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Abstract

We study the differential polynomial rings which are defined using the special geometry of

the moduli spaces of Calabi-Yau threefolds. The higher genus topological string amplitudes are

expressed as polynomials in the generators of these rings, giving them a global description in

the moduli space. At particular loci, the amplitudes yield the generating functions of Gromov-

Witten invariants. We show that these rings are isomorphic to the rings of quasi modular forms

for threefolds with duality groups for which these are known. For the other cases, they provide

generalizations thereof. We furthermore study an involution which acts on the quasi modular

forms. We interpret it as a duality which exchanges two distinguished expansion loci of the

topological string amplitudes in the moduli space. We construct these special polynomial rings

and match them with known quasi modular forms for non-compact Calabi-Yau geometries and

their mirrors including local P2 and local del Pezzo geometries with E5, E6, E7 and E8 type

singularities. We provide the analogous special polynomial ring for the quintic.
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1 Introduction

The study of physical theories within their moduli spaces has proven to be a rich source of

insights for mathematics and physics. For SU(2) gauge theory, the exact low energy effective

energy has been deduced in Ref. [1] by understanding the singularities in the moduli space due

to a monopole and a dyon becoming massless. Tracking the physical behavior of the theory has

been achieved using the periods of an elliptic curve, whose monodromies take account of the

various one loop contributions in different patches of the vacuum manifold of the theory or the

moduli space. A key insight was the use of two different dual local coordinates on the moduli

space a, aD, depending on which region of moduli space is described. The physical coupling τ

is computed as τ = ∂aD/∂a in the weak coupling, electric phase of the theory while the dual

coupling τD in the magnetic phase is computed as τD = ∂a/∂aD. The exchange of the two

different expansion loci in the moduli as well as the two different theories attached to them is

the N = 2 version of electric-magnetic duality.

The broader context to answer these types of questions about moduli spaces of physical

theories and their dualities is string theory. The elliptic curve parameterizing the Seiberg-

Witten solution can be understood as part of a Calabi-Yau (CY) threefold [2]. The moduli

space in the geometric context is that of complex structures. The singular loci which are the

analogs of the loci where the monopoles became massless correspond to conifold singularities

where a three cycle shrinks to zero size [3, 4]. The physics of this singularity was understood in

Ref. [5].

Topological string theory provides a set of ideas and tools to study questions related to

moduli spaces of theories, it allows one furthermore to use the power of mirror symmetry which

identifies two deformation families of topological strings.1 The topological string partition

function is defined as a perturbative sum over free energies associated to worldsheets of genus

1See Ref. [6] and references therein.
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g [7]:

Ztop(t, t̄) = exp

 ∞∑
g=0

λ2g−2F (g)(t, t̄)

 , (1.1)

where λ is the topological string coupling constant and where the dependence on t, t̄ stands for

the dependence on a set of local coordinates and on a choice of background. This dependence

was put forward by Bershadsky, Cecotti, Ooguri and Vafa (BCOV) in Refs. [8, 7] and interpreted

as a change of polarization of a wave function in Ref. [9]. The wave function interpretation gives

a background independent meaning to the topological string partition function as an abstract

state in a Hilbert space which is obtained from the geometric quantization of a bundle on

the moduli space. This bundle carries the analogous information as the electric and magnetic

variables a and aD in the Seiberg-Witten setup, the change between these variables can thus be

thought of as a change between conjugate symplectic Darboux coordinates.

The wave function property is also another manifestation of the fact that the partition

function reflects the physical dualities of the target space. Whenever the duality group has

an SL(2,Z) or a subgroup thereof sitting in it, the perturbative topological string amplitudes

can be expressed as polynomials of the corresponding quasi modular forms [10, 11] as shown

by BCOV [7] and many subsequent works, e.g. [12, 13, 14, 15, 16, 17, 18]. Expressing the

higher genus topological string amplitudes as polynomials in the generators of the ring of quasi

modular forms is in particular useful to examine the global properties of these functions [16, 17].

In particular, the singular behavior of the higher genus free energies associated with Seiberg-

Witten theory at the locus where the monopole becomes massless was used in Ref. [16] to fix

the holomorphic ambiguity of the holomorphic anomaly recursion.

In general the differential ring of quasi modular forms for an arbitrary target space duality

group is not known. It was nevertheless possible to prove that the higher genus topological

string amplitudes can be expressed in terms of polynomials in a finite number of generators

using the special geometry of the deformation space [19, 20], the structure and the freedom

in the choice of generators was further discussed in Refs. [21, 22]. In terms of the polynomial

generators one can obtain global expressions for the topological string amplitudes. In particular,

the expected physical behavior of these amplitudes at special loci in the moduli space can be

examined and used for the higher genus computation on compact CYs [23, 24, 25].

In this work we start from the differential polynomial rings as defined in Ref. [20] and show

that special choices of the generators as well as of the coordinate on the moduli space lead to

a special form of the polynomial ring which allows us to define a grading with nice properties.

For certain families of non-compact CY threefolds, we identify the moduli spaces of complex

structures with some modular curves and explore their arithmetic properties. The generators

and the grading coincide with the generators of the ring of quasi modular forms and the modular

weight for CY families with duality groups for which these forms are known explicitly. They

provide a generalization thereof for the other cases. Having expressed the topological string

amplitudes in terms of quasi modular forms of the duality group it is furthermore possible to
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act on the amplitudes with an involution, the Fricke involution, on the moduli space which

exchanges the expansion of the quasi modular forms at two different cusps. We interpret this

involution as a duality operation which exchanges the large complex structure and the conifold

loci, providing the analogs of the action of electric-magnetic or N = 2 gauge theory S−duality,

in the sense put forward by Ref. [1] and examined in much more detail recently following

Refs. [26, 27].

The plan of this paper is as follows. In Section 2 we start by reviewing the setup and the

definition of the differential polynomial rings which are defined using the special geometry of

the moduli space of a CY. The BCOV anomaly equations lead to a polynomial recursion for

the topological string amplitudes. We work out the polynomial structure in special coordinates

for the functions obtained from the amplitudes which are sections of different powers of a line

bundle on the moduli space. We proceed by defining a modified set of generators as well as a

new coordinate τ and define the special polynomial ring obtained in this way and discuss its

properties.

In Section 3 we review elements of the theory of quasi modular forms. In particular we

review the construction of the appropriate rings of quasi modular forms for the subgroups

Γ0(N), N = 1∗, 2, 3, 4 of the full modular group PSL(2,Z).2 We highlight the Fricke involution

which acts on the generators of the rings of quasi modular forms and exchanges their expansions

at two different cusps of the modular curves. Relating these moduli curves to the moduli spaces

of non-compact CY manifolds, we interpret the action of the involution as an action of a duality

which exchanges the large complex structure and conifold loci.

In Section 4 we construct the special polynomial rings defined in Section 2 for a number

of examples. In the case of non-compact CY geometries, which we study on the B-side, the

special polynomial rings coincide with the rings of quasi modular forms when the duality group

is Γ0(N) for N = 1∗, 2, 3, 4. We study local P2, and local geometries with En singularities for

n = 5, 6, 7, 8. We verify that the duality action exchanges the two different expansion loci in

the moduli space. We furthermore apply the general construction of the special polynomial

rings to the case of the quintic, this differential polynomial ring provides a generalization of the

rings of quasi modular forms for this case. Finally, we give our conclusions and provide some

technicalities in the appendices.

2 Special geometry polynomial rings

2.1 Special geometry ring

Special geometry3 is the target space geometric realization of the chiral ring [29] underlying

mirror symmetry. It describes the geometry of the moduli space M using the variation of a

2The notation 1∗ is introduced in Sec. 3.1
3For a review see [28] and references therein.
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decomposition of a bundle H over M. While this structure is common to both the A- and

B-sides of mirror symmetry we will adopt the language of the B-model in the following. Fixing

a complex structure on M, at any given point in the base manifold the fibre of the bundle H
can be decomposed into the following form [7] (For the B-model this gives the familiar Hodge

decomposition):

H = L ⊕ L⊗ TM⊕L⊗ TM⊕L , (2.1)

where L is the Hodge line bundle, TM is the holomorphic tangent bundle and L and TM are

their complex conjugates. An additional ingredient is the cubic coupling which is a holomorphic

section of L2⊗Sym3T ∗M, these are denoted by Cijk, i, j, k = 1, . . . , n = dimM. The metric on

L is denoted by e−K and provides a Kähler potential for a metric on M given by Gī = ∂i∂̄K.

The curvature of the metric is furthermore given by:

R l
īı j = [∂̄ı̄, Di]

l
j = ∂̄ı̄Γ

l
ij = δliGjı̄ + δljGīı − CijkC

kl
ı̄ , (2.2)

where Di is the covariant derivative with connection parts which follow from the context

Γkij = Gkk∂iGkj , and Ki = ∂iK, (2.3)

for the tangent bundle and the line bundle respectively and

C
jk
ı̄ := e2KGkk̄Gll̄C ı̄k̄l̄. (2.4)

Choosing a section Ω of L one can obtain sections of the summands in Eq. (2.1) by acting on Ω

with the covariant derivatives. The Cijk furthermore define a ring structure on sections of H.

This can be phrased for example as

DiDjΩ = iCijke
KGkk̄Dk̄Ω . (2.5)

2.2 Holomorphic anomaly and polynomial ring

Holomorphic anomaly equations

The topological string amplitude or free energy F (g) at genus g as defined in Ref. [7] is a section

of the line bundle L2−2g over M. The correlation function at genus g with n insertions F (g)
i1···in

is only non-vanishing for (2g − 2 + n) > 0. They are related by taking covariant derivatives as

this represents insertions of chiral operators in the bulk, e.g. DiF (g)
i1···in = F (g)

ii1···in .

In [7] it is shown that the genus g amplitudes are recursively related to lower genus amplitudes

by the holomorphic anomaly equations:

∂̄ı̄F (g) =
1

2
C
jk
ı̄

(
g−1∑
r=1

DjF (r)DkF (g−r) +DjDkF (g−1)

)
. (2.6)
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At genus 1, an additional equation was given in Ref. [8]

∂̄ı̄F (1)
j =

1

2
CjklC

kl
ı̄ + (1− χ

24
)Gjı̄ , (2.7)

where χ is the Euler character of the CY threefold. All higher genus F (g) are determined

recursively from these up to a holomorphic ambiguity.

A solution of the recursion equations is given in terms of Feynman rules [7]. The propagators

S, Si, Sij for these Feynman rules are related to the three-point or Yukawa couplings Cijk as

∂ı̄S
ij = C

ij
ı̄ , ∂ı̄S

j = GīıS
ij , ∂ı̄S = GīıS

i. (2.8)

By definition, the propagators S, Si and Sij are sections of the bundles L−2 ⊗ SymmTM with

m = 0, 1, 2, respectively. The vertices of the Feynman rules are given by the correlation functions

F (g)
i1···in .

Polynomial structure

In Ref. [19] it was proven that the higher genus topological string amplitudes for the quintic and

related CY families with one-dimensional moduli spaces can be expressed as polynomials in a

finite number of generators obtained from the closure of the ring of multi-derivatives acting on

the connections. In Ref. [20], the generalization of this construction was given for an arbitrary

CY. It was proven that the correlation functions F (g)
i1···in are polynomials of degree 3g−3+n in the

generators Ki, S
ij , Si, S where a grading 1, 1, 2, 3 was assigned to these generators respectively.

It was furthermore shown that by making a change of generators [20]

S̃ij = Sij ,

S̃i = Si − SijKj ,

S̃ = S − SiKi +
1

2
SijKiKj ,

K̃i = Ki , (2.9)

the F (g) do not depend on K̃i, i.e. ∂F (g)/∂K̃i = 0.

The proof is inductive and starts by expressing the first non-vanishing correlation functions

in terms of these generators. At genus zero these are the holomorphic three-point couplings

F (0)
ijk = Cijk. The holomorphic anomaly equation Eq. (2.6) can be integrated using Eq. (2.8) to

F (1)
i =

1

2
CijkS

jk + (1− χ

24
)Ki + f

(1)
i , (2.10)

with ambiguity f
(1)
i . As can be seen from this expression, the non-holomorphicity of the cor-

relation functions only comes from the generators. Furthermore the special geometry relation

(2.2) can be integrated:

Γlij = δliKj + δljKi − CijkSkl + slij , (2.11)
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where slij denote holomorphic functions that are not fixed by the special geometry relation4, this

can be used to derive the following equations which show the closure of the generators carrying

the non-holomorphicity under taking derivatives [20].5

DiS̃
jk = δji (S̃

k + S̃kmKm) + δki (S̃j + S̃jmKm)− CimnSmjSnk + hjki ,

DiS̃
j = 2δji S̃ + δji S̃

mKm − S̃jKi − kikS̃jk + hji ,

DiS̃ =
1

2
CimnS̃

mS̃n − 2KiS̃ − hijS̃j + hi ,

DiKj = −KiKj − CijkS̃k + kij , (2.12)

an additional equation for the holomorphic Cijk can be derived in a similar fashion:

DiCjkl = −KiCjkl −KjCikl −KkCjil −KlCjki + CijmS̃
mnCnkl

+CikmS̃
mnCnjl + CilmS̃

mnCnjk + hijkl , (2.13)

where hjki , h
j
i , hi, kij and hijkl denote holomorphic sections of L−2,L−2,L−2,L0,L2 respectively.

All these sections together with the functions slij in Eq. (2.11) are not independent. It was shown

in Ref. [21] (see also Ref. [22]) that the freedom of choosing the holomorphic sections in this

ring reduces to holomorphic sections E ij , Ej , E which can be added to the polynomial generators

Ŝij = S̃ij + E ij ,
Ŝj = S̃j + Ej ,
Ŝ = S̃ + E . (2.14)

All the holomorphic quantities change according to the following equations

ŝkij = skij + CijlE lk ,
k̂ij = kij + CijlE l ,
ĥjki = hjki + θiEjk + ŝjimE

mk + ŝkimEmj − CimnEnkEmj − δki Ej − δ
j
i E

k ,

ĥji = hji + θiEj − 2δji E + ŝjimE
m − CimnEnjEm + k̂ikEkj ,

ĥi = hi + θiE −
1

2
CimnEmEn + k̂ijEj . (2.15)

The topological string amplitudes now satisfy the holomorphic anomaly equations where the

∂̄ı̄ derivative is replaced by derivatives with respect to the polynomial generators [20].

∂̄ı̄F (g) = C
jk
ı̄

(
∂F (g)

∂Sjk
− 1

2

∂F (g)

∂S̃k
Kj −

1

2

∂F (g)

∂S̃j
Kk +

1

2

∂F (g)

∂S̃
KjKk

)
+Gı̄j

∂F (g)

∂Kj
(2.16)

4See Ref. [21] for a discussion of how many of these are independent.
5These equations are for the tilded generators of Eq.(2.9) and are obtained straightforwardly from the equations

in Ref. [20].
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=
1

2
C
jk
ī

(
g−1∑
r=1

DjF (r)DkF (g−r) +DjDkF (g−1)

)
(2.17)

assuming the linear independence of C
jk
ı̄ and Gı̄j , this gives two sets of equations by setting the

coefficients of these functions to zero. The second set of equations in particular dictates that:

∂F (g)

∂Kj
= 0 . (2.18)

2.3 Boundary conditions

The mirror pair of CY threefolds (Z,Z∗) we denote by zi, i = 1, . . . , n = h1,1(Z) = h2,1(Z∗), the

local coordinates on the moduli space M of complex structures of Z∗ near the large complex

structure limit. The loci in M at which the complex structure becomes singular are described

by the components ∆a(z) of the discriminant, where a runs over the number of discriminant

components.

Genus 1

The holomorphic anomaly equation at genus 1 (2.7) can be integrated to give:

F (1) =
1

2

(
3 + n− χ

12

)
K +

1

2
log detG−1 +

n∑
i=1

si log zi +
∑
a

ra log ∆a . (2.19)

The coefficients si and ra are fixed by the leading singular behavior of F (1) which is given by

[7]

F (1) ∼ − 1

24

∑
i

log zi

∫
Z
c2Ji , (2.20)

for a discriminant ∆ corresponding to a conifold singularity the leading behavior is given by

F (1) ∼ − 1

12
log ∆ . (2.21)

All physical particles which become massless somewhere in the moduli space contribute to the

genus 1 amplitude [30], this is extremely useful in anticipating the singularities at higher genus.

For instance, we will study two different types of examples regarding the singularity at the

orbifold expansion point.

Higher genus boundary conditions

The holomorphic ambiguity needed to reconstruct the full topological string amplitudes can be

fixed by imposing various boundary conditions for F (g) 6at the boundary of the moduli space.

6Technically, these conditions are satisfied by the holomorphic limits of F (g), which are defined in [7, 8] and recalled

below in (2.39).
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The large complex structure limit

The leading behavior of F (g) at this point (which is mirror to the large volume limit) was

computed in [8, 7, 31, 32, 33, 34]. In particular the contribution from constant maps is

F (g)|qa=0 = (−1)g
χ

2

|B2gB2g−2|
2g (2g − 2) (2g − 2)!

, g > 1, (2.22)

where qa denote the exponentiated mirror map at this point.

Conifold-like loci

The leading singular behavior of the partition function F (g) at a conifold locus has been deter-

mined in [8, 7, 35, 36, 32, 34]

F (g)(tc) = b
B2g

2g(2g − 2)t2g−2
c

+O(t0c), g > 1 , (2.23)

Here tc ∼ ∆
1
m is the flat coordinate at the discriminant locus ∆ = 0. For a conifold singu-

larity b = 1 and m = 1. In particular the leading singularity in (2.23) as well as the absence

of subleading singular terms follows from the Schwinger loop computation of [32, 34], which

computes the effect of the extra massless hypermultiplet in the space-time theory [30]. The

singular structure and the “gap” of subleading singular terms have been also observed in the

dual matrix model [37] and were first used in [16, 23] to fix the holomorphic ambiguity at higher

genus. The space-time derivation of [32, 34] is not restricted to the conifold case and applies

also to the case m > 1 singularities which give rise to a different spectrum of extra massless

vector and hypermultiplets in space-time. The coefficient of the Schwinger loop integral is a

weighted trace over the spin of the particles [30, 36] leading to the prediction b = nH − nV for

the coefficient of the leading singular term.

The holomorphic ambiguity

The singular behavior of F (g) is taken into account by the local ansatz

hol.ambiguity ∼ p(zi)

∆(2g−2)
, (2.24)

for the holomorphic ambiguity near ∆ = 0, where p(zi) is generically a polynomial in z obtained

by combining the local information at the various boundary points of the moduli space.

2.4 Special coordinates

A special set of coordinates on the moduli space of complex structures of Z∗ will be discussed

which permit an identification with the physical deformations of the underlying theory (see
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Ref. [28] and references therein). The discussion in the following is on the B-model side, the

special coordinates defined here provide the mirror maps which give the local coordinates on

the A-side. Choosing a symplectic basis of 3-cycles AI , BJ ∈ H3(Z∗)

AI ∩BJ = δIJ = −BJ ∩AI , AI ∩AJ = BI ∩BJ = 0 ,

and a dual basis αI , β
J of H3(Z∗) such that∫
AI
αJ = δIJ ,

∫
BJ

βI = δIJ , I, J = 0, . . . h2,1(Z∗) , (2.25)

the (3, 0) form Ω(x) can be expanded in the basis αI , β
J :

Ω(x) = XI(x)αI + FJ(x)βJ . (2.26)

The periods XI(x),FJ(x) satisfy the Picard–Fuchs equation of the B-model CY family and

can be identified with projective coordinates on M and FJ with derivatives of a homogeneous

function F(XI) of weight 2 such that FJ = ∂F(XI)
∂XJ . In a patch where X0(x) 6= 0 a set of special

coordinates can be defined

ta =
Xa

X0
, a = 1, . . . , h2,1(Z∗). (2.27)

The normalized holomorphic (3, 0) form v0 = (X0)−1Ω(t) has the expansion:

v0 = α0 + taαa + βbFb(t) + (2F0(t)− tcFc(t))β0 , (2.28)

where

F0(t) = (X0)−2F and Fa(t) := ∂aF0(t) =
∂F0(t)

∂ta
.

F0(t) is the prepotential. One can define

va = αa + βbFab(t) + (Fa(t)− tbFab(t))β0 , (2.29)

vaD = βa − taβ0 , (2.30)

v0 = −β0 . (2.31)

The Yukawa coupling in special coordinates is given by

Cabc := ∂a∂b∂cF0(t) = −
∫
Z∗
v0 ∧ ∂a∂b∂cv0 . (2.32)

Defining further the vector with 2h2,1 + 2 components

v = (v0 , va , vaD , v0)t , (2.33)
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it satisfies by construction

∂a


v0

vb
vbD
v0

 =


0 δca 0 0

0 0 Cabc 0

0 0 0 δba
0 0 0 0


︸ ︷︷ ︸

:=Ca


v0

vc
vcD
v0

 , (2.34)

which defines the (2h2,1 +2)×(2h2,1 +2) connection matrices Ca, in terms of which the equation

can be written in the form:

(∂a − Ca) v = 0 , (2.35)

this is a distinguishing property of the special coordinates.

2.5 Special polynomial ring

The form of the closure of the polynomial ring under derivatives and the polynomial grading of

F (g) suggests that this ring might lead to a generalization of the ring of quasi modular forms

of Ref. [10]. In the following we will modify the generators as well as the coordinates on the

moduli space in order to provide the generalization of this ring. We will show later in a number

of examples that these transformations indeed lead to the rings of quasi modular forms in cases

where these are known. For the sake of simplicity we will first start with one moduli cases, a

generalization to more moduli will be discussed elsewhere.

We will consider one-dimensional deformation spaces with three regular singular points lo-

cated at (0, 1,∞) of an algebraic complex structure modulus α. This modulus is the more

familiar algebraic complex structure modulus z at large complex structure, up to a constant d

dictated by the Picard-Fuchs (PF) system. The form of the three-point function in these cases

is7:

z3Czzz =
κ

1− α
, α = d · z , (2.36)

where κ gives the classical triple intersection of the A-model geometry and (1 − α) is the

discriminant and d is determined by the PF system.

7In general this is z3Czzz = κ/(1− α)
a3
2a4 if the Picard-Fuchs operator is a4(1− α) θ4 − a3α θ3 + · · · , see Ref. [38].
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Polynomial ring of sections in arbitrary coordinates

The ring of polynomial generators (2.12) for one-dimensional moduli space with local coordinate

z becomes:
DzS

zz = 2S̃z + 2SzzKz − Czzz(Szz)2 + hzzz ,

DzS̃
z = 2S̃ − kzzSzz + hzz ,

DzS̃ =
1

2
Czzz(S̃

z)2 − 2KzS̃ − kzzS̃z + hz ,

DzKz = −(Kz)
2 − CzzzS̃z + kzz ,

(2.37)

in addition we have

DzCzzz = −4KzCzzz + 3(Czzz)
2S̃zz + hzzzz . (2.38)

as discussed before Szz, S̃z and S̃ are sections of L−2 and Czzz is a section of L2.

These equations expressing the closure of the non-holomorphic generators as well as the

holomorphic three-point function under holomorphic derivatives in particular also hold if the

holomorphic limit is taken. By this we mean fixing a base point, finding the canonical coordi-

nates (t, t̄) at that point and then treating these as independent variables and taking the limit

t̄→∞ as described in Ref. [7]. In this limit the Kähler potential and the metric reduce to

e−K |hol = X0 , Gzz̄|hol = Cz̄
∂t

∂z
, (2.39)

with the period X0 and the flat coordinate t introduced in Eq. (2.27) and where Cz̄ is a constant.

A trivial choice of the freedom in defining the generators discussed in Refs. [21, 22] is such

that all the generators vanish. In this limit all equations are trivial except for the last one

which reflects the Picard-Fuchs equation. It was furthermore shown in explicit examples [20,

21, 22, 24, 25, 6] that there are choices of Ezz, Ez, E such that hzzz , h
z
z, hzz, hz, hzzzz are rational

functions in z of the form p(z)/∆ where ∆ is the discriminant, and p(z) is a polynomial in the

algebraic complex structure coordinates.

Polynomial ring of functions in special coordinates

In order to obtain a ring of functions on the moduli space instead of sections of powers of the line

bundle L, we choose X0, a section of L, to multiply the different sections and produce functions.

Furthermore we switch to the special coordinates t and consider the following transformed

objects:

Stt = (∂zt)
2(X0)2 Szz , S̃t = (∂zt)(X

0)2 S̃z , S̃0 = (X0)2 S̃ , Kt = (∂zt)
−1Kz , (2.40)

as well as

Cttt = (X0)−2 (∂zt)
−3Czzz . (2.41)
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In the holomorphic limit (2.39), the expressions for the connections become:

Kz = −∂z logX0 , Γzzz =
∂z

∂t

∂2t

∂z2
, (2.42)

The polynomial ring in the holomorphic limit, using the special coordinates becomes:

∂tS
tt = 2S̃t + 2SttKt − Cttt(Stt)2 + (X0)2(∂zt)h

zz
z ,

∂tS̃
t = 2S̃0 − (∂zt)

−2kzzS
tt + (X0)2 hzz ,

∂tS̃0 =
1

2
Cttt(S̃

t)2 − 2KtS̃0 − (∂zt)
−2kzzS̃

t + (∂zt)
−1(X0)2 hz ,

∂tKt = −(Kt)
2 − CtttS̃t + (∂zt)

−2kzz ,

∂tCttt = −4KtCttt + 3(Cttt)
2 Stt + (X0)−2(∂zt)

−4 hzzzz .

(2.43)

Special polynomial ring in τ coordinates

In the following we will redefine some of the generators as well as use a different coordinate

given by:

τ =
1

κ
∂tFt , (2.44)

which gives furthermore
∂τ

∂t
=

1

κ
Cttt . (2.45)

We define the following functions on the moduli space:

K0 = κC−1
ttt (θt)−3 , G1 = θt , K2 = κC−1

ttt Kt ,

T2 = Stt , T4 = C−1
ttt S̃

t , T6 = C−2
ttt S̃0 ,

we furthermore define holomorphic functions h̃zzz, h̃zz, h̃z and h̃zzzz out of the holomorphic sec-

tions hzzz , h
z
z, hz and hzzzz appearing in (2.12) in the following way:

h̃zzz = C∗zz h
zz
z , h̃zz = C∗zz h

z
z h̃z = C∗∗∗ hz , h̃zzzz = (C−1

∗ )zz hzzzz (2.46)

where the star in C∗zz denotes a fixed modulus, although in the one modulus case the distinction

is not relevant it is made here to clarify the index structure of the new objects. We will

furthermore redefine all objects carrying indices of the algebraic coordinate z by multiplying

(dividing) by z for lower (upper) indices, i.e.

h̃zzz → z h̃zzz , h̃zz → z2 h̃zz , h̃z → zh̃z , h̃zzzz → z2 h̃zzzz , kzz → z2 kzz , szzz → z szzz
(2.47)

14



The ring (2.43) using the new generators and the τ coordinate becomes:

∂τK0 = −2K0K2 −K2
0 G

2
1 (h̃zzzz + 3(szzz + 1)) ,

∂τG1 = 2G1K2 − κG1 T2 +K0G
3
1(szzz + 1) ,

∂τK2 = 3K2
2 − 3κK2 T2 − κ2T4 +K2

0 G
4
1kzz −K0G

2
1K2 h̃

z
zzz ,

∂τT2 = 2K2 T2 − κT 2
2 + 2κT4 +

1

κ
K2

0G
4
1h̃
z
zz ,

∂τT4 = 4K2T4 − 3κT2 T4 + 2κT6 −K0G
2
1 T4h̃

z
zzz −

1

κ
K2

0 G
4
1 T2kzz +

1

κ2
K3

0 G
6
1h̃zz ,

∂τT6 = 6K2 T6 − 6κT2 T6 +
κ

2
T 2

4 −
1

κ
K2

0 G
4
1 T4 kzz +

1

κ3
K4

0 G
8
1h̃z − 2K0G

2
1 T6h̃

z
zzz .

(2.48)

Assuming that all remaining holomorphic functions can be expressed as rational functions in

the algebraic modulus8 we need a further generator in order to parameterize these. We choose

a geometric object giving a function on the moduli space:

C0 = θ log z3Czzz =
α

1− α
, (2.49)

the derivative of this generator is computed to be:

∂τC0 = K0G
2
1C0 (C0 + 1) . (2.50)

To obtain functions out of the topological string amplitudes we introduce:

F (g) = (X0)2g−2F (g) . (2.51)

The polynomial recursion (2.16) for these functions in the generators (2.46) for the function

becomes:

∂F (g)

∂T2
− 1

κ

∂F (g)

∂T4
K2 +

1

2κ2

∂F (g)

∂T6
K2

2 =
1

2

g−1∑
r=1

∂tF
(g−r) ∂t F

(r) +
1

2
∂2
t F

(g−1) , (2.52)

and
∂F (g)

∂K2
= 0 . (2.53)

The t derivative in Eq. (2.52) can be replaced by:

∂t = K−1
0 G−3

1 ∂τ . (2.54)

The definitions (2.46), the form of the differential ring (2.48) and the polynomial recursion

(2.52, 2.53) immediately lead to the following proposition, assuming that there exists a choice

of h̃zzz, h̃zz, h̃z and h̃zzzz and kzz which can be expressed as rational functions in α.

8This assumption is true in all known examples but not proven in general, see for example the discussion in

Ref. [22]. Later we will see that this is well motivated from the theory of quasi modular forms, since all modular

invariant functions can be expressed as rational functions of the so-called Hauptmodul, which is the generator of the

function field of the moduli space and is intuitively the algebraic modulus, the quasi modular forms which require a

non-holomorphic completion correspond to the elements of the ring (2.48).
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Proposition

1. The differential polynomial ring generated by the special functions C0,K0, G1,K2, T2, T4

and T6 closes under derivatives w.r.t. τ = 1
κFtt.

2. A grading is furthermore assigned to the generators given by their subscript. The τ

derivative strictly increases the grading by 2.

3. F (g) is a polynomial of degree zero in the generators, obtained recursively from Eqs. (2.52, 2.53)

up to the addition of a rational function of the form

A(g) = Kg−1
0 P (g)(C0),

where P (g) is a rational function in C0 chosen such that F (g) respects the boundary con-

ditions.

4. F
(g)
n = ∂nt F

(g) is a polynomial of degree −n in the generators.

Most of the content of the proposition follows immediately from the definitions. The grading

of F (g) is proven recursively starting from the initial data of the recursion given by the first

non-vanishing amplitudes at genus 0:

F
(0)
ttt = Cttt = κK−1

0 G−3
1 , (2.55)

and at genus 1 (2.10):

F
(1)
t =

1

2
κK−1

0 G−3
1 T2 + (1− χ

24
)K−1

0 G−3
1 K2 +G−1

1 f (1)
z . (2.56)

It will be later shown in examples that this grading agrees with the modular weight of quasi

modular forms for special geometries with duality groups for which these are known.

3 Quasi modular forms and duality

In this section we review some concepts of modular curves, modular forms and quasi modular

forms for some of the groups Γ0(N), which will be defined in the sequel. We highlight an

involution, the Fricke involution acting on the modular curves, and thus on quasi modular

forms and exchanging their expansions at two different cusps. We interpret this involution as

giving the mathematical operation which corresponds to a physical duality which is the analog

of the N = 2 gauge theory electric-magnetic or S-duality in the sense of Refs. [1, 26, 27]. The

physical terminology of electric and magnetic duality is motivated from the N = 2, 4d duality

in Seiberg-Witten gauge theories which refers to the fact that in the coupling space there are

different expansion points where the theory looks completely different. At a weak coupling

region, the electric degrees of freedom are relevant whereas near a point in the moduli space

where magnetic degrees of freedom become massless a different effective theory is needed. The
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Seiberg-Witten duality was used in Ref. [16], where the special geometry of SU(2) Seiberg-

Witten theory was cast in terms of quasi modular forms which were expanded both in the weak

coupling and in the magnetic regime. For an early discussion of electric magnetic duality and

congruence subgroups in Seiberg-Witten theory see Ref. [39].

Interpreted in terms of the geometry of a CY threefold moduli spaces, the exchange of

these two special expansion points gets mapped to an exchange of the large complex structure

point and the conifold locus. The Seiberg-Witten theories with different gauge groups were

engineered using type IIB [2] as well as type IIA compactifications on CY geometries [40, 41].

However, even for non-compact CY geometries, only a subset of these admits an interpretation

in terms of a 4d gauge theory. In general, the 4d physical theory will be characterized by its

BPS states which reflect the cohomology of the CY. It is furthermore known that the conifold

locus corresponds to the point in moduli space where magnetic BPS states become massless,

see for example Refs. [5, 30]. The breakdown of the effective theory and correspondingly of the

topological string free energies at the expansion locus where magnetically charges states become

massless is characterized by a leading singularity discussed in (2.23). This equation has no sub-

leading singular contributions precisely when the coordinate which is used corresponds to the

mass of the state in the vicinity of the locus where it becomes massless, this is captured by the

flat coordinate at the conifold expansion locus. The use of this as a boundary condition to fix

the holomorphic ambiguity for the topological string free energies was pioneered in Ref. [23]. In

order to do so, the polynomial generators of Ref. [19] were expanded in various patches of moduli

space exploiting their global properties. Similar computations using the generators defined in

Ref. [20] were done in Refs. [42, 21, 24, 25].

3.1 Basic facts about modular curves and modular forms

In this section we shall give a review of some basic concepts about modular curves, modular

forms and quasi modular forms which will be relevant in the following, we refer to Refs. [43, 44]

and the references therein for more details on the basic theory.

Modular groups and modular curves

The generators and relations for the group SL(2,Z) are given by the following:

T =

(
1 1

0 1

)
, S =

(
0 −1

1 0

)
, S2 = −I , (ST )3 = −I . (3.1)

We will consider in the following the genus zero congruence subgroups called Hecke subgroups

of Γ(1) = PSL(2,Z) = SL(2,Z)/{±I}

Γ0(N) =

{(
a b

c d

)∣∣∣∣∣ c ≡ 0 mod N

}
< Γ(1) (3.2)
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with N = 2, 3, 4. We shall also denote SL(2,Z) by Γ(1) and the corresponding groups of Γ0(N)

in SL(2,Z) by Γ0(N). A further subgroup that we will consider is the unique normal subgroup

in Γ(1) of index 2 which is often denoted Γ0(1)∗, this is discussed in Sec. 4.2.1. By abuse of

notation, we write N = 1∗ when listing it together with the groups Γ0(N).

The group SL(2,Z) acts on the upper half plane H = {τ ∈ C| Imτ > 0} by fractional linear

transformations:

τ 7→ γτ =
aτ + b

cτ + d
for γ =

(
a b

c d

)
∈ SL(2,Z) .

The quotient space Y0(N) = Γ0(N)\H is a non-compact orbifold with certain punctures cor-

responding to the cusps and orbifold points corresponding to the elliptic points of the group

Γ0(N). By filling the punctures, one then gets a compact orbifold X0(N) = Y0(N) = Γ0(N)\H∗

where H∗ = H ∪ {i∞} ∪ Q. The orbifold X0(N) can be equipped with the structure of a Rie-

mann surface. The signature for the group Γ0(N) and the two orbifolds Y0(N), X0(N) could

be represented by {p, µ; ν2, ν3, ν∞}, where p is the genus of X0(N), µ is the index of Γ0(N) in

Γ(1), and νi are the numbers of Γ0(N)-equivalent elliptic fixed points or parabolic fixed points

of order i. The signatures for the groups Γ0(N), N = 1∗, 2, 3, 4 are listed in the following table

(see e.g. [45]):

N ν2 ν3 ν∞ µ p

1∗ 0 1 2 2 0

2 1 0 2 3 0

3 0 1 2 4 0

4 0 0 3 6 0

(3.3)

The fundamental domains for these groups are depicted in Figure 1.

The space X0(N) is called a modular curve and is the moduli space of pairs (E,C), where E

is an elliptic curve and C is a cyclic subgroup of order N of the torsion subgroup EN ∼= Z2
N . It

classifies each cyclic N -isogeny φ : E → E/C up to isomorphism, see for example Refs. [43, 46]

for more details.

Similarly, we can define the modular curve XΓ = Γ\H∗ associated to a general subgroup Γ

of finite index in Γ(1). We refer the reader to Ref. [43] for more details on this.

We proceed by recalling some basic concepts in modular form theory following Ref. [43].

In the following, we shall use the notation Γ for a general subgroup of finite index in Γ(1).

In particular, we can take Γ to be the modular group Γ0(N) described above and discuss the

modular form theory associated to this group.

Modular functions

A (meromorphic) modular function with respect to the a subgroup Γ of finite index in Γ(1) is

a meromorphic function f : XΓ → P1. Consider the restriction of f to YΓ = Γ\H. Since the
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(a) Γ0(1)∗ (b) Γ0(2)

(c) Γ0(3) (d) Γ0(4)

Figure 1: Fundamental domains for Γ0(1)∗, Γ0(N), N = 2, 3, 4.

The empty and full circles stand for cusps and elliptic points respectively.

restriction is meromorphic, we know f can be lifted to a function f on H. Then one gets a

function f : H → P1 such that

(i) f(γτ) = f(τ), ∀γ ∈ Γ .

(ii) f is meromorphic on H.
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(iii) f is “meromorphic at the cusps” in the sense that the function

f |γ : τ 7→ f(γτ) (3.4)

is meromorphic at τ = i∞ for any γ ∈ Γ(1).

The third condition requires more explanation. For any cusp class [σ] ∈ H∗/Γ9 with respect to

the modular group Γ, one chooses a representative σ ∈ Q∪{i∞}. Then it is easy to see that one

can find an element γ ∈ Γ(1) so that γ : i∞ 7→ σ. Then this condition means that the function

defined by τ 7→ f ◦ γ (τ) is meromorphic near τ = i∞ and that the function f is declared to be

“meromorphic at the cusp σ” if this condition is satisfied.

Therefore, equivalently, a (meromorphic) modular function with respect to the modular

group is a meromorphic function f : H → P1 satisfying the above properties on modularity,

meromorphicity, and growth condition at the cusps.

Modular forms

Similarly, we can define a (meromorphic) modular form of weight k with respect to the group

Γ to be a (meromorphic) function f : H → P1 satisfying the following conditions:

(i) f(γτ) = jγ(τ)kf(τ), ∀γ ∈ Γ , where j is called the automorphy factor defined by

j : Γ×H → C,

(
γ =

(
a b

c d

)
, τ

)
7→ jγ(τ) := (cτ + d) .

(ii) f is meromorphic on H.

(iii) f is “meromorphic at the cusps” in the sense that the function

f |γ : τ 7→ jγ(τ)−kf(γτ) (3.5)

is meromorphic at τ = i∞ for any γ ∈ Γ(1).

We will need to be able to take roots of modular forms. For this purpose one introduces a

function v : Γ → C, called multiplier system of weight k for Γ, such that |v(γ)| = 1 and

v(γ1γ2) = w(γ1, γ2)v(γ1)v(γ2). Here, w(γ1, γ2) are numbers in {±1} making v(γ)(cτ + d) into

an automorphy factor. Replacing the automorphy factor by jγ(τ) = v(γ)(cτ + d) in Eq. (3.5),

one defines modular forms with respect to a multiplier system, see for example Ref. [45] for

details.

9We use the notation [τ ] to denote the equivalence class of τ ∈ H∗ under the group action of Γ on H∗.
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Quasi modular forms

A (meromorphic) quasi modular form of weight k with respect to the group Γ is a (meromorphic)

function f : H → P1 satisfying the following conditions:

(i) There exist meromorphic functions fi, i = 0, 1, 2, 3, . . . , k − 1 such that

f(γτ) = jγ(τ)kf(τ) +
k−1∑
i=0

ck−i jγ(τ)ifi(τ) , ∀γ =

(
a b

c d

)
∈ Γ . (3.6)

(ii) f is meromorphic on H.

(iii) f is “meromorphic at the cusps” in the sense that the function

f |γ : τ 7→ jγ(τ)−kf(γτ) (3.7)

is meromorphic at τ = i∞ for any γ ∈ Γ(1).

For a large class of non-compact CY threefolds, the relevant geometry of the mirror manifolds

are captured by the so-called mirror curves [47]. In what follows we shall only consider the cases

where the mirror curves are elliptic curves. These already include many interesting examples

such as the mirrors of the canonical bundle of P2 and the canonical bundles of the del Pezzo

surfaces dPn, n = 5, 6, 7, 8. See for example Refs. [48, 49, 50, 51] for details.

As we shall discuss in greater detail later in Section 4.2.1, for the canonical bundle of P2 and

the canonical bundles of the del Pezzo surfaces dPn, n = 5, 6, 7, the bases of the corresponding

families of mirror curves are the modular curves X0(N) with N = 3, 4, 3, 2, respectively. The

canonical bundle of dP8 is exceptional in the sense the base of the corresponding mirror curve

family called E8 elliptic curve family is not a modular curve of the form X0(N). It is given by

Γ0(1)∗\H∗, where Γ0(1)∗ is the subgroup of Γ(1) mentioned earlier and discussed in Sec. 4.2.1.

This base is a copy of P1 parametrized by a particularly chosen coordinate z, and is a 2 : 1 cover

of the j–plane P1 realized by the map j(z) = 1/z(1 − 432z). In the following we shall denote

the base of this family of elliptic curves by X0(1)∗. See Refs. [52, 53, 54] for more discussions

on this family.

3.2 Rings of quasi modular forms

In this section we show the explicit computation of the rings of quasi modular forms with respect

to the groups Γ0(N), for N = 1∗, 2, 3, 4. Before introducing these we recall the familiar example

of quasi modular forms for the full modular group Γ(1), see e.g. [44] and references therein for

details.
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3.2.1 Quasi modular forms for the full modular group PSL(2,Z)

The familiar Eisenstein series E4, E6 are generators of the ring of modular forms with respect

to the full modular group Γ(1) = PSL(2,Z). The Eisenstein series E2 is a quasi modular form

according to the definition given in (3.1) since it transforms according to

E2(γτ) = (cτ + d)2E2(τ) +
12

2πi
c(cτ + d) , ∀γ =

(
a b

c d

)
∈ Γ(1) . (3.8)

The differential ring structure of quasi modular forms for Γ(1) is given by10

∂τE2 =
1

12
(E2

2 − E4) ,

∂τE4 =
1

3
(E2E4 − E6) ,

∂τE6 =
1

2
(E2E6 − E2

4) .

(3.9)

The non-holomorphic function 1
Imτ transforms as

1

Imγτ
= (cτ + d)2 1

Imτ
− 2ic(cτ + d) . (3.10)

It follows that the non-holomorphic completion of E2, which is defined by

Ê2(τ, τ̄) = E2(τ)− 3

πImτ
, (3.11)

transforms according to

Ê2(γτ, γτ) = (cτ + d)2Ê2(τ, τ̄) . (3.12)

3.2.2 More general rings of quasi modular forms

In the section we shall consider the genus 0 modular curves X0(N) with N = 1∗, 2, 3, 4 and

discuss the corresponding rings of quasi modular forms. The relevant data giving the ring

of quasi modular forms as well as the modular parameter τ are captured by the periods ω0

and ω1 of the corresponding families of elliptic curves described later in Section 4.2.1, see also

Refs. [52, 53, 51, 54, 55]. The periods satisfy the following Picard-Fuchs differential equation:

Lc ωi = (θ2
α − α(θα + 1/r)(θα + 1− 1/r))ωi = 0 , i = 0 , 1 . (3.13)

The parameter α is the so-called Hauptmodul (that is, generator for the function field of the

modular curve) listed in e.g. Ref. [54], and θα = α ∂
∂α . The solutions of this equation are given

in terms of the hypergeometric functions:

ω0(α) = 2F1 (1/r, 1− 1/r, 1;α) and ω1(α) =
i√
N

2F1 (1/r, 1− 1/r, 1; 1− α) . (3.14)

10We omit factors of 2πi in the derivatives, i.e. ∂τ should be 1
2πi

∂
∂τ throughout this work.
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The numbers r are give by the following:

N 1∗ 2 3 4

r 6 4 3 2

They are related to the index µ of Γ0(N) by r = 12
µ . The modular parameter τ is then given

by:

τ =
ω1

ω0
. (3.15)

The weight 1 modular forms (for an appropriate multiplier system) for these groups are listed

for example in Refs. [54, 55]. More precisely, for the cases N = 1∗, 2, 3, 4, the relevant modular

forms are given by

A = ω0 , B = (1− α)
1
r A , C = α

1
r A . (3.16)

Then by definition one has

Ar = Br + Cr . (3.17)

By analytic continuation, it is easy to show that as multi-valued functions on the modular curve

X0(N) as an orbifold, these modular forms (for a multiplier system) have divisors given by

DivA =
1

r
(α =∞) , DivB =

1

r
(α = 1) , DivC =

1

r
(α = 0) . (3.18)

These will be useful later when we consider the singular behavior of topological string amplitudes

near different singular points of the moduli space of certain Calabi-Yau threefolds.

These generators have very nice η–function expansions and arithmetic properties. For com-

pleteness, we recall the results from [54] as follows:

N A B C

1∗ E4(τ)
1
4 (E4(τ)

3
2 +E6(τ)
2 )

1
6 (E4(τ)

3
2−E6(τ)
2 )

1
6

2 (26η(2τ)24+η(τ)24)
1
4

η(τ)2η(2τ)2
η(τ)4

η(2τ)2
2

3
2
η(2τ)4

η(τ)2

3 (33η(3τ)12+η(τ)12)
1
3

η(τ)η(3τ)
η(τ)3

η(3τ) 3η(3τ)3

η(τ)

4 (24η(4τ)8+η(τ)8)
1
2

η(2τ)2
= η(2τ)10

η(τ)4η(4τ)4
η(τ)4

η(2τ)2
22 η(4τ)4

η(2τ)2

(3.19)

In particular, by examining the η–expansions of the generators listed above, we get the relation

dN η
24 = α(1− α)9−NA12, as pointed out in e.g. Ref. [51], with

N 1∗ 2 3 4

dN 432 64 27 16

There are also some nice θ–function expansions for these modular forms and relations among

these generators and the Eisensteins series E4, E6. These are listed in the Appendix A. Refs. [44,

54, 55] give more details on the arithmetic aspects.
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Now we shall construct the ring of quasi modular forms and focus on the differential ring

structure. The modular forms defined in (3.16) satisfy the following equations

A2 = ∂τ log
Cr

Br
=

1

N − 1
(NE2(Nτ)− E2(τ)) . (3.20)

These equalities are proved by direct computations using the η–expansions of the modular forms.

The first equality in the above is equivalent to the following equation:

∂τα = α(1− α)A2 . (3.21)

Later, we shall interpret this as the absence of instanton corrections of Yukawa couplings for

elliptic curves, see for example Refs. [52, 56, 22] for some related discussions on this. To obtain

the ring of quasi modular forms, we introduce the analog of the Eisenstein series E2 as a quasi

modular form as follows:

E = ∂τ logBrCr . (3.22)

Using the η–expansions of the modular forms we can show

E =
1

N + 1
(E2(τ) +NE2(Nτ)), N = 1∗, 2, 3 , (3.23)

E =
1

3
(4E2(4τ) + E2(τ))− 2

3
E2(2τ) , N = 4 . (3.24)

It follows then that the generator E transforms as a quasi modular form under the modular

groups Γ0(N) with N = 1∗, 2, 3, 4 respectively, using the above Eisenstein series expressions.

Similar to (3.11) , one can define the non-holomorphic completion Ê of these quasi modular

forms so that they are non-holomoporhic but modular in the sense that they transform in the

way similar to (3.12).

From Eqs. (3.16, 3.20, 3.22), one can easily deduce the differential ring structure of quasi

modular forms. The results are listed below for N = 1∗, 2, 3, 4:

∂τA =
1

2r
A(E +

Cr −Br

Ar−2
) ,

∂τB =
1

2r
B(E −A2) ,

∂τC =
1

2r
C(E +A2) ,

∂τE =
1

2r
(E2 −A4) .

(3.25)

3.3 Duality action on topological string amplitudes

3.3.1 Fricke involution

For each of the modular curves X0(N) with N = 1∗, 2, 3, 4, as a covering of the j–plane Γ(1)\H∗,
there are three branch points. According to (3.3), they are two distinguished cusps given by
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[i∞] = [1/N ] and [0] = [1/1]. The third branch point is a cubic elliptic point, quadratic elliptic

point, cubic elliptic point and a cusp for N = 1∗, 2, 3, 4, respectively. The Fricke involution is

defined by

WN : τ 7→ − 1

Nτ
. (3.26)

It exchanges these two cusps and fixes the third branch point, see Fig. 1.11

Recall that the modular curve X0(N) is the moduli space of enhanced elliptic curves (E,C),

where C is an order N subgroup of the torsion group EN ∼= ZN ⊕ZN . Using this interpretation,

the Fricke involution acts by sending (E,C) to (E/C,EN/C).

It turns out from e.g. [54] that the Fricke involution maps the Hauptmodul

α to β := 1− α . (3.27)

The Fricke involution acts on the ring of quasi modular forms according to

A 7→
√
N

i
τ A ,

B 7→
√
N

i
τ C ,

C 7→
√
N

i
τB ,

E 7→ Nτ2E +
12

2πi

2Nτ

N + 1
, N = 1∗, 2, 3 .

E 7→ Nτ2E +
12

2πi

2Nτ

6
, N = 4 .

(3.28)

For all cases N = 1∗, 2, 3, 4, the non-holomorphic completion Ê(τ, τ̄) transforms according to:

Ê 7→ Nτ2Ê . (3.29)

3.3.2 CY moduli spaces as modular curves

For a large class of non-compact CY geometries, the relevant part of mirror geometry is captured

by the mirror curve. For each of the non-compact CY threefold geometries that we shall

discuss below, the moduli space M of complex structures of the non-compact CY threefold

can be identified with a modular curve X0(N). The singular points on the moduli spaceM are

identified with the branch points on the modular curve thought of as an orbifold Γ0(N)\H∗.
More precisely, the large complex structure point is identified with the cusp [1/N ], conifold

point with [1/1], and the orbifold point is the third branch point on the modular curve, see

Fig. 1.

11We point out that for the Seiberg-Witten curve family given by y2 = (x2 − u)2 − Λ4 and with monodromy group

Γ0(4), the Fricke involution acts as 2τ 7→ − 1
2τ . In the literature, see for example Ref. [16], by redefining τ as the above

2τ , the Fricke involution is realized as the S-transformation.
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This identification makes manifest the global meanings of the topological string amplitudes

since they are now geometric objects defined on the modular curve thus globally defined. More

precisely, the full non-holomorphic topological string amplitudes are built out of the generators

A,B,C, Ê, their holomorphic limits are quasi modular forms expressible in terms of the gen-

erators A,B,C,E. It also gives access to analyze the enumerative meanings of the topological

string amplitudes at the other points on the moduli space, e.g., as the generating functions of

orbifold Gromov-Witten invariants at the orbifold point.

The periods of the non-compact CY threefold satisfy the Picard-Fuchs equations LCY π = 0.

For geometries with one-dimensional moduli spaces there are three solutions to this operator,

one of which is a constant (see for example Refs. [48, 49, 57]). The non-trivial periods are

identified with t and Ft. The operator LCY furthermore factorizes, s.t.

LCY πi(z) = Lc ◦ θ ωi−1(zc), i = 1, 2 , θ = z
d

dz
, (3.30)

where Lc denotes the Picard-Fuchs operator associated to a curve family and where there is a

possible sign difference between z and zc. By comparing their asymptotic behaviors near the

large complex structure limit, it is easy to see that one can choose suitable normalizations for

t and Ft so that

θ t = ω0, θFt = τω0 . (3.31)

3.3.3 Duality of topological string amplitudes

Since the moduli space M of the non-compact CY threefold geometry is identified with the

modular curve X0(N) and furthermore the action of the Fricke involution on the algebraic

modulus α is:

WN : α 7→ 1− α , (3.32)

it is clear that the effect of the Fricke involution is exchanging the large complex structure

expansion point with the conifold expansion point, and fixes the orbifold point. Note that this

third singularity is an orbifold point of the moduli space of the non-compact CY threefolds, but

it could be an orbifold point or a cusp of the moduli space of the corresponding enhanced elliptic

curves. We interpret the action of this involution as the action of a duality which exchanges the

expansion points of the topological string amplitudes around the large complex structure and

the conifold points. By expressing the topological string amplitudes in terms of the generators

of the ring of quasi modular forms (3.25) and applying the Fricke involution (3.28), we will

check this interpretation in Section 4 in a number of examples.

4 Applications

In this section we present applications of the previous ideas. We consider a number of non-

compact geometries, which have all been studied before using different methods. We start with
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a detailed discussion of local P2, which denotes the canonical bundle O(−3) → P2, and its

mirror. Higher genus topolocial string amplitudes on this model have been studied in a number

of works using different techniques, see for example Refs. [58, 50]. The use of a different set

quasi modular forms for this example was considered in Ref. [17], the polynomial generators of

Ref. [20] were used in Refs. [42, 21] for higher genus computations. Our new addition to these

previous discussions consists of the explicit identification of the rings of quasi modular forms of

Γ0(3) which are adapted to this specific moduli space as well as their translation to the special

geometry ring of polynomial generators of Ref. [20]. Furthermore, this example serves as a

testing ground for the duality of topological amplitudes which turns out to exchange the large

complex structure and the conifold expansion loci. The other non-compact geometries which we

consider are canonical bundles of del Pezzo surfaces dPn, n = 5, 6, 7, 8 and their mirrors. These

were considered in the physical context of non-critical string theories. For the purpose of our

work, see Ref. [48] and references therein. Higher genus computations using the holomorphic

anomaly equation and enumerative information from the A-model for these geometries were

considered in Ref. [50]. Finally we write down the polynomial generators for the quintic CY

and its mirror, although a precise description of the quasi modular forms of the quintic is not

known, we can formally define and write down the analogs of the generators used in the non-

compact examples where the rings of quasi modular forms are known. The rings which are thus

provided should therefore define the formal analogs of the rings of quasi modular forms for these

geometries, see also Ref. [59] for a recent discussion of a ring of functions for the quintic.

4.1 Local P2

4.1.1 Initial data

In order to obtain the effective triple intersection on this geometry one should consider this non-

compact geometry as the decompactification limit of a compact one, see for example Refs. [58,

60, 21]. We consider the compact geometry given by a degree 18 hypersurface in P1,1,1,6,9 and

resolve the singularities. This is described by the toric charge vectors:

t1 −6 3 2 1 0 0 0

t2 0 0 0 −3 1 1 1
(4.1)

which describe an elliptic fibration over P2. The classical intersections are summarized in the

classical piece of the prepotential:

F0(t)|cl =
1

6
Cabct

a tb tc =
3

2
t31 +

3

2
t21 t2 +

1

2
t1 t

2
2 . (4.2)

Decoupling the Kähler parameter of the fiber should be done such that the classical volume of

a four cycle in the new geometry is finite, from:

∂t2F0(t)|cl =
3

2
t21 + t1 , (4.3)
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we see that this requires a modification of the Kähler classes first. The following change:

t1 → t1 +
1

3
t2 , t2 → t2 , (4.4)

gives the new classical prepotential:

F0(t)|cl =
3

2
t31 −

1

18
t32 , (4.5)

which now gives

∂t2F0(t)|cl = −1

6
t22 , (4.6)

the classical triple intersection in the CY manifold obtained from taking this limit becomes

effectively

Cttt|cl = −1

3
, (4.7)

the geometry is O(−3)→ P2.

Picard Fuchs equation

A good local coordinate for the moduli space of the mirror CY manifold centered at the large

complex structure point is given by12:

z =
a1a2a3

a3
0

. (4.8)

The Picard Fuchs equation reads:

L = θ3 + 3z(3θ + 1)(3θ + 2)θ = Lc ◦ θ , θ = z
d

dz
, (4.9)

the relation between the two operators is the one discussed in Section 3. Lc is the operator

(3.13) for Γ0(3) with α = 27zc. The solutions of

Lc = θ2 − 3zc(3θ + 1)(3θ + 2) , (4.10)

are given in Appendix B.

A full discussion of the solutions of L is found in Ref. [57]. At large complex structure these

have the form

Π = (1 t
t2

2
− t+ . . . ) = (π0(z) π1(z) π2(z)) , (4.11)

such that their monodromy matrix under t→ t+ 1 is given by

Mt =

 1 0 0

1 1 0

0 1 1

 . (4.12)

12Here z = −zc, see Ref. [6] and references therein for background material.
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The classical piece of the period mirror to the four cycle volume is expected to be:

∂tF0(t) = −1

6
t2 , (4.13)

hence π2 ∼ t2

2 is identified with −3∂tF0(t). From this we can obtain the prepotential.

Relation to periods of the curve

The relation to the periods ω0, ω1 of the curve is obtained by

θπ1|z=−zc = ω0(zc) , θπ2|z=−zc = ω1(zc) , (4.14)

which gives in particular

τ =
θπ2

θπ1
|z=−zc =

∂πd
∂t

= −3Ftt , (4.15)

this leads to

∂t =
∂τ

∂t
∂τ = −3Cttt∂τ . (4.16)

Moduli space as a modular curve

Following the mirror construction of Ref. [47], the family of mirror curves is given in the following

form

x+ 1− zc
x3

y
+ y = 0 , j(zc) =

(1− 24zc)
3

z3
c (1− 27zc)

. (4.17)

This is the Hessian family, see e.g. [46]. It is 3-isogenous to the other version of the Hessian

family in homogeneous coordinates

x3
1+x3

2+x3
3−z

−1/3
H x1x2x3 = 0 , j(zH) =

(1 + 216zH)3

zH(1− 27zH)3
, LH = θ2

zH
−3zH(3θzH+1)(3θzH+2) .

(4.18)

These two families are not isomorphic, but they share the same base as the modular curve

X0(3). Interestingly, if we denote αH = 27zH , then it is related to α = 27zc by the Fricke

involution, due to the fact that these two families of elliptic curves are 3-isogenous. See Refs.

[49, 46, 42] for some related discussions on these two families.

4.1.2 Special polynomial ring as ring of quasi modular forms

To fix the special polynomial ring we choose the following rational functions in z in the con-

struction of the ring (2.48)13

szzz = −4

3
+

1

6∆
, h̃zzz =

1

36∆2
, h̃zzzz =

1

2∆
, (4.19)

13Multiplying (dividing) lower(upper) indices by z.
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with ∆ = 1 + 27z. In the notation of Sec. 2, the generators are T2, G1 and C0, their relation to

the generators of the differential ring of quasi modular forms of Sec. 3 is

T2 =
E

2
, G1 = A and C0 =

C3

B3
. (4.20)

We obtain the following ring

∂τC0 = G2
1C0 , (4.21)

∂τG1 =
1

6

(
2G1 T2 +G3

1

(
C0 − 1

C0 + 1

))
, (4.22)

∂τT2 =
T 2

2

3
− G4

1

12
. (4.23)

The holomorphic limit of T4, T6 and K2 vanishes with this choice. Furthermore since X0 = 1

for non-compact geometries we get K0 = (1 + C0)−1. The algebraic coordinate zc is expressed

as

zc =
1

27

C0

1 + C0
. (4.24)

Genus 1

The genus 1 amplitude is found to be

F (1) = − 1

12
log
(
(θt)6z(1 + 27z)

)
= − 1

12
log

(
C0G

6
1

27(1 + C0)2

)
. (4.25)

Examining the orbifold expansion in terms of the algebraic coordinate ψ = z−1/3 and using the

knowledge (3.18) of the analytic continuation of θt = ω0 ∼ ψ, we can check that F (1) has no

logarithmic singularity in ψ and hence no particles of an effective theory become massless at

this point. We can furthermore compute

∂t F
(1) = −1

6
(1 + C0)G−3

1 T2 , (4.26)

giving f1
z = 0 in Eq. (2.56).

4.1.3 Higher genus amplitudes and duality

The anomaly recursion in terms of the generators (2.52) becomes:

∂F (g)

∂T2
=

1

2

g−1∑
h=1

∂tF
(h) ∂tF

(g−h) +
1

2
∂t∂tF

(g−1) . (4.27)
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Together with the initial amplitude (4.26) the higher genus amplitudes can be obtained up the

the addition of the holomorphic ambiguity which only needs to take into account the singularity

at the conifold expansion locus and is of the form:

A(g) =

2g−2∑
i=0

aiC
i
0 , (4.28)

the 2g − 1 coefficients ai can be fixed by first using the duality discussed in Section 3 and then

implementing the vanishing of the subleading singularities in terms of the right flat coordinate

at the conifold. This has been done using methods of analytic continuation in Refs. [42, 21],

the use of the duality operation simplifies this considerably. A simple counting then shows that

this model can be recursively solved.

For example F (2) can be computed to be:

F (2) =
(1 + C0)2 T2

(
3G4

1 − 9G2
1 T2 + 10T 2

2

)
432G6

1

+ a0 + a1C0 + a2C
2
0 , (4.29)

the coefficients a0, a1 and a2 will be fixed using the duality in the following.

Duality action and conifold expansion

The Fricke involution (3.28) on this choice of generators becomes14:

T2 → 3τ2 T2 , G1 → −i
√

3 τ G1 , C0 →
1

C0
. (4.30)

The relevant flat coordinate at the conifold corresponds to the analytic continuation of the

period Ft, we introduce the following normalization for convenience:

tc =
1

i3
√

3
Ft , (4.31)

The duality operation will give the expansion of F (g) in terms of the modular coordinate τ

centered at the new cusp. To obtain the expansion in terms of Ft we look at the following

relation:

∂τFt = −1

3
τ

G3
1

1 + C0
, (4.32)

which follows from the definitions and becomes after the duality transformation:

∂τ tc =
1

i3
√

3
∂τ Ft =

1

27

C0G
3
1

1 + C0
, (4.33)

this latter expression admits a Fourier expansion in qτ = exp(2πiτ), which can be integrated

and inverted to give:

qτ (tc) = tc −
3t2c
2

+
3t3c
2

+
19t4c

8
+O(t5c) . (4.34)

14Strictly speaking it is the non-holomorphic completion of T̂2 = Ê
2 transforms this way.
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In terms of tc, the singularity in F (g)(tc) is expected not to have subleading terms. This together

with the contribution from constant maps can be used to fix the higher genus amplitudes. For

example at genus 2 we find the answer:

F (2) =
(1 + C0)2 T2

(
3G4

1 − 9G2
1 T2 + 10T 2

2

)
432G6

1

− 11

17280
− 7

4320
C0 −

1

1080
C2

0 . (4.35)

Applying the duality transformation we find:

F
(2)
D = −

(
11C2

0 + 28C0 + 16
)
C6

1 + 120(C0 + 1)2C4
1T2 + 360(C0 + 1)2C2

1T
2
2 + 400(C0 + 1)2T 3

2

17280C2
0C

6
1

,

(4.36)

with the expansion

F
(2)
D (tc) = − 1

58320t2c
+

1

51840
+

tc
720
− 3187t2c

518400
+

239t3c
12960

− 19151t4c
483840

+O(t5c) . (4.37)

Higher genus amplitudes can be obtained easily by this procedure, since those are rather lengthy

we will only display genus 3 results in Appendix C.

4.2 Local En geometries

In the following we shall consider the mirror manifolds (B-model) of the canonical bundles of

P2 and del Pezzo surfaces dPn, n = 5, 6, 7, 8 (A-model). These are non-compact CY threefolds,

given by a set of polynomial equations WEn = 0 in certain weighted projective spaces in Ref. [48].

For these B-model geometries, as shown in e.g. Ref. [48], the Picard–Fuchs equations factor in

the way described in (3.30). The corresponding families of elliptic curves are called of En type

in the literature, see e.g. Refs. [52, 53], and will be recalled below. In this work, we shall refer

to the B-model non-compact CY threefolds as local En del Pezzo. Mirror symmetry for these

geometries and some related discussions can be found e.g. in Refs. [52, 53, 48, 49, 58, 50, 51].

4.2.1 Initial data

Families of non-compact CY threefolds

The non-compact CY threefold families are defined by the following charge vectors, see for

example Ref. [48]. These charge vectors correspond to the Mori generators on the A-model

geometry and give the PF operators of the B-model geometry:

N = 1∗ : l(1) = (−6; 3, 2, 1,−1, 1) ,

N = 2 : l(2) = (−4; 2, 1, 1,−1, 1) .

N = 3 : l(3) = (−3; 1, 1, 1,−1, 1) ,

N = 4 : l(4) = (−2,−2; 1, 1, 1, 1,−1, 1) .

(4.38)
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We recall

dN = 432, 64, 27, 16, for N = 1∗, 2, 3, 4,

respectively. From the Mori generators we obtain the following Picard–Fuchs operators:

L(N)
dP = L(N)

ell ◦ θ , (4.39)

with L(N)
ell being the Picard–Fuchs operators for elliptic curves as shown in (3.13)15:

L(N)
ell = θ2 − dN z(θ + 1/r)(θ + 1− 1/r) , (4.40)

with r = 6, 4, 3, 2 for N = 1∗, 2, 3, 4. These operators have regular singularities at z = 0, z = 1
dN

and z = ∞ on the moduli space, corresponding to the large complex structure limit, conifold

and orbifold point, respectively. A pair of linearly independent solutions near z = 0 is given by

the hypergeometric functions (3.14)

ω0 = 2F1(1/r, 1− 1/r; 1; dNz) , ω1 =
i√
N

2F1(1/r, 1− 1/r; 1; 1− dNz) . (4.41)

The normalization is chosen so that τ = ω1
ω0

. The monodromies about z = 0, 1
dN
,∞ are

M0 =

(
1 1

0 1

)
= T ,M1 =

(
1 0

−N 1

)
= −STNS,M∞ = M1M0 , (4.42)

respectively, where S and T are the standard generators of Γ(1) = SL(2,Z). Hence the mon-

odromy group is Γ0(N) if N 6= 1, and coincides with the modular group. For N = 1∗, the

monodromy group is Γ(1). However, there is an additional Z2 symmetry z 7→ 1 − d1z un-

der which the corresponding elliptic curves are isomorphic. This can be shown e.g. using the

analytic continuation formulae for 2F1. As a consequence, the modular group is actually the

subgroup of index 2 in Γ(1) generated by T 2 and T−1S, denoted by Γ0(1)∗.

Families of the elliptic curves of En type

Now we are going to explain more details about the families of elliptic curves of En type

mentioned at the beginning of the section. The explicit equations, j invariants, as well as the

Picard-Fuchs operators are summarized as follows, see Refs. [52, 48, 53] for more details.

E5 :

{
x2

1 + x2
3 − z−

1
4x2x4 = 0

x2
2 + x2

4 − z−
1
4x1x3 = 0

j(z) =
(1 + 224z + 256z2)3

z(1− 16z)4
, L = θ2−4z(2θ+1)2. (4.43)

The base of this family of elliptic curves is the modular curve X0(4). It has three singular

points: two cusp classes [i∞], [0] corresponding to z = 0, 1/16 respectively; and the cusp class

[1/2] corresponding to z =∞.

15Here the coordinate z is chosen to be the same as zc.
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E6 : x3
1 +x3

2 +x3
3−z−

1
3x1x2x3 = 0 , j(z) =

(1 + 216z)3

z(1− 27z)3
, L = θ2−3z(3θ+1)(3θ+2) . (4.44)

The base of this family of elliptic curves is the modular curve X0(3). It has three singular points:

two cusp classes [i∞], [0] corresponding to z = 0, 1/27 respectively; and the cubic elliptic point

[ρ] corresponding to z =∞, where ρ = exp(2πi/3).

E7 : x4
1 +x4

2 +x2
3−z−

1
4x1x2x3 = 0 , j(z) =

(1 + 192z)3

z(1− 64z)3
, L = θ2−4z(4θ+1)(4θ+3) . (4.45)

The base of this family of elliptic curves is the modular curve X0(2). It has three singular

points: two cusp classes [i∞], [0] corresponding to z = 0, 1/64 respectively; and the quadratic

elliptic point [i] corresponding to z =∞.

E8 : x6
1+x3

2+x2
3−z−

1
6x1x2x3 = 0 , j(z) =

1

z(1− 432z)
, L = θ2−12z(6θ+1)(6θ+5) . (4.46)

The base of this family of elliptic curves is the curve X0(1)∗. It has three singular points: two

cusp classes [i∞], [0] corresponding to z = 0, 1/432 respectively; and the cubic elliptic point [ρ]

corresponding to z =∞.

Genus 0: Yukawa couplings

In the above we have identified the moduli spaces of the local En del Pezzo geometries with

the bases of the corresponding En curve families and thus the modular curves X0(N), with

N = 4, 3, 2, 1∗ when n = 5, 6, 7, 8 , respectively. From the Picard-Fuchs equation of the En
elliptic curve families, we get

Cz = −
∫
Ez

ωz ∧ ∂zωz =
1

z(1− dNz)
, (4.47)

where ωz is the holomorphic one form on the elliptic curve Ez. From this and the following

equation

C2πiτ =
1

2πi

dz

dτ
Cz

1

A2
= 1 , (4.48)

we get (3.21). The above equation (4.48), see e.g. Refs. [52, 56, 22], represents the fact that

there is no quantum correction to the Yukawa coupling of elliptic curves. It follows that the

Yukawa coupling for the corresponding local En del Pezzo is given by

Czzz =
κ

z3(1− dNz)
, (4.49)

where κ is the classical triple intersection on the A-model CY geometry, as described in (2.36).

Therefore, we have

Cttt =
κ

(θt)3(1− dNz)
. (4.50)
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Genus 1

The topological invariants for the corresponding A-model non-compact CY threefolds can be

found in [48, 49]16

κ = n− 9 , c2 = −12 + 2(9− n) , c3 = χ = −2h(En) , h(En) = 8, 12, 18, 30 .

Near the large complex structure limit, the genus one amplitude, denoted by F
(1)
lcs , is given by

F
(1)
lcs = −1

2
log θt+ log(1− α)aαb . (4.51)

The constant a is universal and is given by a = − 1
12 , while b = − c2

24 . Now we will compute the

singular behavior of F
(1)
orb , this is the analytic continuation of F

(1)
lcs to the orbifold point. In each

case above, according to (3.18) we have near the orbifold point α =∞,

θt = ω0 ∼ α−
1
r (1 +O(α−

1
r )) . (4.52)

Hence

F
(1)
orb ∼ −

1

12
log(α−

1
r )6(1 +O(α−

1
r ))(1− α)α

c2
2 ∼ − 1

12
logα−

6
r

+1+
c2
2 . (4.53)

Changing to the local coordinate ψ = α−
1
r near the orbifold point, we then have

F
(1)
orb ∼ −

1

12
logψ6−r(1+

c2
2

) = − 1

12
logψh(En) . (4.54)

The numbers h(En) = 6− r(1 + c2
2 ) for n = 5, 6, 7, 8 cases are given by 8, 12, 18, 30, respectively,

they are the dual Coxeter numbers [49, 48] of the Lie algebra En. Due to the singular behavior

of the genus one amplitude, the higher genus amplitudes will be singular from the polynomial

recursion obtained from holomorphic anomaly equations. This higher genus singularity appears

implicitly in the ambiguities determined in Ref. [50]. The expansions of the higher genus ampli-

tudes which we obtain in terms of the flat coordinates in this region exhibit singular behavior,

the systematics of which will be discussed elsewhere.

4.2.2 Special polynomial ring as ring of quasi modular forms

Similar to the local P2 case, for these local En del Pezzo geometries, the special polynomial

ring (2.48) constructed out of special geometry will reduce to exactly the ring of quasi modular

forms (3.25) constructed using the arithmetic of the modular curves with suitable choices of

holomorphic functions.

16The Chern number c2 is the integral of the Chern class previously denoted by
∫
c2J in (2.20).
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Recall that for local En geometries, we have the following table:

n 5 6 7 8

N 4 3 2 1∗

κ −4 −3 −2 −1

dN 16 27 64 432

r 2 3 4 6

(4.55)

In terms of the quasi modular form generators in (3.25), we have the following expressions for

Yukawa coupling and genus one amplitude:

Cttt =
κ

A3(1− α)
=
κAr−3

Br
, (4.56)

F (1) = −1

2
logA+ log

(
B−

r
12C−

rc2
24 /A−

r
12
− rc2

24

)
, (4.57)

∂τF
(1) = − 1

4r
E +

1

2
A2

(
1

12
− c2

24
− (

1

12
+
c2

24
)(Cr −Br)A−r

)
. (4.58)

We make the following choices for the ambiguities in (2.48):

zszzz + 1 =
1

2r

α− β
β

, h̃zzz =
1

(2r)2β2
, h̃zzzz =

α

β
− 3

2r

α− β
β

, (4.59)

where α = dNz and β = ∆ = 1− α as before. It follows then

T2 = − 1

2rκ
E =

1

2rN
E , C0 =

Cr

Br
, G1 = A , K0 =

Br

Ar
= (1 + C0)−1 , (4.60)

The other generators vanish in the holomorphic limit. It is immediate to see that for these

special choices of ambiguities, the special polynomial ring (2.48) is equivalent to the ring of

quasi modular forms (3.25) for each of these geometries. Below we briefly summarize the

results.

Local E5 del Pezzo

Holomorphic ambiguities:

szzz = −3

2
+

1

4∆
, h̃zzz =

1

16∆2
, h̃zzzz =

1

2
+

1

4∆
. (4.61)

Special polynomial ring generators:

T2 =
1

16
E , C0 =

C2

B2
, G1 = A, K0 =

B2

A2
= (1 + C0)−1 . (4.62)

Differential ring structure:

∂τC0 = G2
1C0 , (4.63)

∂τG1 =
1

4

(
16G1 T2 +G3

1

(
C0 − 1

C0 + 1

))
, (4.64)

∂τT2 =
1

4
(16T 2

2 −
G4

1

16
) . (4.65)
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Local E6 del Pezzo

Holomorphic ambiguities:

szzz = −4

3
+

1

6∆
, h̃zzz =

1

36∆2
, h̃zzzz =

1

2∆
. (4.66)

Special polynomial ring generators:

T2 =
1

18
E , C0 =

C3

B3
, G1 = A , K0 =

B3

A3
= (1 + C0)−1 . (4.67)

Differential ring structure:

∂τC0 = G2
1C0 , (4.68)

∂τG1 =
1

6

(
18G1 T2 +G3

1

(
C0 − 1

C0 + 1

))
, (4.69)

∂τT2 =
1

6

(
18T 2

2 −
G4

1

18

)
. (4.70)

Local E7 del Pezzo

Holomorphic ambiguities:

szzz = −5

4
+

1

8∆
, h̃zzz =

1

64∆2
, h̃zzzz = −1

4
+

5

8∆
. (4.71)

Special polynomial ring generators:

T2 =
1

16
E , C0 =

C4

B4
, G1 = A , K0 =

B4

A4
= (1 + C0)−1 . (4.72)

Differential ring structure:

∂τC0 = G2
1C0 , (4.73)

∂τG1 =
1

8

(
16G1 T2 +G3

1

(
C0 − 1

C0 + 1

))
, (4.74)

∂τT2 =
1

8
(16T 2

2 −
G4

1

16
) . (4.75)

Local E8 del Pezzo

Holomorphic ambiguities:

szzz = −7

6
+

1

12∆
, h̃zzz =

1

144∆2
, h̃zzzz = −1

2
+

3

4∆
. (4.76)

Special polynomial ring generators:

T2 =
1

12
E , C0 =

C6

B6
, G1 = A , K0 =

B6

A6
= (1 + C0)−1 . (4.77)
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Differential ring structure:

∂τC0 = G2
1C0 , (4.78)

∂τG1 =
1

12

(
12G1 T2 +G3

1

(
C0 − 1

C0 + 1

))
, (4.79)

∂τT2 =
1

12
(12T 2

2 −
G4

1

12
) . (4.80)

4.2.3 Higher genus amplitudes and duality

Similar to what we did for local P2 case, after we have identified the moduli spaces with modular

curves, we could use the polynomial recursion, combing the Fricke involution and boundary

conditions (2.20), (2.23) to fix the ambiguities in F (g) for the local En del Pezzo geometries. As

in the local P2 case, when considering the holomorphic limits of topological string amplitudes,

effectively the Fricke involution (3.28) acts on these generators according to

T2 → Nτ2 T2 , G1 →
√
N

i
τ G1 , C0 →

1

C0
. (4.81)

The same procedure determines the topological string amplitudes. In the following, the genus

2 expressions are given including the expansions in terms of the vanishing period tc near the

conifold point ∆ = 0, genus 3 expressions can be found in Appendix C.

Local E5 del Pezzo

F (2) = −275+73C2
0+C3

0+16χ+C0(119+16χ)
92160(1+C0) +

(109−50C0+C2
0)T2

1152G2
1

− (23+24C0+C2
0)T 2

2

24G4
1

+
10(1+C0)2T 3

2

3G6
1

,

F
(2)
D (tc) = − 1

960tc2
+ −35−χ

5760 + 1733tc
491520 −

99421tc2

58982400 + 3349tc3

4718592 −
10556017tc4

38050725888 +O(t5c) .

Local E6 del Pezzo

F (2) =
−500−28C0−16C2

0−27χ
155520 +

(13−2C0+C2
0)T2

144G2
1

− (11+14C0+3C2
0)T 2

2

16G4
1

+
15(1+C0)2T 3

2

8G6
1

,

F
(2)
D (tc) = − 1

720tc2
+ −3866−81χ

466560 + 641tc
174960 −

5129587tc2

3401222400 + 1287599tc3

2295825120 −
451320911tc4

2314191720960 +O(t5c) .

Local E7 del Pezzo

F (2) =
−1835+36C0−133C2

0−64χ
368640 +

(493+14C0+61C2
0)T2

4608G2
1

− (47+64C0+17C2
0)T 2

2

96G4
1

+
5(1+C0)2T 3

2

6G6
1

,

F
(2)
D (tc) = − 1

480tc2
+ −2173−32χ

184320 + 18777tc
5242880 −

8668429tc2

7549747200 + 1382167tc3

4026531840 −
37720723573tc4

389639433093120 +O(t5c) .
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Local E8 del Pezzo

F (2) =
−1825+36C0−299C2

0−36χ
207360 +

5(29+6C0+5C2
0)T2

1152G2
1

− (25+36C0+11C2
0)T 2

2

96G4
1

+
5(1+C0)2T 3

2

24G6
1

,

F
(2)
D (tc) = − 1

240tc2
+ −3011−27χ

155520 + 21151tc
5971968 −

223349623tc2

290237644800 + 101569651tc3

626913312768 −
820546280317tc4

25277144770805760 +O(t5c) .

In the above, we have normalized so that the vanishing period tc(∆) has the form tc(∆) =

∆ +O(∆2) near the conifold point ∆ = 0. From these expansions one can see that for each of

these local En del Pezzo geometries, at genus 2, the gap condition takes the form F
(2)
D (tc) =

1
240κt2c

+O(t0c).

As a consistency check, we have checked that all of these modular functions reproduce the

integral Gopakumar-Vafa invariants listed in [50].

4.3 Compact geometry

It was shown in the previous examples that the special differential polynomial ring defined in

(2.48) gives the rings of quasi modular forms for non-compact geometries with a duality group

for which these are known. In the following we will define the analogous differential ring in

terms of the analogous coordinates for the example of the quintic, a compact CY threefold.

Mirror symmetry for the quintic is the classical example, studied in detail in Ref. [4]. The poly-

nomial structure of higher genus topological string amplitudes for the quintic was put forward in

Ref. [19] and used in Ref. [23] together with the boundary conditions to enhance higher genus

computations. The generalization of the polynomial construction [20] gives slightly different

generators. The freedom of adding holomorphic functions to the generators was discussed in

Refs. [21, 22] and used in [22] to discuss the rationality of the holomorphic functions appearing

in the polynomial setup. A ring of functions for the quintic as a generalization of the Eisenstein

series was proposed in Ref. [59]. The discussion in this work suggests that it is the same ring.

4.3.1 Special polynomial ring

A discussion of mirror symmetry for the quintic can be found in Refs. [4, 28]. The Yukawa

coupling is given by 17

Czzz =
5

∆
, ∆ = (1− 3125z) . (4.82)

We fix the holomorphic functions appearing in (2.48) as in Refs. [22, 6]:

szzz = −8

5
h̃zzz =

1

5∆
, h̃zz = − 1

25∆
, h̃z =

2

625∆
, kzz =

2

25
. (4.83)

17For the mirror quintic in terms of an algebraic coordinate on the moduli space, and adopting the convention of

multiplying lower tensorial indices by z.

39



The generator of rational functions (2.49) becomes:

C0 =
3125z

1− 3125z
, (4.84)

giving the special ring relations:

∂τC0 = C0 (1 + C0)K0G
2
1 , (4.85)

∂τK0 = −2K0K2 − C0K
2
0 G

2
1 , (4.86)

∂τG1 = 2G1K2 − 5G1 T2 −
3

5
K0G

3
1 , (4.87)

∂τK2 = 3K2
2 − 15K2 T2 − 25T4 +

2

25
K2

0 G
4
1 −

(
9

5
+ C0

)
K0G

2
1K2 , (4.88)

∂τT2 = 2K2 T2 − 5T 2
2 + 10T4 +

1

25
(1 + C0)K2

0G
4
1 , (4.89)

∂τT4 = 4K2T4 − 15T2 T4 + 10T6 −
(

9

5
+ C0

)
K0G

2
1 T4 −

2

125
K2

0 G
4
1 T2

− 1

625
(1 + C0)K3

0 G
6
1 , (4.90)

∂τT6 = 6K2 T6 − 30T2 T6 +
5

2
T 2

4 −
2

125
K2

0 G
4
1 T4 +

2

78125
(1 + C0)K4

0 G
8
1

−2

(
9

5
+ C0

)
K0G

2
1 T6 . (4.91)

4.3.2 Higher genus amplitudes

The higher genus amplitudes can be obtained from Eq. (2.52), starting with the initial data of

genus 1 which can be fixed using the topological data needed (2.19) 18:

n = 1 , χ = −200 , s = −31

12
, r = − 1

12
, (4.92)

which gives in terms of the generators

F (1) = − 1

12
log
(
3125−25(1 + C0)36C25

0 K62
0 G6

1

)
, (4.93)

leading to the initial correlation function

F
(1)
t =

(5C0 − 107)G2
1K0 + 560K2 + 150T2

60G3
1K0

. (4.94)

Using the boundary conditions, the genus two amplitude for example can be determined to be:

F (2) =
25
(
65C2

0 − 46C0 + 2129
)
G4

1K
2
0T2 +

(
30C3

0 + 113C2
0 − 488C0 − 571

)
G6

1K
3
0

36000K2
0 G

6
1

(4.95)

18See Ref. [6] and references therein.

40



+
5000G2

1K0

(
6(C0 − 4)T 2

2 + 5(107− 5C0)T4

)
+ 62500

(
3T 3

2 − 60T2T4 + 1120T6

)
36000K2

0 G
6
1

.

We have thus shown in a compact example the general properties of the special polynomial ring

which we defined and the expressions of higher genus amplitudes in terms of these generators.

The study of the analog of the duality action and a more careful analysis of the arithmetics of

the moduli space parameterized in terms of τ will be addressed in the future.

5 Conclusions

We studied differential rings of polynomial generators, defined using the special geometry of the

moduli space of a CY geometry and in terms of which the topological string amplitudes with

this CY as a target manifold can be expressed. The polynomial generators we use are those

defined in Ref. [20] as a generalization of those in Ref. [19]. The definitions in Ref. [20] only

use the special geometry as an input and can thus be used for any CY target. We defined new

generators based on these and made a special choice of coordinate τ on the moduli space. These

constructions allowed us to assign a new grading to the differential ring of generators such that

the derivative w.r.t. τ strictly increases the grading by 2 and such that the functions obtained

from the topological string amplitudes with n insertions F
(g)
n have degree −n.

In a number of examples we showed that the special ring which we defined in generality

coincides with the ring of quasi modular forms where the latter are known. The grading becomes

the modular weight and using the polynomial form the BCOV anomaly we can construct F (g)

as quasi modular functions for these examples. We studied the action of the Fricke involution

on the quasi modular forms and showed that on the level of the topological string amplitudes

it exchanges the large complex structure and the conifold expansion loci, giving a form of an

electric-magnetic duality.

Motivated by the results relating the special ring of generators to the quasi modular forms

in the known examples we constructed the analogous ring for the example of the quintic. Since

the construction of the special ring only relied on manipulations of the special geometry this

paves the way to exploring the analogs of quasi modular forms for many more examples. For the

moment we only provided the analogous differential ring of functions awaiting a more thorough

study of the duality group of the quintic and duality groups of other compact target spaces.

The exchange of cusps of the moduli space for Riemann surfaces as a geometric origin of

N = 2 dualities has been explored in much more detail in Refs. [26, 27], it would be interesting

to attach generating functions of BPS degeneracies to a given family of theories and express

these in terms of quasi modular forms, the action of the Fricke involution on these should encode

non-trivial wall crossing phenomena.

For general compact CY threefolds, it is challenging to identify the moduli space of complex

structures M with certain modular curves. This is basically due to the lack of a good under-

standing of the global Torelli theorem which asserts that the period map is an one to one map
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from the moduli space of complex structures to the period domain which carries modular group

actions. We hope to explore more of the arithmetic properties of the special geometry ring for

compact CY threefolds in the future.

The use of the coordinate τ on the moduli space was motivated to establish the relation

to known modularity in non-compact examples [17]. The non-trivial map between the expo-

nentiated Kähler moduli qt = exp(2πit) and qτ = exp(2πiτ) begs for an explanation of its

enumerative and physical content, so do the qτ expansions of the topological string amplitudes.

τ in the non-compact cases corresponds to the flat coordinated on a lower dimensional geometry,

the mirror curve, which has an interpretation as an open string moduli space [61]. For more

general compact geometries, τ could perhaps also be related to some open string data captured

by a lower dimensional geometry along the lines of Ref. [62] and references therein.
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A Modular forms

We summarize the modular objects that appear in this work. We define (in the literature the

choice for q is a matter of convention, in our paper we shall take q = exp 2πiτ)

ϑ

[
a

b

]
(z, τ) =

∑
n∈Z

q
1
2

(n+a)2e2πi(n+a)(z+b) . (A.1)

The following labels are given to the theta functions:

θ1(z, τ) = ϑ

[
1/2

1/2

]
(u, τ) =

∑
n∈Z+ 1

2

(−1)nq
1
2
n2
e2πinz , (A.2)

θ2(z, τ) = ϑ

[
1/2

0

]
(u, τ) =

∑
n∈Z+ 1

2

q
1
2
n2
e2πinz , (A.3)

θ3(z, τ) = ϑ

[
0

0

]
(u, τ) =

∑
n∈Z

q
1
2
n2
e2πinz , (A.4)

θ4(z, τ) = ϑ

[
0

1/2

]
(u, τ) =

∑
n∈Z

(−1)nq
1
2
n2
e2πinz . (A.5)
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We also define the following θ–constants:

θ2(τ) = θ2(0, τ), θ3(τ) = θ3(0, τ), θ4(τ) = θ2(0, τ) . (A.6)

The η–function is defined by

η(τ) = q
1
24

∞∏
n=1

(1− qn) . (A.7)

It transforms according to

η(τ + 1) = e
iπ
12 η(τ), η

(
−1

τ

)
=

√
τ

i
η(τ) . (A.8)

The Eisenstein series are defined by

Ek(τ) = 1− 2k

Bk

∞∑
n=1

nk−1qn

1− qn
, (A.9)

where Bk denotes the k-th Bernoulli number. Ek is a modular form of weight k for k > 2 and

even. The discriminant form and the j invariant are given by

∆(τ) =
1

1728

(
E4(τ)3 − E6(τ)2

)
= η(τ)24, (A.10)

j(τ) = 1728
E4(τ)3

E4(τ)3 − E6(τ)2
. (A.11)

The following equalities are used a lot throughout our discussions

∂τ log η(τ) =
1

24
E2(τ) , (A.12)

∂τ log
√

Im τ |η(τ)|2 =
1

24
Ê2(τ, τ̄) . (A.13)

where again by ∂τ we mean 1
2πi

∂
∂τ .

One can associate to any lattice Λ a theta function,

inΘΛ(τ) =
∑
x∈Λ

e2πi· 1
2
||x||2τ , (A.14)

see Ref. [44] and references therein for details on this.

In the following we give the θ–expansions for the generators of the ring of modular forms

and their relations to the Eisenstein series for the groups Γ0(N), with N = 1∗, 2, 3, 4:

N = 1∗ : A(τ) = Θ
1
4
E8

(τ) . (A.15)

N = 2 : A(τ) = Θ
1
2
D4

(τ) , B(τ) = θ2
4(2τ) , C(τ) = 2

−1
2 θ2

2(τ) . (A.16)
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N = 3 : (A.17)

A(τ) =
∑

(m,n)∈Z2

qm
2−mn+n2

= ΘA2(τ) = θ2(2τ)θ2(6τ) + θ3(2τ)θ3(6τ), (A.18)

B(τ) =
∑

(m,n)∈Z2

e2πim−n
3 qm

2−mn+n2
, (A.19)

C(τ) =
∑

(m,n)∈Z2

e2πim−n
3 qm

2−mn+n2+m−n =
1

2
(A(

τ

3
)−A(τ)) , (A.20)

= ϑ

[
0

0

]
(0, τ)ϑ

[
1/3

0

]
(0, 3τ) + ϑ

[
2/3

0

]
(0, τ) + ϑ

[
1/6

0

]
(0, 3τ) . (A.21)

N = 4 : A(τ) = ΘA1⊕A1(τ) = θ2
3(2τ), B(τ) = θ2

4(2τ), C(τ) = θ2
2(2τ) . (A.22)

The generators for the N = 4 case should be compared to the ring of even weight modular

forms with respect to the principal congruence group Γ(2), which is generated by any two of

θ4
3(τ), θ4

2(τ), θ4
4(τ) since θ4

3(τ) = θ4
2(τ) + θ4

4(τ). Note that the group Γ(2) is isomorphic to Γ0(4).

The are also some nice relations among these generators and the ordinary Eisenstein series

E4, E6:

N = 2 : B4 + 4C4 = E4 , A2(B4 − 8C4) = E6 . (A.23)

N = 3 : A4 + 8AC3 = E4 , A6 − 20A3C3 − 8C6 = E6 . (A.24)

N = 4 : B4 + 16B2C2 + 16C4 = E4 , B6 − 30B4C2 − 96B2C4 − 64C6 = E6 .(A.25)

B Monodromy group and periods of the mirror curve

for local P2

In the following the solutions of Lc around various points in moduli space will be studied, zc
will henceforth be denoted by z.

B.1 Around z = 0

Solutions of the operator Lc can be found by making a power series ansatz

f(z) =
∞∑
m=0

am z
m ,

and solving the recursion

am =
27(m− 1/3)(m− 2/3)

m2
am−1 , (B.1)
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which is solved by

ωo(z) =
1

Γ(1/3)Γ(2/3)

∞∑
m

Γ(m+ 1/3)Γ(m+ 2/3)

Γ(m+ 1)2
(27z)m , (B.2)

a second solution can be found by using the Frobenius method:

ω1(z) =
1

2πi

d

dρ

( ∞∑
m

Γ(m+ ρ+ 1/3) Γ(m+ ρ+ 2/3)

Γ(m+ ρ+ 1)2
(27z)m+ρ

)
|ρ=0 ,

which gives

ω1(z) =
1

2πi
ω0(z) log(27z) +

1

2πiΓ(1
3)Γ(2

3)

∞∑
m

Γ(m+ 1/3)Γ(m+ 2/3)

Γ(m+ 1)2
(27z)m ×

(Ψ(m+ 1/3) + Ψ(m+ 2/3)− 2Ψ(m+ 1)) , (B.3)

These solutions can also be given in a compact form using hypergeometric functions:

ω0(z) = 2F1

(
1

3
,
2

3
, 1, 27z

)
,

ω1(z) =
i√
3

2F1

(
1

3
,
2

3
, 1, 1− 27z

)
, (B.4)

the normalization has been chosen such that ω1 = 1
2πiω0 log z+. . . and the monodromy becomes

Mz=0 =

(
1 0

1 1

)
. (B.5)

The modular parameter of the curve in this region in moduli space is given by τ = ω1
ω0

.

The solutions ω0(z), ω1(z) can be written as Barnes integrals which will enable us to find

the analytic continuation to the z = ∞ locus. These expressions are given by, see for example

Ref. [63],

ω0(z) =
1

2πiΓ(1
3)Γ(2

3)

∫
C

Γ(−s)Γ(s+ 1
3)Γ(s+ 2

3)

Γ(s+ 1)
(−27z)s , |arg (−z)| < π, (B.6)

ω1(z) =
1

4π2Γ(1
3)Γ(2

3)

∫
C

Γ(−s)2Γ(s+
1

3
)Γ(s+

2

3
)(27z)s , |arg (−z)| < π. (B.7)

B.2 Around z = 1/27

Choosing a coordinate y = 1/27 − z we can compute the monodromies around this expansion

locus. The periods become

ω0(y) = 2F1(
1

3
,
2

3
, 1, 1− 27y) ,
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ω1(y) =
i√
3

2F1(
1

3
,
2

3
, 1, 27y) , (B.8)

with monodromy

Mz=1/27 =

(
1 −3

0 1

)
. (B.9)

The modular parameter in this case is given by

τD = −1

3

ω0

ω1
= − 1

3τ
. (B.10)

The transformation from τ to τD is

WN =

(
0 −1

3 0

)
. (B.11)

B.3 Around z =∞
B.3.1 Solving in local coordinates

Using the local coordinate x = z−1 the operator Lc becomes

Lc = x θ2
x − 27(θx − 1/3)(θx − 2/3) , (B.12)

acting with this operator on the ansatz f(x) =
∑∞

m=0 amz
m+p, where p ∈ Q is determined by

solving the indicial equation. We find p = 1/3, 2/3. We find two solutions:

f0(x) = x1/3 Γ(2/3)

Γ(1/3)2

∞∑
m=0

Γ(m+ 1/3)2

Γ(m+ 1)Γ(m+ 2/3)

( x
27

)m
,

f1(x) = x2/3 Γ(4/3)

Γ(2/3)2

∞∑
m=0

Γ(m+ 2/3)2

Γ(m+ 1)Γ(m+ 4/3)

( x
27

)m
. (B.13)

These solutions diagonalize the monodromy around z = ∞. As x → e2πix, the solutions

transform according to: (
f0(x)

f1(x)

)
→

(
e2πi/3 0

0 e4πi/3

) (
f0(x)

f1(x)

)
. (B.14)

B.3.2 Analytic continuation

In the following we analytically continue ω0(z), ω1(z) and express these in the basis f0(x), f1(x).

Using the expressions in terms of Barnes integrals in Eq.(B.6) and closing the contour on the

left we find (α = e−iπ/3):

ω0(x) =
α

3

Γ(1/3)

Γ(2/3)2
f0(x)− α2

3

Γ(2/3)

Γ(1/3)2
f1(x) ,
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ω1(x) =
i

3
√

3

Γ(1/3)

Γ(2/3)2
f0(x)− i

3
√

3

Γ(2/3)

Γ(1/3)2
f1(x) . (B.15)

Knowing the monodromy of the solutions f0(x), f1(x) we can now compute:(
ω0(x)

ω1(x)

)
→

(
1 3

−1 −2

) (
ω0(x)

ω1(x)

)
. (B.16)

We verify: (
1 3

−1 −2

)−1

=

(
1 −3

0 1

)
·

(
1 0

1 1

)
. (B.17)

Hence the monodromy subgroup of SL(2,Z) is Γ0(3).

C Higher genus amplitudes

C.1 Local P2

F (3) =
5359C4

0 + 12572C3
0 + 9722C2

0 + 2668C0 + 157

8709120

−
(
211C4

0 + 557C3
0 + 500C2

0 + 169C0 + 15
)
G10

1 T2

51840G12
1

+
2(C0 + 1)2

(
293C2

0 + 277C0 + 45
)
G8

1T
2
2 − 5

3(C0 + 1)2
(
529C2

0 + 678C0 + 173
)
G6

1T
3
2

51840G12
1

+
40(C0 + 1)3(20C0 + 13)G4

1T
4
2 − 500(C0 + 1)4G2

1T
5
2 + 200(C0 + 1)4T 6

2

51840G12
1

. (C.1)

F
(3)
D (tc) =

1

59521392t4c
− 1

117573120
− tc

54432
+

23855t2c
246903552

− 557t3c
1259712

+
15575867t4c
8465264640

+O(t5c) (C.2)
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C.2 Local E8 del Pezzo

F (3) =
5

16

(1 + C0)4 T2
6

G1
12 − 5

12

(1 + C0)4 T2
5

G1
10

+
1

768

(1 + C0)2 (175 + 362C0 + 215C0
2
)
T2

4

G1
8

− 1

10368

(1 + C0)
(
1865C0 + 2743C0

2 + 1234C0
3 + 650

)
T2

3

G1
6

+
1

1658880

(
13875 + 20716C0 + 115394C0

2 + 52387C0
4 + 138540C0

3
)
T2

2

G1
4

− 1

2488320

(1 + C0)
(
1263C0 + 11997C0

2 + 11684C0
3 + 1300

)
T2

G1
2

− 365

41472
+

1

5760
χ+

413

89579520
C0 +

436981

2508226560
C0

2 +
265373

627056640
C0

3

+
1491431

5016453120
C0

4

F
(3)
D (tc) =

1

35107145515008
tc
−4 +

528257

4232632320
− 1

1451520
χ− 9393421

334430208
tc

+
645246474275

142216445952
tc

2 − 24963215980267

40633270272
tc

3 +
11259598289900599

152374763520
tc

4

+O
(
tc

5
)

(C.3)
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C.3 Local E7 del Pezzo

F (3) = 5
(1 + C0)4 T2

6

G1
12 − 5

24

(1 + C0)3 (17 + 13C0)T2
5

G1
10

+
1

2304

(1 + C0)2 (2387 + 3582C0 + 1855C0
2
)
T2

4

G1
8

− 1

82944

(1 + C0)
(
13057 + 23151C0 + 31323C0

2 + 13129C0
3
)
T2

3

G1
6

+
1

8847360

(
112685 + 17636C0 + 388806C0

2 + 460484C0
3 + 171029C0

4
)
T2

2

G1
4

− 1

70778880

(1 + C0)
(
36625 + 20751C0 + 92651C0

2 + 92325C0
3
)
T2

G1
2

+
11269

1358954496
− 14473

1698693120
C0 +

25157

880803840
C0

2 +
607447

11890851840
C0

3

+
1767811

47563407360
C0

4 − 1

1451520
χ

F
(3)
D (tc) =

1

67645734912
tc
−4 +

289321

2972712960
− 1

1451520
χ− 21932749

4227858432
tc

+
37014805643

199766310912
tc

2 − 11337784009

2113929216
tc

3 +
9696390763877

71345111040
tc

4 +O
(
tc

5
)

(C.4)
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C.4 Local E6 del Pezzo

F (3) =
405

16

(1 + C0)4 T2
6

G1
12 − 45

32

(1 + C0)3 (9 + 5C0)T2
5

G1
10

+
1

8

(1 + C0)2 (21 + 22C0 + 10C0
2
)
T2

4

G1
8

− 1

3456

(1 + C0)
(
993 + 1083C0 + 1387C0

2 + 529C0
3
)
T2

3

G1
6

+
1

25920

(
450− 88C0 + 807C0

2 + 838C0
3 + 293C0

4
)
T2

2

G1
4

− 1

466560

(1 + C0)
(
255 + 142C0 + 258C0

2 + 211C0
3
)
T2

G1
2

+
47

6718464
− 323

35271936
C0 +

1219

117573120
C0

2 +
323

25194240
C0

3

+
5359

705438720
C0

4 − 1

1451520
χ

F
(3)
D (tc) =

1

4821232752
tc
−4 +

443641

4761711360
− 1

1451520
χ− 12769

4408992
tc

+
1128955631

19999187712
tc

2 − 88674605

102036672
tc

3 +
7946436569147

685686435840
tc

4 +O
(
tc

5
)

(C.5)
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C.5 Local E5 del Pezzo

F (3) = 80
(1 + C0)4 T2

6

G1
12 − 10

3

(1 + C0)3 (11 + 2C0)T2
5

G1
10

+
1

144

(1 + C0)2 (1007 + 312C0 + 145C0
2
)
T2

4

G1
8

− 1

5184

(1 + C0)
(
3679 + 690C0 + 1605C0

2 + 398C0
3
)
T2

3

G1
6

+
1

552960

(
22325− 10912C0 + 15962C0

2 + 6552C0
3 + 1689C0

4
)
T2

2

G1
4

− 1

4423680

(
5395 + 1586C0 + 9926C0

2 + 3228C0
3 + 1647C0

4 + 298C0
5
)
T2

G1
2 (1 + C0)

+
1297

84934656
− 3569

212336640
C0 +

1151

247726080
C0

2 +
3847

1486356480
C0

3

+
373

594542592
C0

4 − 1

1451520
χ− 1

6193152

C0 (457 + 220C0)

(1 + C0)2 |

F
(3)
D (tc) =

1

1056964608
tc
−4 − 1

1451520
χ+

1429

46448640
− 229921

198180864
tc

+
62419963

3121348608
tc

2 − 72381647

297271296
tc

3 +
2724837497

1114767360
tc

4 +O
(
tc

5
)

(C.6)
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54

http://dx.doi.org/10.1016/0550-3213(96)00167-8
http://arxiv.org/abs/hep-th/9601059
http://dx.doi.org/10.1016/S0550-3213(97)00282-4
http://arxiv.org/abs/hep-th/9609239
http://arxiv.org/abs/hep-th/9706110
http://dx.doi.org/10.1088/1126-6708/2008/10/097
http://arxiv.org/abs/0809.1674
http://dx.doi.org/10.1007/978-3-540-74119-0_1
http://dx.doi.org/10.1007/978-3-540-74119-0_1
http://dx.doi.org/10.1007/978-3-540-74119-0_1
http://arxiv.org/abs/hep-th/0002222
http://dx.doi.org/10.1016/S0550-3213(97)00312-X
http://arxiv.org/abs/hep-th/9612085
http://arxiv.org/abs/hep-th/9612085
http://arxiv.org/abs/hep-th/9903053
http://arxiv.org/abs/hep-th/9903053
http://arxiv.org/abs/hep-th/9910181
http://dx.doi.org/10.1142/S0129055X02001466
http://arxiv.org/abs/hep-th/0110121
http://dx.doi.org/10.1007/BF02099367
http://arxiv.org/abs/hep-th/9411234


[54] R. S. Maier, “On rationally parametrized modular equations,” J. Ramanujan Math. Soc.

24 no. 1, (2009) 1–73.

[55] R. S. Maier, “Nonlinear differential equations satisfied by certain classical modular

forms,” Manuscripta Math. 134 no. 1-2, (2011) 1–42. http://dx.doi.org/10.1007/

s00229-010-0378-9.

[56] D. Zagier, “A modular identity arising from mirror symmetry,” in Integrable systems and

algebraic geometry (Kobe/Kyoto, 1997), pp. 477–480. World Sci. Publ., River Edge, NJ,

1998.

[57] D.-E. Diaconescu and J. Gomis, “Fractional branes and boundary states in orbifold theo-

ries,” JHEP 0010 (2000) 001, arXiv:hep-th/9906242 [hep-th].

[58] A. Klemm and E. Zaslow, “Local mirror symmetry at higher genus,”

arXiv:hep-th/9906046 [hep-th].

[59] H. Movasati, “Eisenstein type series for Calabi-Yau varieties,” Nucl.Phys. B847 (2011)

460–484.

[60] S. Hosono, “Central charges, symplectic forms, and hypergeometric series in local mirror

symmetry,” arXiv:hep-th/0404043 [hep-th].

[61] M. Aganagic and C. Vafa, “Mirror symmetry, D-branes and counting holomorphic discs,”

arXiv:hep-th/0012041 [hep-th].

[62] M. Alim, M. Hecht, H. Jockers, P. Mayr, A. Mertens, M. Soroush, “Flat Connections in

Open String Mirror Symmetry,” JHEP 1206 (2012) 138, arXiv:1110.6522 [hep-th].
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