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In the study of geometric objects that arise naturally, the main tools are either 
groups or equations. In the first case, powerful algebraic methods are available 
and enable one to solve many deep problems. While algebraic methods are still 
important in the second case, analytic methods play a dominant role, especially 
when the defining equations are transcendental. Indeed, even in the situation where 
the geometric abject is homogeneous or algebraic, analytic methods often lead to 
important contributions. In this talk, we shall discuss a class of problems in dif
ferential geometry and the analytic methods that are involved in solving such 
problems. 

One of the main purposes of differential geometry is to understand how a surface 
(or a generalization of it) is curved, either intrinsically or extrinsically. Naturally, 
the problems that are involved in studying such an object cannot be linear. Since 
curvature is defined by differentiating certain quantities, the equations that arise 
are nonlinear differential equations. In studying curved space, one of the most 
important tools is the space of tangent vectors to the curved space. In the language 
of partial differential equations, the main tool to study nonlinear equations is the 
use of the linearized operators. Hence, even when we are facing nonlinear objects, 
the theory of linear operators is unavoidable. Needless to say, we are then left 
with the difficult problem of how precisely a linear operator approximates a non
linear operator. 

To illustrate the situation, we mention five important differential operators in 
differential geometry. The first one, which is probably the most important one, is 
the Laplace-Beltrami operator. If the metric tensor is given by 2ijgijd^®dxi

i 



238 Shing-Tung Yau 

then the operator is given by 

"»-issapfie) 
where g=dct(gij) and (giJ) is the inverse matrix of (gtj). 

The second one is the minimal surface operator and is given by 

top] ^)=z^[(i+w)-^] 
where \V<p\2=2i(d<P/M)2-

The third one is the Monge-Ampère operator 

The fourth one is the complex Monge-Ampère operator 

The fifth one is the Einstein field equation which is a nonlinear hyperbolic system. 
If 2jtj Sij dx1 dxj is the Lorentz metric to be determined, then the operator involved 
in the Einstein field equation is 

i t e y ^ - R y - M g y 

where RSj is the Ricci tensor and R is the scalar curvature of the Lorentz metric. 
Both the Laplace-Beltrami operator and the minimal surface operator are elliptic. 

The (real) Monge-Ampère operator is elliptic only at those functions <p where 
<p is strictly convex and the complex Monge-Ampère operator is elliptic only at 
those functions cp where <p is strictly plurisubharmonic. All the above operators 
except the Laplace-Beltrami operator are nonlinear. However, a suitable inter
pretation shows that the linearized operators of the minimal surface operator and 
the Monge-Ampère operators are the Laplace-Beltrami operators of certain metrics. 

To see how these operators arose in differential geometry, we will discuss one 
important problem here. Roughly speaking, this problem is to ask how a space is curved 
globally. In a little more precise form, it can be stated as follows. Given a manifold 
M, find a necessary and sufficient condition for M to admit a metric with certain 
curvature properties. 

To set up the terminology, we remind the reader of some definitions. From the cur
vature tensor, one can extract the following quantities. Given a point in the manifold 
and a two dimensional plane in the tangent space at that point, we can form the 
sectional curvature of the manifold at this plane. Given a point and a tangent at 
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a point, we can form the Ricci curvature in this tangent direction by averaging all 
the sectional curvatures of the two dimensional tangent planes that contain this 
tangent. Given a point, we can form the scalar curvature at this point by simply 
averaging all the sectional curvatures at this point. It is clear from these definitions 
that the sectional curvatures give much more information than the others. For 
example, as the sectional curvature tells us how the manifold curves in every two 
plane, it gives good control of the behavior of the geodesies of the manifold. The 
latter depends on the theory of ordinary differential equations. However, in the 
other cases, the information about geodesies is much less and the theory of partial 
differential equations must be involved. Thus in this talk we will concentrate only 
on the scalar curvature and the Ricci curvature. We begin by discussing the general 
method of obtaining integrability conditions for the existence of metrics with certain 
curvature conditions. 

1. Integrability conditions. The problem of finding complete integrability con
ditions for the global existence of metrics with certain curvature conditions is rather 
difficult. However, for a two dimensional surface, this has a satisfactory answer, 
thanks to the Gauss-Bonnet theorem for compact surfaces and to the Cohn-Vossen 
inequality for the complete open surfaces. (The recent works of Kazdan-Warner [32] 
gave more precise information on the behavior of the curvature function in two 
dimensional geometry.) 

In higher dimension, the situation is much more complicated partly because the 
curvature is a tensor and partly because the link between topological invariants and 
geometric invariants is rather weak at this stage. We list here the major methods 
that were used to find integrability conditions. 

1. Chern's theory of representing Euler class, Pontryagin classes and Chern 
classes by curvature forms gives the most basic integrability conditions for general 
manifolds. The celebrated theorem of Atiyah-Singer can be considered as a glorified 
generalization. Some of their applications will be explained later. 

2. Bochner's method of proving vanishing theorems via Hodge theory will remain 
to be important for a long time. It led to the Kodaira vanishing theorem, I? 
methods in several complex variables, etc. 

3. The variational method has been one of the most classical and most important 
methods in differential geometry. It includes variation of curves, surfaces, maps, etc. 

Naturally, these do not exhaust all the methods. However, for all the results that 
we are going to discuss, they are obtained by suitable combination of the above 
three methods. 

2. Scalar curvature. The simplest problem concerning the scalar curvature is ta 
find those manifolds which admit a complete metric whose scalar curvature has the 
same sign. 

A long time ago, Yamabe [52] was interested in deforming a metric conformally 
to one with constant scalar curvature. The equation that is involved in such a process 
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has the following form 

Au= }?~2l Ru- £~2\ Jti|C+»)/c-») 
4(w —1) 4(w —1) 

where n is the dimension of the manifold, R and R are scalar curvatures of the 
undeformed and deformed metrics respectively. 

As was pointed out by Trudinger [49], Yamabe's method does not seem to work. 
After Trudinger, there were works by Aubin, Berger, Eliason, Kazdan-Warner, 
Nirenberg, Moser, etc. An easy consequence of these results is that every compact mani
fold with dimension greater than two admits a metric with negative scalar curvature. 
Greene and Wu [27], using another method, proved that every noncompact manifold 
admits a complete metric with negative scalar curvature. Hence we conclude that in 
higher dimensions, existence of complete metrics with negative scalar curvature 
poses no topological restriction on the manifold. 

However, complete metrics with nonnegative scalar curvature do give topological 
information. The first result in this direction is due to Lichnerowicz [35] who proved 
that for a compact spin manifold with positive scalar curvature, there are no harmonic 
spinors. Applying the Atiyah-Singer index theorem, the Lichnerowicz vanishing 
theorem then proves that for a compact spin manifold with positive scalar curvature, 
the Xgenus is zero. By pursuing these arguments, Hitchin [30] observed that the 
(mod 2) KO-theory invariant introduced by Milnor is also zero for a compact spin 
manifold with positive scalar curvature. In particular, any exotic sphere which 
does not bound a spin manifold admits no metric with positive scalar curvature. 

While mathematicians were working on problems related to scalar curvature, 
it turned out that physicists, from other points of view, were also interested in similar 
problems. 

Let us describe this problem in general relativity in geometric terms. Suppose 
we are given a Lorentzian metric on a four dimensional manifold. Then under 
a fairly general condition, one expects to prove the existence of a maximal space-like 
hypersurface, i.e., a hypersurface which is locally stable under the deformation of 
the induced area. Usually, we assume that the Lorentzian metric satisfies the weak 
energy condition so that, by the Gauss curvature equation, the scalar curvature of 
the above mentioned maximal space-like hypersurface has non-negative scalar cur
vature. 

Since the maximal space-like hypersurface is three dimensional, we are dealing 
with a three dimensional manifold with nonnegative scalar curvature. On the other 
hand, it is well known that three dimensional manifolds are parallelizable. Hence, 
most of the known topological invariants in higher dimension vanish and the con
sequences derived from the Lichnerowicz theorem and the Atiyah-Singer index 
theorem provided no information. On the other hand, the above mentioned problem 
in general relativity does provide us some guideline. It roughly states [26] that, 
for an isolated physical system, nonnegativity of local mass density implies the 
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nonnegati vi ty of total mass. In mathematical terms, it may be described as follows. 
Let M be a three dimensional manifold with non-negative scalar curvature. (It is 
the maximal space-like hypersurface mentioned above.) SUppose M is diffeo-
morphic to JRS (the situation described below can be generalized to other three 
dimensional manifolds) such that the metric has the form (l+m/lrYdsl+OÇl/r2) 
where ds\ is the standard euclidean metric on i?3, /* is the distance from the origin 
and 0(l/r2) is a tensor which vanishes along with its first two derivatives like 
I//-2 when r tends to infinity. The number m is called the total mass of the manifold 
M. The positive mass conjecture in general relativity says that m is nonnegative 
and is zero iff the metric is euclidean. A special case of the conjecture says that if 
we have a metric of nonnegative scalar curvature defined on R* which is euclidean 
outside a compact set, then the metric is euclidean everywhere. This last statement 
has direct bearing to the questions that geometers are considering. 

This positive mass conjecture was proved by R. Schoen and myself recently. 
(The best previous work on the conjecture was a local result due to Choquet-Bruhat 
and Marsden [21]). Our motivation and method comes out from an attempt to under
stand the topology of three dimensional manifolds with nonnegative scalar curvature. 
Because of the nature of the topology of three dimensional manifolds, it is important 
to understand the fundamental group. In this regard, we proved that if the funda
mental group of the three dimensional manifold with nonnegalive scalar curvature 
contains a subgroup which is isomorphic to the fundamental group of a compact 
surface with genus >1 , then the metric is a flat metric. The method of proving 
this theorem and the above mentioned mass conjecture comes out from the study 
of the minimal surface equation mentioned in the beginning. It describes a surface 
in M which locally has minimal area compared with nearby surfaces. The study 
of such objects has been one of the most important branches in nonlinear elliptic 
partial differential equations and calculus of variations. (It motivated a new important 
subject—geometric measure theory—about which Almgren will talk during this 
Congiess.) The reason that it is useful in studying the topology of the manifold 
is that it tells us how the internal geometry of the manifold behaves. In two dimen
sions, we can control the topology of the minimal surface, thanks to the work of 
C. B. Morrey. In higher dimensions, this remains to be studied. 

It would be nice to give a criterion for a manifold to admit a metric with po
sitive scalar curvature. However, we do not have a good existence theorem 
yet. In this regard, we may mention a theorem of B. Lawson and the author 
[34]. We proved that if a manifold admits a differentiable nonabelian connected 
compact Lie group action, then the manifold admits a complete metric with positive 
scalar curvature. (Combining with the above mentioned theorem of Hitchin, we 
showed that exotic spheres do not admit effective SU (2) action if they do not bound 
a spin manifold. This gives a theorem in topology and illustrates how curvature 
can be used to deal with topological problems.) As a generalization of the above 
work on three dimensional manifold, we mention the following problem. If a compact 
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manifold with nonnegative scalar curvature is covered by the euclidean space 
topologically, is it a flat manifold?1 

3. Ricci curvature. As in the case of scalar curvature, the simplest problem con
cerning the Ricci curvature is to find those manifolds which admit a complete metric 
whose Ricci curvature has the same sign. Since the Ricci curvature is given by 
a tensor and the integrability condition is stronger, the problem of existence is 
considerably harder. The known integrability conditions are not yet complete and 
we shall only mention a few here. 

First of all, Bonnet's theorem tells us that for a compact manifold with positive 
sectional curvature, the fundamental group must be finite and this was later generalized 
by Myers [41] for positive Ricci curvature and by Cheeger and Gromoll [14] to the 
case where we only assume the Ricci curvature to be nonnegative. For a non-
compact complete manifold with nonnegative Ricci curvature, there are also con
ditions on the fundamental group due to Milnor [36], Wolf [51], Schoen and Yau [46]. 
It seems that a complete manifold with positive Ricci curvature should have a finite 
fundamental group. But this has never been proved. Metrics with negative Ricci 
curvature seem to be even harder to understand. For example, in higher dimension, 
we do not even know whether spheres admit such a metric or not. Only recently, 
the author [55] was able to produce such a metric on a compact simply-connected 
manifold. It would be interesting to find some integrability conditions for the exist
ence. It seems possible that for a manifold to admit a metric with negative Ricci 
curvature, it should admit no effective differentiable nonabelian connected compact 
Lie group action. It would also be interesting to see whether a compact manifold 
can admit both a metric with nonnegative scalar curvature and a metric with negative 
Ricci curvature. 

Because of the interest in general relativity, metrics with constant Ricci curvature 
are of particular importance. For a long time, the only known examples were those 
manifolds that are acted transitively upon by a compact Lie group. The first 
necessary condition for the existence was found by M. Berger [6] who proved that 
for four dimensional Einstein manifolds, i.e., manifolds with constant Ricci curvature, 
the Euler number must be positive unless they are flat. This inequality of Berger 
was later generalized by Hitchin [31]. In all these theorems, Chern's representa
tion of the topological invariants by curvature plays a very important role. 

For quite a long time, there was no example of nonhomogeneous Einstein manifolds. 
In particular, it was not known whether there exists a non-flat compact Riemannian 
manifold with zero Ricci curvature. (This attracted people's attention because 
of its analogue with the situation in general relativity.) Partly motivated by this 

1 After the Congress, R. Schoen and the author were able to generalize our work on three di
mensional manifolds to higher dimensional manifolds. This was also achieved by Gromov and Law-
son about the same time. Our works also indicate the possibility of classifying compact simply con
nected manifolds with positive scalar curvature. 
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question, Calabi [9] proposed a way to study the Ricci tensor for some special 
class of manifolds. He observed that in the case of Kahler manifolds, the expression 
for the Ricci tensor is particularly simple. This observation was based on Chern's 
representation of the first Chern's class [17] by the curvature form and can be described 
as follows. Let ^^g^dz^dz* bea Kahler metric defined on a compact complex 
manifold. Then the (1,1) form 

^ £ ^ [ l o g d e l ( g , ) ] ^ A ^ 

is closed, globally defined on the manifold and represents the first Chern class. 
According to Chern [17], this (1,1) form is also the Ricci form of the Kahler metric. 
Hence for a (1,1) form to be the Ricci form of some Kahler metric, it must be closed 
and represents the first Chern class. What Calabi asked was whether this is the 
only integrability condition. This question stimulated a lot of interest partly because 
it could give a complete understanding of the Ricci tensor of a Kahler manifold 
and partly because it would create a lot of examples of compact manifolds with 
zero Ricci curvature. For example, the K— 3 surface is a compact simply connected 
manifold with zero first Chern class. Calabi's conjecture immediately shows the 
existence of a Ricci flat metric on the K— 3 surface. (The simple-connectivity of 
the K—3 surface guarantees that it does not admit any flat metric.) The equation 
that is needed to solve Calabi's conjecture has the following form 

(*) d e t(^+J&) = e F d e t^a) 
where q> is the unknown function and F is a smooth function so that fMeF is 
the volume of M. 

Equation (*) is similar to the real Monge-Ampère operator and can be considered 
as the complex Monge-Ampère equation. In order to make (*) to be elliptic, we 
have to look for functions cp so that (grj-\-d

2(p/dzidzj) is a positive definite metric. 
In order to understand the equation (*), Calabi [11] studied the equation 

det(d2(p/dxidxj) = l where cp is required to be convex. He tried to prove that if 
cp is defined over the entire euclidean space, then it is a quadratic polynomial. He 
generalized Jörgen's theorem [59] from two dimension to dimension <s5. The impor
tant ingredient in his paper is the introduction of the quantity S=^(plr(pjs(pkt(pijk(prst 

where (cpij) is the inverse matrix of ((pu) and cpijk is the third derivative of <p with 
respect to x\ xj and xk. This quantity comes up naturally from affine geometry, 
a geometry where we want to study quantities invariant under the special linear 
group. Affine geometry is very natural in dealing with the Monge-Ampère equation 
because the Monge-Ampère operator is clearly invariant under the special linear 
group. Indeed, the graph defined by the solution of the equation det (d2(p/dxidxJ) = l 
has a nice affine geometric meaning. It is called the improper affine sphere. The 
important contribution of Calabi is that he found a nice formula when the linearized 
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operator of M((p)=det(d2q>/dxidxj) operates on the above quantity S. His 
formula enables one to estimate, in the interior of the domain, the third derivatives 
of the solution of the equation det (d2(p/dxîdxJ)=F(x, <p) assuming that we know 
the lower order estimates of <p. It turns out that a complex analogue of Calabi's 
third order quantity exists and that a nice formula (as was shown by Nirenberg) 
still holds. 

In 1971, Pogorelov [45] was able to push Calabi's method to prove that in general, 
any convex entire solution of the equation det(d2(pfdxidxj)=l is a quadratic 
polynomial. One of the main ingredients of Pogorelov was his interior estimate of 
the second derivatives of the equation det(d2q>/dxidxJ)=F(x). Besides the 
interior estimate, Pogorelov used a lot of convex geometry to prove the completeness 
of the affine metric which was the major point left in Calabi's approach. Later, 
Calabi, Cheng, Nirenberg and the author were able to prove the completeness of a 
large class of affine metrics. These include also the hyperbolic affine sphere where 
the equation is given by det (d2(p/dxldxJ)=(— l/<p)n+2. This last method does not de
pend on convex geometry. It has direct influence on our later work mentioned below. 

Coming back to the equation (*), one notices that Calabi proved that if F is 
close enough to zero, (*) has a unique solution. Assuming a curvature condition 
on the Kahler manifold, Aubin [4] indicated a variational method to prove the 
existence of solution to (*). (It was conjectured, for example, that such a curvature 
condition would imply that the manifold is the complex projective space. This is 
not enough for our later applications in geometry. Furthermore, for the Monge-
Ampère equation, variational methods are still rather difficult.) In 1976, the 
author [55], [56] was able to use the continuity method to prove that (*) has a 
unique solution without any additional assumption. As usual, the basic steps in 
the proof are giving the a priori estimates of (*) up to the third derivatives. 
The third order estimate is essentially a consequence of the fundamental contri
butions of Calabi. The second order estimate is motivated by Pogorelov's work 
in [45]. However, both these estimates depend on the estimate of sup \<p\. This 
was not known for a long time and was the major difficulty in solving (*). In 
case the right hand of (#) has the form etp+F det (gtj), an estimate of sup \<p\ 
follows trivially from the maximum principle. In [56], the estimate of sup |<p| 
depends on a delicate and technically very complicated interplay of the maxi
mum principle and the integration method. Later there was a slight simplifi
cation of this estimate due to Kazdan [60] and Bourguignon. As a consequence 
of the solution of (*) and its proof, one can deduce the existence of a (canonical) 
Kahler Einstein metric on a compact Kahler manifold with zero or negative first 
Chern class. (In the special case where the right-hand side of (#) is e(p+i?det (gfj), 
Aubin [4b] independently announced and sketched a proof which depends on the 
variational method of his previous paper [4a].) 

In a way, the solution of (*), which is commonly known as Calabi's conjecture, 
gives a complete understanding of the Ricci tensor for a compact Kahler manifold. 
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However, when one thinks deeper, a lot of problems still have to be done in this 
direction. One may mention that the solution of Calabi's conjectures gives quite 
a lot of unexpected application in algebraic geometry [55], The most interesting 
one is perhaps the uniqueness of the complex structure of the complex projective 
plane. This comes out from the canonical metrics that we construct on the algebraic 
manifolds. These metrics generalize the Poincaré metric of algebraic curves. -One 
expects that they will be useful in the moduli problem of algebraic geometry. Indeed, 
two years ago, the author was able to use the metric above to prove that if M is 
an algebraic manifold of dimension n whose canonical line bundle is ample, then 
(— l)"2(n -f l)c2c"~~2 ̂  (— l)"nc" and equality holds iff M is covered by the complex ball. 
(For two dimension algebraic surfaces, there were works of Van de Ven, Bogomolov 
and Miyaoka. It was Miyaoka who found the above precise inequality independently. 
However, up to now, their algebraic method cannot be generalized to higher dimen
sion and cannot decide what happens when equality holds.) An easy consequence of the 
theorem is that there is only one Kahler structure on the complex projective space. The 
Kahler metric with nonnegative Ricci can also be used to deal with problems related to 
algebraic manifolds. Up to covering problems and the study of complex torus, one 
san reduce the study of Kahler manifolds with nonnegative first Chern class to the 
study of simply-connected Kahler manifold with nonnegative first Chern class. 
In case the Kahler manifold M has zero first Chern class, then one can prove that 
for any Kahler class œ in HU1(M), U ) " " 2 U C 2 ( M ) > 0 and that equality holds 
only if M is covered by the torus. There are also interesting works of S. Kobayashi 
58] who showed how to use the Einstein metric to obtain new vanishing theorems. 
Bourguignon and Koiso were also able to extend the work of Berger-Ebin [61] to 
study the deformation of Einstein metrics. They generalized the work of Calabi-
Vesentini [63] to Kahler manifolds with negative curvature. Since Einstein metrics 
have nice curvature properties, it may also be used to strengthen the transcendental 
method of Griffiths in algebraic geometry. 

By pushing more the method that the author used above, Cheng and the author 
were able to prove the existence of complete Kahler Einstein metrics on many 
non-compact complex manifolds. For example, if D is a divisor with normal 
crossings in a compact algebraic manifold M so that q(M) — cx([D])<0 (see 
[29]), then we can prove the existence of such a metric on M\D. We can also prove 
the existence of a complete Kahler Einstein metric on any bounded pseudoconvex 
domain with C2 boundary in a Stein manifold. It may be interesting to know that 
it is an easy consequence of the Schwarz lemma given by the author [54] that there 
is at most one complete Kahler Einstein metric with Ricci curvature = — 1 on any 
complex manifold. (This fact was also pointed out by H. Wu.) Therefore, even 
in the case of noncompact manifolds, complete Kahler Einstein metric is canonical 
and deserves more investigation. 

Concerning the Kahler Einstein metric on a smooth bounded domain Q in 
C", the equation that we propose to solve has the form det (d2u/dzidzJ') = e°1+1),t 
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and u is required to tend to infinity on dQ. In order to understand the boundary 
behavior of the metric near dQ, it suffices to study the boundary behavior of the 
function v = e~". 

The function v satisfies another equation of the Monge-Ampère type. This 
equation was studied by other people, especially C. Fefferman [24] who studied 
its relation with the asymptotic behavior of the Bergman kernel. A few years ago, 
he demonstrated how to find the asymptotic behavior of v assuming its existence. 
He expanded v in terms of power series expansion of the defining function of Q. 
His expansion shows that log terms must occur after the (n + l)th stage of expansion 
where n=dim Q. His recent deep work on computing the coefficient of the Bergman 
kernel expansion also shows the importance of this function v. Partly inspired 
by his work, Cheng and the author were able to demonstrate that the actual solution 
is Cn+S/2~Ö(Ü) where <5>0 is an arbitrary small constant. The optimal case 
should be n + 2—d and we believe our method will give it after suitable modification. 
In any case, the information that we obtain is enough to give suitable description 
of the Kahler Einstein metric near dQ. 

Finally, let us come to the question of the existence of complete Kahler metrics 
with zero Ricci curvature. These metrics have considerable interest in general 
relativity. There are more conditions for the existence of such metrics and the know
ledge of them is far less complete than the previous case. We outline here questions 
that may lead to future progress. 

The first question is: Does every four dimensional compact simply-connected 
Riemannian manifold with zero Ricci curvature admit a Kahler structure? According 
to an observation of Hitchin, this is true for the K—3 surfaces where the author 
has constructed Ricci flat Kahler metrics. (In fact, it is true if the compact manifold 
is a spin manifold with nonzero index.) 

The second question is: Can every complete Kahler manifold with zero Ricci 
curvature be compactified in the complex analytic sense? The author [57] proved 
that such a manifold does not admit any bounded holomorphic function which 
gives an indication to support the truth of the statement. 

The third question is: Suppose M is one of the compactifications of our mani
fold M. Does the anticanonical line bundle of M admit a holomorphic section 
which is zero precisely on M\Mt! If the metric on M "grows only polynomially", 
then one can indeed prove that the volume form of M gives rise to such a section. 
This is based on a theorem proved by Calabi and the author [53] that complete 
noncompact Riemannian manifold with nonnegative Ricci curvature has infinite 
volume. 

In any case, the author is able to prove that, for a compact Kahler manifold iCf. 
if the anticanonical line bundle of M admits a holomorphic section with non-
singular zero locus, then the completion of the zero locus admits a complete 
Kahler metric with zero Ricci curvature. The assumption that the zero locus is 
nonsingular seems to be not necessary. In fact, for many negative holomorphic 
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vector bundles over a compact Kahler Einstein manifold whose Chern classes satisfy 
some relation, the total spaces admit complete Kahler metric with zero Ricci curvature. 
(For many special bundles, Calabi also discovered these metrics. For the cotangent 
bundle of CP1, it was discovered earlier by Eguchi-Hansen and Hitchin. They 
even know the metric explicitly.) In these cases, when we compactify the total 
space, the zero section of the anticanonical line bundle has multiplicity greater 
than one. 

In question three, we request M\M to be a divisor because one can use the growth 
of the volume to prove that none of the components of M\M is a subvariety with 
co-dimension greater than one. A theorem of Cheeger-Gromoll [14] also shows 
that the divisor J\d\M is connected unless M is the product of C and other space. 
One can prove that the plurigenera of M is zero because the positivity of Pm(M) 
for some m >0 would imply the existence of a non-zero (n, n) form V= {^lyfdz1 A ... 
Adz"Adz1 A ... Adz" where / ^ 0 and log / is pluriharmonic at points where 

f^O. If dV is the volume form of M, then V/dV defines a function which is 
Z/Mntegrable on M. The condition on V and the fact that M has zero Ricci 
curvature then imply that P/dV is a constant [53]. As M has infinite volume, 
this constant must be zero. This is a contradiction. 

Recall that it is a consequence of the Schwarz lemma proved in [54] that M and 
its universal cover admit no bounded holomorphic function. Specialized to two 
dimensional complex surfaces, one can then use the classification theory to conclude 
that M must be rational at least when M is simply connected. In any case, we 
hope the questions asked above will be answered in the near future. An affirmative 
answer will be very interesting even for complex surfaces. 

4. Applications to partial differential equations. Up to now, it seems that we mainly 
use methods of partial differential equations to deal with problems in geometry. 
It turns out that the reverse procedure is also the case. Very often the geometric 
situation motivates the study of certain quantities in differential equations which 
turns out to be useful. This is true especially for the minimal surface equation and 
the Monge-Ampère equation. Indeed, one can use the metric mentioned above 
to treat the Dirichlet boundary valued problem for the Monge-Ampère equation. 
The procedure does not depend on the concept of generalized solution. For the 
real Monge-Ampère equation, there were works of Alexandrov [1] and Pogorelov 
[43]. Pogolerov [43] sketched a proof for the smoothness of the generalized solu
tion in case the right-hand side is independent of the unknown. (In [16] Cheng and 
the author gave a detailed proof of the smoothness in the general case where the 
right-hand side depends on the unknown. By a different procedure, we were also able 
to take care of several essential points overlooked in [43].) For the complex 
Monge-Ampère equation, the best previously known result was due to Bedford 
and Taylor [5] who proved the existence of C1 generalized solution. (Using a 
different method, Gaveau [62] was able to obtain a generalized solution similar 
to that of Bedford and Taylor.) 
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