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Abstract

We consider the Cauchy problem for the massive Dirac equation
in the non-extreme Kerr-Newman geometry outside the event horizon.
We derive an integral representation for the Dirac propagator involving
the solutions of the ODEs which arise in Chandrasekhar’s separation
of variables. It is proved that for initial data in L∞

loc
near the event

horizon with L2 decay at infinity, the probability of the Dirac particle
to be in any compact region of space tends to zero as t goes to infinity.
This means that the Dirac particle must either disappear in the black
hole or escape to infinity.
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1 Introduction

It has recently been shown that the Dirac equation does not admit normaliz-
able, time-periodic solutions in the non-extreme Kerr-Newman axisymmetric
black hole geometry [1]. This was interpreted as an indication that a Dirac
particle either falls into the black hole or escapes to infinity, but that it can-
not stay in a bounded region outside the event horizon. In this paper we
make precise this interpretation in the general time-dependent setting. We
thus consider the Cauchy problem for the Dirac equation with smooth ini-
tial data on the hypersurface t = 0, compactly supported outside the event
horizon. We study the probability for the Dirac particle to be inside a given
annulus located outside the event horizon, and we prove that this probability
tends to zero as t goes to infinity. Hence, in contrast to the situation for a
bounded orbit of a classical point particle, there exists no compact region
outside the event horizon in which the quantum mechanical Dirac particle
will remain for all time. In more precise form, our result is stated as follows.
Recall that in Boyer-Lindquist coordinates (t, r, ϑ, ϕ) with r > 0, 0 ≤ ϑ ≤ π,
0 ≤ ϕ < 2π, the Kerr-Newman metric takes the form [2]

ds2 = gjk dx
jxk

= ∆
U (dt − a sin2 ϑ dϕ)2 − U

(

dr2

∆ + dϑ2
)

− sin2 ϑ
U (a dt − (r2 + a2) dϕ)2

(1.1)

with

U(r, ϑ) = r2 + a2 cos2 ϑ , ∆(r) = r2 − 2Mr + a2 +Q2 ,

and the electromagnetic potential is given by

Aj dx
j = −Q r

U
(dt − a sin2 ϑ dϕ) ,

where M , aM and Q denote the mass, the angular momentum and the
charge of the black hole, respectively. We shall here restrict attention to
the non-extreme case M2 > a2 +Q2. Then the function ∆ has two distinct
zeros,

r0 = M −
√

M2 − a2 −Q2 and r1 = M +
√

M2 − a2 −Q2 ,

corresponding to the Cauchy and the event horizon, respectively. We will
here consider only the region r > r1 outside of the event horizon, and thus
∆ > 0.

Theorem 1.1. Consider the Cauchy problem for the Dirac equation in the
non-extreme Kerr-Newman black hole geometry outside the event horizon

(iγjDj −m) Ψ(t, x) = 0 , Ψ(0, x) = Ψ0(x) , (1.2)
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where the initial data Ψ0 is in L2((r1,∞)×S2, dµ)4, where dµ is the induced
invariant measure on the hypersurface t = const. Then for any δ > 0 and
R > r1 + δ, the probability for the Dirac particle to be inside the annulus
Kδ,R = {r1 + δ ≤ r ≤ R} tends to zero as t → ∞, i.e.

lim
t→∞

∫

Kδ,R

(ΨγjΨ)(t, x) νj dµ = 0 , (1.3)

where ν denotes the future directed normal.

The decay of probabilities in compact sets (1.3) can be stated equivalently
that the Dirac wave function decays in L2

loc outside and away from the event
horizon. Since the Dirac equation is linear and stationary, for smooth initial
data we obtain immediately that also the time-derivatives ∂n

t Ψ decay in
L2
loc, and standard Sobolev methods yield that Ψ decays even in L∞

loc. We
point out that the initial data is merely bounded (but not necessarily small),
near the event horizon. Our assumptions include the case when the initial
data is smooth and bounded in the maximal Kruskal extension up to the
bifurcation 2-sphere (as is considered in [7] for the wave function in the
Schwarzschild geometry). We note that the axisymmetric character of the
background geometry makes the analysis significantly more delicate than in
the spherically symmetric case, mainly because for a 6= 0 both the radial and
angular ODEs depend on the energy, and thus for the study of the dynamics
we must consider the system of these coupled equations.

The proof is organized as follows. We first bring the Dirac equation
into the Hamiltonian form i∂tΨ = HΨ with a self-adjoint operator H. Our
main technical tool is an integral representation for the Dirac propagator
exp(−itH) acting on wave functions with compact support outside the event
horizon. This integral representation is stated in Theorem 3.6. To derive it,
we first consider the Dirac equation in an annulus outside the event horizon
with suitable Dirichlet-type boundary conditions. The Hamiltonian corre-
sponding to this modified problem has a purely discrete spectrum, and thus
the propagator can be decomposed into discrete eigenstates. We then take
the infinite-volume limit by letting the inner boundary of the annulus tend
to the event horizon and the outer boundary to infinity in a suitable way.
Our construction is based on Chandrasekhar’s separation of variables for the
Dirac equation in the Kerr-Newman metric [3, 4, 5] together with estimates
for the asymptotic behavior of the amplitudes and phases of the separated ra-
dial eigenfunctions (Lemmas 3.1 and 3.5), and for the spectral gaps (Lemma
3.3). The usefulness of our integral representation for the propagator is that
it explicitly gives the continuous spectral measure of H in terms of the solu-
tions of the radial and angular ODEs arising in Chandrasekhar’s separation
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of variables. For initial data which is compactly supported outside the event
horizon, the decay of the probabilities (1.3) then follows by standard results
of Fourier analysis. The generalization to initial data in L2 and L∞

loc near
the event horizon is done by approximation in our Hilbert space framework.

2 Separation of Variables, Hamiltonian Formula-

tion

The Dirac equation in the Kerr-Newman geometry can be completely sep-
arated into ODEs by Chandrasekhar’s method [3, 4, 5]. We here outline
the separation, see [1] for details. After the regular and time-independent
transformation

Ψ → Ψ̂ = S Ψ (2.1)

with

S = ∆
1

4 diag
(

(r − ia cos ϑ)
1

2 , (r − ia cos ϑ)
1

2 ,

(r + ia cos ϑ)
1

2 , (r + ia cos ϑ)
1

2

)

,

the Dirac equation can be written as

(R+A) Ψ̂ = 0 (2.2)

with

R =









imr 0
√
∆D+ 0

0 −imr 0
√
∆D−√

∆D− 0 −imr 0

0
√
∆D+ 0 imr









A =









−am cos ϑ 0 0 L+

0 am cos ϑ −L− 0
0 L+ −am cos ϑ 0

−L− 0 0 am cos ϑ









and the differential operators

D± =
∂

∂r
∓ 1

∆

[

(r2 + a2)
∂

∂t
+ a

∂

∂ϕ
− ieQr

]

L± =
∂

∂ϑ
+

cotϑ

2
∓ i

[

a sinϑ
∂

∂t
+

1

sinϑ

∂

∂ϕ

]

.
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Employing the ansatz

Ψ̂(t, r, ϑ, ϕ) = e−iωt e−i(k+ 1

2
)ϕ









X−(r) Y−(ϑ)
X+(r) Y+(ϑ)
X+(r) Y−(ϑ)
X−(r) Y+(ϑ)









, k ∈ Z, (2.3)

we obtain the eigenvalue problems,

R Ψ̂ = λ Ψ̂ , A Ψ̂ = −λ Ψ̂ , (2.4)

under which the Dirac equation (2.2) decouples into the system of ODEs

(
√
∆D+ imr − λ

−imr − λ
√
∆D−

)(

X+

X−

)

= 0 (2.5)

(

L+ −am cosϑ+ λ
am cos ϑ+ λ −L−

)(

Y+

Y−

)

= 0 , (2.6)

where D± and L± are the radial and angular operators

D± =
∂

∂r
± i

∆

[

ω (r2 + a2) +

(

k +
1

2

)

a + eQr

]

(2.7)

L± =
∂

∂ϑ
+

cotϑ

2
∓
[

aω sinϑ +
k + 1

2

sinϑ

]

. (2.8)

We will in what follows also use the vector notation X = (X+,X−), Y =
(Y−, Y+) and for clarity sometimes add indices for the parameters involved,
e.g. Xkωλ ≡ X. We point out that (2.3) is an eigenfunction of the angular
operator i∂ϕ with eigenvalue k + 1

2 . The reason why we need to consider
half odd integer eigenvalues is that the transformation from the usual single-
valued wave function in space-time, to the wave function Ψ̂ in (2.2) involves
a sign flip at ϕ = 0 (see [1, Section 2.1]).

In this paper, we want to study time-dependent solutions of the Dirac
equation. In the separation ansatz (2.3), the dynamics of the solution is
encoded through the ω-dependence in the ODEs (2.5) and (2.6). Unfortu-
nately, both the radial and angular operators (2.7) and (2.8) depend on ω,
making the situation rather complicated. Therefore it is useful to bring the
Dirac equation (2.2) into Hamiltonian form, in a way which is compatible
with the separation of variables. We first bring the time derivative in (2.2)
to one side of the equation and obtain

(

r2 + a2√
∆

B + a sinϑ C

)

i
∂

∂t
Ψ̂ = (R3 +A3) Ψ̂ (2.9)
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with

B =









0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0









, C =









0 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 0









,

where the operators R3 and A3 are obtained from R and A by setting
the time derivatives to zero. The matrices B and C satisfy the relations
B2 = 11 = C2 and BC = CB. Thus the linear combination of these matrices
which appears in (2.9) can be inverted with the formula (αB + βC)−1 =
(α2 − β2)−1 (αB − βC) (and α, β ∈ IR). Furthermore, we introduce a new
radial variable u ∈ (−∞,∞) by

du

dr
=

r2 + a2

∆
. (2.10)

Omitting for simplicity the hat of the wave function, the Dirac equation (2.9)
becomes

i
∂

∂t
Ψ = H Ψ

with the Hamiltonian

H =

(

(r2 + a2)2

∆
− a2 sin2 ϑ

)−1(
r2 + a2√

∆
B − a sinϑ C

)

(R3 +A3)

=

[

(

1− a2 ∆ sin2 ϑ

(r2 + a2)2

)−1
(

11 − a
√
∆ sinϑ

r2 + a2
BC

)]

(R̂+ Â) , (2.11)

where r is an implicit function of u, and

R̂ = −mr
√
∆

r2 + a2









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









+









−E− 0 0 0
0 E+ 0 0
0 0 E+ 0
0 0 0 −E−









(2.12)

Â =
am cos ϑ

√
∆

r2 + a2









0 0 i 0
0 0 0 i
−i 0 0 0
0 −i 0 0









+









0 −M+ 0 0
−M− 0 0 0

0 0 0 M+

0 0 M− 0









(2.13)
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with

E± = i
∂

∂u
∓
(

ia

r2 + a2
∂

∂ϕ
+

eQr

r2 + a2

)

M± =

√
∆

r2 + a2

(

i
∂

∂ϑ
+ i

cotϑ

2
± 1

sinϑ

∂

∂ϕ

)

.

The Hamiltonian (2.11) is an operator acting on the wave functions on the
hypersurfaces t = const. The simplest scalar product on such a hypersurface
is

(Ψ | Φ) =

∫ ∞

−∞
du

∫ 1

−1
d cos ϑ

∫ 2π

0
dϕ Ψ̄(t, u, ϑ, ϕ) Φ(t, u, ϑ, ϕ) , (2.14)

where “Ψ̄” denotes the complex conjugated, transposed spinor. In the spher-
ically symmetric case a = 0, the Hamiltonian (2.11) is Hermitian (i.e. for-
mally self-adjoint) with respect to this scalar product. However for a 6= 0,
H is not Hermitian. In order to get around this problem, we introduce
a different scalar product as follows. Notice that the operators R̂ and Â,
(2.12),(2.13), are both Hermitian with respect to (2.14). The reason why
the Hamiltonian (2.11) is not Hermitian is that, when the taking the adjoint
of H using integration by parts, one gets r- and ϑ-derivatives of the square
bracket in (2.11). But we can compensate this square bracket by inserting its
inverse into the scalar product. Thus we introduce on the four-component
spinors the inner product

<Ψ|Φ>(t,u,ϑ,ϕ) = Ψ̄(t, u, ϑ, ϕ)

(

11 +
a
√
∆ sinϑ

r2 + a2
BC

)

Φ(t, u, ϑ, ϕ) (2.15)

and define the scalar product <.|.> by

<Ψ | Φ> =

∫ ∞

−∞
du

∫ 1

−1
d cos ϑ

∫ 2π

0
dϕ <Ψ | Φ>(t,u,ϑ,ϕ) . (2.16)

Then the Hamiltonian H is Hermitian with respect to (2.16). Let us verify
that (2.16) is positive. In the region outside the event horizon under consid-
eration, r > r1 > M . Also, since we are in the non-extreme case, M > Q, a,
and as a consequence, ∆ < r2. We conclude that

∣

∣

∣

∣

∣

a
√
∆ sinϑ

r2 + a2

∣

∣

∣

∣

∣

≤ a
√
∆

r2 + a2
<

a

r

√
∆

r
< 1 .

Combining this inequality with the fact that the matrix BC has eigenvalues
±1, we obtain that the bracket in (2.15) is indeed a positive matrix.
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We denote the Hilbert space of wave functions with scalar product (2.16)
by H. Then the operator H, (2.11), is essentially self-adjoint on H with
domain of definition

D(H) = C∞
0 (IR× S2)4 .

In Section 3, we shall consider the Dirac operator also with certain Dirichlet-
type boundary conditions, which we now introduce. First for given u2 ∈
IR, we restrict u to the half line u ∈ (−∞, u2] and impose the boundary
conditions

Ψ1(u2, ϑ, ϕ) = Ψ3(u2, ϑ, ϕ) and Ψ2(u2, ϑ, ϕ) = Ψ4(u2, ϑ, ϕ) . (2.17)

Let Hu2
be the Hilbert space of square integrable wave functions Ψ(u, ϑ, ϕ),

u ≤ u2 with the scalar product

<Ψ | Φ>u2
:=

∫ u2

−∞
du

∫ 1

−1
d cos ϑ

∫ 2π

0
dϕ <Ψ | Φ>(t,u,ϑ,ϕ) . (2.18)

Then the Hamiltonian (2.11) on Hu2
with boundary conditions (2.17), which

we denote for clarity by Hu2
, is Hermitian (the main point here is that the

boundary values at u = u2 vanish when the adjoint of Hu2
is calculated

using integration by parts). The operator Hu2
is essentially self-adjoint on

Hu2
with domain of definition

D(Hu2
) =

{

Ψ ∈ C∞
0 ((−∞, u2]× S2)4 and (2.17) is satisfied

}

.

Similarly, for u1, u2 ∈ IR, u1 < u2, we restrict u to the closed interval
u ∈ [u1, u2] with boundary conditions

Ψ1(u1) = Ψ3(u1), Ψ2(u1) = Ψ4(u1)
Ψ1(u2) = Ψ3(u2), Ψ2(u2) = Ψ4(u2) .

(2.19)

We denote the Hilbert space of square integrable wave functions Ψ(u, ϑ, ϕ),
u1 ≤ u ≤ u2, with the scalar product

<Ψ, Φ>u1,u2
:=

∫ u2

u1

du

∫ 1

−1
d cos ϑ

∫ 2π

0
dϕ <Ψ | Φ>(t,u,ϑ,ϕ) (2.20)

by Hu1,u2
, and the Hamiltonian (2.11) on Hu1,u2

by Hu1,u2
. It is essentially

self-adjoint with

D(Hu1,u2
) =

{

Ψ ∈ C∞
0 ([u1, u2]× S2)4 and (2.19) is satisfied

}

.

Our above Hamiltonian formulation of the Dirac equation is well-suited
to Chandrasekhar’s separation of variables. Namely, the boundary condi-
tions (2.17) reduce to simple boundary conditions for the radial functions,

X+(u2) = X−(u2) , (2.21)
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whereas (2.19) amounts to

X+(u1) = X−(u1) and X+(u2) = X−(u2) . (2.22)

The scalar product (2.14) splits into the product of a radial and an angular
part, namely

(Ψ̂kωλ | Ψ̂k′ω′λ′

) = (Xkωλ |Xk′ω′λ′

) (Y kωλ | Y k′ω′λ′

)

with

(Xkωλ |Xk′ω′λ′

) =

∫ ∞

−∞
Xkωλ(u)Xk′ω′λ′

(u) du

(Y kωλ | Y k′ω′λ′

) = 2π δkk
′

∫ 1

−1
Y kωλ(ϑ) Y k′ω′λ′

(ϑ) d cos ϑ .

The scalar product (2.16), however, does not split into a product, more
precisely

<Ψ | Φ> = (Xkωλ |Xk′ω′λ′

) (Y kωλ | Y k′ω′λ′

)

+a (Xkωλ |
√
∆

r2 + a2
σ2 |Xk′ω′λ′

) (Y kωλ | sinϑ σ1 | Y k′ω′λ′

) , (2.23)

where σi are the Pauli matrices. This mixing of the radial and angular parts
in the scalar product can be understood from the fact that the Kerr-Newman
solution is only axisymmetric.

3 An Integral Representation for the Propagator

The propagator exp(−itH) has the spectral decomposition

e−itH =

∫ ∞

−∞
e−iωt dEω , (3.1)

where dEω is the spectral measure of H. In this section, we shall bring
this formula into a more explicit form. This will be done by expressing
the spectral measure in terms of solutions of the radial and angular ODEs
of the previous section. Since the spectrum of H is continuous, it is not
obvious how to relate the spectral measure to the solutions of our ODEs.
To bypass this problem, we begin with the spectral decomposition of the
operator Hu1,u2

(which has a purely discrete spectrum), and then deduce
the desired integral representation for exp(−itH) by taking suitable limits
u1 → −∞ and u2 → ∞.
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As an elliptic operator on a bounded domain, the Hamiltonian Hu1,u2

has a purely discrete spectrum with finite-dimensional eigenspaces (see [6]).
In view of our separation of variables, the most convenient eigenvector basis
is the following. First we can choose the basis vectors as eigenvectors of the
operator i∂ϕ with eigenvalue k+ 1

2 , k ∈ Z. We denote this eigenspace of i∂ϕ
by Hk

u1,u2
, and the restriction of Hu1,u2

to Hk
u1,u2

by Hk
u1,u2

. Furthermore,
the basis vectors can be chosen as eigenvectors of the angular operator A.
As is shown in the Appendix, the spectrum of A on Hk

u1,u2
is discrete, non-

degenerate, and depends smoothly on ω. Thus the eigenvalues of A can be
written as λn(ω), n ∈ Z, with λn < λn+1 and λn(.) ∈ C∞(IR). For any given
k ∈ Z, ω ∈ σ(Hk

u1,u2
), and n ∈ Z, the radial ODE (2.5) has at most one

solution satisfying the boundary conditions (2.19). Hence we have for any k,
ω, and n at most one eigenstate of Hu1,u2

, which we denote by Ψkωn
u1,u2

. The
set of n for which such an eigenvector exists is denoted by N(k, ω). Thus
our eigenvector basis is

(Ψkωn
u1,u2

)k∈Z, ω∈σ(Hk
u1,u2

), n∈N(k,ω) . (3.2)

We normalize these eigenfunctions with respect to the scalar product (2.14);
more precisely, we normalize both the radial and angular parts according to

(Xkωn
u1,u2

|Xkωn
u1,u2

) = 1 , (Y kωn | Y kωn) = 1 (3.3)

with X and Y as in (2.3). Since the angular operator A is self-adjoint with
respect to the scalar product (.|.), its eigenvectors are orthogonal, and thus
the eigenfunctions for fixed k and ω are even orthonormal,

(Ψkωn
u1,u2

|Ψkωn′

u1,u2
) = δnn

′

, n, n′ ∈ N(k, ω). (3.4)

We mention for clarity that for different values of ω, the eigenfunctions are in
general not orthogonal with respect to (.|.), but since Hu1,u2

is self-adjoint
with respect to <.|.>, its eigenspaces are orthogonal with respect to the
latter scalar product, and thus

<Ψkωn
u1,u2

|Ψk′ω′n′

u1,u2
> = 0 for ω 6= ω′.

These subtle differences between the two scalar products clearly become
irrelevant in the spherically symmetric case a = 0.

In the basis (3.2), the spectral decomposition (3.1) for Hu1,u2
can be

written as

e−it Hu1,u2 Ψ

=
∑

k∈Z

∑

ω∈σ(Hk
u1,u2

)

e−iωt





∑

n,n′∈N(k,ω)

cnn′ Ψkωn
u1,u2

<Ψkωn′

u1,u2
|Ψ>



 . (3.5)
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Here the coefficients cnn′ must be chosen such that the bracket in (3.5) is the
projection of Ψ onto the eigenspace of Hk

u1,u2
corresponding to the eigenvalue

ω; more precisely,

cnn′ = (A−1)nn′ with Ann′ = <Ψkωn
u1,u2

|Ψkωn′

u1,u2
> . (3.6)

Notice that the first two sums in (3.5) give a decomposition of Ψ into the
orthogonal eigenstates of the operators i∂ϕ and H, respectively, and thus
converge in norm in Hu1,u2

. The bracket in (3.5) is the basis representation
of the projector on the respective eigenspace.

Our first goal is to take the limit u1 → −∞ in (3.5). We expect that
in this infinite volume limit, the “energy gaps” ∆ωkn between neighboring
eigenvalues, defined by

∆ωkn = min{ω̃kn − ωkn | ω̃kn > ωkn} with

ωkn, ω̃kn ∈ σ(Hk
u1,u2

) and N(k, ωkn), N(k, ω̃kn) 6= 0 ,

should tend to zero. The basic idea is to rewrite the sum over the spectrum
in (3.5) as Riemann sums which converge to integrals as u1 → −∞, yielding
a formula for the propagator of the Hamiltonian Hu2

. For making this idea
mathematically precise, it is essential to get good estimates for ∆ωkn and to
relate the eigenvectors Ψkωn

u1,u2
in (3.5) to solutions

Ψkωn
u2

(u) with k ∈ Z, ω ∈ IR, n ∈ Z, u ∈ (−∞, u2]

of the Dirac equation with boundary conditions (2.17). We note that the
convergence of the series in n is not a real issue. Indeed, using an L2 ap-
proximation argument, we will show in the proof of Theorem 3.6 that we
may restrict attention to a finite number of angular momentum modes.

We denote the radial and angular functions corresponding to Ψkωn
u2

by
Xkωn

u2
and Y kωn, respectively. In the variable u, (2.10), the radial equation

(2.5) becomes

[

d

du
+ iΩ(u)

(

1 0
0 −1

)]

X =

√
∆

r2 + a2

(

0 imr − λ
−imr − λ 0

)

X (3.7)

with

Ω(u) = ω +
(k + 1

2) a+ eQr

r2 + a2
,

and where for ease in notation the indices of X were omitted. The next
lemma describes the asymptotic behavior of X(u) as u → −∞.
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Lemma 3.1. Every nontrivial solution X of (3.7) with boundary conditions
(2.21) is asymptotically as u → −∞ of the form

X(u) =

(

e−iΩ0u f+
0

eiΩ0u f−
0

)

+ R0(u) (3.8)

with

f0 6= 0 (3.9)

Ω0 = ω +
(k + 1

2) a+ eQr1

r21 + a2
(3.10)

|R0| ≤ c edu (3.11)

and suitable constants c, d > 0, which can be chosen locally uniformly in ω.

Proof. Substituting into (3.7) the ansatz

X(u) =

(

e−iΩ0u f+(u)
eiΩ0u f−(u)

)

, (3.12)

we obtain for f the equation

d

du
f =

[

i(Ω0 − Ω(u))

(

1 0
0 −1

)

+

√
∆

r2 + a2

(

0 e−2iΩu(imr − λ)
e2iΩu(−imr − λ) 0

)

]

f. (3.13)

The square bracket vanishes on the event horizon r = r1. In the variable
u, this leads to exponential decay for u → −∞, in the sense that there are
constants c1, d > 0 such that

∣

∣

∣

∣

d

du
f

∣

∣

∣

∣

≤ c1 e
du |f | . (3.14)

Since X is a nontrivial solution, |f | 6= 0. Thus we can divide (3.14) by |f |
and integrate from any u < u2 to u2 to obtain

log |f |
∣

∣

∣

u2

u
≤ c2 e

du
∣

∣

∣

u2

u

with c2 = c1/d. Since the right side of this inequality stays finite when
u → −∞, we conclude that there is a constant L > 0 with

1

L
≤ |f(u)| ≤ L for all u < u2. (3.15)
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Using that λ depends smoothly on ω (see the Appendix), the constants
c1, c2, d, and L clearly can be chosen locally uniformly in ω.

We substitute (3.15) into (3.14),

∣

∣

∣

∣

d

du
f

∣

∣

∣

∣

≤ c1L edu . (3.16)

This inequality shows that f ′ is integrable, and thus f(u) converges for
u → −∞. Setting

f0 = lim
u→−∞

f(u)
(3.15)

6= 0 ,

we can integrate (3.16) from −∞ to u < b and get

|f(u)− f0| ≤ c edu

with c = c1L/d. Substituting in the ansatz (3.8), we get (3.11).

¿From (3.9) we see that X(u) does not decay to zero for u → −∞. As a
consequence, the function Ψkωn

u2
cannot have finite norm and thus is not a

vector in the Hilbert space Hu2
. This shows that the Hamiltonian Hu2

has
no point spectrum. In contrast to (3.3), we normalize the functions Ψkωn

u2

according to

lim
u→−∞

|Xkωn
u2

| = 1 , (Y kωn | Y kωn) = 1 . (3.17)

The next two lemmas describe the behavior of the normalization factors
and the energy gaps as u1 → −∞.

Lemma 3.2. For fixed u2 and asymptotically as u1 → −∞,

Xkωn
u1,u2

= g(u1)X
kωn
u2

|[u1,u2] with (3.18)

|g(u1)|−2 = (u2 − u1) + O(1) . (3.19)

Furthermore,

∣

∣

∣<Ψkωn
u1,u2

|Ψkωn′

u1,u2
> − δnn

′

∣

∣

∣ ≤ c

u2 − u1
<Y kωn | sinϑ σ1 | Y kωn′

> , (3.20)

where the constant c can be chosen locally uniformly in ω.

Proof. SinceXkωn
u1,u2

andXkωn
u2

are solutions of the same ODE (3.13) with the
same boundary conditions at u2, they clearly coincide up to a normalization
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factor g, i.e. Xkωn
u1,u2

= gXkωn
u2

. Taking the norm on both sides and using the
first part of (3.3), we obtain that

|g(u1)|−2 =

∫ u2

u1

Xkωn
u2

(u)Xkωn
u2

(u) du .

We now substitute (3.8), multiply out, and use that |f0|2 = 1 according to
the first part of (3.17), to obtain

|g(u1)|−2 =

∫ u2

u1

(

1 + XR0 + R0X − |R0|2
)

du . (3.21)

Since X is bounded and R0 has exponential decay (3.11), the last three
summands in (3.21) are integrable, and thus |g(u1)|−2−(u2−u1) is bounded
uniformly in u1. This proves (3.19).

The scalar product <Ψkωn
u1,u2

| Ψkωn′

u1,u2
> can be computed via (2.23). The

orthonormality (3.4) yields that

<Ψkωn
u1,u2

|Ψkωn′

u1,u2
> − δnn

′

= a (Xkωn
u1,u2

|
√
∆

r2 + a2
σ2 |Xkωn′

u1,u2
) (Y kωn | sinϑ σ1 | Y kωn′

) . (3.22)

In order to estimate the radial scalar product, we first note that the factor√
∆ goes exponentially to zero for u → −∞, and thus

(Xkωn
u1,u2

|
√
∆

r2 + a2
σ2 |Xkωn′

u1,u2
) ≤ c4

∫ u2

u1

edu |Xkωn
u1,u2

| |Xkωn′

u1,u2
| du

for some constant c4 > 0. Substituting (3.19) and using that the integral is
uniformly bounded due to the factor exp du, we obtain the estimate

∣

∣

∣

∣

∣

(Xkωn
u1,u2

|
√
∆

r2 + a2
σ2 |Xkωn′

u1,u2
)

∣

∣

∣

∣

∣

≤ c5 (u2 − u1)
−1 ,

which together with (3.22) yields (3.20).

Lemma 3.3. The following estimate holds asymptotically as u1 → −∞,

∆ωkn =
π

u2 − u1
+ O((u2 − u1)

−2) , (3.23)

for fixed u2 locally uniformly in ω.
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Proof. We consider solutions of (3.7) satisfying the boundary conditions
at u2 and ask for which values of ω and λn(ω) our boundary conditions are
also fulfilled at u1. As is immediately verified from (3.7),

d

du

(

|X+|2 − |X−|2
)

= 0 .

Thus |X+|2 − |X−|2 is independent of u, and since it vanishes at u2,

|X+|2 = |X−|2 for all u ≤ u2. (3.24)

Hence for the boundary values at u1, we need not be concerned about the
absolute values of X±; it suffices to consider the condition for the phases

argX+(u1) = argX−(u1) . (3.25)

It is convenient to work again with the ansatz (3.12). In order to describe
the dependence on ω, we differentiate (3.13) with respect to ω. Since λ
depends smoothly on ω, we obtain the bound

∣

∣

∣

∣

d

du
∂ωf

∣

∣

∣

∣

≤ c1 e
du |∂ωf | + c3 e

du |f | (3.26)

with constants c1, d as in (3.14) and c3 > 0. Using that |f | is bounded from
above (3.15), we get

∣

∣

∣

∣

d

du
(|∂ωf |+ c4)

∣

∣

∣

∣

≤ c1 e
du (|∂ωf |+ c4)

with c4 = c3L/c1. Similar to the development after (3.14), dividing by
(|∂ωf |+ c4) and integrating yields

log(|∂ωf |+ c4)|u2

u ≤ c2 e
du
∣

∣

∣

u2

u
,

and since the right side of this inequality is uniformly bounded in u,

|∂ωf | ≤ c5 (3.27)

for some constant c5 > 0.

For the study of the phase shifts, we introduce the phase function

ρ(u) = arg f+(u) − arg f−(u) − 2Ω u2

(the last summand was included so that ρ(u2) = 0). The derivative of the
argument of a complex-valued function h is given by

d

du
arg h(u) = Im

h′(u)
h(u)

.
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Using this formula together with the fact that, according to (3.15) and (3.24)
both |f+| and |f−| are bounded away from zero, we obtain that

∣

∣

∣

∣

d

du
∂ωρ

∣

∣

∣

∣

≤ 4L

∣

∣

∣

∣

d

du
∂ωf

∣

∣

∣

∣

+ 8L2 |∂ωf |
∣

∣

∣

∣

d

du
f

∣

∣

∣

∣

.

Substituting in (3.26), (3.16) as well as the bounds (3.15) and (3.27), we
conclude that

∣

∣

∣

∣

d

du
∂ωρ

∣

∣

∣

∣

≤ c6 e
du

with some constant c6 > 0. We integrate this inequality from u < u2 to u2.
Since ρ(u2) = 0 independently of ω, the boundary term ∂ωρ(u2) drops out,
and we obtain the bound

|∂ωρ(u)| ≤ C for all u ≤ u2 (3.28)

with a constant C > 0. This means that the equation for f , (3.13) leads
only to finite phase shifts.

The boundary conditions at u1, (3.25), are fulfilled iff

Φ := 2Ω (u2 − u1) + ρ = 0 (mod 2π) .

Differentiating with respect to ω and integrating again from ωI to ωII , ωI <
ωII , we obtain that

|Φ(ωII)−Φ(ωI) − 2(ωII − ωI) (u2 − u1)|

≤
∫ ωII

ωI

|∂ωρ| dω
(3.28)

≤ C (ωII − ωI) ,

and this proves (3.23).

We can now prove the integral representation for the propagator of Hu2
.

Proposition 3.4. For every Ψ ∈ C∞
0 ((−∞, u2])× S2)4 and x = (u, ϑ, ϕ),

(

e−it Hu2 Ψ
)

(x) =
1

π

∑

k∈Z

∫ ∞

−∞
dω e−iωt

∑

n∈Z
Ψkωn

u2
(x) <Ψkωn

u2
|Ψ> . (3.29)

Proof. According to the bound (3.20), the operator A in (3.6) converges
uniformly in ω and k to the identity as u1 → −∞, and thus (3.5) simplifies
asymptotically to
(

e−it Hu1,u2 Ψ
)

(x)

=
∑

k∈Z

∑

ω∈σ(Hk
u1,u2

)

e−iωt
∑

n∈N(k,ω)

Ψkωn
u1,u2

<Ψkωn
u1,u2

|Ψ> + O((u2 − u1)
−1) .
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Using (3.18) and (3.19), we can express Ψkωn
u1,u2

by Ψkωn
u2

,

(

e−it Hu1,u2 Ψ
)

(x) =
∑

k∈Z

1

u2 − u1

∑

ω∈σ(Hk
u1,u2

)

e−iωt

×
∑

n∈N(k,ω)

Ψkωn
u1

<Ψkωn
u1

|Ψ>u1,u2
+ O((u2 − u1)

−1) .

The gap estimate, Lemma 3.3, shows that the sum over the spectrum is a
Riemann sum which converges as u1 → −∞ to an integral.

The idea for proving an integral representation for exp(−itH) is to take
in (3.29) a suitable limit u2 → +∞. In preparation, we need to derive
estimates which describe the asymptotics of solutions of the radial equation
(3.7) for large u. In this regime,

d

du
X =

[(

−iω im
−im iω

)

+
1

u

(

−ieQ −imM − λ
imM − λ ieQ

)]

X

+O(u−2)X . (3.30)

Thus the matrix potential on the right converges for u → ∞. If |ω| < m,
its eigenvalues λ = ±

√
m2 − ω2 are real, and this leads to one fundamental

solution of (3.30) which decays exponentially like exp(−
√
m2 − ω2u), and the

other solution has exponential growth ∼ exp(
√
m2 − ω2 u). We denote these

two fundamental solutions by Ψkωn
1 and Ψkωn

2 , respectively, and normalize
them according to

lim
u→−∞

|Ψkωn
1/2 (u)| = 1 , (3.31)

where our notation 1/2 means that the above equation is valid in both cases
1 and 2. For |ω| > m, on the other hand, the eigenvalues of the matrix
potential at u = ∞ are imaginary, λ = ±i

√
ω2 −m2, and this leads to two

fundamental solutions Ψkωn
1/2 with oscillatory behavior ∼ exp(±i

√
ω2 −m2u).

For the normalization, we are now free to choose both the amplitude and
the phase. Our convention is that

fkωn
0, 1 =

(

1
0

)

and fkωn
0, 2 =

(

0
1

)

(3.32)

with fkωn
0, 1/2 as in the asymptotic expansion (3.8). The next lemma describes

the asymptotics of the oscillatory solutions as u → ∞.

Lemma 3.5. Every nontrivial solution X of (3.7) for |ω| > m has for large
u the asymptotic form

X(u) = A

(

e−iΦ(u) f+
∞

eiΦ(u) f−
∞

)

+ R∞(u) (3.33)
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with

f∞ 6= 0 (3.34)

Φ = ǫ(ω)

(

√

ω2 −m2 u +
ωeQ+Mm2

√
ω2 −m2

log u

)

(3.35)

A =

(

coshΘ sinhΘ
sinhΘ coshΘ

)

, Θ =
1

4
log

(

ω +m

ω −m

)

(3.36)

|R∞| ≤ C

u
(3.37)

and a constant C > 0.

Proof. We write (3.7) symbolically as

X ′ = V X

with a matrix potential V (u). According to (3.30) and the hypothesis |ω| >
m, the eigenvalues of V are, for sufficiently large u, purely imaginary. More
precisely, there is a transformation matrix B(u) with

B−1 V B = −iΩ σ3 (3.38)

and a suitable function Ω(u). Since the matrix potential V converges for
u → ∞ and has a regular expansion in powers of 1/u, we can choose B such
that

|B(u)| ≤ c0 , |B′(u)| ≤ c0
u2

(3.39)

with a constant c0 > 0. The transformed wave function (B−1X) satisfies the
equation

d

du
(B−1X) =

[

−iΩ(u) σ3 − B−1 B′] (B−1X) . (3.40)

Hence employing the ansatz

X = B

(

e−iΦ f+(u)
eiΦ f−(u)

)

with Φ′(u) = Ω(u) (3.41)

and using the bound (3.39), we obtain the inequality

∣

∣

∣

∣

d

du
f

∣

∣

∣

∣

≤ c20
u2

|f | . (3.42)

A short calculation shows that Φ has the explicit form (3.35), and that
B(u) = A+O( 1u) with A according to (3.36). The term of order O( 1u) can
be absorbed into R∞.



F. Finster, N. Kamran, J. Smoller, S.-T. Yau 43

The inequality (3.42) can be used similar to (3.14) in Lemma 3.1 Namely,
dividing by |f | and integrating yields for sufficiently large u the bounds

1

L
≤ |f(u)| ≤ L . (3.43)

After substituting the upper bound for |f | into (3.42), one sees that f ′ is
integrable. Thus f has a finite and, according to (3.43), non-zero limit,

f∞ := lim
u→∞

f(u) 6= 0 .

Finally, the 1/u-decay (3.37) follows by integrating (3.42) backwards from
u = ∞ and employing the resulting bound in the ansatz (3.41).

In analogy to potential wall problems for Schrödinger operators, we call the
function f∞ in (3.33) corresponding to our fundamental solutions Ψkωn

1/2 the

transmission coefficients, and denote them by fkωn
∞ 1/2.

Theorem 3.6. For every Ψ ∈ C∞
0 (IR× S2)4,

(

e−itH Ψ
)

(x) =
1

π

∑

k,n∈Z

∫ ∞

−∞
dω e−iωt

2
∑

a,b=1

tkωnab Ψkωn
a (x)<Ψkωn

b |Ψ> ,

(3.44)
where the coefficients tab are for |ω| < m given by

tab = δa,1 δb,1 . (3.45)

For |ω| > m, the tab are given by the integrals

tab =
1

2π

∫ 2π

0

ta tb
|t1|2 + |t2|2

dα , (3.46)

where the functions ta are related to the transmission coefficients by

t1(α) = f+
∞ 2 e

−iα − f−
∞ 2e

iα , t2(α) = −f+
∞ 1e

−iα + f−
∞ 1 e

iα . (3.47)

The integral and the series in (3.44) converge in norm in the Hilbert space
H.

Proof. Our strategy is as follows. Choosing u2 so large that supp Ψ ⊂
(−∞, u2), Proposition 3.4 yields for t = 0 the “completeness relation”

Ψ(x) =
1

π

∑

k∈Z

∫ ∞

−∞
dω

∑

n∈Z
Ψkωn

u2
(x)<Ψkωn

u2
|Ψ> .
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This formula remains true when u2 is further increased,

Ψ(x) =
1

π

∑

k∈Z

∫ ∞

−∞
dω

∑

n∈Z
Ψkωn

u2+τ (x)<Ψkωn
u2+τ |Ψ> , τ ≥ 0. (3.48)

Hence we can take the average over τ in the finite interval [0, T ] with T > 0
and obtain, using Fubini’s theorem,

Ψ =
1

π

∑

k∈Z

∫ ∞

−∞
dω

∑

n∈Z

[

1

T

∫ T

0
dτ Ψkωn

u2+τ <Ψkωn
u2+τ |Ψ>

]

. (3.49)

We shall first prove that the square bracket in (3.49) has a finite limit as
T → ∞. Then we will show that for T → ∞, we can in (3.49) take the limit
inside the integral and the series in (3.49). This will give a decomposition of
the identity in terms of eigensolutions of H, from which the representation of
the propagator (3.44) will follow immediately by inserting the phase factors
exp(−iωt).

Let us analyze the square bracket in (3.49). We can write Ψkωn
u2+τ as a

linear combination of the fundamental solutions Ψkωn
1/2 ,

Ψkωn
u2+τ (x) =

2
∑

a=1

ca(τ) Ψ
kωn
a (x) , (3.50)

where the coefficients c1/2 must be chosen such that our Dirichlet-type bound-
ary conditions are satisfied at u2 + τ . Then the square bracket becomes

1

T

∫ T

0
dτ Ψkωn

u2+τ <Ψkωn
u2+τ |Ψ> =

2
∑

a,b=1

tab(T ) Ψ
kωn
a <Ψkωn

b |Ψ> (3.51)

with

tab(T ) =
1

T

∫ T

0
ca(τ) cb(τ) dτ . (3.52)

In the case |ω| < m, Ψkωn
1 and Ψkωn

2 are for large u exponentially decaying
and increasing, respectively. Hence in order to fulfill the boundary condi-
tions at u = u2 + τ , the quotient c2(τ)/c1(τ) must go exponentially to zero.
Moreover, our normalization conditions (3.17) and (3.31) imply that |c1(τ)|2
must tend to one. We conclude that there is a constant c1 with

|ca(τ) − δa,1| ≤ c1 e
−
√
m2−ω2 τ ,

and so (3.52) converges for T → ∞ to (3.45). In the case |ω| > m, the funda-
mental solutions are oscillating for large u, as described by Lemma 3.5. The
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boundary conditions at u2, (2.21), imply that the following scalar product
must vanish,

<

(

f+
1 e−iΦ(u2+τ) − f−

1 eiΦ(u2+τ)

f+
2 e−iΦ(u2+τ) − f−

2 eiΦ(u2+τ)

)

+O(τ−1),

(

c1(τ)
c2(τ)

)

> = 0 , (3.53)

where f1/2 are the transmission coefficients. Moreover, the normalization and
phase conditions (3.17) and (3.32) yield that

|c1|2 + |c2|2 = 1 . (3.54)

The general solution to (3.53) is

(

c1
c2

)

=
1

D

(

f+
2 e−iΦ(u2+τ) − f−

2 eiΦ(u2+τ)

−f+
1 e−iΦ(u2+τ) + f−

1 eiΦ(u2+τ)

)

+ O(τ−1) (3.55)

with a complex parameter D, which can be chosen so as to satisfy the nor-
malization condition (3.54). We now substitute (3.55) into (3.52) and take
Φ as the integration parameter,

tab(T ) =
1

T

∫ Φ(T )

Φ(0)
ca(Φ) cb(Φ)

dΦ

|Φ′| . (3.56)

Using (3.35), one sees that (3.56) converges for T → ∞ to the average over
one period, giving (3.46) and (3.47). We conclude that the bracket in (3.49)
converges pointwise as T → ∞.

Next we shall prove that in (3.49) we may take the limit T → ∞ inside
the series and the integral, and that for the resulting limit the series and
the integral converge in norm. The sum over k in (3.49) gives the decom-
position into the eigenspaces of the angular operator i∂ϕ, which we denote
by Hk. We may consider the situation on each such eigenspace separately,
and thus assume that Ψ ∈ Hk. For the integral and the n-summation in
(3.49) the situation is more difficult because the spectral decomposition of
the Hamiltonian depends on u2, and because the eigenvalues λn of A and
corresponding eigenspaces depend on ω. We first apply to (3.48) the opera-
tor product A2pH2q with p, q ≥ 0 (with A as in (2.4), where the t-derivative
in A is carried out by applying the operator −iH) and take the inner product
with Ψ. This gives

<Ψ | A2p H2q Ψ> =

∫ ∞

−∞

dω

π
ω2q

∑

n∈Z
λ2p
n (ω) |<Ψkωn

u2+τ |Ψ>|2 . (3.57)

If we consider on the right side of (3.57) instead of |<Ψkωn
u2+τ |Ψ>|2 a mixed

product with Φ,Ψ ∈ C∞
0 ((−∞, u2)×S2)4 ∩Hk, we can in the integrand use
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the inequality xy ≤ 1
2 (x

2 + y2), and then apply (3.57) to obtain

∑

n∈Z

∫ ∞

−∞

dω

π
ω2q λ2p

n (ω)
∣

∣

∣
<Φ |Ψkωn

u2+τ><Ψkωn
u2+τ |Ψ>

∣

∣

∣

≤ 1

2

(

<Φ | A2p H2q Φ> + <Ψ | A2p H2q Ψ>
)

, (3.58)

and this bound holds for all τ ≥ 0.

Let ε > 0. Then for any ω0 > 0, (3.58) yields for p = 0 and q = 1 that

∑

n∈Z

∫

IR\[−ω0,ω0]

dω

π

∣

∣

∣<Φ |Ψkωn
u2+τ><Ψkωn

u2+τ |Ψ>
∣

∣

∣

≤ 1

ω2
0

∑

n∈Z

∫ ∞

−∞

dω

π
ω2
∣

∣

∣
<Φ |Ψkωn

u2+τ><Ψkωn
u2+τ |Ψ>

∣

∣

∣

≤ 1

2ω2
0

(

‖HΦ‖2 + ‖HΨ‖2
)

.

We choose ω0 so large that

∑

n∈Z

∫

IR\[−ω0,ω0]

dω

π

∣

∣

∣<Φ |Ψkωn
u2+τ><Ψkωn

u2+τ |Ψ>
∣

∣

∣ <
ε

2
(3.59)

for all τ ≥ 0. This inequality allows us to restrict attention to ω in the finite
interval [−ω0, ω0]. Next for a constant n0 > 0, we consider (3.58) for p = 1
and q = 0. This gives the inequality

∑

|n|>n0

∫ ω0

−ω0

dω

π

∣

∣

∣
<Φ |Ψkωn

u2+τ><Ψkωn
u2+τ |Ψ>

∣

∣

∣

≤ 1

2

(

<Φ | A2Φ>+<Ψ | A2Ψ>
)

sup
ω∈[−ω0,ω0], |n|>n0

λ−2
n (ω) .

Clearly λ2
n(ω) → ∞ for n → ±∞ uniformly in ω ∈ [−ω0, ω0], and thus we

can by choosing n0 sufficiently large arrange that

∑

|n|>n0

∫ ω0

−ω0

dω

π

∣

∣

∣
<Φ |Ψkωn

u2+τ><Ψkωn
u2+τ |Ψ>

∣

∣

∣
<

ε

2
. (3.60)

Putting together the estimates (3.59) and (3.60), we conclude that





∑

n∈Z

∫ ∞

−∞
−

∑

|n|>n0

∫ ω0

−ω0





dω

π

∣

∣

∣
<Φ |Ψkωn

u2+τ><Ψkωn
u2+τ |Ψ>

∣

∣

∣
< ε (3.61)
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for all τ ≥ 0.

For ω in a finite interval and n in a finite set, we can take the average
over τ ∈ [0, T ] and take the limit T → ∞ using Lebesgue’s dominated
convergence theorem (notice that according to Lemma 3.1, Ψkωn

u2+τ is on the
support of Φ and Ψ uniformly bounded in τ). This gives

lim
T→∞

n0
∑

n=−n0

∫ ω0

−ω0

dω

π

[

1

T

∫ T

0
dτ <Φ |Ψkωn

u2+τ><Ψkωn
u2+τ |Ψ>

]

=

n0
∑

n=−n0

∫ ω0

−ω0

dω

π

2
∑

a,b=1

tkωnab <Φ |Ψkωn
a ><Ψkωn

b |Ψ> (3.62)

with tab according to (3.45) and (3.46). Since ε in (3.61) can be chosen
arbitrarily small and n0 → ∞, ω0 → ∞ as ε ց 0, we obtain that (3.62) is
true also for n0 = ∞ = ω0, with absolute convergence of the integral and
the series. Since Φ can be chosen arbitrarily, we conclude that

Ψ = lim
T→∞

(3.49) =
∑

k,n∈Z

∫ ∞

−∞

dω

π

2
∑

a,b=1

tkωnab Ψkωn
a <Ψkωn

b |Ψ> . (3.63)

The estimate (3.58) for p = 0 = q remains true if we take the average over
τ ∈ [0,∞), and a homogeneity argument (as in the proof of the Schwarz
inequality in Hilbert spaces) yields that

∑

n∈Z

∫ ∞

−∞

dω

π

∣

∣

∣

∣

∣

∣

2
∑

a,b=1

tab <Φ |Ψkωn
a ><Ψkωn

b |Ψ>

∣

∣

∣

∣

∣

∣

≤ ‖Φ‖ ‖Ψ‖ .

This bound shows that the integral and series in (3.63) converge in norm,
and that Ψ need not be an eigenvector of i∂ϕ. We finally apply the unitary
operator exp(−itH) on both sides of (3.63) to obtain (3.44).

Notice that the coefficients tab given by (3.46) are bounded,

|tab| ≤ 1

2
for |ω| > m. (3.64)

In the asymptotic region u → −∞, (3.44) goes over to a Fourier represen-
tation in terms of the plane-wave solution (3.8). A careful analysis of this
limiting case gives additional information on the coefficients tab, namely

t11 =
1

2
= t22 for |ω| > m. (3.65)

However, the non-diagonal elements t12 and t21 remain undetermined. We
shall not derive the relations (3.65) here, and will not use them in what
follows.
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4 The Decay Estimates

Using the integral representation for the propagator of the previous section,
we can now prove the decay of the probabilities.

Proof of Theorem 1.1. According to the hypotheses of the theorem, the
initial data Ψ0 is in L2((r1,∞) × S2, dµ)4. Since the transformation of the

spinors (2.1) is smooth and involves factors ∆
1

4 and
√
r, we obtain for the

transformed initial data Ψ̂0 that

r−
1

2 ∆− 1

4 Ψ̂0 ∈ L2((r1,∞)× S2, dµ)4 .

Equivalently, computing the volume element on the hypersurface t = const,

r2

∆
|Ψ̂0|2 ∈ L1((r1,∞)× S2, dr dcos ϑ dϕ)4

Transforming to the variable u, (2.10), one sees that Ψ̂0 is in the Hilbert
space with scalar product (2.16), Ψ̂0 ∈ H. For simplicity, we again omit the
hat in what follows.

Let ε > 0. Since the wave functions with compact support are dense in
H, then for this ε, there is a ΨI ∈ C∞((r1,∞)× S2)4 such that

‖ΨI −Ψ0‖ < ε . (4.1)

For the Cauchy problem with initial data Ψ0, we have the integral represen-
tation of Theorem 3.6. Since the series in (3.44) converge in norm, we can
choose k0 and n0 such that

‖Ψk0,n0
−ΨI‖ ≤ ε , (4.2)

where Ψk0,n0
is defined by

Ψk0,n0
(x) =

1

π

k0
∑

k=−k0

n0
∑

n=−n0

∫ ∞

−∞
dω

2
∑

a,b=1

tkωnab Ψkωn
a (x)<Ψkωn

b |ΨI> . (4.3)

Consider the integrand in (4.3) for fixed k and n,

2
∑

a,b=1

tkωnab Ψkωn
a (x)<Ψkωn

b |ΨI> . (4.4)

¿From (3.64) and the estimates of Lemma 3.1, one sees that (4.4) is bounded,
locally uniformly in x and ω. Thus the norm convergence established in
Theorem 3.6 implies that (4.4) is in L1(IR, IC4) as a function of ω, with
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an L1-bound locally uniform in x. Hence its Fourier transform is L∞ in t,
locally uniformly in x. Furthermore, the Riemann-Lebesgue lemma [8] yields
that its Fourier transform tends to zero as t → ∞, pointwise in x. Since
(4.3) involves only finitely many terms, we conclude that the solution of the
Cauchy problem with initial data Ψk0,n0

,

Ψk0,n0
(t, x) =

1

π

k0
∑

k=−k0

n0
∑

n=−n0

∫ ∞

−∞
dω e−iωt

2
∑

a,b=1

tkωnab Ψkωn
a (x)<Ψkωn

b |ΨI> ,

(4.5)
is L∞ in t locally uniformly in x, and limt→∞Ψn0,k0(t, x) = 0 for all x.

Choose Kδ,R as in the statement of the theorem. Since the metric and
Dirac matrices in the probability integral (1.3) are smooth and bounded
on the compact set Kδ,R, the corresponding bilinear form is continuous on
H, i.e. there is a constant c depending only on δ and R such that for all
Ψ1,Ψ2 ∈ H,

∫

Kδ,R

(Ψ1γ
jΨ2) νj dµ ≤ c ‖Ψ1‖ ‖Ψ2‖ . (4.6)

The solution to our original Cauchy problem is obtained by applying the
unitary operator exp(−itH) to Ψ0,

Ψ(t) = e−itH Ψ0

= e−itH Ψk0,n0
+ e−itH (ΨI −Ψk0,n0

) + e−itH (Ψ0 −ΨI)

= Ψk0,n0
(t) + e−itH (ΨI −Ψk0,n0

) + e−itH (Ψ0 −ΨI) ,

where Ψk0,n0
(t) has the integral representation (4.5). We substitute this

formula for Ψ(t) into the probability integral, multiply out, and apply the
estimate (4.6) as well as the unitarity of exp(−itH) together with (4.1)
and (4.2). This gives the inequality

∫

Kδ,R

(ΨγjΨ)(t, x) νj dµ

≤
∫

Kδ,R

(Ψk0,n0
γjΨk0,n0

)(t, x) νj dµ + 4c2ε2 + 4cε ‖Ψ‖ .

We showed above that the integrand in the last integral is uniformly bounded
and tends to zero pointwise as t → ∞. Thus the integral converges to zero
according to Lebesgue’s dominated convergence theorem.

We remark that in the spherically symmetric case, the analytical method
given above to prove that Ψ̂0 ∈ H is an alternative to the nice geometric
argument by Kay and Wald [7], who use the causal propagation property and
a discrete symmetry of the maximally extended space-time at the bifurcation
2-sphere.
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A Nondegeneracy and Regularity of the Angular

Eigenfunctions

In this appendix, we shall consider the angular equations (2.6),(2.8). As
explained in [1, Appendix A], it is useful to write (2.6) as an eigenvalue
equation in λ,

A Y = λ Y with A =

(

−am cos ϑ L−
−L+ am cosϑ

)

. (A.1)

Proposition A.1. For given k and λ ∈ σ(A), there is at most one eigen-
solution of (A.1), which we denote by Y k, i.e.

A Y k = λ Y k . (A.2)

By continuously varying the parameter ω, the eigenvalue equation (A.2) can
be extended to all values of ω ∈ IR. Both λ and Y k depend smoothly on ω.

Proof. The two fundamental solutions of (A.2) behave near ϑ = 0 like

Y k = (ϑk + o(ϑk), o(ϑk)) and Y k = (o(ϑ−k−1), ϑ−k−1 + o(ϑ−k−1)) ,

respectively. Depending on whether k is ≥ 0 or negative, the second or first
fundamental solution diverges in the limit ϑ → 0. In [1, Appendix A] it was
shown that the eigenfunctions Y k are bounded on S2 and smooth except
at the poles. Thus we can rule out one of the fundamental solutions and
conclude that (A.2) has at most one solution.

Note that the solutions of (A.2) are the eigenvectors of A restricted to
the eigenspace of the operator i∂ϕ with eigenvalue k, which we denote by Hk.
Since the terms involving ω in (A.1) are a relatively compact perturbation,
standard perturbation theory [6] yields that the spectrum of A|Hk depends
continuously on ω. As no degeneracies occur, each eigenvalue λ gives rise
to a unique continuous family of eigenvalues λ(ω). Standard perturbation
theory without degeneracies [6] then yields that λ(ω) and the corresponding
eigenvector Y k(ω) depend smoothly on ω.
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