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ABSTRACT This note answers some questions on holo-
morphic curves and their distribution in an algebraic surface
of positive index. More specifically, we exploit the existence of
natural negatively curved "pseudo-Finsler" metrics on a sur-
face S of general type whose Chern numbers satisfy cl > 2c2 to
show that a holomorphic map of a Riemann surface to S whose
image is not in any rational or elliptic curve must satisfy a
distance decreasing property with respect to these metrics. We
show as a consequence that such a map extends over isolated
punctures. So assuming that the Riemann surface is obtained
from a compact one of genus q by removing a rinite number of
points, then the map is actually algebraic and defines a compact
holomorphic curve in S. Furthermore, the degree of the curve
with respect to a fixed polarization is shown to be bounded
above by a multiple of q - 1 irrespective of the map.

Section 1. Introduction

It has been a well-known question that a holomorphic map
from the complex line into an algebraic manifold of general
type be algebraically degenerate. Classically, this type of
question has been studied by E. Borel, H. Cartan, S. Bloch,
H. Weyl, L. Ahlfors, S. S. Chern, and others. One of the
fundamental tools is the lemma of Ahlfors on the distance
decreasing property of holomorphic maps for manifolds with
negative curvature. It was Chern who generalized and
pointed out the importance of such a lemma to higher
dimensional manifolds. He also coined the concept of hyper-
bolic analysis. Under the leadership of Chern, the geometers
at Berkeley developed an extensive research on this type of
hyperbolic analysis. Outstanding results were obtained by
Griffiths, who applied such analysis to the period map.
However, several important questions remained unan-
swered. As was pointed out by Lang (1), some of these
questions may be related to higher dimensional generaliza-
tions of the Mordell conjecture.
A compact complex manifold is called hyperbolic if there

exists no nontrivial holomorphic map from the complex line
C into the manifold (cf. ref. 2). More generally, we will call
a complex variety M Chern hyperbolic (or C-hyperbolic) if
there exists a proper subvariety V ofM so that the image of
every nonconstant holomorphic map from the complex line C
into M must be in V. M will be called strongly C-hyperbolic
if every holomorphic map of the punctured disk to M not into
V extends over the puncture and weakly C-hyperbolic if the
image of a smaller punctured subdisk under each such map
lies in a compact subvariety with boundary and of positive
codimension. A fundamental problem in the subject of hy-
perbolic analysis asks which variety is C-hyperbolic. A
general feeling is that varieties of general type are C-
hyperbolic. Green and Griffiths (3) have made some ground-
breaking contributions on this problem. Some ideas of Bogo-

molov (4) played an important role in their analysis. Those
ideas were later refined by Miyaoka (5) and led to a stronger
result on surfaces of positive index, claiming that their
cotangent bundles are "almost" ample [cf. also Schneider
and Tancredi (6)]. In this note, we also use the same ideas to
demonstrate that if the minimal model of a two-dimensional
projective variety S is of positive index,t then S is
C-hyperbolict and in fact strongly C-hyperbolic. In a future
paper, we shall weaken the hypothesis of positive index and
study the case when S is quasiprojective.

Section 2. Some Preliminaries

This section will serve mainly to establish the notation to be
used. Unless otherwise specified, objects such as maps,
bundles, and their sections are assumed to be holomorphic.
No distinction will be made between bundles and their
sheaves of sections.
Let M be a complex analytic variety. Given a complex

manifold N and f: N 1-* M a holomorphic map, the pullback
action of f on bundles and their sections over M will be
denoted by f1. If M is nonsingular, a section w of the
canonical bundle KM of M can also be thought of as a
holomorphic top form. To clarify matters, we differentiate
between the pullback on sectionsf-' and that on formsf*, so
that for example ifN has the same dimension as M, thenfcw
= (detdf)flcw where we view detdf as a section of KN 0
f-'Kt.

Let L be a line bundle over M with metric g. We view g as
a smooth section of L*7* so that gIv12 = gvv is real and
positive over the domain of any local nowhere-vanishing
section v of L. Note that dd'loggIv12 is independent of the
local section v (since Adlog~hj2 = Adlogh + Adlogli = 0 for a
holomorphic function h without zero where 27rdd' =
and thus defines locally a smooth global (1, 1)-form cl(g)
called the Chem (or Ricci) form ofg. We note that the natural
metric on C¢I' defines a canonical metric on (-i) over P ".
Its Chern form is positive definite and gives rise to the
well-known Fubini study metric on P11. As another example,
if M is one-dimensional and L = TM then (M, g) defines a
Riemann surface with (Gaussian) curvature K = -Cl(g)g-.
We will need to consider a slight generalization of a metric

on a line bundle: g will be allowed to degenerate, but locally
it will differ from a metric only by a factor of IhlI, where h #
0 is a holomorphic function and v> 0. This means that g is
degenerate only along proper subvarieties and that cl(g)
defines a current which is smooth aside from delta functions
supported along these subvarieties. In this case, g will be
called a pseudometric. Note the identity c1(frlg) = fwcl(g).
We now make some observations about metrics on D and

D*. The Poincar6 (punctured) disk of radius c is defined to be

tImplicit is that the minimal model ofS is unique. So S cannot be CP2
and, by Kodaira classification of surfaces with positive index, must
in fact be of general type.
tIn principle we can find the corresponding algebraic subvariety
explicitly.
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EDC (respectively, lD*), the (punctured) disk of radius c,
equipped with the Poincare metric:

204 \/717
P(Z) = (c 2 - 12V)2 2i dz A dZ

(respectively, p*(z) = zJ2(Aod/c12)22ir /

One can verify directly that both the Poincare disk and the
Poincard punctured disks of radius c are complete and have
constant curvature K = -1/C2 and that the latter has a finite
area in a neighborhood of the puncture. The following is
self-evident and will be applied to show the Schwarz lemma
in Section 3.
LEMMA 1. Let g be a complete Hermitian metric on D.

Define ma: D ~-*D byma(z) = az, 0< a < 1 IfQa = - Mag,
then lim,1Qa(z) = 1 for all z in D and limlzHlQa(z) = 0.

Section 3. The Main Theorem

Let S be a surface of general type with cotangent bundle
denoted by fls. Let P be the projectivized tangent bundle of
S and L = Op(os)(- 1) be the tautological line bundle defined
over P. In what follows, we may assume that S is minimal
without affecting any conclusions.

3.1: The Case cl > c2. LEMMA 2. LetH be a line bundle over
P. Ifc1(S) > C,(S), then there are positive constants a and mo
such that ho(P, L*mH-l) > am3for m > mi.

Proof: From (L*)2 + Ir*cl(S).(L*) + 1r*c2(S) = 0, we see
= cl(S) - C,(S) > O so that X(L*r) dominates a positive

multiple of m3 for m >> 0 by the Riemann-Roch formula.
Now h2(L*m) = h2(S, SmflS) = h0(S, Smfls 0 KK(m-l)) by
Serre duality. Km-' being effective thus gives h2(L*m)
ho(X, Smf1s) = ho(L*m) for m >> 0. So, 2h0(L*m) .h(L*M)
+ h2(L*m) ' X(L*m) for m >> 0. As ho(L*m6(H)) = O(m2), the
exact sequence 0 -- L*mH-l L*m -* L*ml(H -- 0 now
shows hO(L*mH-l) > am3 for some a > 0 and m >» 0, as
desired. S
Now take H = fr*Ho, where Ho is a very ample line bundle

on S. Let t1, . , tN form a basis of sections of Ho giving a
projective embedding for S and si = lr*ti. Let o be a section
ofL*mHl and Zu be its set of zeros in P. Then asl, .* , O'SN
are sections of L*m, and g' = (2'=, 10.542)1/m defines a
pseudometric on L. Consider a nontrivial holomorphic map
fo from a complete Riemann surface l to S. It naturally
induces a map ffrom X to P. We may view dfo as a section
T of K, 0f-'L. Then ui = rmf-l(a(s1) is a section of Km, i =
1,. N. We assume f(X) ¢ Za so that (ul, . , UN) has
only isolated zeros on X. We define a pseudometric gf on
Kil = TY via gf(v)m = 2jIu(v)12, v E T.. Note that gf =
(f 1g')jrJ2. Let g be the metric defining the Riemann surface
:. 4 = g-lgf is then a well-defined function on Y. with iso-
lated zeros. We thus obtain, as a current, that ddclog(om) =
m[Kg +f*cl(g') + Z(T)] = mKg +fo*Wc + Z(,Of) + mZ(T), where
K is the curvature of g and co is the pullback of the Fubini
study metric under the embedding of 5.§ Integrating this
equation, we obtain Hohf(X) < -mV(X) when E is compact
where x(E) is the Euler characteristic of E.
When L is not compact, one can still deduce a pointwise

estimate (after a simple rescaling of g')¶ that super < -infYK
from either of the following arguments:

(i) The metric et on S endows naturally a metric go on L,
which by compactness ofP, dominates a constant multiple of
the pseudometric mg' on L. The constant multiple can be
absorbed into the definition of g' without changing its Chern
form, and we assume this has been done. Observe then that
foj'to = (f1go)jrj2 > M(f-1g')jrj2 = mgf. We thus see that
4F'A4) 2 A log(o) = K + (mg)Y'foc > K + 4. The method of
section 2 of ref. 7 now carries over verbatim to give the
desired estimate (cf. Appendix for detail).

(ii) As X is one dimensional, one can emulate the usual
proof of Ahlfor's lemma: Observe that if 4) attains its maxi-
mum, then 0 2 dd'logO at the maximum so that -Kg = cl(g)
2 dd''logo + cl(g) = cl(gf) = f*cl(g') = m-lfo*w > gf =
(maxx))g there by the preceding observation. In particular,
the estimate holds ifX is compact. Pulling back the metric, we
may replace E by its universal cover D, C, or P1. We first
consider the case l = 0. Replacingf by fo mId for 0 < d <
1 where md(x) = dx, we see with the help of Lemma 1 that
4 approaches zero at the boundary of D and so must attain
its maximum Od in D. Hence, ad< -K for all d< 1. The result
follows in this case since limd-,14d = sups;+. The remaining
cases are now easily excluded from our consideration as C
with its flat metric can be exhausted by Poincare disks of
ever-increasing radius whose curvatures go to zero forcing 4
-0, contradicting our assumption on f (see also ref. 8). 5
Remark: We need this pointwise estimate only for the

Poincare disk.
Armed with this, a big Picard type theorem lends itself in

a standard fashion: Making the same assumptions, we take X
to be the Poincare punctured disk D'* with c > 1. We will
show that fJo has finite mass in a neighborhood of the
puncture, namely in D*, so thatfo extends over the puncture
by a well-known theorem of Bishop (9). Since -Kg = C-2g
has bounded mass near the puncture as the g area is bounded
there, we need only to bound the integral of u = dd'log(o)
there as a current. But as such, fDc*p = 4F'(1) - lim0EV'(E),
where ¢F(r) = fo'1ogO(re'0. Now over the interval (0, 1), (D
is bounded from above as we know 4 is and is smooth except
for harmless isolated discontinuities contributed from the
"positive" delta functions. So one can produce a sequence r1
-* 0 such that r,D'(r,) 2 -E, for otherwise we may assume
¢'(r) < -Esr for r < 8, which would contradict the bound-
edness of (D as r approach 0. Hence we are done.
To recapitulate, assuming f(X) is not a subset of Z", we

have (i) if X is compact, then the degree off0(l) is bounded
in terms of its genusll; (ii) compact or not, l cannot have
nonnegative curvature; and (iii) the big Picard theorem holds
if Y. = D*. To deal with the case whenf(Y:) C ZO, we need the
following:

3.2: The Case of Positive Index [=(c2 - 2c2)/3]. LEMMA 3.
Let Y be any nonvertical component ofZ¢, Ly = Lly, and H'
be a line bundle over Y. If c4(S) > 2c2(S), then we have for
m >> 0 that h0(Y, Ltm 0 H'-) > bM2, where b > 0.
Proof: As a divisor up to linear equivalence, Y = n(L*) +

7r*(F) for some line bundle F over S and n > 0. We obtain

(Ly)2 =(L*)2-Y
= (L*)2-(n(L*) + w*(F))

= n(c2(S) - c2(S)) + cl(S) (F)

(L1y){(i*Ks) = n(KS)2 + (Ks)-(F).
As [Y] = L*n 0 .*F is effective, {0} --A HO(P, [Y]) = HO(S,
S"fs 0) F) = Hom(F-1, SI"f5). Therefore, F-1 has a

tln fact a simple rigidity argument bounds the number of such
curves, and indeed the Mordell conjecture over complex function
field follows in this case (cf. ref. 8).

§We use ZD to denote the current associated to the divisor D.
lndependent offo or A.
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nontrivial map into Sf15s. By the semistability of f15 (and
therefore of Snlfs) with respect to Ks (cf. refs. 10 and 11), we
have

-(F)-(Ks) c- (de( S'S)) (Ks) = n (Ks)'rank(Snfls) 2

Therefore,

(L*).lr*(Ks) = nc2(S) + (Ks) * (F)

nc2(S) - (KS)2n1 2

= 2c(S)>0.
2

(Ly)2 - n(cd(S) - C2(S)) - (Ks)-(F)

2 - 2c2(S))- (C 2(S) )2

>0.
Serre duality says h2(L*ym) = h0(L'Ky), which vanishes for m
>> 0 by virtue of ir*(Ks) * (-m(Lf) + (Ky)) < 0 and Ks being
numerically effective. Therefore, h°(Lrm) X(LrV) > bM2
for some b > 0 and m >> 0. So ho(LmHI'-I) > bM2 follows
exactly as before. O
So assumef(l) lies in a nonvertical component YofZ' and

let H' = i.*H01 y. The same argument as before shows that if
0 7 o" E H0(LtmH-1),tt then either fo(Y) C *r(Z0') or
Hofo(l) is bounded by -mX(Y) and Y is complete negatively
curved. In this latter case, the image of fo lies in a finite
number of fixed algebraic curves, necessarily rational or
elliptic. Also if I is the punctured disk, then f extends as a
holomorphic map to the whole disk unlessf(l) lies in those
fixed algebraic curves. Collecting these facts gives the main
theorem, which we state as follows.
THEOREM 1. Let S be a variety that dominates a minimal

surface ofgeneral type andpositive index.tt Then S is weakly
C-hyperbolic. Further, if S is two-dimensional and, in par-
ticular, ifS has a minimal model ofpositive index, then there
is only afinite set ofrational or elliptic curves in S. Let E be
the union of these curves. We conclude that holomorphic
images ofcomplete nonnegatively curved Riemann surfaces
must lie in E. Also, a holomorphic map ofD* not into E must
extend to D. In particular, S is strongly C-hyperbolic. Fur-
thermore, a compact curve I in S must either sit in E or have
degree bounded by -aX(1), where a > 0 depends only on S
and its polarization.

Appendix

Here, we will give a proof following ref. 7 of the pointwise
estimate of section 3.1 in a more general setting, namely, of
the following proposition.
PROPOSITION A.1. Let M be a complete Riemannian man-

ifold with Ricci curvature bounded from below. If a non-
negative C°function 4 q 0 is C2 and satisfies AO 2.- K4 + 42
away from its zero set, then supMo - -infMK.
As in section 2 of ref. 7, the proof is based on the following

theorem from ref. 12.
PROPOSITION A.2. Let M be as above, and let f be a

continuous function bounded from below. Iffor some C >
infmf, f is C2 over the set defined by f < C, then for all E >

0, there exist p E M such that at p: IVf < E, Af> -E and f(p)
< infMf + E.
We base the proof here on the following lemma,§§ of

independent interest:
LEMMA A.1. Let M be as above, and p E M. There is a

smooth (i.e., C2) function h on M such that

lVhl<Co, h>Clp, IAhI<C2
for positive constants CO, C1, C2, and p(x) = dist(p, x).

ProofofProposition A.2. If h is as in Lemma A.l, the set
F; = {h . i} is contained in the ball of radius i and so is
compact. Let hi = max(1 - h/i, 0); then hi is supported on Fi
and lim;,.hi(x) = 1 for all x E M. We may assume without
loss of generality that infmf = 0. Iff(p) = 0 for some p E M
then we have proved the proposition. Hence, we may assume
f> Oso that 1/f is also C2 and positive. Now hi/fis supported
on Fi and so achieves its maximum Hi there, say at xi.Given
E > 0, there exists an x in M such that f(x) < E/2 and an
integer n such that hi(x) > 1/2 for all i > n. So with this choice
of x and i, we see f(x,) < 1/Hi < f(x)/hi(x) < e. As R; =
log(hi/f) also attains its maximum at xi, VRi = 0 and ARi
0 at xi. So we obtain, respectively, that at xi

Vf Vhi Af Ahi
- = - and - '-h.
f hi f hi

These give IVf = HT IVhil < ECO/i and Af -. H'Ahi >
-eC2/i at xi for i > n.910 O
Proof of Proposition A. 1. Let f = (4 + c)-1/2; then by

direct computation

VoVf = C)3T22(4) +
Af= -A4) 31V4)2

2(4) + c)2 (4) + c)3
Using AO) 2 KO + 42 at a neighborhood of the supremum of
4, we obtain

-K4) - 4)2 fAf- 12IAfI2 > -(infMf+ e)E- 12E = 8,
2(4)+C)2-

where the last inequality holds at some point wheref< infpf
+ e by Proposition A.2. Hence, there are points where -KO
2 42 - 8(4 + C)2 2 (1 + 8)42 and where 4 approaches its
supremum as E (and therefore 8) approaches zero. Q.E.D.
Note Added in Proof. Lang explicitly made the conjecture (cf. ref. 1)
that varieties of general type are C-hyperbolic (or more properly
pseudohyperbolic in the terminology of ref. 1). We have learned from
a letter from him that he and Paul Vojta have independently arrived
at the conjecture from two different angles.

§§Theorem 1.4.2 on p. 30 of section 1.4 of ref. 13.
1Note that we have used only the facts that h is proper and that Vh,
Ah are bounded.
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