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0. Introduction 

In this paper, we develop an approach to the study of compact K~hler manifolds 
which admit mappings of everywhere maximal rank into quotients of polydiscs, 
e.g. into Riemann surfaces or products of them. 

One main tool will be a detailed study of the harmonic maps in the 
corresponding homotopy classes (for definition and general properties of har- 
monic maps between Riemannian manifolds see [3]). Starting with a result of Siu, 
we prove in Sect. 2 that the local level sets of the components of these mappings 
are analytic subvarieties of the domain. This, together with a generalization of the 
similarity principle of Bers and Vekua which is proved in the appendix and a 
residue argument, enables us to give conditions involving the Chern and K~ihler 
classes of the considered manifolds, under which this harmonic map is of maximal 
rank everywhere and, in case domain and image have the same dimension, in 
particular a local diffeomorphism (see Corollary 4.1, Theorem 5.1, and Corol- 
ary 5.1). In the latter case this condition can be formulated as follows: 

cl(M)•O"- I(M) [M] = f* ca(N)w~2"- I(M) [M], 

where [M] denotes the fundamental homology class of the domain M, Q its 
K~ihler class, cl(M ) its first Chern class and c~(N) the first Chern class of the image 
N. We always assume that N is a compact quotient of polydiscs with the usual 
induced metric and complex structure and that the functional determinant of 
f : M ~ N  does not vanish identically. 

Under the same condition a compact K~ihler manifold which is homeomorphic 
to a quotient of polydiscs must necessarily be such a quotient also (Theorem 6.1). 
With the same arguments we can also study deformations of compact quotients of 
polydiscs (Theorem 6.2). 

Another application of our methods is given to the Kodaira surfaces. These 
were first introduced by Kodaira [103 and independently by Atiyah [1] to provide 
examples of algebraic surfaces with positive index and of fibre spaces whose 
signature is different from the product of the signatures of the base space and the 
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fibre. They can also be considered as locally nontrivial families of Riemann 
surfaces. They were also investigated by Hirzebruch [6] and Kas [7]. In Sect. 7 we 
prove that every deformation (in the sense of [11, p. 334f.]) of such a surface is 
again a Kodaira surface. Thus, their moduli space turns out to be the moduli space 
of a Riemann surface underlying the construction. This is a considerable extension 
of the corresponding local result of Kas, obtained by quite different, namely sheaf 
theoretic methods. 

Our methods certainly have the potential to be applied to many more similar 
problems. In this paper, however, we restrict ourselves to the two applications 
mentioned above because they display already the essential features of our 
arguments. 

We thank the referee for his comments on our first version of this paper. He 
pointed out to us that our original proof of Theorem 6.2 had to be modified and 
could be extended. Furthermore, he noted that for the purpose of the present 
paper, Proposition A.1 can be replaced by the following. 

Lemma. Suppose D is a Stein manifold, f a smooth function and co a smooth (0, 1) 
form on D. Assume that the zero set o f f  is nowhere dense in D and ~f  =fco. Then f 
can be represented as f =  ehg, where h is smooth and 9 is holomorphic on D. 

Proof  ~co = O, since co = Ologf  Hence co = ~h for some smooth function h on D, and 
9 : = f e  -h is holomorphic, q.e.d. 

We think, however, that the higher dimensional generalization of the similarity 
principle of Bers and Vekua is of much more general interest than just for the 
application in the present paper, and therefore we still include the appendix. 

1. Basic Formulae and Notations 

Suppose M is a compact K~ihler manifold of complex dimension m, and let N be a 
compact quotient of the n-fold product of the hyperbolic unit disc D by a discrete 
group of automorphisms F without singularities, i.e. 

N = D x  ... x D/F .  

Since the identity component of Aut(D") is (Aut(D))", N is locally a product in the 
metric induced from the hyperbolic metric on D. If we restrict ourselves to local 
coordinates which respect this local product structure, the coordinate transfor- 
mations will be of the form 

z x = zl(w *(1)) . . . . .  z" = z"(w*(")), (1.1) 

where (a(1) . . . .  , a(n)) is apermuta t ion  of (1 . . . .  , n), the metric ~,=~ and the curvature 
tensor are diagonal and the only nonvanishing Christoffel symbols will be 

El=, F~, c~ {1 ..... n}. (1.2) 

If RN( ., ., . , . )  is the curvature tensor of N, we have 

RN ( ~, q, (, co) = ~ R = ~ (  ~=~l ~ - rl" ~ )  �9 ( (=oo ~ - co~ (~) , (1.3) 
o t = l  
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where ~ = ~ ~ + ~ . . . .  and w is a local coordinate  on N. Also, the 

sectional curvature  in the direction given by the eth local factor of  N is 

K ~ =  - 1. (1.4) 

In the following, if not otherwise indicated, a Lat in capital  used as summat ion  
index ranges f rom 1 to m, and  a Greek  one f rom 1 to n. This convent ion will be 
violated, however,  in Sect. 7. 

Denote  the metric  tensor of  M by (hl) and  its inverse by (h'i), i.e. 

~ h 'J. hkj = 6,k. (1.5) 
j = l  

Since the metric  tensor is Hermit ian ,  we have 

h,y= hji = h~ = hj~, (1.6) 

and  since the metric  is K~ihlerian, 

C3 h _ C~ h 
~ -  ~ z  ~ ,7 

(1.7) 

~ h  - -  ~z t ~ h k J ,  ~z J kt-- 

where z = (z 1 . . . .  , z") is a local ho lomorph ic  coord ina te  on M and z ~ = )7. Moreover ,  
the Riemannian  curvature  tensor  on M is given by 

Finally, put  

a ( A h .  t Rijk =OZt\Ozk , ,]-  �9 (1.8) 

N o w  let f = M - * N  be a smooth  map.  We define the second covar iant  
derivatives of f in a local coordinate  representa t ion by the formulae 

D_~ ~ f , _  0 0 z Of p c~f' 
t?z A 0 ~ f f  + Z F~; (gza. c~z, 

(1.10) 

p~l~ ~-Z~. az ~ 

whenever  A, Be  { 1 . . . . .  m, 1 . . . .  , ~}. Here  "covar ian t"  means  in the vector  bundle  
over  M obta ined  by the pul l-back of the tangent  bundle of N by f* .  Occasionally,  
we shall use the nota t ion  

e=(f) = loft] 2 
e~(f ) = i~f=l 2 ' (1.11) 

h = det (h,) .  (1.9) 
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where 

O , . 

Of'= '7 0z' dJ. 

For notational convenience, we shall sometimes write 

0f" 
01f" = 0z ~ 

e~f~ 0f" 
t?z ~ 

and the same for f~, when the coordinate z is fixed. 

2. Consequences of  Siu's Analysis 

Let f : M ~ N  be a harmonic map, i.e. 

Z { hilO~O,f" + hiJ Z F]~O,fMJ "~] = O. 
i ,  j ~ .I fl , ?~ / 

(2.1) 

(The fundamental theorem of Eells and Sampson implies existence and 
C~~ of a harmonic map in our setting, cf. [3].) 

Since we assumed K ' < 0  for e = l , . . . , m ,  the curvature of N is strongly 
seminegative in the sense of [16, p. 77]. Therefore, it follows from [16, pp. 81 and 
82] that 

0f, __Of ~ i , je {1 . . . . .  m} 
D r  ~ = D r  =0  for (2.2) 

~ 0 z  cZ7-~ 0z / ' ee{1 .. . . .  n} 

and, since K ' < 0 ,  also that 

07f~-~J~- Oif't~ , f"  = O (2.3) 

for i , j~{1, . . . ,m}, cte{1 .. . . .  n}. 
If e'(f)4:0,  it follows that 

O~f'(z) = Oif'(z ) �9 2"(z), (2.4) 

where ).'(z) is independent of the index ie {1 . . . .  , m}. 
Suppose again, that e ' ( f ) + 0  at a given point zoeM.  In a suitable chart, we 

0f" 
have therefore Off- 4: 0. We set 

0T" 
= k~(z). O?--zf OzJ , for j e{2  ..... m}. (2.5) 
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Then k~(z) is a smooth function in a neighborhood of z o where e ' ( f ) 4 : O .  From 
(2.2), we have for ie{1 ... . .  m}, 

~ Oz i 

= ~ k j . ~ z  ~ , ~ z ~ ] ,  

using (1.2). 
Now, again using (2.2) and e ' ( f ) 4 : O ,  it follows that 

0~r k~(z)=0. 
Since k~(z) is smooth and holomorphic in each variable z ~ separately, k~(z) is a 
holomorphic function of z by a well-known theorem of Hartogs. 

Assuming again e ' ( f ) + - O  locally for a fixed ~, we want to perform a 
holomorphic change of coordinates (z t ..... z")--,(~ ~ ..... [") with the property that 

•f• 

This condition is equivalent to 

- - = 0  for j = 2  ... . .  m. 

~.Of" ~?z i 
~?zi �9 c~  = 0, (2.6) 

since the coordinate change will be holomorphic. 

Since e ~ ( f ) 4 : 0  locally, we can assume again af~ *0,  and applying (2.5), we get 
c~ z i 

c~z 1 g ,  ~ c~z i 

c~J + 2., 
- -  k i ( z ) - s  j = 2 ,  ...,m (2.7) 

i = 2  t%- 

as equations for the tangent space of the local analytic subsets (1 =const  [the 
distribution given by the vectors 

(U2(z), - 1, 0 . . . .  ,0) ,  ( k ; ( z ) ,  O, - 1, 0 . . . . .  0),  (k~(z) ,  0 . . . . .  O, - 1), 

clearly satisfies the integrability condition by (2.5)]. 
As fl-curves, i.e. lines f2=const  ..... f ' = c o n s t ,  we can choose any family of 

local analytic curves which intersect the analytic sets ~1 =const  transversally. 
For later purposes, however, we note that we can obtain the coordinate (1 

more explicitly in the following way: If we replace ~1 by ~J in the previous 
considerations, we get for eachje  {2 . . . .  , m} an equation of the same type as (2.7). ~1 
can then be defined as the common solution of these m - 1  equations. 

By (2.4) it follows that for j = 2,..., m 

c~ff =vc~ff  0z 7 8 ~  

= 0  by (2.6), 
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and consequently f~ is independent of the coordinates (2  . . . . .  (m in our special 
coordinate system, which means that the analytic sets (1 =const  describe local 
level sets. 

[More precisely, at a point where e~(f)4=0, the local level sets o f f "  are unions 
of analytic sets. Points where e'(f)= 0 are treated in Sect. 4.] 

In the case where f "  is a map with e'(f)+O everywhere to a closed Riemann 
surface, we can piece the local (x coordinates together to give a holomorphic map 
from M to a closed Riemann surface by using a result of Kaup as follows : 

Since the level sets o f f "  coincide locally with the level sets of (a, they give rise 
to an analytic and open equivalence relation R on M. By [8], it follows that the 
quotient space M/R is an analytic space and the projection rc:M-~M/R is 
holomorphic. Since in our case obviously M/R is a closed Riemann surface of the 
same genus as the image of f~, this proves the above claim. 

3. Important Local Formulae 

We assume here and in the following that n < m. 
Let aC{1 .... ,n}, [al=k, a={cq ... . .  ek}" We define 

%: = Z det(~)~,a~'det(hi;)i j~,k det (0J~/ 
2 

/k={i ...... ik}C {1 . . . . . .  } ' ~ ~Zi  ] . . . .  i~lJ 

(it is crucial that we take only derivatives with respect to z i, but not with respect 
to zT). 

a~ is invariant under local coordinate transformations, but in general not 
necessarily globally defined. It is globally defined, however, if n=m and 

= {1 . . . . .  n}, or if N = D"/F o, where F o belongs to the identity component (Aut(D))" 
of Aut(D"). 

We note that 
det (h r~) .... t~ = det (hiY)i ,je{1 . . . . . .  }" det H ~ ,  (3.1) 

where Ht~ is the minor of (hl;)i,j= 1 ...... obtained by deleting the rows and columns 
i 1 . . . .  , i k. (If Ik= {1 .. . .  , m}, we put detHi  = 1.) 

We suppose now %4=0 at a given point z 0 in the domain, and we want to 
calculate A loga, in a neighborhood of z o. By the results of Sect. 2, we can 
introduce local coordinates around z o with the property that 

0z ~ = 0  for j=2,. . . ,m, 

since a~=0 certainly implies e"(f)4:0, and by induction we can also achieve 

Of ~z 
Ozi=O for j = e z + l  . . . .  ,m, l = l  . . . . .  k. (3.2) 

Using (3.1) and (3.2), we obtain that in such a coordinate system 

A loga, = A log det(hi;)~,j= 1 ...... 

+ A log de tH ,  
k 

+ Z A log(OJJ, O;fJ) (3.3) 
j = l  
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where ( . ,  �9 > denotes the metric of the corresponding local factor of N. 
Now we need some calculations. 
First of all, we have 

A log det(h U) = - A log det(hu) = R, 

where R is the scalar curvature of M. 
Moreover, for a positive smooth function u on M, we have 

d logu= ~ hUOgilogu 
i , j  = 1 

= 1Au - 1 ~, hiY~jut?iu" 
1,1 - ~  i, ] = l 

Furthermore 

d(Okfk, oL/'~>= ~ hi]~j(D o 8kfk, o~fi)  
i , j = l  - -  g ~  - -  

= ~ h U(Dr O z ?,af k, Of, j "~x) 
i , j =  1 x ~zY ~ i  

m 

,, ~= , t ~ /" S~z ~ ' ~ / 
In 

+, , -- e , S z . , ~ . =  hU(DeOkfk'Of~ > 8r'fk 

= _ KklSkfkl2(ek(f)-- fi(f)) 
in 

+,., E .= ,1,'J (D , v , 

by (1.3), for each k~{t ... . .  m}, and 

hiSS~ ~3kf k, eifk>~i@kf k, e~fk> 
f , j - -  1 

= ~ hU(Okfk, D c 9~fk3.(Do 8kfk ,~f  ~') by (2.2) 
i , j = l  N ? ~  / \  ~z i z 

_ ~ hi]/6~ ['k 8 r ( D o  8kf k, D e Or, fk~ 
i , j =  l \ ~ z  i Y ~  / 

since the local factors of N are complex 1-dimensional. 
From (3.3}-(3.7) we obtain 

A log a, = R + A logH I~ ..... k) 

-- ~ K~'(e~'(f)-e~'(f)). 
OtEa 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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By virtue of  (1.1)'we still get an (at least locally) invariant ly defined expression 
if we replace one or several of the f~ by f~ in the definition of a~. This means  that  a 
can be a subset of  { 1,.. . ,  n, T . . . . .  n} which does not  contain both  ct and ~ for any  
0re{1 . . . . .  n}. Since complex conjugat ion on the image can be considered as a 
change of  orientat ion,  using (3.8) we find that  at points where a , ~ 0  

d loga~ = R + A logH~l ..... k} 

-- ~ KA(ea(f) - ea(f)), (3.9) 
A e ~  

where we now define ~ = cc 
In order  to keep t rack of the signs, note  that  

eA(f) -- ea(f )  = -- (e~(f)-- e~(f)) 

in case A = ~ ,  i.e. Ae{T . . . . .  fi}. 
We shall be most ly  interested in the following two special cases of  the 

preceding formula.  
The first one is m = n = k, and  tr = { 1 . . . . .  n}. We derive f rom (3.9) 

A loga l  ...... = R -  ~ K~(e~(f)- ea(f)). (3.10) 
a = l  

If we replace one of the indices in a by its conjugate,  this changes again the sign 
of the corresponding term in the sum. 

The second case is k- -  1, and at points where e~(f)~ 0, introducing coordinates  

af with ~ = 0 for j = 2 . . . . .  m, f rom (3.9) we find that  

A loge~(f)=R + A l ogH~i  

- K~(e~(f)- ea(f)). (3.11) 

4. Global Considerations 

Proposition 4.1. We can represent each a~(f) in the form a, = ~ (z. ikl[2, where (l is a 
nonvanishing C ~ function, and k t is holomorphic, t 

Propos i t ion  4.1 will be proved  in the appendix.  
Let us assume now that  a~ is globally defined and does not  vanish identically 

on M. Then the zero set Mo of ao consists of  a finite number  of  analytic 
subvariet ies  of M. The s tandard  residue a rgumen t  then yields f rom (3.8). 

Proposition 4.2. I f  ao(f) ~- 0 on M, then 

J ~ ( f ) :  = j RdM + ~ ~ (eA( f ) -ea( f ) )dM + j A logH{, ...... }dM 
M A e a  M M 

l 

= - E 

2 = 1  
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where M~, 2 = 1 ... . .  1, are the irreducible components of Mo, on which k vanishes to 
order #4 resp., and where ~ 2 m -  2 denotes (2m-2)  dimensional Hausdorff measure. 

(Note : K ~ -- - 1.) 
In order to understand the meaning of this formula, we give the following 

definitions and observations: 
For  a smooth real-valued function g on M, 

AgdM = O~gw~2"- t ,  (4.1) 

where s is the K~ihler form of M. 

~RdM=c , (M)wf2" - I (M)[M]  [cf. (3.4)], (4.2) 

where c~(M) is the first Chern class of M. 
Suppose that N=D"/F o with FoC(Aut(D))". Then the local factors f~ are 

globally defined, and we denote the first Chern class of the line bundle over N 
determined by the 0~ th local factor by c~(N ~) and put c l ( N ~ ) = -  c~(N'). Then 

( e A ( f ) -  ea(f))dM = --  f * c l ( N A ) ~ Q  m -  I(M) [M] (4.3) 

[cf. (3.5)-(3.7)]. 
By the results of Sect. 2, the intersections of the level surfaces of the fA, AS a, 

analytic subvarieties, and ~ :  t?~ logH,  is the first Chern class of the line 
4 

consist o f  

bundle K*(f) canonically attached to these. Therefore we conclude 

1 
j , ( f )  = C l ( M ) ~ [ ~ m  - 1  [M] 

-- Cl(K~(f))u~ m- I [M] 

-- ~ f *c l (Sa )uQ m- I [M] .  (4.4) 
AE~ 

In case n = m and a = { 1 .. . . .  n}, a~(f) is globally defined for a general N = D"/F, 
where F is not necessarily contained in the identity component of Aut(D"), and we 
have in this case 

1 
2n j ~ ( f )  = C l ( M ) u f 2 m -  I [M ] _ f ,  cl(U)wOm- 1 [M] .  

As a corollary of Proposition 4.2, we obtain 

Corollary 4.1. I f  J ~ ( f ) = 0 ,  then a~(f) vanishes either identically or at most on a set 
with complex codimension 2. I f  J ~ ( f ) >  0, then %(f)  vanishes identically on M. 

We now want to investigate what a~=0 for some o means: 

Lemma 4.1. I f  a~-O, then ea(f)-O,  i.e. f f  is (anti)holomorphic if A=ct ( A = ~  
resp.) for some Ae a, or f is degenerate in the sense that it has nowhere (maximal) 
rank n. 

Proof. If some f "  is (anti)holomorphic on a nonvoid open subset of M, then it is 
(anti)holomorphic on the whole of M by an easy application of the unique 
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continuation theorem of Aronszajn (cf. Proposition 4 of [16]). At a point where 

a~=0 some of the vectors (Ofa.l (a~ a)must be linearly dependent. If none 
\~z'/i=l . . . . . .  

of the ea(f) vanishes there, then by the considerations of Sect. 2 the complex 
dimension of the intersection of the tangent spaces to the level hypersurfaces of the 
fA, Aea, must exceed n - k .  This implies that f does not have maximal rank at 
such a point. The set of points where this happens is closed and in the case that 
none of the ea(f), Ae a, vanishes identically, it must contain a dense subset of M by 
the above, since we assumed a~-=0, and must therefore coincide with M, which 
proves the lemma. 

Proposition 4 . 3 . / f  J~( f )  > 0 or J~(f) = 0 and a~(f) = O, then f is degenerate, i.e. has 
nowhere maximal rank n. 

Proof By Corollary 4.1 we have in both cases a,(f)=-O. By Lemma 4.1 it follows 
that 

(1) f is degenerate, or 
(2A) eA(f)=--O for at least one A~a. 

In case (2A),we have 
(2A) e~(f)=O, 

which, together with (2A), implies that fA=cons t  and consequently f is de- 
generate, or 

(3A) J~A>0,  where aA=(a\{A})w{A},i.e. A is replaced by A in a. 
In case (3A) Corollary 4.1 implies that 

afA ~ O 

and Lemma 4.1 implies then again that (1) or (2A) or (2B) holds for some B~a, 
B 4 A .  

Continuing in this way, we find that (1) or (2A) and (2A) for some A~a  or (2B) 
for all Be a must hold. In the latter case, if none of the f a  is constant 

J~ > 0, where ~ is obtained from a by replacing 

every element by its conjugate. 

This implies, as before, 
a~--O 

and therefore that (1) or (2A) for some A a a  holds. In the latter case, f a  must be 
constant, and in either case f is degenerate, q.e.d. 

For  the proof of Corollary 5.1 it is important to note that the arguments of the 
proofs of Lemma 4.1 and Proposition 4.3 are still valid even if the components f "  
are not globally defined. Only a,(f) has to be globally defined. 

5. Mappings of Maximal Rank 

In this section we generalize the methods of [15] (of. also [14]). We assume n =< m, 
and for a moment also that N is again of the special form D"/F o, where 
F o C (Aut(D))", in order to have the factors f~ globally defined. 

Suppose a~(f)~O in M for some ~C {1 . . . .  , n , l  . . . . .  ~}, (5.1) 
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i.e. a~(f) is nowhere vanishing�9 We note already here, that in case m=n (5.1) is 
implied by the condition 

c,(M)w(2"- ~[M] = f*Cl(N)w(2"- ' [ M ] ,  

i f f  is nondegenerate, by Corollary 4.1 and Proposition 4.1. This will be exploited 
in Sect. 6�9 

(5.1) implies in particular 

e a ( f )>0  for A~a.  (5.2) 

Using the arguments of Sect. 2, we conclude that we can introduce local 
coordinates around each point of M with the property that 

a~ = det(h i3) l-I (0~f  ~, ~ f ~ )  
G t ~  1 

�9 [-I (~'~fa, Oof~),  (5.3) 
f l~a2  

where a I = a n  { 1 ..... n} and a 2 = a n  {1 ..... ~}. A corresponding formula is valid for 
a,a, A~a  (a a=(a\{A})w{)-l}). 

We can now prove 

Proposition 5.1. Suppose a,(f) +0 in M for some a. Then ea(f) > e;~(f) for A~ a. 

Proof Suppose that 

B = {pc M :(eA(f)-- e;t(f)) (p) < 0} 

is not empty. From (5.2) it follows that 

and therefore 

e;~(f) > 0 in B, 

and from this 

a , , > 0  in B, 

eA(f) 
A l o g ~  = d l o g a n -  A logan, 

= 2 (ea ( f ) -  ea(f)) < 0  in B, (5.4) 

by (3.9), since K A= --1. 

, ea(f) . 
Therefore, lOge~ ~ is a superharmonic function on B, which is negative in the 

interior and vanishes on the boundary of B. This, however, contradicts the 
minimum principle, from which we conclude B = 0, which completes the proof. 

Theorem 5.1. Assume again n < m and N = O"/F o, F o C (Aut(D))". I f  a~(f) 4= 0 in M for 
some aC {1 .. . . .  n,1 .. . . .  fi} with lal =n and f is not degenerate, then f has maximal 
rank n everywhere. 
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Proof Since a,(f)4=0 in M, we can introduce coordinates around each point of M 
satisfying 

Of ~ Of" 
Oz k - ~ = 0  if 0~+k, 

using the results of Sect. 2. We define the a-Jacobian of f by 

I~(/) : = IF[ (eA(f)-- e;4(f)) �9 (5.5) 
A ~ r  

By Proposition 5.1 it follows that 

lo(f) > O. (5.6) 

The claim of the theorem is now equivalent to the fact that I~,(f) vanishes either 
identically or nowhere. To prove this, we shall show in the following that we can 
have lo(f)=O only if eA(f)=e;~(f)=O for some A~a which would, however, 
contradict the nonvanishing of ao, or if l,(J)=-O. 

So assume to the contrary that l~(f)= 0 at a point p of M and 

eA(f)=ea(f)>O for some A~a.  (5.7) 

As in the proof of Proposition 5.1 we conclude 

lo ea(f) 2'e A''~ A g ~ =  t t j ) - ea ( f ) )  [cf.(5.4)]. 

Since this expression is nonnegative by Proposition 5.1, we can find positive 
constants c 1, c z such that in a neighborhood of p we have, using (5.7), 

�9 ea(f) (eA(f) ) 
A l o g ~  < c  1 ~ e Z ( f )  - 1 

/ 

< c  lo ca(f) 
= z g e ~ j "  

eA(f) 
Therefore, the function h =logeA~7 j satisfies the inequality 

dh<=c 2 .h 

locally. Since Lemma 6' of [5] obviously generalizes to arbitrary dimension, we get 

h(z)<--c3h(O), 
M<=R 

where z is a coordinate system centered at p and R is sufficiently small. 
Since h > 0  and h(0)=0, we conclude that h vanishes identically for Izl<=R. 

Therefore, the set 

{pc M : (ea(f) -- ea(f))(p) = 0} 

is open and closed and by assumption nonempty. It thus coincides with M, which 
proves the theorem. 

We apply Theorem 5.1 to obtain 
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Corollary 5.1. Assume m= n, i.e. that domain and image have the same dimension, 
and N = D~/F, F C Aut(D"), but not necessarily F C(Aut(D))". Suppose that a~(f) is 
globally defined for some a with la[ = n (this is always the case, if, e.g. a= {1 ..... n} ) , 
and J , ( f ) > 0 .  I f  f is not degenerate, then it is a local diffeomorphism, and we have in 
fact J~(f)  = O. 

Proof. By Proposition 4.3 and Corollary 4.1 J ~ ( f ) =  0 and a~(f) can vanish at most 
on a set with complex codimension 2. Since we assume re=n, near a vanishing 
point of a~(f), we have the representation 

%(f)  = ~. Ikl 2 

by Proposition 4.1, where ~ is a nonvanishing C ~ function and k is holomorphic. 
This, however, implies, by the Weierstrass Preparation Theorem, that the zero set 
of a~(f) is of codimension 1 in M. Consequently, we have a~(f)#:O in M. 

We now look at the following exact sequence of groups 

Aut(D ) --~ S(n)--~ 1, 1 ~(Aut(D))"  , h 

where S(n) is the permutation group of n elements. Taking Fo:=F~ker(h  ), we see 
that D"/F o is a finite cover of D"/F, and D"/F o satisfies the assumptions of Theorem 
5.1. In order to apply this theorem, let S :=n~(M),  and So:=ker(hf ') ,  where 
f ' :  X ~ F  is the map induced by f ,  and h : F ~ F / f  o comes from the exact sequence 
above. Then f lifts to a map f :M/Xo~D" /F  o (M is the universal cover of M), and 
since a~(f)+0, also a~(f )+0 everywhere. Theorem 5.1 now implies that f and 
consequently also f is of maximal rank everywhere, and the proof is complete. 

6. Quotients of Polydiscs 

In this section we consider the case m= n and apply Corollary 5.1. 

Theorem 6.1. Assume m= n and that there is a homotopy class of nondegenerate 
mappings g : M-~ N which satisfy 

cl(M)wf2m- 1 [M] > g* cl(N)wf2 ~- 1 [M-]. (6.1) 

Then the universal cover of M is biholomorphically equivalent to D", the n-fold 
product of the unit disc. Furthermore, we have equality in (6.1). 

Proof. Let f again be the harmonic mapping in the given homotopy class, and 
denote the lift to the universal covers by 

f : M ~ D " .  

Corollary 5.1 implies that f is a diffeomorphism and that equality holds in 
(6.1). Looking at the intersections of the level sets of the components f~, 

= 1 . . . . .  n, and using the results of Sect. 2, we infer that h~/must be biholomorphi- 
cally equivalent to a product of unit discs and complex planes. Since M is 
diffeomorphic to a quotient of D" by a discrete group of automorphisms, it follows 
that M = D ". 
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Corollary 6.1. If, under the assumptions of Theorem 6.1, the image N is a product of 
Riemann surfaces, then M is also a product of Riemann surfaces. 

Corollary 6.2. I f  D"/F does not have a closed complex 1-dimensional global factor, 
then under the hypotheses of Theorem 6.l, M and N=D"/F are locally biholo- 
morphically equivalent. Also f is holomorphic or antiholomorphic in this case. 

This follows from Mostow's rigidity theorem (cf. [13]). 

Theorem 6.2. Every deformation of a compact quotient of polydiscs has again the 
complex structure of such a quotient, where we mean by a deformation a deformation 
in the sense of Kodaira and Spencer (of [11, p. 334f.]). 

Proof. Denote the given complex manifold by M o. It suffices to consider a 
deformation over the open unit 1-dimensional disc D. Let M z be the fiber over z 
and M the total fiber space with projection p : M~D.  Let L be the line bundle over 
M whose restriction to M~ is the canonical line bundle of Mz. Since the restriction 
of L to M o = D"/F is positive, F(Mo, Lk), i.e. the sections of L k, embeds M o into 
some projective space IP n for sufficiently large k. Since D is Stein, sections can be 
extended to M, and it is then easily seen (cf. [4, p. 180]) that the set of z~D for 
which F(M, L k) does not embed M z into IP N is an analytic subvariety of D and 
therefore a discrete set Z. Thus each z o ~ D/Z can be joined in D/Z to 0 by a smooth 
deformation path 2~z(2). On Mz(~), we can choose a K~hler-Hodge metric 
depending smoothly on 2. By uniqueness and a-priori estimates for the harmonic 
map f~ : M~t~)~M o in our given homotopy class, we can easily infer with the usual 
Arzela-Ascoli argument that fx depends continuously on the given metric. In 
particular, J ( f z )  (cf. Proposition 4.2) varies continuously with 2. Since the metric 
on Mzt,) is chosen in such a way that the volume of an analytic subvariety of 
codimension one can only assume values 2~ times an integer, i.e. discrete values, it 
follows that J ( f ~ ) =  0 through the deformation. Since fo is the identity, Theorem 
6.1 implies that each Mz, z~ D\Z, is a quotient of polydiscs. 

Let T be the product of the Teichmfiller spaces corresponding to the compact 
Riemann surfaces which are global factors of M o (there might be none of them). 
Let B be the total fiber space over T whose fibers are products of compact 
Riemann surfaces. Since topologically M is globally trivial, we get a holomorphic 
map g : D \ Z ~  T and a holomorphic map h:M\p-I(Z)-~B which covers g. Since 
both T and B are hyperbolic, we can extend g and h respectively to holomorphic 
maps (7:D~T and h : M ~ B ,  and M is biholomorphic to the pullback of B by f~. 

This completes the proof. 
Since every automorphism of D" can be composed of automorphisms of the 

separate factors and permutations of these factors, Corollary 6.2 and Theorem 6.2 
imply 

Corollary 6.3. The moduli space for deformations of a given compact quotient of 
polydiscs is nothing but the product of the moduli spaces of the closed Riemann 
surfaces which are global factors of that quotient of polydiscs, divided by the group 
of permutations of topologically equal factors. 



Harmonic Mappings and Khhler Manifolds 159 

7. Deformations of Kodaira Surfaces 

A Kodaira surface is constructed in the following way: 
Let R o be a compact Riemann surface of genus 9o >_-2, and let R be a two- 

sheeted unramified covering surface of R o. R has genus g = 2g o -  1. Let 7 / b e  the 
cyclic group of order m. Hi(R, 7/.,)=(7/m)2~ is in a canonical way a homomorphic 
image of nl(R ). We obtain now an mZ~ unramified covering surface S of R 
by the requirement that its fundamental group is mapped onto the kernel of this 
homomorphism by the covering map v: 

O-w(~l(S))-~l(R)~(7/')z~-~O. 
The genus of S is h=m2g(g - 1)+ 1. 

We consider the graphs F v and F~v of v and ~ov, where ~ is the fixed point free 
automorphism of R corresponding to the covering map R ~ R  o. By construction, 
the integral homology class of the divisor D=F~-F~v is divisible by m, and 
therefore (cf. [6]) there exists an algebraic surface M which is a ramified covering 
of order m of R x S with branch set D. This is our Kodaira surface. 

We have the diagram 
M 

S ,  m R x S  P 2 , R ,  

where the Pl are projections. 
~l:---pto~o and 7c2: =p2o~o have both maximal rank everywhere. Their level 

surfaces become tangent to each other along the branch locus of q~. Each level 
surface of rc~ is a branched coverin~ of R with two branch points, namely its 
intersection points with the branch locus. Therefore these level surfaces ~-l(u), 

! 

ueS, have varying complex structure (in fact, the infinitesimal deformation 
\ 

0u 
\ 

does not vanish at any point u~S, as is shown in [10]).  Thus, M is a fibre space 
/ 

which is a fibre bundle in the differentiable sense, but not in the complex analytic 
sense. 

In this section we want to study the global moduli space of a Kodaira surface 
and prove 

Theorem 7.1. Every deformation of a Kodaira surface is again a Kodaira surface. 
The deformation of the complex structure arises from a deformation of the complex 
structure of R o. Therefore the moduli space of a Kodaira surface is the moduli space 
of the correspondin9 Riemann surface R o. 

By a deformation of complex analytic structures we mean a deformation in the 
sense of [11, p. 334t".]. 

For  the proof of Theorem 7.1 we will show the following temma first: 

Lemma 7.1. Suppose the compact complex surJace M is an analytic fibre space over 
a closed Riemann surface X. Assume that base and fibre have 9enus at least 2. Then 
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each deformation of M is again such a fibre space, and the deformation of M gives 
rise to a deformation of 2;. 

Proof. Let Mg, 2~ [0, 1], be a smooth path of complex structures on the underlying 
differentiable manifold with M o = M. By Kodaira's classification of compact 
complex surfaces, each Mx is algebraic and hence KShler (cf. e.g. [9]). For each Mz, 
we consider the harmonic map f ::Mx-~Y,  which is homotopic to the projection 
~z:M~2;. Because these maps are unique and satisfy a priori estimates, they 
depend continuously on 2 by a well-known argument. 

We want to show first that each f~ has maximal rank everywhere. Certainly 
this is true for )~=0, since f0 coincides with n. By Corollary 4.1, e(fx) could vanish 
at most at isolated points. But in that case, the foliation of Mx given by the level 
surfaces of fx (compare Sect. 2) would have a singular fibre through such a point. 

k 

This fibre would be of the form C =  ~ Cj, where the C~ are its irreducible 
j = l  

components. We note that each Cj has multiplicity 1, since in case of higher 
multiplicity e(fa) would have to vanish along such a C? Therefore C is homo- 
logous to a regular fibre. Since C, however, is assumed to be singular, it must have 
a strictly larger Euler number than a regular fibre (cf. [4, p. 508]). But this cannot 
happen because it would result in a change of the second Chern class of Mx. 

Therefore, each fa has maximal rank everywhere, applying Theorem 5.1. 
Therefore, using the result at the end of Sect. 2, we obtain for each 2 a 

holomorphic mapping na:M:- ,Xa,  where X z is a Riemann surface of the same 
topological type as 2;. 

We want to show now that the complex structure of N varies continuously with 
2. For this we consider (2.7) and the corresponding equations which determined 
the coordinate ~1 in Sect. 2 as real differential equations on the common 
underlying differentiable manifold. Because fa depends smoothly on 2, so does 
(2.7) and therefore the coordinate ~2 and finally also ~ .  (] gives local complex 
coordinates on the Riemann surface L'z obtained as quotient of M via the 
harmonic map f~:Mz--,X. Since 2; o coincides with _r, we see therefore that 2;~ 
varies continuously with 2. [In fact, using s : U n X ~ M x  with 
s(~1)~,(~1, ~z= const) as local sections, we obtain a harmonic map from 2;4 to X, if 
we take also (2.2) into account. On the underlying differentiable manifold, we get 
thus a smooth deformation of the identity.] 

This finishes the proof of the lemma. 

Proof of Theorem 7.1. Let M~, 2El0, 1] now be a deformation of our given 
Kodaira surface M, with M o = M. Again, all M~ are K~ihler manifolds. We apply 
Lemma 7.1 to n 1 : M ~ S  and n 2 :M--*R. Thus, for each 2, we get a holomorphic 
map q~z : M a w R  ~ x Sx. The area of its branch locus, counted with multiplicity, is 
determined by Proposition 4.2 and hence is independent of 2. We want to prove 
now that the branch set does not split into more than two components during the 
deformation, i.e. that for each 2, all the m sheets come together at the branch locus. 

The branch locus is the zero set of the Jacobian of cp~, i.e. the zero set of the 
section of cp]'(K~) which is given by the Jacobian, where K~ is the canonical bundle 
of R~ x S~. 
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During the deformation, q~'(Ka) and the Jacobian change continuously, and 
therefore the zero set remains homologous to the branch locus of ~o=~o o. 
Consequently, also their images, i.e. the branch sets, are homologous, and in 
particular, 

( m -  1)Co= Z ( m , -  1)Ca,i, 
i 

where C o = F  v is one component of the branch set of q~ and where Ca,i are the 
components of the branch set of ~o~ emerging from C o. ( m -  1) and (m i -  1) denote 
the resp. vanishing orders of the Jacobians on these sets. 

Since the degree of r remains m, we have 

( m -  1)= ~ ( r n , -  1). (7.1) 
i 

We cannot have C:,,i. R = 0 (the product is the intersection number of homology 
classes), because the Ca,~ cannot become vertical, since they are pointwise close to 
C o. Since on the other hand C o . R =  1, we conclude from (7.1) 

C a , i ' R = l  for a l l i .  

Since each C~, ~ is analytic, it is therefore the graph of a holomorphic mapping from 
S to R. The corresponding mappings are homotopic, where the homotopy is given 
from the deformation. By the uniqueness of holomorphic mappings in a given 
homotopy class (the image has genus at least 3), C~ can consist only of one 
component which proves that the branch set cannot split. Since, therefore, for each 
2 the branch set consists of two holomorphic curves each of which has intersection 
number 1 with Rx, we get two holomorphic maps v a, w a from S a to R a. These are 
clearly unramified coverings. They give rise to a ~2 action on R in the following 
manner: 

For each re  R a, we take v~-a(r)C S. v[ l ( r ) =  {S 1 . . . . .  Sq}, where q = degv a = degv. 
We define z(r) = wa(sl). This is well-defined, i.e. z(r) = wa(si) for all i=  1 . . . .  , q, for the 
following reason. Since the branch set depends continuously on 2, so do v a and wz. 
As unramified coverings they give rise to covering transformations, and if the 
images of the si would become different at some point, this would give rise to 
homotopic but different covering transformations, which is certainly impossible, 
since they are holomorphic and S a has genus larger than 1. 

If we divide R a by this 2g 2 action, we get a Riemann surface Ro, z, also 
continuously depending on L 

Thus, we have proved that each deformation of M is again a Kodaira surface, 
and that this deformation is induced by a deformation of the Riemann surface R o. 
This gives a continuous and surjective mapping from the moduli space of R o onto 
the moduli space of M. 

It remains to prove that this mapping is also injective. For this we proceed by 
contradiction and assume that we have two different holomorphic mappings 
tp : M---,S x R and (p' : M - * S '  x R'  of the type which gives rise to a Kodaira surface 
and is described at the beginning of this paragraph. Because q~ and ~o' are related 
via a deformation of R o into Ro, they are homotopic (regarded as mappings in the 
common underlying differentiable manifold). Since we assume that R o and R o 
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have different complex structures, the structures of S and S' are also different. Now 
let A be one of the components of the branch locus of q~. rt 1 restricted to A is 
holomorphic and one-to-one since A is transversal to the level sets of ~z I. Thus, A 
and S are biholomorphically the same. On the other hand, also rt'~ restricted to A is 
holomorphic and cannot be constant since A has the wrong genus for being a level 
set of n'l. This gives a nonconstant holomorphic and hence nonsingular holomor- 
phic mapping from S to S' which contradicts the assumption that R o and R o and 
hence S and S' have different complex structures. 

This finishes the proof of Theorem 7.1. 

Remark. The local version of the preceding theorem was proved by Kas [7]. He 
investigated also a slightly more general class of surfaces. All our arguments, 
however, apply also to this class without any difficulties. 

A. Proof of Proposition 4.1 

The tool to prove Proposition 4.1 will be the similarity principle of Bers and 
Vekua. References for the following are [2, 5]. 

We shall prove first 

Proposition A.1. Suppose that g~Cm(B, II?), where B is a bounded domain in ~m. 
Assume that for every z= {z 1 . . . . .  zl} C {1 . . . .  , m} there exists a constant c~ such that 

Then 

I.q:~ ....... ,,l<=c,[gl in B.  (A.1) 

g(z) = eStZlh(z), (A.2) 

where s(z) is Hflder continuous and h(z) is holomorphic. 

In the proof of Proposition A.1 we shall make use of three lemmata. 

Lemma A.2. Let DR(wo)={w~q?:lW--Wol<R}, and suppose fECI(DR). 
Furthermore, suppose that f and k=f~. are continuous in DR(Wo). Then we have for 
We DR(Wo) the representation 

k(O d~dtl 1 f(O d~- 1_ ~ ~ - w  (~=~+itl). 
f ( w ) -  2rt' i ; -~1=,  {-w~-o- rc o~-7~o) 

Lemma A.3. Let DCDR(wo) be an open set, and let k(w) be continuous in D and 
Ik(w)l < a. Then 

k(O d~dtl - 

satisfies 

Is(w)l <= 4aR Jor weD 

Is(w2)- s(w0] < c(R, a, fl)lw 2 - w 11 p 

for wl, w2 ~ D, 0 < fl < 1, where c(R, a, fl) < 00. 
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Lemma A.4. Suppose that, in addition to the assumptions of  Lemma A.2, 

k(w)6 C~ 

Then s(w) satisfies the differential equality 

s,:=k in D. 

These lemmata are taken over from I-5]. Furthermore,  we shall use the 
similarity principle of Bers and Vekua (cf. I-2] or [5]) :  

Lemma A.5. Suppose that Ifo[ < MJfl in a domain DC DR(O)c~. Then we have the 
representation 

f(w) = e~~ 

where q~(w) is holomorphic in DR(O), and So(W ) satisfies 

[So(W)l<4MR in D 

[So(W2)- s0(w0[ < c(R, M, fl)lw 2 - w 1 f ,  

for wl,w2~D, 0 < f l <  1, where c(R,M, fl) is given from Lemma /t.3. 

Furthermore,  s o can be represented as 

So(W)= - l ~ ff~O d~dtl (A.4) 
~--W' 

w h e r e / )  = {we D :f(w) 4=0}, and we have 

= f (A.5) 

Now we can prove Proposi t ion A. 1 : We shall give details for m = 2. The general 
case follows easily by induction. 

By Lemma A.5 we have for each z 2 the representation 

9( ' ,  z2) = e~'e'~)~o 1( ", z2), (A.6) 

exploiting (A.1), where sl( �9 , z z) depends H61der continuously on z 1, and (pl(., z 2) is 
an analytic function of  z 1 for every z z. 

Also, 

9(zl,.) = e,2t~l, .)q)2(Z1 .), (A.7) 

where s 2 and (p2 display now the resp. properties as functions of z 2 for every z ~. 
This implies that, for every z 2, 9( ", z2) either vanishes identically or has at least 
isolated zeros, and the same holds for 9(z ~, .), z I fixed. 

We now assume w.l.o.g, that  9 * 0. Let z o ~ B. Performing a t ransformation and 
a unitary rotat ion of  1172, we can assume that  Z o = 0  and that  9(z1,0) has only 
isolated zeros as a function of  z ~, and that  9(0, z 2) has only isolated zeros as a 
function of z 2. Consequently,  the same holds for g(z 1, z2), if Izl[ < e, [zZl < e, viewed 
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as a function of one coordinate  (5 > 0 sufficiently small). Therefore,  we obtain  f rom 
(A.4) 

S I ( z ) =  __ 1 ~'I g;I(~'Z2) d~xdtl ' ,  (A.8) 
~-D al g (~ l 'Z2)  ~1--Z1 

if Izzl<5, where D l = { z l  :1z11<5}, ~1 =~1 + i rh ,  and 

with 

q9 l(z) = #(z)e- s,(~) (A.9) 

By assumpt ion  and L e m m a  A.3, s~(z) is a cont inuous  function of z. 
Fur thermore ,  by (A.1) the ,~-derivative of  the integrand of (A.8) is bounded  
independent ly  of z 2 by a function which is by L e m m a  A.3 integrable with respect 
to ~1, and we can therefore differentiate under  the integral sign to get 

(A.10) 

and  in part icular  

(if [zZl <5) as a cont inuous  function of z. Therefore,  we obtain  f rom (A.9) 

~p~ = _ s T . q~ , 

i < I 
Ir = c3l~P J. 

N o w  applying L e m m a  A.5 to q~l, we get 

q~ 1 (zl, z 2) = ~p(z 1, z2)e '~Cz''~) (A. 13) 

where lp and tr have the desired propert ies  as functions of  z 2. In particular,  we have 
f rom (A.4) 

1 /~1 
a(z) = - i_~! tp~,. , (A.14) 

d~Zdq 2 
n r  ~ 2 _ z  2 ,  

(D2= {z 2 :lzZl __<5}, ~z= r iqz), where we can integrate over D e since g(z 1, .) and 
hence q~l(zl, .) by (A.9) has only isolated zeros as a function of z 2 in D e (by the 
choice of  our  coordinates).  And we have 

~v~ = 0 .  

Fo r  each z2~ D 2, let (p,(.,  z2)) be a sequence of polynomials  in z 1, which converge 
uniformly on D 1 towards  

(A.11) 

(A.12) 

q~:l~(z)=0 for every z 2 . 
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We put 

0(z)= nl ~D!\ g ]: :~ i -~z :  

1 , ,d~ldr l  1 

By Lemma A.3, G ( z ) ~ o ( z )  uniformly in z 1 e D 1, and by Lemma A.4 (G)~ =P,. 
Consequently 

0.-  g~] --*0 uniformly for z I G D  1 . 
g /::  

g : :  
From Lemma A.2 it follows that 0 -  - -  is a holomorphic function of z ~, which 

g 
implies that ~ is a CLfunction of z t and that 

Since by (A.11) and assumption 

we obtain 

?n 

 5(z) = e (z ) ,  

= = = S ~  (A.15) 

(cf. [5, p. 211] for the last equality as well as for the technique used above). 
Consequently, by (A.9) 

_ _ _ - g ~ s ~ -  g ~ s ~  - g ~ . - r  T g ~ s ~ e  

1 = q o ~  = 0. (A.16) 

Then we obtain from (A.14) 

a ~ = 0 .  

Since we also have q0:-r=0, it follows from (A.13) 

~,7 = 0 .  (A.17) 

Since g, s 1, r a, and consequently ~2 are continuous functions of z, and since 
tpT=tpT=0,  we conclude from a well-known theorem that y~ is a holomorphic 
function of z. Therefore 

g = q)e ~ +s, 

gives the desired representation, since a and s ~ are HSlder continuous by 
Lemma A.3, and Proposition A.1 is proved. 

Now we can easily prove Proposition 4.1 : 
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W e  p u t  

U s i n g  (2.2) we  get  

i.e. we h a v e  

9 = d e t { ~ /  \ Oz ]A~,~,~" 

'~ A A  j J  I~ 

AEa 

9~7 = c)(z) 'g,  

w h e r e  cJ(z) is a C ~ - f u n c t i o n .  

T h e r e f o r e ,  we c a n  a p p l y  P r o p o s i t i o n  A.1, a n d  we c o n c l u d e  f u r t h e r m o r e  f r o m  

(A.11), (A.12),  a n d  (A.14)  t h a t  s(z)=sl(z)+cr(z)  in  t he  r e p r e s e n t a t i o n  o f  g is a 

C~~ S ince  t he  m e t r i c s  o f  M a n d  N a re  a l so  a s s u m e d  to  b e  C ~  a n d  t h e i r  

d e t e r m i n a n t s  d o  n o t  v a n i s h ,  P r o p o s i t i o n  4.1 fo l lows  f r o m  this .  
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