) (n 2)(t, 1)n-3@ + k 2) + (tc l)n-z

To see this we observe that the left hand side of (3.8) can be written as

(3.9) ((n 1)+ (k- 1)Xk- l)"-2-Uc-L)"-t +(n lXf - L)n-z

While the right hand side of (3.8) is

(3.10) kn-l - (@ 1) + l)"-1 >

_ (n + k 3xft 1)n-3(n 1)

r--
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and for the right hand side we have

(3.10) (n L)k"-2 .

Clearly as a function of k, (3.8) holds at ls : 1", but (3.9), (3.10) and induc-
tion hypothesis on n shows that the derivative of the function on the left
hand side of (3.8) is no greater than the derivative of the function on the

right hand side. This shows (3.8) is valid, hence proves our claim. There-

fore

u\rm(k)e-r&t 
<tr\ru"*z(n + 2k 1)s-x/'r

However for / >

(Xu )tu-z)/z(n + Zk 1)e*xpr

is a decreasing function of ft >
side of (3.11) is less than

n-, t [*2 + (n 1)x] @-2)/2(2x + n L)e-1x2+@*r)xlt 4*2 J,

fort>

i m(k)e-\ft ' s +l "tu-2)/2e*utduk:2

: 
+ t-n/2 

f,,utu-Z)/2 
e-u du

I lt- "t (niltu-2)/2
/

-nt g-lnn/2el (n/2, 1)

fott = 1.
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It is known that an immersion of. M" into 5n*I is minimal itt M C 14

AO _ -n6

for any coordinate functio n Q in R" +r+ 1 . In Barticular, if. M" is a compact

minimal submanifold of ,S"+r then n : \p is the frth eigenfunction of M. In
addition, if the immersion of M into 5n*t is a maximal dirnension, i.e . M
does not contain in any hyperplane through the migin of R"+t+ l, then the

multiplicity of n: Xp is atleastn + I + 1.

Tnronnrvr 6 . Let M" --+ ,S'+t be a rninimal immersion of the com'

pact manifold M of maximal dimension. Swppose the spectrum of M is

ordered by magnitude and if n - \E , then

"ffirn + n+ 1+ Hco{tl - e'k<

for any t >

Proof. By Theorem 5, the heat kerael K(*, x, t): D,Lo e-xi'6?(*)
satisfies

r) is a constant function since ,S" is a

: Y(.t")f (x , x, t).

Together with Lemm & 3, this gives

However it is easy to see that K (x, x,
homogeneous manifold, therefore

t'(3.13) I lr(x,x,t)
Js,

@

De
i:0

; e-tr;t < i K(x,x,t)dxj:0 Ju
(3.r4)

('

Jnt

v(M)_ tffi K(x' x' t)

y(,s') '
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Substituting t/n

1+;e-xit/|,1,s YlgV+ @+ t)s-t+ nCnt-te-,1j= r V(5")

lort>
On the other hand since, \i /|v <

(3.1s) 1+ke*t<YlYln+@+r)e-r+ncnt-te-,|,y(^s')

We can obtain the theorem by multiplying (3.15) by t',
Conorr,ARy 5. Let M be a compact minimally immersed submani-

fold of Sn*t,suppose the immersion ts of maximal dimension, then there
exists a positive constartt

Bn<

such that

/ 10 r \
v(M) >

\ 8,, / \ 
',

where I is the co-dimension of the immersion in 5,*r.

Proof. We simply consider Theorem 6. Since the immersion is maxi-
mal dimension, the multiplicity of n is at least n + t + 1, hence ft >
| + 1. Letting t

n+ I+1<1r\' Y(s")\ 2 /

hence

1

TB,+ r +<
Remark The case when n

been studied in 12| where Calabi showed that V(M) has to be an integral
multiple of 2r, and the integer must not be less than %l(n + t + 112 - 11.

In particular, n + [ + t has to be an odd number.
The next corollary describes the way that a rninimal submanifold im-

|-



IIEAT EQUATIONS 1063

merse into 5n*t. It shows that any minimal immersion cannot be too patho-
logical.

Conor.lAnv 6. Let M be a compact manifold. Suppose Mn c ', 5n*t
is a minimal immersion of maximal dimension. Thenfor any hyperplane H
which passes through the origin of R"+t+t cennot divide M into more than

( v(M) ,\ B" s

\v(s,) -/ z t+;
components. In particular, if the minimal cone C(M) over Mn inFi"+z is
area minimizing and tf I : l, then the number of components of M - H is
no more than

( v(s"*') ,\ 8,, r 3

\ v(s") ') z -T
Proof. Since the immersion is of maximal dimension, the multiplic-

ityof nisatleastn + t + 1. If wedenotefrtobethelast},r: n, then
applying Theorem 6 and setting / : ZnCn, we have

ks ffi(+) e2ncu.

However since \*-n*r : Xt*,, - l+l : " ' : \;, = n, by the Courant
nodal domain theorem (see [6] and tsl), the number of nodal domains for
the (/c n )th eigenfunction cannot exceed

On the other hand, since H n M arc the nodal sets of the coordinate func-
tions, the number of components of M - H is the same as the number of
nodal domains of the (fr n Dth eigenfunction. This proves the first
part of the corollary. The second part follows from the fact that area mini-
mizing cones in R"+r+l has their volume bounded above by

k n t+1< V(5,) Z , I+

Y-yL := V(C, * t (ttt) n B 6+r( t ))
2

v(s"*t )
F2

5

T'
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ConorLARv 7. Let M be a compact minima,l submanifold of Sn+I .

The kth nonzero eigenvalue of M satisfies

i''2An( + -L)\ V(M) V(5") /

where An is a compatable constant depending only on n.

Proof. By Theorem 5,

o" v(M\/ "" .\1+ E e-\it <i:r V(5") \ i:t /

where \; are eigenvalues of ,S'. However it is well known that

6

D e-\it < (Constant)t-n/2
f:l

where the constant of course depends on n. Hence, setting / : l/lt'r,

l+ke-l<-vW\v$tG + (Constant)\f '')'

The corollary follows by letting A, : V(5")/Constant.
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