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Abstract

The coupled Einstein-Dirac equations for a static, spherically symmetric system
of two fermions in a singlet spinor state are derived. Using numerical methods, we
construct an infinite number of soliton-like solutions of these equations. The stability
of the solutions is analyzed. For weak coupling (i.e., small rest mass of the fermions),
all the solutions are linearly stable (with respect to spherically symmetric perturba-
tions), whereas for stronger coupling, both stable and unstable solutions exist. For
the physical interpretation, we discuss how the energy of the fermions and the (ADM)
mass behave as functions of the rest mass of the fermions. Although gravitation
is not renormalizable, our solutions of the Einstein-Dirac equations are regular and
well-behaved even for strong coupling.

1 Introduction

In recent years, there has been much interest in the coupling of Einstein’s field equations
to Yang-Mills equations. In this case, the attractive gravitational force is balanced by the
repulsive Yang-Mills force, and this interaction has led to many interesting and surprising
results; see for example [1]-[10]. In this paper, we consider the coupling of Einstein’s
equations to the Dirac equation. Here the necessary repulsive mechanism is provided by
the Heisenberg Uncertainty Principle.

The Einstein-Dirac equations take the form

Ri
j −

1

2
R δi

j = −8π T i
j , (G − m) Ψ = 0 , (1.1)

where T i
j is the energy-momentum tensor of the Dirac particle, G denotes the Dirac op-

erator (see [13]), and Ψ is the wave function of a fermion of mass m. As in the above-
mentioned earlier studies, we consider static, spherically symmetric solutions. Since the
spin of a fermion has an intrinsic orientation in space, a system consisting of a single Dirac
particle cannot be spherically symmetric. In order to maintain the spherical symmetry,
we are led to the study of two fermions having opposite spin; i.e. to a singlet spinor state.
Of course, such a configuration does not represent a realistic physical system due to the
absence of the electromagnetic interaction. More precisely, neglecting the electromagnetic
interaction corresponds to the limiting case where the masses of the fermions become so
large (of the order (Planck length)−1) that the gravitational interaction becomes the dom-
inant force. Nevertheless, we view this study as a model problem worth considering in
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order to get some understanding of the equations and their solutions. In a future pub-
lication, we will consider the more physically realistic situation where the Einstein-Dirac
equations are coupled to an electromagnetic field (Maxwell’s equations).

Our results are based on a certain ansatz, whereby we reduce the 4-component Dirac
spinors to a 2-component spinor system, Φ = (α, β) with real functions α, β. We show
numerically that particle-like solutions of this type exist, both in the ground state, and
in the excited states. For weak coupling, i.e. small mass m, the different solutions are
characterized by the “rotation number”, n = 0, 1, 2, . . ., of the vector (α, β) (we work in
standard units h̄ = c = G = 1). The solution with n = 0 is the ground state, and the
solutions with n = 1, 2, . . . describe the excited states. For small m, the solutions are
(linearly) stable with respect to spherically symmetric perturbations. However, as m gets
large, several states appear for each n. In fact, for every n, the mass spectrum (i.e., the
plot of the binding energy vs. the rest mass) is a spiral curve which tends to a limiting
configuration. This surprising result shows that for parameter values on this limiting
configuration, there are an infinite number of excited states “in the nth mode”, while for
parameter values near this limiting configuration, there are still a large, but finite number
of such excited states. Furthermore, using topological methods and bifurcation theory (see
[14, part IV]), we show that in every mode, the stable solutions must become unstable as
the binding energy increases. Although gravitation is not renormalizable (which means
that the problem cannot be treated in a perturbation expansion), our solutions of the
Einstein-Dirac equations are regular and well-behaved even for strong coupling.

2 The Dirac Operator

In this section, we shall derive the form of the Dirac operator in the presence of a static,
spherically symmetric gravitational field. In preparation, we first give a brief mathemat-
ical introduction of the Dirac theory in curved space-time. The Dirac operator G is a
differential operator of first order

G = iGj(x)
∂

∂xj
+ B(x) , (2.1)

where the Dirac matrices Gj(x), (j = 0, 1, 2, 3), and B(x) are (4 × 4) matrices, which
depend on the space-time point x. The Dirac matrices and the Lorentzian metric are
related by

gjk =
1

2

{

Gj , Gk
}

, (2.2)

where {., .} is the anti-commutator

{Gj , Gk} = (Gj Gk + Gk Gj) .

The basic difficulty with Dirac spinors in curved space-time is that, for a given Lorentzian
metric, the Dirac matrices are not uniquely determined by the anti-commutation relations
(2.2). One way of fixing the Dirac matrices is provided by the formalism of spin and
frame bundles (see e.g. the first section of [11]). In this formulation, one chooses a frame
(ua)a=0,...,3 and represents the Dirac matrices as linear combinations of the Dirac matrices
γa of Minkowski space,

Gj(x) =
3
∑

a=0

uj
a(x) γa .
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The matrix B(x) is composed of the so-called spin connection coefficients, involving first
partial derivatives of the metric and of the frame. It is quite common to choose for
(ua) a Newman-Penrose null frame; this choice is particularly convenient for metrics of
Petrov type D (see [12] for an introduction to the Newman-Penrose formalism and many
applications, especially in the Kerr background). More generally, it is shown in [13] that
all choices of Dirac matrices satisfying (2.2) yield unitarily equivalent Dirac operators.
Furthermore, [13] gives explicit formulas for the matrix B in terms of the Dirac matrices
Gj . We prefer working with the formalism of [13] in the following, because it gives us
more flexibility in choosing the Dirac matrices.

The wave function Ψ of a Dirac particle is a solution of the Dirac equation

(G − m) Ψ = 0 . (2.3)

On the wave functions, two different scalar products can be defined. In the first, we
integrate the wave functions over all of space-time,

<Ψ | Φ> =

∫

ΨΦ
√

|g| d4x , (2.4)

where Ψ = Ψ∗

(

11 0
0 −11

)

is the adjoint spinor (whose definition does not depend on the

gravitational field; 0, 11 are (2 × 2) submatrices), and g denotes the determinant of the
metric gjk. The scalar product (2.4) is indefinite, but it is nevertheless useful to us because
the Dirac operator is Hermitian with respect to it. The second scalar product is defined
on the solutions of the Dirac equation. For this we choose a space-like hypersurface H
together with a (future-directed) normal vector field ν, and set

(Ψ | Φ) =

∫

H
ΨGjΦ νj dµ , (2.5)

where dµ is the invariant measure on the hypersurface H, induced by the metric gij . This
scalar product is positive definite, and, as a consequence of the current conservation (cf.
[13])

∇j ΨGjΦ = 0 , (2.6)

it is independent of the choice of the hypersurface H. In direct generalization of the
expression Ψγ0Ψ in Minkowski space (see e.g [15]), the integrand ΨGjΨ νj is interpreted
as the probability density of the particle. This leads us to normalize solutions of the Dirac
equation by requiring

(Ψ | Ψ) = 1 . (2.7)

We now return to the Dirac operator (2.1). Suppose that a 4-dimensional space-time
with metric gij is given. According to [13], we can choose for Gj any 4× 4 matrices which
are Hermitian with respect to the scalar product (2.4) and satisfy (2.2). The matrix B(x)
involves first derivatives of the Dirac matrices Gj , and from [13], we have the explicit
formulas

B(x) = Gj(x) Ej(x) (2.8)

with

Ej =
i

2
ρ(∂jρ) − i

16
Tr(Gm ∇jG

n) GmGn +
i

8
Tr(ρGj ∇mGm) ρ (2.9)

ρ =
i

4!
ǫijkl Gi Gj Gk Gl (2.10)
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(ǫijkl is the totally antisymmetric tensor density).
Now we will specify these formulas for the Dirac operator to static, spherically sym-

metric space-times. In polar coordinates (t, r, ϑ, ϕ), the metric can be written as (cf.
[16, 7])

gij = diag (
1

T 2
, − 1

A
, −r2, −r2 sin2 ϑ) (2.11)

gij = diag (T 2, −A, − 1

r2
, − 1

r2 sin2 ϑ
) (2.12)

with volume element
√

|g| = T−1 A− 1

2 r2 | sin ϑ| ,

where A = A(r) and T = T (r) are positive functions. We shall use this form of the metric
to explicitly calculate the Dirac operator (2.1). For the Dirac matrices Gj(x), we take an
ansatz as a linear combination of the usual γ-matrices in the Dirac representation

γ0 =

(

11 0
0 −11

)

, γi =

(

0 σi

−σi 0

)

, i = 1, 2, 3, (2.13)

where σ1, σ2, σ3 are the Pauli matrices. In order to satisfy (2.2), we must transform these
Dirac matrices of the vacuum into polar coordinates and multiply them by the factors T
and

√
A,

Gt = T γ0 (2.14)

Gr =
√

A
(

γ1 cos ϑ + γ2 sin ϑ cos ϕ + γ3 sin ϑ sin ϕ
)

(2.15)

Gϑ =
1

r

(

−γ1 sin ϑ + γ2 cos ϑ cos ϕ + γ3 cos ϑ sin ϕ
)

(2.16)

Gϕ =
1

r sin ϑ

(

−γ2 sin ϕ + γ3 cos ϕ
)

. (2.17)

This choice is convenient, because it greatly simplifies equations (2.8)-(2.10). Namely, the
matrix ρ becomes independent of x and coincides with the usual “pseudo scalar” matrix
γ5 in the Dirac representation,

ρ ≡ γ5 = i γ0 γ1 γ2 γ3 =

(

0 11
11 0

)

.

As a consequence, the first and last summands in (2.9) vanish and thus

B = − i

16
Tr(Gm ∇jG

n) Gj GmGn

= − i

16
Tr(Gm ∇jG

n)
(

δj
m Gn − δj

n Gm + Gj gmn + iεj
mnp γ5 Gp

)

. (2.18)

Using Ricci’s Lemma

0 = 4 ∇jg
mn = ∇jTr(Gm Gn) = Tr((∇jG

m) Gn) + Tr(Gm (∇jG
n)) ,

we conclude that the contributions of the first and second summands in the right bracket
in (2.18) coincide and that the contribution of the third summand vanishes. Using the
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anti-symmetry of the ǫ-tensor, we can, in the contribution of the fourth summand, replace
the covariant derivative by a partial derivative. This gives

B =
i

8
Tr(Gn ∇jG

j) Gn +
1

16
ǫjmnp Tr(Gm ∂jGn) γ5Gp . (2.19)

The second summand in (2.19) is zero. Namely, the trace always vanishes if the tensor
indices are all different,

Tr(Gm ∂jGn) = 0 for m, j, n = t, r, ϑ, or ϕ and m 6= j 6= n 6= m ; (2.20)

this can be verified directly using our special ansatz (2.14)-(2.17) for the Dirac matrices.
In the first summand in (2.19), we can use that ∇jG

j is a linear combination of the Dirac
matrices Gj , and thus

Tr(Gn ∇jG
j) Gn = 4 ∇jG

j .

We conclude that

B =
i

2
∇jG

j . (2.21)

This form of B(x) as a divergence of the Dirac matrices allows us to easily check that
the Dirac operator is Hermitian with respect to the scalar product <. | .>; indeed

<GΨ | Φ> =

∫
(

iGj
∂

∂xj
+

i

2
∇jGj

)

Ψ Φ
√

|g| d4x

=

∫

Ψ

(

iGj ∂

∂xj
− i

2
∇jG

j

)

Φ
√

|g| d4x +

∫

Ψ

(

i∂j(
√

|g|Gj)

)

Φ d4x

=

∫

Ψ

(

iGj ∂

∂xj
+

i

2
∇jG

j

)

Φ
√

|g| d4x = <Ψ | GΦ> .

In order to calculate the divergence (2.21), we first compute

1
√

|g|
∂t(
√

|g| Gt) = 0

1
√

|g| ∂r(
√

|g| Gr) = A
1

2 T r−2 ∂r

(

r2 A− 1

2 T−1 Gr
)

=

(

2

r
− T ′

T

)

Gr

1
√

|g| ∂ϑ(
√

|g| Gϑ)

=
1

r sinϑ
∂ϑ

(

−γ1 sin2 ϑ + γ2 sinϑ cos ϑ cos ϕ + γ3 sin ϑ cos ϑ sin ϕ
)

=
1

r sinϑ

(

−2γ1 sin ϑ cos ϑ + γ2 (cos2 ϑ − sin2 ϑ) cos ϕ + γ3 (cos2 ϑ − sin2 ϑ) sin ϕ
)

1
√

|g|
∂ϕ(

√

|g| Gϕ) =
1

r sin ϑ

(

−γ2 cos ϕ − γ3 sinϕ
)

,

and thus obtain

B =
i

2

(

2

r
− T ′

T

)

Gr − i

r

(

γ1 cos ϑ + γ2 sin ϑ cos ϕ + γ3 sin ϑ sinϕ
)

=
i

r
(1 − A− 1

2 ) Gr − i

2

T ′

T
Gr .

We conclude that the Dirac operator has the form

G = iGt ∂

∂t
+ Gr

(

i
∂

∂r
+

i

r
(1 − A− 1

2 ) − i

2

T ′

T

)

+ iGϑ ∂

∂ϑ
+ iGϕ ∂

∂ϕ
. (2.22)
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3 The Dirac Equations

In this section, we shall separate out angular momentum from the Dirac equation (2.3)
and reduce the problem to one on real 2-spinors.

We first introduce some formulas involving Pauli matrices. These will be used in this
section for the separation of the angular dependence, and then, in the next section, for
the computation of the energy-momentum tensor needed in Einstein’s equations. We
introduce the following notation:

σr(ϑ,ϕ) = σ1 cos ϑ + σ2 sin ϑ cos ϕ + σ3 sin ϑ sin ϕ

σϑ(ϑ,ϕ) = −σ1 sin ϑ + σ2 cos ϑ cos ϕ + σ3 cos ϑ sin ϕ

σϕ(ϑ,ϕ) =
1

sin ϑ
(−σ2 sin ϕ + σ3 cos ϕ)

These matrices are orthogonal,

Tr(σr σϑ) = Tr(σr σϕ) = Tr(σϑ σϕ) = 0 ,

and their square is a multiple of the identity,

(σr)2 = (σϑ)2 = 11 , (σϑ)2 =
11

sin2 ϑ
.

Furthermore,

σϑ (∂ϑσr) = σϕ (∂ϕσr) = 11 (3.1)

Tr
(

σϑ (∂ϕσr)
)

= 2 sin ϑ cos ϑ (− cos ϕ sinϕ + sin ϕ cos ϕ) = 0 (3.2)

Tr (σϕ (∂ϑσr)) = 2
cos ϑ

sin ϑ
(− sin ϕ cos ϕ + cos ϕ sin ϕ) = 0 . (3.3)

In analogy to the ansatz for the Dirac spinors in the hydrogen atom for zero angular
momentum (see e.g. [17]), we write the wave functions in the form

Ψa = e−iωt

(

u1 ea

σr u2 ea

)

, a = 1, 2 , (3.4)

where u1(r) and u2(r) are complex-valued functions, and the (ea)a=1,2 denote the standard
basis e1 = (1, 0), e2 = (0, 1) of the two-component Pauli spinors. This ansatz is quite
useful, because the Dirac equations for Ψ1 and Ψ2 are independent of each other,

G Ψa =

[(

0 σr

−σr 0

)

(

i
√

A ∂r +
i

r
(
√

A − 1) − i

2

T ′

T

√
A

)

+ ω T γ0 +
2i

r

(

0 σr

0 0

)]

Ψa , (3.5)

where we have used (3.1). This allows us to view the Dirac equation as a two-component
equation in u1, u2. In order to simplify the radial dependence, we choose new functions
Φ1 and Φ2 defined by

Φ1 = r T− 1

2 u1 , Φ2 = −ir T− 1

2 u2 , (3.6)
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and rewrite the Dirac equation as

[(

1 0
0 −1

)

ω T −
(

0 1
1 0

)√
A ∂r +

(

0 −1
1 0

)

1

r
− m

]

Φ = 0 . (3.7)

This equation is real; thus we may assume that Φ itself is real. On these two-component
spinors, the scalar product <.|.> takes the form

<Φ | Ψ> =

∫ ∞

0
ΦΨ A− 1

2 dr , Φ = Φσ3 .

The “Dirac operator” in (3.7) is Hermitian with respect to this scalar product, and the
normalization condition (2.7) for the wave functions transforms into

∫ ∞

0
|Φ|2 T√

A
dr =

1

4π
. (3.8)

Finally, we write the Dirac equation as the ODE

√
A Φ′ =

[

ωT

(

0 −1
1 0

)

+
1

r

(

1 0
0 −1

)

− m

(

0 1
1 0

)]

Φ . (3.9)

We remark that, instead of taking the ansatz (3.4) for the wave functions, we could
just as well have put the matrix σr into the upper component, i.e.

Ψa = e−iωt

(

σru1 ea

u2 ea

)

, a = 1, 2 . (3.10)

This ansatz can be reduced to (3.4) by changing the sign of the mass in the Dirac equation.
To see this, we transform the wave function according to

Ψ̂a = γ5 Ψa .

Then since Ψ̂ is of the form (3.4) and satisfies the Dirac equation

0 = γ5 (G − m)γ5 Ψ̂a = −(G + m) Ψ̂a ,

we can again simplify to the two-component equation (3.7). We conclude that it also
makes physical sense to look at the solutions of (3.9) with negative m (and positive ω);
they can be interpreted as solutions corresponding to the ansatz (3.10).

In Appendix A, we study the spinor dependence of general static, spherically symmetric
solutions of the Einstein-Dirac equations, and we give a more systematic justification for
the two ansatz’ (3.4) and (3.10).

4 Calculation of the Energy-Momentum Tensor

We derive the form of the energy-momentum tensor by considering an arbitrary variation
δgij of the metric tensor. The variation of its inverse is given by δgij = −gik gjl δgkl. In
order to satisfy (2.2), we vary the Dirac matrices according to

δGj = −1

2
gjk (δgkl) Gl , δGj =

1

2
(δgjk) Gk . (4.1)
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The energy-momentum tensor is obtained as the variation of the classical Dirac action
(see e.g. [15]),

S =

∫

Ψ(G − m)Ψ
√

|g| d4x .

This action is real; therefore it suffices to consider the real part of the integrand. Since
the wave function Ψ solves the Dirac equation for the unperturbed Dirac operator G, we
must only consider the variation of G; thus

δS =

∫

Re Ψ

(

i(δGj)
∂

∂xj
+ δB

)

Ψ
√

|g| d4x . (4.2)

We calculate the variation of the matrix B using (4.1) and (2.8), (2.9),

Re Ψ δB Ψ =
1

16
Im δ

(

Tr(Gm ∇jG
n) Ψ Gj GmGnΨ

)

=
1

16
δ
(

Tr(Gm ∇jG
n) Im (Ψ Gj GmGnΨ)

)

=
1

16
δ
(

ǫjmnp Tr(Gm ∇jGn) Ψ γ5Gp Ψ
)

=
1

16
δ
(

ǫjmnp Tr(Gm ∂jGn) Ψ γ5Gp Ψ
)

(2.20)
=

1

16
ǫjmnp δTr(Gm ∂jGn) Ψ γ5Gp Ψ

=
1

16
ǫjmnp (δgmk) Tr(Gk ∂jGn) Ψ γ5Gp Ψ . (4.3)

Notice that the trace in the last equation does not necessarily vanish. But we can use the
fact that we are dealing with a spin singlet; this implies that the expectation value of the
pseudovector γ5Gp is zero,

2
∑

a=1

Ψa γ5Gp Ψa = 0

(this can be checked by a short explicit calculation). Thus we only have to consider the
variation δGj of the Dirac matrices in (4.2). We substitute (4.1) into (4.2) and obtain for
the spin singlet

δS =

∫

1

2

2
∑

a=1

Re Ψa

(

iGj
∂

∂xk

)

Ψa δgjk
√

|g| d4x .

Thus the energy-momentum tensor has the form

Tjk =
1

2

2
∑

a=1

Re Ψa

(

iGj
∂

∂xk
+ iGk

∂

∂xj

)

Ψa . (4.4)

We compute

Re
2
∑

a=1

Ψa iGt ∂tΨa = 2ω T |Ψ|2 = 2ω T 2 r−2 |Φ|2

Re
2
∑

a=1

Ψa iGt ∂rΨa = Re 2iT
(

r−1
√

T Φ
)

∂r

(

r−1
√

T Φ
)

= 0

8



Re
2
∑

a=1

Ψa iGr ∂tΨa = Re ω
2
∑

a=1

ΨaG
rΨa = Re 2iω

√
AT

r2
Φ

(

0 1
−1 0

)

Φ = 0

Re
2
∑

a=1

Ψa iGr ∂rΨa = Re
2
∑

a=1

i
√

A Ψa

(

0 11
−11 0

)

~x~σ

r
∂rΨa

= Re 2i
√

A
(

r−1
√

T Φ
)

(

0 i
−i 0

)

∂r

(

r−1
√

T Φ
)

= Re 2
√

A T r−2 Φ

(

0 −1
1 0

)

∂rΦ

(3.9)
= −2ω T 2 r−2 |Φ|2 + 4T r−3 Φ1Φ2 + 2m T r−2 (Φ2

1 − Φ2
2)

Re
2
∑

a=1

Ψa iGϑ ∂ϑΨa = Re r−1
2
∑

a=1

Ψa

(

0 i11
−i11 0

)

σϑ ∂ϑΨa

(3.1)
= −2r−3 T Φ1Φ2

Re
2
∑

a=1

Ψa iGϕ ∂ϕΨa = Re r−1
2
∑

a=1

Ψa

(

0 i11
−i11 0

)

σϕ ∂ϕΨa

(3.1)
= −2r−3 T Φ1Φ2 .

All other combinations of the indices vanish because of (3.2), (3.3), and the orthogonality
of σr, σϑ, σϕ. We conclude that

T i
j = r−2 diag

(

2ω T 2 |Φ|2, −2ω T 2 |Φ|2 + 4T r−1 Φ1Φ2 + 2m T (Φ2
1 − Φ2

2),

−2T r−1 Φ1Φ2, −2T r−1 Φ1Φ2

)

. (4.5)

As a check, we calculate the trace of T i
j directly from (4.4),

T j
j =

2
∑

a=1

Re
(

Ψa(iG
j∂j)Ψa

)

=
2
∑

a=1

Re
(

Ψa(iG
j∂j + B)Ψa

)

= m
2
∑

a=1

ΨaΨa = 2m T r−2 (Φ2
1 − Φ2

2) ,

and we see that it agrees with taking the trace of (4.5).

5 The Field Equations

The Einstein Tensor Gi
j = Ri

j − 1
2R δi

j has the form (see e.g. [16])

G0
0 = − 1

r2
+

A

r2
+

A′

r

G1
1 = − 1

r2
+

A

r2
− 2AT ′

rT

G2
2 = G3

3 =
A′

2r
− AT ′

rT
− A′T ′

2T
+

2AT ′2

T 2
− AT ′′

T
,
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with all other components vanishing. Thus, using (4.5), Einstein’s field equations Gi
j =

−8π T i
j become

− 16πω T 2 |Φ|2 = r A′ − (1 − A) (5.1)

−16πω T 2 |Φ|2 + 32πr−1 T Φ1Φ2 + 16πm T (Φ2
1 − Φ2

2) = 2rA
T ′

T
+ (1 − A) (5.2)

− 16πT r−1 Φ1Φ2 = A

[

r2 T ′′

T
+ r2 A′T ′

2 AT
− 2r2

(

T ′

T

)2

− r
A′

2A
+ r

T ′

T

]

. (5.3)

Using the notation α = Φ1, β = Φ2, the equations (3.9), (5.1), and (5.2) can be written
as

√
A α′ =

1

r
α − (ωT + m) β (5.4)

√
A β′ = (ωT − m) α − 1

r
β (5.5)

r A′ = 1 − A − 16πωT 2 (α2 + β2) (5.6)

2rA
T ′

T
= A − 1 − 16πωT 2 (α2 + β2) + 32π

1

r
T αβ + 16π mT (α2 − β2) . (5.7)

By direct computation (or, e.g. by using Mathematica), we see that equation (5.3) is
implied by this set of equations. It is sometimes useful to rewrite the Dirac equations
(5.4) and (5.5) in matrix notation as

√
A Φ′ =

(

1/r −ωT − m
ωT − m −1/r

)

Φ .

The normalization condition (2.7) takes the form
∫ ∞

0
|Φ|2 T√

A
dr =

1

4π
. (5.8)

If we assume regularity of the solution at r = 0, we obtain the following Taylor series
expansions

α(r) = α1 r + O(r3) (5.9)

β(r) =
1

3
(ωT0 − m) α1 r2 + O(r3) (5.10)

A(r) = 1 − 2

3
ωT 2

0 α2
1 r2 + O(r3) (5.11)

T (r) = T0 − m

6
(4ωT0 − 3m) T 2

0 α2
1 r2 + O(r3) , (5.12)

where α1, T0, ω and m are (real) parameters. We also require that our solutions have
finite (ADM) mass; namely

ρ := lim
r→∞

r

2
(1 − A(r)) < ∞ . (5.13)

This implies that
lim

r→∞
A(r) = 1 . (5.14)

Finally, in order that the metric be asymptotically Minkowskian, we require that

lim
r→∞

T (r) = 1 . (5.15)
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6 Scaling of the Equations

For the numerical computations, it is difficult to take into account condition (5.15) and
the integral condition (5.8). Therefore we find it convenient to temporarily replace these
constraints by the weaker conditions

lim
r→∞

T (r) < ∞ and

∫ ∞

0
|Φ|2 T√

A
dr < ∞ (6.1)

and instead set
T0 = 1 and m = ±1 . (6.2)

This is justified by the following scaling argument which shows that there is a one-to-one
correspondence between solutions satisfying (6.1),(6.2) and solutions satisfying (5.15) and
(5.8).

Thus, suppose we have a solution (α, β, T,A) of (5.4)-(5.7), (5.13) satisfying (6.1),(6.2).
Then, with the parameters λ and τ defined by

λ =

(

4π

∫ ∞

0
(α2 + β2)

T√
A

dr

)
1

2

τ = lim
r→∞

T (r) ,

we introduce the new functions

α̃(r) =

√

τ

λ
α(λr)

β̃(r) =

√

τ

λ
β(λr)

Ã(r) = A(λr)

T̃ (r) = τ−1 T (λr) .

A direct calculation shows that these functions satisfy the equations (5.4)-(5.7) with m,ω
replaced by

m̃ = λm , w̃ = λ ωτ .

Moreover, it is easy to check that

∫ ∞

0
(α̃2 + β̃2)

T̃
√

Ã
dr =

1

4π
,

lim
r→∞

T̃ (r) = 1

and limr→∞
r
2 (1 − Ã(r)) < ∞. We note that, as long as λ, τ are positive and non-zero,

the transformation from the un-tilde variables to the tilde variables is one-to-one.
Finally, we point out that for the physical interpretation, the conditions (5.8) and

(5.15) must hold and hence only the scaled solutions can have physical significance.

7 Existence and Properties of the Solutions

Using the local Taylor expansion about r = 0, (5.9)-(5.12), and setting T (0) = 1 and
m = ±1, we construct initial data at r = 10−5 and then use the standard Mathematica
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ODE solver. We shoot for numerical solutions by fixing α1 and varying ω. Using accuracy
10−8, we found that solutions varied continuously with α1, (and ω), indicating that this
procedure is well-behaved. The solutions we find satisfy

lim
r→∞

r2 (α(r)2 + β(r)2) = 0 , lim
r→∞

A(r) = 1

lim
r→∞

r

2
(1 − A(r)) < ∞ , lim

r→∞
T (r) = τ > 0 ,

and, in addition, T and A stay positive for all r. In order to fulfill the important other two
conditions (5.8),(5.15), we merely scale our variables in the manner described in section
6.

For any given α1 > 0, we found a unique ground state corresponding to the parameter
value ω0, together with a countable number of distinct excited states corresponding to
parameter values ωn, n = 1, 2, . . ., where ω0 < ω1 < . . . < ωmax(α1). For α1 = 0.02
and m = 1, the scaled solutions for the ground state and for the first and second excited
states are depicted in Figures 1, 2 and 31. These solutions have the following general
characteristics: The graphs of the functions T (r) have the same qualitative form for all
values ωn. The functions A(r), however, have their graphs changing with ωn; indeed, for
the nth excited state, the graph of A has precisely n + 1 minima. The tangent vector to
the curve (α(r), β(r)) for large r lies alternately in either the first or third quadrants.

For larger values of α1 (and m = 1), the solutions have a similar form, but the α − β
graphs of the ground state have self-intersections and are thus of a different shape. This
is illustrated for three different values of α1 in Figure 4. We found that for the ground
state,

lim
α1→∞

T0(α1) = ∞ and lim
α1→0

T0(α1) = 1 .

Moreover, in every case, T is a monotone decreasing function of r.
We also obtained solutions for m = −1 by using similar methods. The results are

qualitatively the same with the exception that, in this case, the tangent vector to the
(α, β) curve for large r lies alternatively in quadrants two and four, see Figures 5 and 6.

The mass and the energy of the solutions we found have some interesting and surprising
features, which we shall now describe. We consider the fixed nth excited state and, by
varying α1 and adjusting ω (for fixed m = ±1), we obtain a one-parameter family of
solutions (parametrized e.g. by α1). After scaling, we find that solutions can only exist for
a bounded range of m. For every value of m in this range, we obtain an at most countable
number of solutions, which can be characterized by two physical parameters: the energy ω
of the fermions, and the (ADM) mass (5.13). We find that we always have ω < |m|, which
means that the fermions are in a bound state. If we plot the binding energy ω−|m| vs. the
mass m (i.e., the mass-energy spectrum), we find that this curve is a spiral which tends to
a limiting configuration. This is shown in Figure 7 for the ground state (G), the first and
second excited states (F, S), and the lowest and next excited states for negative mass (L,
N). The spirals seem to have a self-similarity; this is illustrated in Figure 8 (we stopped
the computation when the limitations of our numerics were reached). The (ADM) mass ρ
can be viewed as the total energy of both the gravitational field and the fermions. Thus
the quantity ρ − 2ω gives the energy of the gravitational field. As is shown in Figure 9,
it is always positive and, if plotted versus m, gives curves which again look like spirals.
Furthermore, one can ask how much energy is gained (or needed) to form the singlet state.

1We point out that we also plot the scaled variables in all the other figures.
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For this, we must compare the (ADM) mass with the total rest mass 2|m|; i.e., the energy
of two fermions at rest which are so much delocalized in space that their gravitational
interaction becomes zero. This is plotted in Figure 10. For small m, the function ρ− 2|m|
is negative, which shows that one gains energy by forming the singlet state. (This gives
a first hint that these states might be stable, because energy is needed to break up the
binding.) For large values of m, however, (more precisely, shortly after the “turning point”
of m; see Figure 10), ρ − 2|m| becomes positive. This indicates that the solutions should
no longer be stable. This is indeed true and will be shown in the next section.

We note that our scaling technique is essential for obtaining the mass spectrum - the
unscaled variables do not have “spirals”.

8 Stability of the Solutions

In this section, we shall consider the stability of our solutions under spherically symmet-
ric perturbations. To this end, we consider the spherically symmetric, time-dependent
Lorentzian metric of the form

ds2 = T−2(r, t) dt2 − A−1(r, t) dr2 − r2 (dϑ2 + sin2 ϑ dϕ2) .

The time-dependent Dirac operator can again be calculated using (2.21). One gets the
following generalization of (2.22) (the dot denotes t-derivatives):

G = Gt

(

i
∂

∂t
− i

4

Ȧ

A

)

+ Gr

(

i
∂

∂r
+

i

r
(1 − A− 1

2 ) − i

2

T ′

T

)

+ iGϑ∂ϑ + iGϕ∂ϕ .

As in Section 3, we separate out the angular momentum by setting (cf. (3.4))

Ψ =

√
T

r

(

z1(r, t) ea

i σr z2(r, t) ea

)

, a = 1, 2 .

This gives the two-component, time-dependent Dirac equation
[(

1 0
0 −1

)(

iT∂t − i

4
T

Ȧ

A
+

i

2
Ṫ

)

−
(

0 1
1 0

)√
A ∂r +

(

0 −1
1 0

)

1

r
− m

](

z1

z2

)

= 0 .

Observe that, in contrast to (3.7), this equation is complex, and thus we cannot assume
here that the spinors are real. Calculation of the energy-momentum tensor and the Ein-
stein tensor gives the equations

− 1

r2
+

A

r2
+

A′

r
= −8π

2iT 2

r2
Re (z1 ∂tz1 + z2 ∂tz2)

T 2Ȧ

rA
= −8π Re

(

iT 2

r2
(z1 ∂rz1 + z2 ∂rz2) +

T 3A− 1

2

r2
(z1 ∂tz2 − z2 ∂tz1)

)

− 1

r2
+

A

r2
− 2AT ′

rT
= 8π

2TA
1

2

r2
Re (z1 ∂rz2 − z2 ∂rz1)

A′

2r
− AT ′

rT
− A′T ′

2
+

2AT ′

T 2
− AT ′′

T
− 3T 2Ȧ2

4A2
+

TȦṪ

2A
+

T 2Ä

2A
= 8π

2

r3
T Re(z1z2) .
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Suppose that a solution (α(r), β(r), A(r), T (r)) of the equations (5.4)-(5.7) and (5.8),
(5.14), (5.15) is given for some values of the parameters m, ω. Before making an ansatz for
a time-dependent perturbation of this solution, it is convenient to introduce new spinor
variables α(r, t), β(r, t) by setting

z1(r, t) = e−iωt α(r, t) , z2(r, t) = e−iωt β(r, t) . (8.1)

This has the advantage that we get the ansatz (3.4) simply by assuming that α and β are
time independent. We consider spherically symmetric, time-dependent perturbations of
the form

α(r, t) = α(r) + ε(a1(r, t) + i a2(r, t)) (8.2)

β(r, t) = β(r) + ε(b1(r, t) + i b2(r, t)) (8.3)

A(r, t) = A(r) + εA1(r, t) (8.4)

T (r, t) = T (r) + εT1(r, t) , (8.5)

where we look at the real and imaginary parts separately (aj and bj are real functions).
Substituting into the Einstein-Dirac equations and only considering the first order terms
in ε gives (using Mathematica) a system of linear differential equations. If these equations
admitted solutions with an exponentially growing time dependence, the original solution
would be unstable. Therefore we separate out the time dependence by writing

aj(r, t) = eκt aj(r) , bj(r, t) = eκt bj(r) , j = 1, 2, (8.6)

A1(r, t) = eκt A1(r) , T1(r, t) = eκt T1(r) . (8.7)

This gives the following system of five ordinary differential equations

√
A a′1 =

a1

r
− (m + ωT ) b1 + κT b2 −

A1

2A

(

α

r
− (m + ωT ) β

)

− ω T1 β (8.8)

√
A a′2 =

a2

r
− (m + ωT ) b2 − κT b1 + κ

A1

4A
T β − κ

T1

2
β (8.9)

√
A b′1 = −(m − ωT ) a1 −

b1

r
− κT a2 −

A1

2A

(

−(m − ωT ) α − β

r

)

+ ω T1 α (8.10)

√
A b′2 = −(m − ωT ) a2 −

b2

r
+ κT a1 − κ

A1

4A
Tα + κ

T1

2
α (8.11)

2rAT ′
1 =

A1T

A
− T1 + AT1 +

32πT 2

r
(a1β + b1α)

+16πT 2 α (2ma1 − 2ωTa1 + κTa2) − 16πT 2β (2mb1 + 2ωTb1 − κTb2)

−16π T1

(

3ωT 2 (α2 + β2) − 4

r
T αβ − 2mT (α2 − β2)

)

+16π
A1T

A

(

wT 2 (α2 + β2) − 2

r
T αβ − mT (α2 − β2)

)

(8.12)

together with the algebraic equation

A1 = 16π

√
AT

κr
(−(κb1 + 2ωb2) α + (κa1 + 2ωa2) β) . (8.13)

The consistency of these equations (i.e., that the equation G2
2 = −8πT 2

2 is identically
satisfied) was again checked with Mathematica. We want to show that there are no
solutions for κ > 0; this implies stability.
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The above equations come with initial conditions at r = 0 and additional constraints,
which we will now describe. A Taylor expansion about r = 0 gives, similar to (5.9)-(5.12),
the following expansions near r = 0

a1(r) = a10 r + O(r2) , a2(r) = a20 r + O(r2) (8.14)

b1(r) = O(r2) , b2(r) = O(r2) (8.15)

A1(r) = O(r2) , T1(r) = T10 + O(r2) . (8.16)

We have three parameters a10, a20 and T10 to characterize the solutions. Since the metric
must be asymptotically Minkowskian, we demand moreover that

lim
r→∞

A1(r) = 0 (8.17)

lim
r→∞

T1(r) = 0 . (8.18)

Furthermore, the wave functions must be normalized, which means that (cf. (3.8)),

∫ ∞

0
(α2(r, t) + β2(r, t))

T (r, t)
√

A(r, t)
dr =

1

4π
, (8.19)

for all t. This time-dependent normalization condition appears to make the analysis very
complicated. It turns out, however, that we do not have to consider it at all, because, for
the perturbation (8.6), (8.7), it is automatically satisfied.

To see this, note that, as a consequence of the current conservation (2.6), the nor-
malization integral (8.19) is actually time-independent. But, in the limit t → −∞, the
time-dependent solution (8.2)-(8.5) of the Einstein-Dirac equations goes over into the
static, unperturbed solution (α, β,A, T ), and thus (8.19) holds in this limit. It follows
that (8.19) holds for all t. In other words, the linear contribution in ε to (8.19) vanishes
as a consequence of the linearized Einstein-Dirac equations (8.8)-(8.12), (8.13). We must
only make sure that the integral (8.19) is finite for all t.

These conditions can be simplified. To see this, we first consider the infinitesimal time
reparametrization

t → t − ε
T1(r = 0)

κ T (r = 0)
eκt .

This transformation does not destroy the ansatz (8.2)-(8.7); it only changes the functions
a2, b2 and T1 according to

T1(r) → T1(r) − T1(0)
T (r)

T (0)

a2(r) → a2(r) − ω

κ

T1(0)

T (0)
α(r) (8.20)

b2(r) → b2(r) − ω

κ

T1(0)

T (0)
β(r) . (8.21)

Thus we can arrange that T1 vanishes at the origin,

T1(r) = O(r) ,

provided that (8.18) is replaced by the weaker condition

lim
r→∞

T1(r) = µ for some µ, 0 < µ < ∞ .
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This makes the numerics easier, because we now have only two free parameters a10, a20 at
the origin to characterize the solution. Furthermore, using the linearity of the equations,
we can multiply every solution by a (non-zero) arbitrary real number. This allows us to
fix one of the parameters (e.g. by setting a20 = 1), and thus we end up with only one free
parameter.

Our strategy is to show that, for any κ > 0, there are no solutions for which the
normalization integral (8.19) is finite; this will imply stability. In order to explain the
technique and the difficulty for the numerics, we consider Figure 11, where typical plots
of (a1, b1), (a2, b2) for a small value of κ, and the ground state solution of Figure 1, are
shown. According to (8.14),(8.15), both the (a1, b1) and the (a2, b2) curves start at the
origin. We want to show that at least one of these curves stays bounded away from the
origin as r → ∞, no matter how we choose κ and the initial values a10, a20. This will
imply that the integral (8.19) is unbounded. Figure 11 is interesting because it almost
looks as if this happened: the (a2, b2) curve looks like the α − β-plot of the ground state,
whereas (a1, b1) is almost like the α − β-plot of the first excited state. The (a1, b1) curve
is not quite closed, however, and it is difficult to decide whether this is just an artifact
of the numerics or whether it actually means that there is no normalizable solution. The
numerics are especially delicate because, for small values of κ, the values of (a2, b2) are
much larger than (a1, b1) (notice the different scales on the plots of Figure 11). In order
to improve the accuracy of the numerics, it is useful to note that, numerically, a2 and b2

are, to a very good approximation, multiples of the unperturbed wave functions α, β, i.e.
a2 ≈ µα, b2 ≈ µβ for some real constant µ. We can eliminate this dominant contribution
to a2, b2 by introducing new variables

â2 = a2 − µ α , b̂2 = b2 − µ β

and rewriting our ODEs in the functions (a1, b1, â2, b̂2, A1, T1); this gives a system of five
inhomogeneous, linear equations. From these, we obtain the plots in Figure 12. The
(a1, b1)-curve is similar to that of Figure 11; the (â2, b̂2)-plot, however, gives a much more
detailed view of the imaginary part of α(r, t), β(r, t) (notice again the different scales on
the plot).

Next we describe our method to determine the initial data at r = 0 for the solutions
(i.e. the parameters a10, a20, for the original equations (8.8)-(8.12)). It turns out that the
integral (8.19) is only finite for all t if both (a1, b1) and (a2, b2) tend to zero for large r;
indeed, from the numerics we see that (a1, b1) and (a2, b2) cannot have infinite oscillations.
It is an efficient technique to fix the initial values by trying to satisfy the first part of these
conditions

lim
r→∞

(a1(r), b1(r)) = (0, 0) . (8.22)

This can be done by varying the initial values in such a way that

(a1(R)2 + a2(R)2) → min ,

where R is the value of r where we stop the numerics (R must be chosen sufficiently large).
Using the linearity of our ODE’s, this minimizing condition leads to simple algebraic
relations between the initial data and the values of a1(R), b1(R) for a fundamental set of
solutions, from which the initial values can be computed numerically. According to Figures
11 and 12, we already know qualitatively how the resulting (a1, b1)-plot is supposed to look
like. This is helpful for checking the numerical results and for finding the best values for R.
(More precisely, the best value for R is, roughly speaking, the value where the (a1, b1)-plot
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starts to look like a closed curve. If R is chosen much larger than this, the numerical
inaccuracies pile up in a such way that our method of computing the initial data from
a1(R) and b1(R) is no longer reliable.)

This procedure can be carried out for different values of κ, and gives the plots of
Figures 13 to 18. For very small values of κ, the plots look like those in Figure 13, and
one sees that (â2(r), b̂2(r)) does not tend to zero for large r. The shape of the (â2, b̂2)-plot
does not change over many magnitudes in κ (see Figures 12, 14, 15), showing too that
our numerics are well-behaved. For κ ≈ 0.02, the form of the plots changes drastically
(see Figures 16, 17, 18). One sees that (â2, b̂2) still do not go to the origin and that it
becomes impossible to satisfy even condition (8.22). If κ is further increased, both (a1, b1)
and (â2, b̂2) go to infinity for large r, no matter how the initial data is chosen. From this,
we conclude that the ground state solution of Figure 1 is linearly stable.

Our method also applies to the excited states. For the first excited state and the
lowest negative-mass state (i.e., for the solutions of the Figures 2 and 5), the solutions of
the linearized equations for small κ are plotted in Figures 19 and 20. The (a2, b2)-curves
are again of similar shape as the corresponding α−β-plot; the (a1, b1)-curve resembles the
α−β-plot for the next higher excited state (i.e., in Figure 19 for the second excited state,
and in Figure 20 for the first excited negative-mass state). It is again useful to introduce
the variables â2, b̂2. A numerical analysis of the equations for different values of κ shows
that these solutions are also stable.

It might seem a bit surprising that even the excited states are linearly stable. Actually,
this can already be understood qualitatively from Figure 19 and the following heuristic
argument. Thus, if the solution (for small coupling) were unstable, then the solution
(aj , bj , A1, T1) of the linearized equations (8.8)-(8.13) would, to first order, describe the
decay of the bound state. Therefore the (aj , bj)-plots give us information into which state
the wave functions tend to decay. The (a2, b2)-plot is not interesting in this respect, be-
cause it looks like the α−β-plot and only yields information about a time-dependent phase
transformation of the wave functions. The (a1, b1)-plot, however, is helpful. According
to Figure 19, the wave function tends to decay into the second excited state. This is
surprising; one might instead have expected the tendency to decay into the ground state.
Since the energy of the second excited state is higher than that of the first excited state, it
would seem physically reasonable that this decay cannot happen spontaneously; this gives
a simple explanation for stability.

We point out that these stability results are only valid for weak coupling, i.e., for small
(scaled) mass m. If m comes into the region where the mass spectrum of Figure 7 starts to
have the form of a spiral curve, the numerical behavior of the linearized equations becomes
much more difficult to analyze and does no longer allow simple conclusions. It is thus very
helpful to study the stability in this regime via a different method, which we will now
describe.

The existence of the spiral curve (c.f. Figure 21), enables us to obtain information
regarding the stability properties of these solutions, using Conley Index theory (see [14,
Part IV]). Indeed, as the figure shows, if m > m1, there are no solutions while at m = m1,
the solution P1 suddenly appears. This solution is “degenerate”, and has Conley index
0 (the homotopy type of a one-point, pointed space). For m < m1, the solution P1

bifurcates into two solutions Q1 and Q2. The solution Q1, being a “continuation” of
the stable solution Q0 (m is near 0), must also be stable; this follows from Conley’s
Continuation Theorem [14, Thm. 23.31]. In fact, since Q0 being stable implies that the
Conley index of Q0 is Σ0, (the pointed zero sphere), the continuation theorem implies that
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the Conley index of Q1 must also be Σ0, and thus Q1 is also a stable solution. (Moreover,
the same argument shows that all points on the curve between 0 and P1 correspond to
stable solutions; this can also be checked numerically). Since the Conley indices of Q1 and
Q2 must “cancel” (i.e., the index of Q1 and Q2 taken together must be 0), this implies
that Q2 cannot be stable, and in fact, the index of Q2 is Σ1, the pointed 1-sphere. (In
fact, all points on the curve between P1 and P2 correspond to unstable solutions; one can
also check this numerically.) Similar reasoning can be applied to solutions near P2, P3,
. . . , and so on. (We remark that only m, and not ω, can serve as a bifurcation parameter;
we show this in Appendix B.)

These general Conley Index techniques also enable us to show that for each n, these
spiral curves must tend, as α1 → ∞, to a limiting configuration Γn, which is either a
single point, or is a “limit cycle” S1; i.e. a topological circle (we assume, as the numerics
indicate, that the curve “spirals inwards”). In fact, were this not the case, then for each
value of m between 0 and m1, the corresponding solution set would form an “isolated
invariant set” (c.f. [14]), and so, again by Conley’s Continuation Theorem, their Conley
indices would all be the same. However, for m near 0, the index of the isolated invariant
set is Σ0, while for m near m1, the corresponding isolated invariant set has index 0. Since
these two indices are different, we have a contradiction.

It follows from this last result that for a point (m̂, m̂ − ω̂) on Γn, there are an infinite
number of solutions with m = m̂, as well as an infinite number of solutions with m− ω =
m̂−ω̂. For parameter points not meeting Γn, there are at most a finite number of solutions.

A Appendix: Justification of the Ansatz for the Spinor De-

pendence

In this section, we consider the general form of the spinors in static, spherically symmetric
systems and derive the Einstein-Dirac equations for these systems. This analysis will
clarify the ansatz’ (3.4) and (3.10) for the wave functions, which was made in Section 3
without a detailed explanation.

The Dirac wave functions Ψ1, Ψ2 of a general two-fermion system can be written in
the form

Ψa(~x, t) = A(~x, t) ea , a = 1, 2 . (A.1)

where Aα
a = Ψα

a is a (4× 2)-matrix and where (ea) again denotes the standard basis of the
two-component Pauli spinors. The system being static means that the time dependence
of A has the form of a plane wave,

A(~x, t) = e−iωt A(~x) .

The simplest way to characterize the spherical symmetry of the spinors is to demand that
the angular dependence of A is described only by the submatrices 11 and σr; i.e.

A(~x) =

(

v1(r) 11 + v2(r) σr

v3(r) 11 + v4(r) σr

)

(A.2)

with complex functions v1, . . . , v4. This form of A can be derived if one requires that the
total angular momentum is zero and that all the expectation values <O> =

∑2
a=1 ΨaOΨa

of the spin matrices are spherically symmetric. In a simplified argument, this form can be
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understood directly from the fact that the presence of any matrices σϑ, σϕ would destroy
the radial symmetry in (A.2).

The ansatz (A.1), (A.2) for the wave functions is a linear combination of (3.4) and
(3.10). From this, we immediately obtain the corresponding Dirac equations. Namely, the
complex two-spinors Φ = (Φ1,Φ2) and Ξ = (Ξ1,Ξ2) with

Φ1 = r T− 1

2 v1 , Ξ1 = r T− 1

2 v2

Φ2 = −ir T− 1

2 v4 , Ξ2 = −ir T− 1

2 v3

satisfy, (in analogy to (3.9)), the equations

√
A Φ′ =

[

ωT

(

0 −1
1 0

)

+
1

r

(

1 0
0 −1

)

− m

(

0 1
1 0

)]

Φ (A.3)

√
A Ξ′ =

[

ωT

(

0 −1
1 0

)

− 1

r

(

1 0
0 −1

)

− m

(

0 1
1 0

)]

Ξ . (A.4)

In Section 3, we argued that the reality of the coefficients in (3.9) allows us to choose real
spinors. This procedure simplified the Dirac equations considerably, but it might be too
restrictive to describe the general solution of the Einstein-Dirac equations. In order to
analyze the situation more carefully, we first note that the function

F (r) := Φ(r)∗
(

0 −i
i 0

)

Φ(r)

is independent of r, as is obvious from (A.3). The boundary conditions at the origin,
Φ1(0) = 0 = Φ2(0), imply that F must vanish identically, and thus the product Φ1Φ2 is
real. This means that Φ1 and Φ2 must be real up to a common phase factor, i.e.

Φ1(r) = eiα f1(r) , Φ2(r) = eiα f2(r) (A.5)

with real functions f1, f2. Again as a consequence of the Dirac equation (A.3), the phase
α is independent of r. A similar argument applies to Ξ and gives

Ξ1 = eiβ g1(r) , Ξ2 = eiβ g2(r) (A.6)

with real functions g1, g2 and β ∈ IR.
We shall now compute the energy-momentum tensor. First of all, the spherical sym-

metry of the spinors implies that the off-diagonal components T t
ϑ, T t

ϕ, T r
ϑ , T r

ϕ, T ϑ
ϕ vanish

and that T ϑ
ϑ = Tϕ

ϕ . Thus we must only consider T t
r and the diagonal components T t

t , T r
r ,

T ϑ
ϑ of the energy-momentum tensor. As a first step, we verify that the contribution (4.3)

of the variation of B vanishes: According to (2.20), the trace in (4.3) is zero if δgmk is
diagonal. Thus we must only consider T t

r , and we may therefore assume that the indices
m,k are either m = t, k = r or m = r, k = t. Furthermore, the spherical symmetry (A.2)
implies that the expectation of the pseudovector γ5Gp only has a component in the time
and radial directions,

2
∑

a=1

Ψa γ5Gp Ψa = 0 for p = ϕ or p = ϑ .
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We conclude that both indices m and p in (4.3) must be equal to either r or t, and the
antisymmetry of the ǫ-tensor implies that the remaining indices j, n must coincide either
with ϑ or ϕ. Thus we must only consider the trace in (4.3) for the combination

Tr
(

Gk (∂ϑGϕ − ∂ϕGϑ)
)

. (A.7)

But, according to (2.16), (2.17) and (2.11), we have ∂ϑGϕ = ∂ϕGϑ, so that (A.7) vanishes.
We conclude that the energy-momentum tensor is again given by (4.4). In order to

compute the trace in (4.4), it is useful to first notice that, if we write the Dirac matrices
as (2 × 2) block matrices, then Gt is diagonal with entries proportional to the identity,
whereas Gr is off-diagonal with submatrices which are multiples of σr. This implies that
the mixed contribution (i.e., the contribution proportional to ΦΞ or ΞΦ) to T t

t and T r
r

vanish. Using the explicit form of Gϑ together with (3.1), we conclude that the mixed
contribution also vanishes in T ϑ

ϑ . Thus the energy-momentum tensor of the system is
simply the sum of the energy-momentum tensors corresponding to the spinors Φ and Ξ.
As a consequence, the constant phase factors in (A.5), (A.6) are irrelevant; we can without
loss of generality assume that Φ and Ξ are real. Using (4.5), we end up with the formulas

T i
j = T i

j [Φ] + T i
j [Ξ] with (A.8)

(A.9)

T i
j [Φ] = r−2 diag

(

2ω T 2 |Φ|2, −2ω T 2 |Φ|2 + 4T r−1 Φ1Φ2 + 2m T (Φ2
1 − Φ2

2),

−2T r−1 Φ1Φ2, −2T r−1 Φ1Φ2

)

(A.10)

T i
j [Ξ] = r−2 diag

(

2ω T 2 |Ξ|2, −2ω T 2 |Ξ|2 − 4T r−1 Ξ1Ξ2 + 2m T (Ξ2
1 − Ξ2

2),

2T r−1 Ξ1Ξ2, 2T r−1 Ξ1Ξ2

)

. (A.11)

Thus the Einstein-Dirac equations take the form (A.3),(A.4) and

Gi
j = −8π

(

T i
j [Φ] + T i

j [Ξ]
)

with T i
j given by (A.10), (A.11). This is a generalization of the system (5.4)-(5.7). It is

quite remarkable that the energy-momentum tensor is just the sum of T i
j [Φ] and T i

j [Ξ].
Similar to (5.8), the normalization condition for the wave functions takes the form

∫ ∞

0

(

|Φ|2 + |Ξ|2
) T√

A
dr =

1

4π
. (A.12)

We now qualitatively describe how the solutions of this generalized system can be
constructed and how we recover the solutions of Section 7. The scaling technique of
Section 6 can again be applied and consequently we can omit the conditions T (∞) = 1
and (A.12) if we instead set T (0) = 1 = m. Then the solutions are characterized by
the three parameters ω,Φ′

1(0),Ξ
′
2(0) (notice that a Taylor expansion around r = 0 yields,

in analogy to (5.10), the constraints Φ′
2(0) = 0 = Ξ′

1(0)). Compared to the situation in
Section 7, we thus have one additional continuous parameter to describe the solution. At
first sight, this might seem to imply that we can now construct, for given ω, a continuous
one-parameter family of solutions. Then our ansatz’ (3.4) and (3.10) would just correspond
to two special points of this continuum of solutions, and it would become unsatisfying that
we just picked these two special solutions for the discussion of the mass spectrum and the
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stability. However, the additional free parameter is illusory due to the fact that we also
have one additional constraint at infinity. Namely, we must (for given ω) adjust Φ′

1(0) and
Ξ′

2(0) in such a way that both the (Φ1,Φ2) and the (Ξ1,Ξ2) curves tend to zero for large
r. For generic ω, these conditions will only be satisfied for a discrete set of initial values
(Φ′

1(0),Ξ
′
2(0)). The choices (Φ′

1(0) = 0, Ξ′
2(0)) and (Φ′

1(0), Ξ′
2(0) = 0) are both allowable;

they correspond to the solutions constructed in Section 7. After scaling, this shows that
for generic m, the Einstein-Dirac equations only admit a discrete number of solutions.

We note that these considerations do not rule out the possibility that the general
ansatz for the spinors might lead to some additional solutions. We did not study the
general equations systematically and can only say qualitatively that it seems difficult
to arrange that there are simultaneous normalizable solutions of (A.3) and (A.4). The
existence of solutions of this type, however, remains an open question.

B Appendix: Justification of Using m as the Bifurcation

Parameter

We show in this section, first that ω is unsuitable as a bifurcation parameter, and second
that m can serve as a bifurcation parameter. In Conley Index theory, a parameter can only
be used as a bifurcation parameter if it remains well-defined and fixed when perturbations
of the solutions are considered. The basic reason why m and ω must be treated differently
can already be understood from the general form of the Dirac equation in (1.1). The mass
m enters as an a-priori given parameter into the Dirac equation, whereas the energy ω
of the fermion is only determined by the solution Ψ. This means that if we consider a
variation of a solution, m can be considered as a fixed parameter, while ω will in general
change. If the perturbation of the solution is not static, the energy of the fermion will in
general become time-dependent, and ω will no longer be a well-defined parameter.

Although being correct in principle, this argument is too simple and not fully con-
vincing. First of all, the situation becomes more complicated by our scaling technique,
which also changes m and thus makes it impossible to consider the mass as a fixed pa-
rameter throughout. Furthermore, ω is uniquely determined by the solutions (α, β,A, T )
of (5.4)-(5.7). It enters as a parameter into the linearized equations in a similar way as m
does, and it is not obvious from these equations why the two parameters m and ω should
play such different roles for stability considerations. Therefore we will show in detail that
solutions of the linearized equations do not determine ω, whereas m is still a well-defined
parameter.

In order to show that ω is not well-defined, we generalize the ansatz of Section 8 in the
way that we also allow ω to be time-dependent. In analogy to (8.2)-(8.5) and (8.6),(8.7),
we consider a perturbation of ω of the form

ω(t) = ω + ǫ ω1 eκt . (B.1)

Since ω represents a frequency, i.e. the time-derivative of a phase, the correct generalization
of equation (8.1) is to replace the phase factor e−iωt by

exp

(

−i

∫ t

0
ω(s) ds

)

.

The ansatz for aj , bj , A1, T1 then remains the same as before, given by (8.2)-(8.5) and
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(8.6),(8.7). Thus the spinors z1, z2 are given by

z1(r, t) = e−i
∫

t

0
ω(s) ds [α(r) + ε(a1(r, t) + i a2(r, t)]

z2(r, t) = e−i
∫

t

0
ω(s) ds [β(r) + ε(b1(r, t) + i b2(r, t)] .

Into these equations, we substitute (B.1) and consider only the first-order terms in ε. This
gives

z1(r, t) = e−iωt

(

1 − iε

∫ t

0
ω1 eκs ds

)

[α(r) + ε(a1(r, t) + i a2(r, t)]

= e−iωt

[

α(r) − iε
ω1

κ
(eκt − 1) α(r) + ε(a1(r, t) + i a2(r, t)

]

= e−iωt

[

(1 + iε
ω1

κ
) α(r) + ε(a1(r, t) + i a2(r, t) − iε

ω1

κ
eκt α(r)

]

= e−i(ωt−ε
ω1

κ
)
[

α(r) + ε(a1(r, t) + i a2(r, t) − iε
ω1

κ
eκt α(r)

]

with a similar expression for z2(r, t). This looks quite similar to the original ansatz (8.1)
and (8.2)-(8.5) except for two differences; namely, there is here an additional constant
phase factor exp(iε ω1

κ
), together with the term

− iε
ω1

κ
eκt α(r) . (B.2)

The phase factor exp(iε ω1

κ
) plays no role in our analysis, since it falls out of all the

equations (notice that the energy-momentum tensor (4.4) contains only terms of the form
Ψ · · ·Ψ). What is interesting about the term (B.2), however, is that its time-dependence
is again of the form eκt. It is thus consistent with our ansatz (8.6), and corresponds to
the transformation

a2(r) → a2(r) − ε
ω1

κ
α(r) , (B.3)

and similarly

b2(r) → b2(r) − ε
ω1

κ
β(r) . (B.4)

Thus the more general ansatz for aj, bj , A1, T1 whereby ω is replaced by (B.1) is the same
as the original ansatz for these quantities if we transform a2 and b2 according to (B.3) and
(B.4). Conversely, we may obtain an arbitrary time dependence in ω, of the form (B.1),
merely by transforming a2 and b2 according to (B.3) and (B.4). This means that a solution
of the linearized equations only determines ω up to linear time-dependent perturbations
of the form (B.1). Thus ω is not a well-defined parameter2.

For the parameter m, however, the situation is completely differently. Namely if Ψ is
a solution of the time-dependent Dirac equation GΨ = mΨ, then we see from (2.7) that
(GΨ |GΨ) = m2. But as we noted earlier, (after (8.19)), this relation is also valid for the
linearized equations. That is, m is a well-defined parameter for the linearized equations.

2It is interesting to notice that the contribution to (a2, b2) proportional to (α, β) which occurs in the
transformation (B.3),(B.4) played an important role in our numerics. Namely, we saw in Section 8 that
the (a2, b2)-plot looks very similar to the (α, β)-plot (see Figure 11), which shows that this contribution
is actually dominant for small κ. It caused problems in the numerics and forced us to introduce the
new variables â2, b̂2 (see Figure 12). According to (B.3),(B.4), we can now understand the dominant
contribution to (a2, b2) in Figure 11 as describing a time-dependent perturbation of ω of the form (B.1).
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Figure 1: The ground state for m = 1, α1 = 0.02; scaled parameter values: m = 0.5340,
ω = 0.4994
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Figure 2: The first excited state for m = 1, α1 = 0.02; scaled parameter values: m =
0.7779, ω = 0.7326
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Figure 3: The second excited state for m = 1, α1 = 0.02; scaled parameter values:
m = 0.9616, ω = 0.9080
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Figure 4: α-β-plot for the ground states at parameter values m = 1 and α1 =
0.31, 0.35, 0.45
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Figure 5: The lowest state for m = −1, α1 = 0.02; scaled parameter values: m = −0.7567,
ω = 0.6302
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Figure 6: The next excited state for m = −1, α1 = 0.02; scaled parameter values: m =
−0.9742, ω = 0.8391
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Figure 7: Binding Energy |m| − ω of the Fermions
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Figure 8: Binding Energy |m| − ω of the Ground State, Detailed Pictures
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Figure 9: Total Energy ρ − 2ω of the Gravitational Field
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Figure 10: Total Binding Energy ρ − 2|m|
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Figure 11: Perturbation of the ground state for κ = 10−6, variables (a1, b1, a2, b2)
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Figure 12: Perturbation of the ground state for κ = 10−6, variables (a1, b1, â2, b̂2)
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Figure 13: Perturbation of the ground state for κ = 10−8
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Figure 14: Perturbation of the ground state for κ = 10−3
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Figure 15: Perturbation of the ground state for κ = 0.01
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Figure 16: Perturbation of the ground state for κ = 0.02
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Figure 17: Perturbation of the ground state for κ = 0.023
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Figure 18: Perturbation of the ground state for κ = 0.03
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Figure 19: Perturbation of the first excited state for κ = 10−6
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Figure 20: Perturbation of the lowest negative-mass state for κ = 10−6
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