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Scalar Curvature, Non-Abelian Group Actions, 

and the Degree of Symmetry of Exotic Spheres 

H. BLAINE LAWSON, JR. 1) and SHING TUNG YAU 

Abstract 

It is proved that if a compact manifold admits a smooth action by a compact, connected, non- 
abelian Lie group, then it admits a metric of positive scalar curvature. This result is used to prove that 
if Z TM is an exotic n-sphere which does not bound a spin manifold, then the only possible compact 
connected transformation groups of ~rn are tori of dimension ~< [(n -k 1)/2]. 

w 1. Introduction and Statement of Results 

It  has been known for several years that if a compact spin manifold M admits either 
a non-trivial S ~ action or a metric of positive scalar curvature, then , 4 ( M ) = 0 ;  and it 
has been at times conjectured that these hypotheses are directly related, in particular, 
that the existence of an S~-action implies the existence of  a metric of  positive scalar 
curvature. This conjecture turns out to be false because of the following two results. 

T H E O R E M  1.1. (N. Hitchen [3].) Let ~ be any exotic sphere which does not 
bound a spin manifold. Then 2n does not admit a riemannian metric o f  positive scalar 
curvature. 

For n = 1 or 2 (mod8), the exotic n-spheres which bound spin manifolds form a 
subgroup B Spin n of index 2 in the group O, of homotopy n-spheres. 

T H E O R E M  1.2. (G. Bredon [2].) For n = 2  (mod8), the spheres ZneOn-BSpinn  
admit non-trivial S 1 actions. 

The idea of the proof  of  Theorem 1.1 is that by Atiyah and Singer [1] the di- 
mension of the space of  harmonic spinors (mod2) on a compact, riemannian spin 
manifold M can be identified with a certain KO-Theory invariant ~ (M)  of the spin- 
cobordism class of  M. This invariant was introduced by Milnor and shown by Milnor 
and Adams to give a non-trivial homomorphism ~: O n ~  Z2 for n = 1 or 2 (mod8). 
(See [0-1, [9].) However, by a result of  Lichnerowicz [8], if  the metric of  M has positive 
sc~ar  curvature (in fact, x>~0 and ~0) ,  then there are no harmonic spinors. 

In [9] Milnor actually constructes compact spin manifolds of  type Man+a= 
=NSnx  S 1 for n =  1 and 2 such that Qt(MSn+l)#0. Consequently, it is not even true 
that a free Sl-action implies the existence of a metric of  positive scalar curvature. 

1) Research partially supported by the Sloan Foundation and NSF Grant GP-34785X. 
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This failure of the above conjecture motivates the principal result of this paper. 

MAIN THEOREM. l f  a compact manifold admits a smooth, effective action by any 
compact, connected, non-abelian Lie group (that is, i f  it admits a non-trivial S 3 action), 
then it admits a riemannian metric of  strictly positive scalar curvature. 

Thus, we have the following diagram of results. 

3 an S 1 action 

3 a n  S 3 action 

~ a metric with 

A =  0 (for spin manifolds) 

K>0 

We now recall an elementary differential topological invariant. 

DEFINITION 1.3. The Hsiang index of symmetry of a smooth n-manifold M" 
is the integer 

(M") =sup {dimRG: G is a compact subgroup of Diff(M*)}. 

It is known that ~(M")<~�89 1) with equality if and only if M " = S "  or RP". 
Furthermore it has been proven by Wu-Yi Hsiang [5] that if ~"~O,, n>~40, is an 
exotic sphere, then 

~(~")<~n~ + 1. (1.1) 

This result is sharp since from the Brieskorn representations one can easily see 
one that the Kervaire spheres 2~*, n = 4 k + l ,  have ~(E*)=}n2+~.  However, if 
considers exotic spheres which do not bound parallelizable manifolds, the estimate 
(1.1) can be improved [4], [6]. Furthermore, R. Schultz [11], [12] has shown that 
there exists an infinite family of homotopy spheres for which ~ (2~*)~<~9-n. As a con- 
sequence of our main theorem and Theorem 1.1 we have the following 

THEOREM 1.4. Let ~* be an exotic n-sphere which does not bound a spin manifold. 
Then the only compact, connected transformation groups of ~" are torL In particular, 

We reiterate that On/B Spin, = Z2 for n = 1 or 2 (mod 8). 
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Proof of Theorem 1.4. The first conclusion is an immediate consequence of the 
main theorem and the discussion above. The second conclusion can be seen as follows. 
I f  n is even, any toral transformation group T k must have a fixed point set, and the 
induced linear action on the normal spaces to the fixed point set must be effective. Thus, 
k <. n/2. For n odd, we refer to the work of  Ku [7]. 

Theorem 1.4 raises the question of allowable torus actions on exotic spheres. There 
are results of  this type due to R. Schultz who has a method of proving the non-existence 
of (Zp)" actions on exotic spheres in O, for n=2p2-2_p-2 and p a prime [13]. In 
particular it can be shown that there are three exotic 10-spheres for which 
1 ~<~(Z1~ 

As a final note, we point out that the conclusion of Theorem 1.4 holds for any 
compact spin manifold M for which ~ ( M ) #  0. Since the ~-invariant is additive with 
respect to connected sums of manifolds, it is always possible to change the differentiable 
structure of  M, in dimensions = 1 or 2 (rood8), to make ~ ( M ) r  

w 2. The Basic Construction 

Let G be a compact, connected, non-abelian Lie group acting differentiably (and 
effectively) on a compact manifold M. The purpose of this section is to outline 
a method of using this action to construct a metric of  positive scalar curvature 
on M. 

We begin by considering the simplest possibility, namely, when the action is free. 
In this case we have a principal G-bundle n:M---, M'=M/G. Any invariant metric 
on M gives us a connection, i.e., an invariant field of horizontal planes, and we lift 
to these planes a fixed riemannian metric from M' .  Let & be the Lie algebra of  G with 
some Ado-invariant inner product, and carry this inner product over to M by the 
canonical identification f~c3EM. Now for each t > 0  we have a riemannian metric 
g~ =gn + t 2gv where gu and gv are the horizontal and vertical inner products defined 
above. 

L E M M A  2.1. The orbits of G in the metric gt are totally geodesic submanifolds. 
Proof. Let B denote the second fundamental form of  a fixed orbit. Choose any 

X e f g c ~  M and let H be an invariant horizontal field. Then, since (X, H ) = 0  and 

IX, H I  =0 ,  

(B (X, X), H)  = <VxX, H )  = - (X, Vx H )  = - (X, VrX)  = - �89 2 = 0 

(where ( . , . )  denotes any of these metrics and V is the associated riemannian connec- 
tion), and the statement is proved. 

We shall now apply the O'Neill identities for the curvature of  a riemannian sub- 
mersion with totally geodesic fibers [10]. Let n :M-- ,  M' be any riemannian submer- 



Non-Abelian Lie Groups 235 

sion 2) and let (.)h, (.)v denote orthogonal projection onto the horizontal and vertical 
subspaces respectively of  TxM at any point. Then the fundamental tensor of the sub- 
mersion is a (2, 1) tensor which assigns to each Xe~M a section Ax of H o m ( T M )  
given by 

Ax(r  ) = (Vxh Yh)~ + (Vxh r~  ~ (2.1) 

for Y~3s I f  X and Y are both horizontal, then Ax(Y)= - A t ( X ) =  �89 [X, Y]". 
We now consider the family of  metrics gt constructed above on the principal 

G-bundle rr: M ~ M' ,  and for each t we let A t denote the fundamental tensor of ir for 
the metric gt. For any X, YeTxM we let K t ( X ^  Y) denote the sectional curvature of  
the (X, Y)-plane in the metric g,, and similarly we let K '  ( . )  denote the sectional 
curvature of  the common, submersed metric on M' .  Let H, H '  be local, orthonormal 
horizontal fields on M and let V, V' be canonical vertical fields which are orthonormal 
in the metric gt- Set ll" I[ =g l  ( ' ,  "). Then it follows easily from O'Neill [10] and the 
formula for curvature of  a biinvariant metric on G, that: 

K t (HA H')=K' (n ,H^ rc,H')- �88 2 I[ l-H, H']~ 2 , (2.2) 

g t (H^  V ) = t  2 IIA~(v)It 2 (2.3) 

, 1 
g t ( v ^  V )=ti II[V, V']ll 2 (2.4) 

Since G is non-abelian, it is clear that for all t sufficiently small the metric gt has 
positive scalar curvature. 

For a general action of G on M the procedure is much more complicated and the 
estimates more delicate. The outline of  our construction is as follows. 

Step 1. Introduce a G-invariant metric on M. 

Step 2. Let G carry a biinvariant metric b and consider the free G-action ~b on 
G x M given by ~bg (h, x) = (g. h, g (x)). 

There is a natural map 7r*:GxM~M given by projection along the orbits. 
(Tr4'(g, x)=g -1 (x).) We now introduce a family of  metrics gt on G x M very much as 
we did above. Using the product metric on G x M w e  have defined an invariant field of  
normal planes to the orbits of  the @action. We lift the metric of  M to these planes via 
lr *. Along the orbits we introduce the metric t2b via the inclusion fg'-3Ea• given 
by ~b. By Lemma 2.1 the orbits of  ~b in the metric gt are totally goedesic. 

z) This is defined as follows (cf. [10]). Let ~z:M~ M' be a submersion between riemannian mani- 
folds. For xeM there is an orthogonal splitting TxM= VxGHx into vertical and horizontal sub- 
spaces where Vx is the tangent space to the fiber n -1 (n(x)) through x. Then n is called riemannian if 
~, [ H~:Hz-~TnxM" is an isometry for all x. 



236 H. BLAINE LAWSON AND SHING TUNG YAU 

Step 3. Each metric gt on G x M is invariant under the G action ~b where 
~g (h, x) = (h .g-  x, x). Hence, there is a metric gt on M for which the right hand projec- 
tion ~: G x M ~  M is a riemannian submersion. 

We shall show that if the original metric (Step 1) is appropriately chosen near the 
fixed-point set of G, then for all t sufficiently small the metric gt will have positive 
scalar curvature. 

w Curvature Estimates away from the Fixed-Point Set 

In this section we shall compute the scalar curvature of the metrics gt on M away 
from the fixed point set M 6. Actually, since sectional curvatures increase under a 
riemannian submersion (cf. Samelson [15], or [10, Cor. 1]), and since we are only 
interested in finding a positive lower bound, it will suffice for us to compute the average 
horizontal sectional curvature for the submersion n: G x M---, M. 

We assume we are in the situation set up in the beginning of Step 2 above. Fix a 
point x e M - M  G. Then there is an orthogonal splitting fg= ~x@~x where fqx is the 
Lie subalgebra of the isotropy subgroup G x of x. There is a natural embedding 
ix:~ x ~ TxM given by the action of G on M. Let tx denote the orthogonal complement 
of i ~  in T~M. Then 

T(e,x)(G x M) ~- f ~ ) ~ O ) i x ~ O t ~ .  

The canonical embedding fg~ T(e,~)(G x M)  is given, with respect to the above split- 
tings of these spaces, by (d, e)~+(d, e, i~e, 0). We now choose an orthonormal basis 
{el ..... el} of  ~ (in the biinvariant metric of G) so that (i~ei, i~ej)=o26ij where 
o i > 0  for all i. Then for each t > 0  there is a basis ~r of T(~,x)(G• M) as follows 

x =  t t t . . . . .  . . . . .  0m 

where for each i: 

~h~f~, flt~t~, r ~i=(tr2ei-i~ei)/ai(l +a2), 

where the t/~ and rTj form orthonormal bases of fg~ and t~ respectively in the product 
metric. Note that the rh and ~j come from fields canonically associated by ~b to an 
orthonormal basis of  fr and, furthermore, that (n~.~i, rc~.~j> = ~ii for all i,j. (To check 
this second fact note that nr (g, x) = g -  1 (x), and so for g = identity, we have n~, (e, v) = 
= - i ~ e  + v.) Thus, we have the following. 

Fact 3.1. ~gt is an orthonormal basis of T(~,x)(G x M) in  the metric gt constructed 
in Step 2. The elements in ~,, denoted above with a tilda span the horizontal space for 
the submersion n r (and those without a tilda span the vertical space). 
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Notice that the splitting into horizontal and vertical spaces for the submersion 
zr r is independent of t. This is not true of the submersion re, which we must now con- 
sider. Let 2g=a,(1 +a~),  and set 

~ =  -tnl . . . . .  t~t~ 1 .... v ~ ,  

t ~ ~ =  {,7,  ..., q,~, h; ,  . . . ,  h~} 

where for each i, 

h~ = (2 , r  t 2~,)/tx/22 + t 2 . 

The following is straightforward to check. 

Fact 3.2. ~:t  and ~r form orthonormal bases respectively of the vertical and 
horizontal subspaces of T(,. ~ (G x M)  in the metric gt for the submersion rc defined in 
Step 3. 

The remainder of this section is devoted to finding a positive lower bound for the 
average of the sectional curvatures of the metric gt over the space H~ t =span ~V~. 

To compute the curvature of the metric gt we must know the riemannian connec- 
tion V t. Actually, it will suffice to relate the curvature for time t to those for time 1, 
and we now make the notational convention that: items indexed by t will have the 
index deleted for the case t=  1. The first step in doing this relative computation is the 
following. 

LEMMA 3.3. Let C ~ ( Y ) = V x Y - V t x Y  for  X, YeXo• Then 

c~ (r)= (1-t2)[VxhrV+VrhX~ 
where (.)h and (.)~ denote orthogonal projection onto the horizontal and vertical sub- 
spaces respectively for  the submersion ~4,. 

Proof It is straightforward to check that the connection V t aL-e" V -  C t is torsion 
free and satisfies Vtgt=0. 

Now for each t > 0 we have the curvature transformation 

R t t t x, ~ = Vtx, n -  [ v x ,  v~ , ] ,  

and the fundamental tensor A' (cf. w of the submersion n ~ in the metric gt. We note 
that 

Cl, ( r ) =  (1 - : )  ( A x ( r )  + A t  (X)) h. 

A straightforward computation now gives the following. 
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COROLLARY 3.4. For all t>O, 

l~x, r = Rx, r + (VxC t)r - (V rC t ) x -  [Ctx, C~r], (3.1) 
Atx (Y)  = A x ( Y ) -  (1 - t 2) (Vxt * yv)h. (3.2) 

It is not difficult to check that 

C t [(VxC')Y(Z)]~ [ x, C ~ y = 0 .  

Using these identities and Equation (3.1) or using O'Neill's identities and Equation 
(3.2) one can without difficulty establish the following result. 

PROPOSITION 3.5. Let x, y, z, w denote vectors which are vertical and Y~, :F, 7, 
denote vectors which are horizontal for the submersion ~ .  Then for all t > 0  we have 
the following identities. 

<l~x, rz, w>, = t 2 <Rx, yz, w> (3.3) 

<Rtx,,z, ~>, = 0 (3.4) 

<R~. ~z, w>, = t 2 <R~, ~z, w> + t 2 (1 - t 2) <[A~, A~] (z), w> (3.5) 
<R~,,~', w) ,  = t 2 (R~.,~,, w)  - t 2 (1 - t 2) <A~ (w), A~ (y)> (3.6) 

<R~, ~', w>, = t 2 (R~, ~,, w> (3.7) 

<R~, ~', ~>, = <R~, ~', ~> + (1 - t 2) [2 <A~ 07), A~ (~)> 

+ <A~ (~), a~ (~)> - <a~ (e), a~ (~)>] .  (3.8) 

In particular, from (3.8) we have the following identity on sectional curvature. 

K ' (2  ^ y) = K ( 2  ^ p ) +  3 (1 - t 2) I1~1~ ( Y ) I I  2 �9 (3.9) 

Recall that we are interested in computing the "horizontal" scalar curvature of 
the metric g,. Hence, we need to compute terms of the form: K' (h~ ̂  h~), K' (h] ̂  77j) 
and Kt(q~ ^ ~) .  We begin with the most complicated term. 

1 
t . . 2 

t" (,~,~ + t') (x~ + t 2) <g~'~'-"~" ~-"~ '~ ' r  t ~,, ~jCj- t ~j>, 

1 
= t" (~,~ + t 2) ( ~  + t 2) {x?x~ <g~' ji, j>, + t~ < g~. ~ ~, )>, 

0 0 

t - ";" - 2  2 t . 4- t ~- -22~2fl  2 <R~..~/t, j>,-2~.~2,t <R~.ZjI, J>t+22,2 fl (R,, ~l, j>t 
6 t �9 6 t . 7 4 --22jr (RL~l,J>t-22it (Rr,~t,J>t+22,}qt (R~,ji,)>t (3.10) 

2 4  t �9 7 2 4  t ":. - -F2it <Ri,~l,J>t+2jt <RLjI, J>t } 
where for notational convenience we have replaced s by i and ~t by I. 
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Now from Proposition 3.5 we have that the second two terms in this expansion are 
zero. Furthermore, as t~0, the second curvature term in the expansion is O(1) and 
all other curvature terms are O(t2). We combine this with the following elementary 
observations. For t > 0, 

- - <  1 
.2  t 2 A s + 

and if 42 + t 2 < 1, then 

22 < ~ T 2 ~ <  1. (3.11) 
2 i + t  

Furthermore, 

2it .< 
2-7 2"~�89 (3.12) 

h i + t  
t 2 

2 2 ~ 1 "  (3.13) 
h i + t  

e 2 Finally, we observe that (R~. yi, j ) =  l[ ]'e~, j][I,, where []. [I, is the original biinvariant 
metric on G. Putting this all together, we have the following. 

PROPOSITION 3.6. For each i , j=  1,..., l, 

2, j22 
K ' ( h : ^ h ) ) =  (t2+22)A(t2+2~)[lie,, egJ[j2.+O(1) 

as t+O. 
In a similar fashion, we have that 

1 
K' (h~ ̂  7/j) = t2 (42 + t2 ) {22 (R~, ii, ) ) ,  + t 4 (R}, ~l, } ) t -  22i t2 (R], ~i, ]),} = 0 (1). 

(3.14) 
Combining this with Equation (3.9) we have proved: 

PROPOSITION 3.7. For all i, j ,  K '  (h~ ̂  ~/j) = O (1) and K' (6, ^ ~/j) = O (1) as t ~ 0. 
Without any loss in generality we may assume that G =  SU(2) or SO (3) since any 

connected, non-abelian Lie group has such a subgroup. We normalize the biinvariant 
metric b to have (constant) sectional curvature 1. Then the term II [ei, e~] 1t2. in Proposi- 
tion 3 equals 1 for all i,j. Moreover, at each point x e M - M  ~ we have dim~x>~2 
since G has no subgroups of codimension one. Consequently, if at each x we index the 
2~ so that 21 I> 22 >1 .... then for each open neighborhood U of the fixed point set M e 
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we have a constant e = C(U)> 0 such that 21 i> 22 >1 c throughout M -  U. Thus, from 
Propositions 3.6 and 3.7 we have the following. 

T H E O R E M  3.8. Let G=SU(2) or SO(3) and let U be any neighborhood of the 
fixed-point set of G in M. Then there exists t ( U ) > 0  such that for all t<~t(U), the 
metric gt constructed in w (Step 3) has positive scalar curvature in M -  U. 

w 4. Time Independent Estimates near the Fixed-Point Set 

In light of Theorem 3.8, it remains for us to construct a G-invariant metric ~ on 
M with the property that there is some neighborhood U of M G and some t o > 0 such 
that all the metrics gt, 0 < t < t o constructed from y as in w have positive scalar cur- 
vature in U. 

To construct this metric we must consider the geometry of the fixed point set M ~. 
Let F be a component of  M ~ and let p:  N--* F be the normal bundle of  F in M. Then 
G acts naturally on N by linear transformations in each fiber. Furthermore there is a 
natural G-equivariant diffeomorphism of N onto a neighborhood Uo of F in M. 
Therefore, if  we can construct a metric with the desired properties on the total space 
of  N, we will be done, since we can extend the metric given on Uo to all of  M without 
changing it in a smaller neighborhood U of F, and then average the extended metric 
to make it G-invariant outside U. From here on we shall confine our attention to N. 

We may assume that N carries an inner product for which the action of G in each 
fiber is orthogonal. I f  we fix a point xr  and an orthonormal basis g =  {e 1 ... . .  eq} 
in the fiber N x = p - 1  (x), we get a natural homomorphism 

i t : G ~ O ( q )  

given by the action of G in N~. It follows from the equivariance of expx that the con- 
jugacy class of  i s (G) in O (q) is independent of  x and g,  and that, since G acts ef- 
fectively, each i t  is an embedding. 

We shall now introduce an explicit, invariant riemannian metric on N in which the 
fibers o f p : N ~  F are totally geodesic and have positive sectional curvature near zero. 
To  do this we must make some preliminary observations. 

Let P ( N ) ~  F be the principal O (q) bundle of  orthonormal frames in N. G has a 
natural induced action on P(N) which commutes with the standard action of 0 (q). 
Hence we may introduce a G-invariant connection in P(N). It is easy to see that at 
any x~F, the action of G in N~ commutes With the holonomy transformations of  this 
connection at x. Consequently, we can reduce the structure group of N to the cen- 
tralizer o f  G in 0 (q). Specifically, for a fixed frame g at x, let i t :  G ~ 0 (q) be the 
embedding discussed above, and let Z(G) be the centralizer of  it(G) in O(q). Then 
there is a principal Z(G) bundle p '  :P '  (N)  ~ F such that N is the bundle associated 
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to the representation of  Z(G) on R q given by the inclusion Z ( G ) c  0 (q). That is, 
N = ( P '  ( N ) x  Rq/Z(G)) where the G-action on N comes from the representation i t  of  
G on R q in the product. 

We want to construct a G-invariant metric on N. This is done as follows. Intro- 
duce any metric on F and lift it to the horizontal spaces of  the connection on P '  (N). 
Then carry a biinvariant metric on Z (G) over to the vertical fields as before. Let R q 
carry the metric tr c of  constant curvature c obtained by stereographic projection from 
S q. That is, 

4 Idxl 2 
a c = -  (4.1) 

c (1 + lx12) 2" 

We set ~ = P ' ( N ) x  R q and give /~ the product metric. There is a natural action 
~1 :Z(G)  ~ Isom (]~) given by 

�9 (g) (u, v)= (u.g -1, gv). 

We give N=I~/~ 1 the submersed metric. Note that the fibers of the map N ~  F are 
totally geodesic since the fibers of 2~ ~ F are. 

There is a natural action ~z : G ~ Isom (G • f i  ) given by 

~2(g)  (h, u, v)=(g'h,  u, is(g ) (v)). 

This action commutes with ~1, and defines an action on G • N which is exactly the 
diagonal action ~b used in Step 2 of the construction in w 

We now introduce a family of metrics gt on G x ~ by modifying along the orbits of 
~2 exactly as in Step 2. These metrics will be Ox invariant and will therefore determine 
a family gt of submersed metrics on G x N. This is exactly the family of  metrics ob- 
tained by modifying our original metric on G x N by the procedure of  Step 2. 

Now each of the metrics gt is a product of a (modified) metric on G x R q with the 
fixed metric on P '  (N). Furthermore p '  :P '  (N)  ~ F is a riemannian submersion with 
totally geodesic fibers. From this one can easily deduce the following about the metric 
gt on N obtained by projecting the metric gt as in Step 3, w 

LEMMA 4.1. For all t > 0  the projection p : N ~ F  with the metric gr on N is a 
riemannian submersion with totally geodesic fibers. Furthermore, the submersed metric 
on F is independent of t; and for fixed t, the fibers Nx= p -  1 (x), x~F, are all isometric 
to each other. 

We are now in a position to state the main result of  this section. 

T H E O R E M  4.2. Let G = SU(2) or SO (3). Then there exist numbers c > O, t o > 0 and 
a neighborhood U of the zero-section of  N such that the metric g, (=gt (c)) has positive 
scalar curvature in U for all t~(O, to]. 
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Proof From Lemma 4.1 together with the O'Neill formulas applied to the sub- 
mersion p: N--, F one can easily see that it suffices to prove the following 

LEMMA 4.3. Let N x be a fiber of  p : N o F  with the induced metric g,(=g,(c)), 
and let Xo > 0 be given. Then there exist c > O, to > 0 and a neighborhood Ux of  O in Nx 
such that for all t~(O, to] the scalar curvature of gt is > x  0 throughout Ux. 

Note. The scalar curvature in this lemma is that of the manifold Nx. 
Proof of Lemma 4.3. The metric gt on N~ is obtained as follows. We begin with a 

product metric b x #c on G x R q; we modify as in Step 2 to get gt and then submerse 
this metric by right projection onto lV x. The metric #c is obtained by submersing the 
product metric b' x tr c on Z ( G ) x  R q, where b' is biinvariant and ac is given by (4.1), 
along the orbits of the Z(G) action Oz. 

We first observe that there is a bounded neighborhood Uo of 0 in R ~ in which 
~c has all sectional curvature /> c/2. To see this note that the vertical space above 0 
in the projection n ~ : Z ( G ) x R ~ - - , R  ~ is just Z ( G ) x  {0} since Z(G) fixes 0 in RL 
Hence, by the O'Neill formula (2.2) ([10, Cor. 1]) the sectional curvatures ~, at 0 
are >/those of a, at 0, i.e., they are /> c. So we can find U0 as claimed. 

Recall now that the metric gt is constructed by lifting ~ to the normal spaces to 
the orbits of the diagonal G action tp on G x R q and introducing t2b along the orbits. 
It follows again by formula (2.2) that there is some t ' > 0  such that for all t~(0, t ' ]  
the sectional curvatures of gt in these normal spaces (i.e., the horizontal sectional 
curvatures for the submersion n*) are >t c/3 throughout G x U o. In the terminology of 
w we have 

<R}, d, )>, >f 

in G x  U0 for O<t<<.t'. 
We must now closely examine the formulas (3.10) and (3.14) for the horizontal 

sectional curvatures of the projection n. Again it will suffice to show that the average 
of these will be as large as desired in G x U0 since submersion increases curvature. 
We now fix the value of t and begin by examining Equation (3.10). Note that the values 
of the 2{s go uniformly to zero as x --* 0 in R ~. Furthermore, since G is acting linearly 
on R g, we see from the form of the metric ~c that the two largest eigenvalues 21 ~> 22 
satisfy 22/21 I> 0 > 0 in the neighborhood Uo of 0 in R ~. Now the first term of (3.10) for 
( i , j ) =  (1, 2) is 

l 2 2 2122 
t- 2- (t2+~2) (t2+~2) II[ex, e23112., (4.2) 

and since G = SU(2) or SO (3) with curvature 1, we have [[ [el, %] 1[,2 = 1. The expres- 
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sion (4.2) is greater than or equal to 

e2k  
if(2,) =t2 (t 2 +k l )  z . 

Consequently, the term (4.2) will dominate all the possibly negative terms in the sum 
we are considering, plus ~:o, provided that 

/(41 )//. r 2def" sup II R t[I + [I A [] 2 + Xo (4.3) 
aXOo 

where R t is the curvature tensor of gl. The inequality (4.3) will hold provided that 

21t>#t a 1 -  t . (4.4) 

If  we assume t < r then (4.4) will hold provided that 

22>~2r t ' " 
Q 

Hence, we are reduced to the case where all 2, satisfy 

k,< ~- 

where the second inequality holds for any t satisfying t <  (~/2r) 2. 
We can now consider the sum (3.10) in detail. Observe first that the last two terms 

in the sum are positive by (2.3) (or [10, Cor. 1]) and can therefore be neglected. 
(This is also true of the first term, of course.) The third and forth terms are zero. Recall 
now that the remaining curvature expressions are all bounded by t2r ' in G x Uo for 
some r ' > 0  and for all t. Thus, the sixth and seventh terms are bounded above by 
22,r' (or 22ff')<,.2&mr '. The fifth and eighth terms are bounded by products of  
expressions of type 

ts/4t 
22,t r'<.2 r'=2tt/4r ' 

+ t - U  " 

Thus, for all t sufficiently small, these terms will be uniformly small in the critical 
region where (4.5) holds. However, in this region we clearly have the second term of 
(3.10) bounded below by 

t ~ ~ e 

�88 ( Rr, ~t, J)t >~-i~ 
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for all t ~< t ' .  Consequent ly  for  c sufficiently large and for  all  t > 0 sufficiently small,  the  

con t r ibu t ion  f rom terms K t (h~ ^ h~.) is I> s: o in the crit ical region. 

Exact ly the same analysis  applies to Equa t ion  (3.14) to  give a s imilar  conclusion 

for the terms K t (h~ ̂  q j). Of  course,  the terms K t (Fl~ ̂  qj) are a l ready ~> c/3 for t ~ t ' .  

This concludes  the p r o o f  o f  Theorem 4.2. Theorems 3.8 and 4.2 together  give the main  

result o f  this paper ,  s ta ted in the in t roduct ion .  
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