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IT IS well-known that if a compact group acts differentiably on a differentiable manifold, then this 
group must preserve some Riemannian metric on this manifold. From this point of view, we shall 
discuss certain facts about group actions on manifolds. 

In 01, we study the group of isometries of a non-compact manifold. We discover that if the 
group is non-compact, the manifold has to split as a product of the Euclidean space and another 
manifold. This gives some information on problem 33 of [5]. It also gives some information on the 
group of biholomorphic transformations of a complex manifold whose Bergman metric is not 
trivial. Then we find a topological obstruction for a non-compact manifold to admit an infinite 
group to act freely and properly discontinuously. Namely, we prove that the natural map from the 
de Rham cohomology group with compact support to the de Rham cohomology group without 
compact support is trivial when the first group has finite dimension. 

In $2, we obtain some topological obstructions for group actions by looking at the complex of 
invariant differential forms. We prove, for example, that if a compact group acts on a compact 
manifold with non-zero Euler number, then wI A * * * A ut+, = 0 for all closed invariant l-forms 
wl,. . . , Ok+1 with k 2 the codimension of the principle orbit. (It may be interesting to note that 
the vanishing is on the form level so that any secondary obstruction should also vanish.) We also 
prove a topological version of this theorem for circle actions. An interesting corollary is that if a 
manifold is the connected sum of a torus and a compact manifold with Euler number # 2, then it 
does not admit any circle actions. Another interesting corollary is that the only compact 
connected group acting effectively and differentiably on a compact complex submanifold of a 
complex torus must be a torus and the action is locally free. 

Finally, we prove a fixed point theorem which may be of interest. If the first Betti number of a 
compact manifold M is zero and if there are rational cohomology classes a,, . . . , lb. of 
dimension 2 with 2k = n and R, U * * * U Rk # 0, then any circle group acting on M must have a 
fixed point and the fixed pint set is disconnected. 

In 83, we point out that the theorem of Gromoll-Meyer on non-compact positively curved 
manifolds is also true equivariantly. 

Recently, J. P. Bourguignon was also able to obtain Corollary 1 of Theorem 3. We thank him 
for several interesting comments on the original manuscript. Both he and Professor S. Kobayashi 
point out to us the paper “Dynamische Systeme and Topologische Aktionen” by S. Strantzalos 
(Manuscripta Mathematics 13, (1974) 207-211) where the corollary of Theorem 1 was proved. R. 
S. Kulkarni also obtained Corollary 2 of Theorem 2 recently. Most of the results here were obtained 
when I was in Stony Brook. 

I am grateful to Professor B. Lawson for many important suggestions and helpful comments 
which lead to the improvements of the original manuscript. The referee also made several helpful 
suggestions on the manuscript. 

$1. GROUP OF ISOMETRIES OF A NON-COMPACT MAYIFOLD 

It is well-known that the group of isometries of a compact Riemannian manifold is compact. 
Conversely, any compact Lie group acting differentiably on a manifold must preserve some 
Riemannian metric. This fact makes the study of compact group actions a lot easier than that of 
non-compact group actions. 

tThis research was supported in part by the NSF GP3246OX4 grant. 

239 



240 SHING TUNG YAL; 

In this section, we shall study the group of isometries of a non-compact Riemannian manifold. 
Of course, it is not true that every,Lie group acting differentiably can preserve some metric. 
There are many restrictions for a group to preserve some metric. For example, the isotropy 
groups must be compact and hence the group action must be very regular. To study this in more 
detail, we begin with the following. 

PROPOSITION 1. Let G be a closed subgroup of the group of isometries of a Riemannian 
manifold M. Then every orbit of G is closed. 

Proof. Let x E M be an arbitrary point. Let y be a point in the closure of the orbit G(x). 
Then we claim y E G(x). 

In fact, let {g,, g,, . . .} C G be such that !im g(x) = y. Let {e,, . . . , e,} be an orthonormal 

frame of M at the point x. Then by passing to iyubsequence, if necessary, we may assume that 
lim (gi)*(ej) exists for all j = 1,. . . , n. (The limit is taken on the tangent bundle of M.) 
i- 

Let cr: [0, I] + M be a geodesic segment such that o(O) = x. Then we can find e > 0 such that 
N. = (p ldist (p, cr[O, II) - } < E is a compact neighborhood of a[O, 11. Hence by convergence of 
{(gi)*(ej)}T=“zI (and the continuous dependence of ordinary differential equations), we see the 
existence of an integer I such that for i L Z, gi(a[O, I]) is a subset of g,(N.12). Clearly this implies 
{gi} converges on the geodesic segment a[O, I]. Similarly one can show that {gi} converges in a 
neighborhood of u (and hence in the frame bundle of this neighborhood by repeating the above 
argument.) 

Let p E M be an arbitrary point. Then we can join p to x by a path y. There exists a positive 
number E >O and finite number of points {y(O) = x, y(&), . . . , y(L) = p} such that every closed 
geodesic ball of radius E around y(&) is compact convex and that y is covered by the union of the 
open balls. By applying the above argument to the first ball, the second ball, etc., we see that the 
sequence {gi} converges at p. Therefore {gi} converges on M to an isometry g and 
y = g(x) E G(x). This finishes the proof of the proposition. 

Note that we actually prove that the action of G is proper. 

From now on, we shall assume that G is a closed subgroup of the group of isometries of M. In 
particular, all the orbits of G are closed submanifolds of M. 

THEOREM 1. Let G be a semi-direct product of a compact group K and another closed 
connected subgroup N which does not contain any non-trivial compact subgroup. Then 
differentiably M is a direct product M, x Mz where M, is diffeomorphic to N. Furthermore, the 
group N acts transitively on M, by left multiplication and trivially on M2. For k E K and 
(x, y) E M, x M2, we have k(x, y) = (k,(x), kz(x, y)). (The action of K on M, is quite regular because 
it has to preserve a left invariant metric of N.) 

Proof. First we claim that the group N acts freely on M. In fact, this follows because the 
isotropic group of the group of isometries is compact and N does not contain any non-trivial 
compact subgroup. 

By Proposition 1, all the orbits of N are closed. Let x E M be an arbitrary point. Then there 
exists a geodesic ball D.(x) of radius E around x such that for y E D.(x), there exists at most 
one shortest geodesic that realizes the distance from y to G(x). The tangent space of M at x 
splits into the orthogonal sum of the tangent space of G(x) and another space V. Let B.(x) be the 
disk of radius E in V. Then we claim that for all y E exp,(B,(x)), we have G(y) rl 
exp, (B. (x)) = {y}. In fact, let u be the geodesic in exp, (B. (x)) that realize the distance between 
y and G(x). Then g(a) also realizes the distance between g(y) and G(x). If g(y) E expx(B.(x)), 
g(a) must be the unique geodesic joining g(y) and x. In particular, g(x) = x. Since N acts freely 
on M, this implies g is the identity and the claim is proved. It is easy to see from the claim that the 
orbit space M/N is a manifold and the natural projection M + M/N is a principal fibration. 

Since N is contractible, we see that the fibration M + M/N is trivial and M = MI X Mz where 
MI is diffeomorphic to N, N acts by left translation on M, and trivially on Mz. We can now finish 
the proof of the theorem by noting that N is normal in G and the action of K must preserve the 
fiber structure. 
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COROLLARY. Let M be a differentiable manifold which is not the product of a Euclidean space 
with some other manifold. Then for any Riemannian metric on M, the connected component of the 
group of isometries of this metric is compact. 

There is one instance where a group of infinite order can preserve a Riemannian metric. 
Namely, if a group G acts freely and properly discontinuously on a manifold M, then G 
preserves a complete Riemannian metric on M. This follows because the quotient space M/G is a 
manifold and admits a complete Riemannian metric. The required metric on M is obtained by 
lifting this metric. 

For the rest of this section, we shall observe that for a non-compact manifold M to admit an 
infinite group which acts freely and properly discontinuously, certain topological obstruction 
exists. 

Let H?(M) be the de Rham cohomology of M with compact support and H*(M) be the de 
Rham cohomology without compact support. Then under the above assumption, we claim that 
the map H,‘(M)+ H’(M) is a trival map when dim HCi(M) < 2. 

According to [7], every closed form with compact support is cohomologous to a unique 
L*-integrable harmonic form in the space of differential forms. Let V’ be the space of all 
L*-harmonic i-forms on M which are cohomologous to closed i-forms with compact support. 
Then by our assumption dim V’ < 2. 

Let G be a subgroup of the group of isometries of M which acts properly discontinuously. 
Then G also acts on Vi in the natural manner. Furthermore, G preserves the natural inner 
product on V’. 

If G is infinite and dim V’ >O, there is a non-zero form w E V’ and a sequence of distinct 
elements {g,, g,, . . .} in G such that I\g fo - 011~ < 2-j. We claim that this is impossible. In fact, as G 
acts properly discontinuously, there is an open set II C M such that U n g,(U) = 4 for 
gi # identity, g,(U) n gk(U) # C#J for j# k and jU o A+W # 0. Integrating o A+O over the set 
Ujgj(u), we obtain 

which is a contradiction. (We used the inequality (1/2)a* 5 b* + (a - b)*.) 
Therefore, we have proved the following 

THEOREM 2. Let M be a non-compact manifold such that for some infinite group G, G acts 
freely and properly discontinuously. Let HZ(M) be the de Rham cohomology with compact 
support. Then if dim H,‘(M) < to, the map H,‘(M) + H’(M) is a trivial map. 

COROLLARY 1. Let G and M be as in Theorem 2. Let wI be a closed i-form with compact 
support and 02, . . . , Ok be closed forms such that for some j L 2, wi has compact support. Then 
when dim H,‘(M)<=, wI U w2 U . * * U wk = 0 in H,‘(M). 

Proof. By the theorem, wI = de, for some (i - l)-form 8, in M. Therefore, wI A w2 A * * * A Ok = 

a’(0 IA&A" 'hf.&) where ~,AWzA**. A ok has compact support. 

COROLLARY 2. Under the assumptions of Theorem 2, if dim H,‘(M) < z for all i, the product 
structure of the cohomology ring of M with compact support is trivial. 

02. TOPOLOGICAL OR!3TRUCTIONS FOR GROUP ACTIONS 

In this section, we shall assume that the group G is connected. Let %-(M) be the complex of 
smooth G-invariant differential forms on M. Then if G is compact, one can check that the 
homology of the complex +&(M) is the same as the cohomology of the de Rham complex of M. 

THEOREM 3. Let G be a closed connected subgroup of the group of isometries of some 
Riemannian manifold M. Let ol,. . . , wk be closed l-forms in 9&(M). Suppose for each i and each 
closed one parameter subgroup g(t) of G, there exists a point x E M such that 
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oi[(dldt)g(t)(x)l,=o]=O. Then w~Aw~A-.. ~0~ is a zero k-form if k is greater than the 
codimension of the principal orbit. 

Proof. Let X be a vector tangent to the principal orbit at some point x. Then for some one 
parameter group g(t) C G, X is tangent to the path g(t)(x). Let J? be the global vector field on M 
generated by the one parameter group g(t). 

Then since g(t) preserves the forms wi, we see that Ln(wi) = 0 for all i. Here Ln is the Lie 
derivative with respect to J?. However, by the well-known formula Ln = d 0 ix + ix 0 d where ix 
is the interior derivative, it follows that d(inwi) = 0 for all i. In our case, this means d[oi(&] = 0 
and wi(_%) is a constant function for all i. 

By the assumption ~~[(dldt)g(t)(x)l,=,] = 0, we conclude that wi(J?) = 0, and therefore the 
restriction of wi on every orbit is zero for all i. Hence, the wis are forms “lying” in the 
complement of the tangent space of each principal orbit. When k is greater than the dimension of 
the complement of these tangent spaces, wl A w2 A. . - auk is a zero form. Since the union of the 
principal orbits is an open dense set of M, oI A wz A. * -wk is really a zero form on M. 

COROLLARY 1. Suppose the k-dimensional torus TL acts differentiably and effectively on a 
manifold M of dimension m. Zf the orbit of every one-dimensional subtorus of Tk is homologous to 
zero, then for every set of Tk-invariant closed one forms w,, wz,. . . urn_kcl on M; we have 
Olh” *I\tt.b,-k+l=o. 

Proof. This follows because the dimension of the principal orbit of an effective toral action is 
the same as the dimension of the torus. 

To see that Theorem 3 is not trivial, we note the following 

COROLLARY 2. Let N x Tk be the product of a compact manifold N and the k-dimensional 
torus. Let M be any compact manifold with dimension equal to dim N + k. Then if the Euler 
number (or some pontryagin number) of the connected sum M # (N x T“) is non-zero, 
M # (N x Tk) does not admit any compact differentiable group action whose principal orbit has 
dimension > dim N. In particular, if dim N = 0, M # T’ does not admit any compact connected 
differentiable group action. 

Note that in this corollary, we use an observation of R. Bott [12] that on a compact manifold 
with some non-zero pontryagin number, every Killing vector field must have a zero. 

What happens if the hypothesis wi[(d/dt)g(t)x)t=o] = 0 in Theorem 3 is dropped? In this 
respect, we have the following 

PROPOSITION 2. Let G be a connected Lie subgroup of the group of isometries of a Riemannian 
manifold. Let G be the Lie subgroup of G generated by the Lie subalgebra [@, 81 of 8 where 8 is 
the Lie algebra of (3. Suppose there are closed G invariant l-forms wI,. . . , uk such that 
Wlh” - A ok + 0. Then dim I? 5 (1/2)(n - k)(n - k + 1). 

Proof. Let 6 = {xl, J? is a vector field on M induced by some X E a}. Then as in Theorem 
2, o(x)=constant for all closed l-forms w E 5&(M) and J? E 6. In particular, for all x, 
P E 6, w([R p])=2dw(x, I’>--~(w(~,)+~(~(~i,,=O. 

Let U be an open set of M where wI A. . . A wk# 0. For each x E U, we define 
V, = {Xjwi(X) = OVi}. Then the spaces V, define a foliation of U which is invariant under G. 

By the previous considerations, it is clear that for all x E V, the set G(x) n U is a subset of 
a leaf of the foliation which has codimension k. 

Let H be the isotropic group of G at a point x E U. Let h, be a one-parameter family of 
isometries in H U G such that for each t, (h,), fixes every vector in V,. Since h7wi = wi for all i, 
we conclude that (h,), must also fix every vector in the orthogonal complement of V,. As the 
action of G is effective, h, must be degenerate to the identity and the action of G on each leaf of 
U is effective. This completes the proof of our claim and hence of the proposition. 

COROLLARY. Let M be a n-dimensional compact manifold such that for some cohomology 
classes wlr . . . , wn E H’(M,Q),wl U a** U w, Z 0. Then the only compact connected Lie group 
which acts effectively and differentiably on M is a torus. Furthermore, the action must be locally 
free. 
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Proof. The first part is clear from the proposition. The second part follows from the fact that 

w,(X) = constant. 

As was pointed out by 0. Lawson, this corollary applies, for example. to complex 
submanifolds of a torus. In fact, suppose the complex n-dimensional torus T” is covered by C”. 
The projection of the differentials of the coordinate functions dzi are closed holomorphic l-forms 
on T”. If the complex dimension of the submanifold M is M, it is not hard to see that among the 
above differentials, the wedge product of m of them is not identically zero when restricted to M. (If 
locally M is given by (z,, . . . . z,, f,(z,, . . . , z,), fz(zI,. . . , z,), . . . ,fn-,,,(zl,. . . , z,)). dz, A. - . A 
dz, is non-zero on M.) Taking the conjugate of these holomorphic l-forms, the hypothesis of the 
corollary can then be verified. 

It should be noted that, in case the group G preserves the complex structure of M, a 
somewhat stronger result can be obtained. Namely, M has a finite cover of the form T’ X N 
where G acts by translation on Tk and trivially on N. This is essentially an easy application of the 
Bochner method because the Ricci curvature of the induced Kahler metric on M is non-positive. 

Remark. This corollary was pointed out to us by J. P. Bourguignon. 

PROPOSITION 3. Let Tk be a k-dimensional subtorus of the group of isometries of some 
Riemannian manifold M. Let V be the space of closed l-forms in wG(M). Then there exists a 
codimension k subspace Wof Vsuch that for all forms wl, WZ.. . . , WI in W with I> dim M - k, we 
have w,Awz.-.hwt CO. 

Proof. Let X,, . . . , Xk be a basis of the Lie algebra of Tk and X,, . . . , gk be their induced 
vector fields on M. Then for all w E +&(M), w(xi) = constant for all i. 

Therefore, we have a homomorphism cp: V-, Rk given by ~(w)+(w(X,), . . . . w(_?k) . The 
proposition follows from the equality W = ker p. 

Now let us try to sharpen the conclusion of Theorem 3 by assuming that G is abelian. 

THEOREM 4. Let G be a closed abelian subgroup of the group of isometries of some Riemannian 
manifold. Suppose for each closed G-invariant l-form w and each one-parameter subgroup g(t) 
of G, there exists a point x E M such that (w((dldt)g(t).vl,=o) = 0. Then for any closed 
G-invariant forms RI,. . . , flk with k > dim M -dim G, we /lace fi, A. * * A flk = 0. 

Proof. We shall assume a,, . . . , fik_, are l-forms and flk is a 2-form. The rest of the 
argument follows by induction. 

Let X be any vector field on M which is generated by a one-parameter subgroup of G. Then 
&(a, A. * - A a,) can be written as a linear combination of forms fi, A . . . A ix(fii) A * * + A flk and 
fi,h... A ix(&). By the argument of Theorem 3, ix(Q) = 0 for j < k and RI A. * * A ix(&) = 0. 
(Since G is abelian, i,(fik) is invariant.) Therefore, ix(R, A. . . A ok) = 0. %Ke the dimension of 
the principal orbit is dim G and k > dim M - dim G, we conclude that 0, A. * . A flk is zero as 
before. 

Note that since R, A. . . A& vanishes in the form level, not only the cup product of the 
corresponding cohomology class vanishes, but also the Massey product of them vanishes when it 
can be defined (cf [8]). 

There is a topological version of Theorem 3 for circle actions. For this purpose, we use the 
notation and definitions of [?I. 

Let the circle group T act topologically and effectively on a compact manifold M. Let M’ be 
its fixed point set. Then according to Floyd[3], there is only a finite number of orbit types. 
Furthermore (see [2]), if dim M 5 n, then H’(M/T, MT) = 0 for i 2 n and we have the following 
exact sequences. 

-H’(M/T)-,H’(M)~H’-‘(M/T,M’)-*... (1) 

+H’(M/T, MT)-+Ifi(M)+Hi-‘(M/T, ,7)OH’(M’)~H’+‘(M/T,~T)~. . - (2) 

All these hold for rational coefficients. 
From the information that H’(M/T, MT) = 0 for i 2 n, one derives easily that 

H”(M/T) = H”(M=) = 0 (3) 
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The last equality follows because (2) shows that the restriction map H”(M)+H”(MT) is 
surjective. Let p be any point in M\MT. Then the restriction map factors through 
H”(M)+H”(M\p)+ H”(MT). As H”(M\p) = 0, the inequality is proved. 

If the fixed point set MT is non-empty, then it follows from (1) that the natural map 
H’(M/T)s H’(M) is surjective. Let wI, 02,. . . , con be any cohomology classes in H’(M). 
Then there are classes W,, & . . . , 0, in H’(M/T) such that P*& = wi for 1 I i 5 n. Since cup 
product is natural, we see that o1 U w2 U * - . U w. = n*(G, U * . * U W.). This class is zero 
because of (3). Hence we have the following 

THEOREM 5. Let the circle group T acts efectively on a compact manifold M with dimension n. 
Then if the fixed point set of T is not empty, wI U w2 U * + * U w, = 0 for all cohomology classes 
WI,. . . , wn E H’(M, Q). 

COROLLARY. Let M be a compact manifold with Euler number not equal to two. Then the 
connected sum of M with a torus does not admit any circle action. 

Remark. If we replace T by a k-dimensional torus in Theorem 5, then we can conclude that 
WI u * * * u On-k+1 = 0 for cohomology classes wl,. . . , wn-k+I E H’(M, Q) when 
H”-“+I(,,) = 0. This is done by induction on the number of factors of TL = S’ x. - . x S’. (We 
apply the above argument for the action of T’-’ on M/S’, etc.) It should be noted that for smooth 
actions, the set MT has codimension at least 2k and so H”-‘+‘(M*)=O. 

In order to push the argument one step farther, we consider the following long exact sequence 
(from (2)) 

O+ H”(MIT, MT)-+ H”(M)+ H”(M=) 
+ H’(M/T, MT)+ H’(M)+ H’(M=) @ H’(MIT, MT) 
+. . . 

+ H’-‘(M/T, MT)+ H’-‘(M)-+ Hi-‘(MT)@ Hi-*(M/T, MT) 
+ H’(M/T, M=)+Hj(M)+A +O. 

Then (read “dimension” in front of each term), 

A (-I)‘H~(M/T, MT)- & (-i)iHi(~) + z (-i)‘H’(MT) 

J-I 
+ 2 (--l)‘H’-‘(MIT, M=)+(-1)‘A = 0 

I-I 

Hence, 

H’(M/T,M’)=H’-‘(M/T, 

i=O 

2j-l 

5 HZ’-‘(M/T, MT)+ c (-l)i{Hi(M)- H’(M=)}+ H”-‘(MT) 
i-0 

*i 

+ 2 (-l)‘{H’(M)- Hi(MT)}+HZi(MT) 
i=O 

= H*‘-*(M/T, MT) + H*‘(M) - H”(M=) + H”-‘(MT) + H”(MT) 

= H*‘-*(M/T, MT)+ H*‘(M)+ H”-‘(MT) 
I... 

<H”(M/T,M=)+=& H2’(M)+‘% H”-‘(MT) 
i=l 

Therefore, 

dim HZj(M/T, MT) % i dim Hzi(M) + i dim H”-‘(MT) + (A 
if MT=4 

,=I i=l if MT#~ 

Similarly, we also have 

(4) 

(9 

(6) 

(7) 
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dim Hzj+l(M/~, MT) 5 dim HO(M/T, MT) + 2 dim P”(M) + go dim W’(W7 -dim Ho(M) 
i-0 

(8) 

In order to state the next theorem, we define a number as follows: For each sequence 
(1, J) = (il, . . . , i,, ji, . . . , j,). let cr., be the smallest integer for which there exists a subspace V of 
H~‘I(M) @ 1 * * @ HZip(bf) @ H2’I-‘(ill) @ . - - @ H2’-+‘(M) such that codim V = cr_, and 
0, u *** U o,[M]=Ofor W1,...,Wt E V. 

We shall now find an upper bound for the integers cJJ. Observe that from sequence (l), there 
is a subspace in H’(M) with codimension 5 dim H’-‘(M/T, MT) such that all the classes in this 
subspace come from H’(M/T). Hence, using (3), (7) and (8), we can conclude that 

p 4-I 

crJ I c 2 dim HZm+‘(M) + 2 
t-1 m-o 

I_,max [0,sodimH2”(MT)- I] 

+ 2 i dim H’“(M) + 4 + 2 max 0, i dim PI-’ (MT) - 11 
I-, m-0 1-I m-1 

(9) 

Hence, by (7), (8) and (9) we have the following 

THEOREM 4'. Let the circle group T act effectively on a compact manifold with dimension n. 
Then inequality (9) holds. Furthermore, we have 

(i) Zf the fixed set MT is non-empfy, $ dim H”(M) = 0 and there are cohomology classes 
i-1 

o,,...,wk such that dimo,s2i+l andOr U **a U ok[M] # 0, then i dim H2’-‘(M’) > 0. 
1-1 

(ii) Zf I$ dim H”-‘(M) = 0 and there are cohomology classes ml,. . . , uk with dim Oi 5 2j and 
i-1 

0, u *.* U o,[M] # 0. Then the fixed point set MT is non-empty and ‘i’ dim H2i(MT) > 1. 
i-0 

COROLLARY. Let the circle group T act effectively on a compact manifold with dimension n. 
Suppose H’(M)=0 and there are elements ml,. . . ,uk E H’(M) such that wl U -*- U 
t&[&f] # 0. Then the fixed point set of T is non-empty and disconnected. 

Note that all simply connected Klhler manifolds satisfy the hypothesis of the corollary. This 
is true, in particular, for hypersurfaces in CP” with n L 3. 

Since Wu-Yi Hsiang (Cohomology theory of topological transformation groups, to appear in 
Ergebnisse der Math. Series, Springer-Verlag) has proved that if pzi(M) 0 Q = 0 for all i > 0, 
then the fixed point set of T is connected, we have the following 

COROLLARY. Let M be a compact manifold such that P,~(M) 0 Q = 0 for all i > 0, H’(M) = 0 
and there are classes ol,. . . , ok E H*(M) such that oI U * * * U wk[M] # 0. Then M admits no 
effective circle group action. 

The referee points out that if the manifold M is simply connected, then the hypothesis of this 
corollary can never be verified because in this case, H2(M) # 0 implies n2(M)@ Q # 0. 

Remark. If the group action of T is semi-free, one can replace rational coefficient by integer 
coefficient in most cases. 

Finally, let us remark that Atiyah and Hirzebruch proved in Ill that a spin manifold with 
A-genus # 0 does not admit differentiable circle action. 

From this, one has the following: 

PROPOSIYION 5. Let G be a compact Lie group acting differentiably on a compact spin manifold 
M with dimension n. Suppose one of the characteristic numbers of M is not zero. Then if the 
principle orbit of M has codimension k, R U w, U - . . U ok = 0 where R is the (n -k)- 
dimensional a -class and w,, . . . , uk are l-dimensional cohomology classes. 

Proof As before, give,M an invariant Riemannian metric so that R can be represented by 
curvature forms and o,, . . . , uk are closed G-invariant l-forms. Let N be any principle orbit of 
the action. Then it is well-known that the normal bundle of N is stably trivial. Therefore, RIN is 
the (n - k)-dimensional a -class of N. Since R is invariant under G and JN R = 0 according to 
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Atiyah-Hirzebruch, we conclude that R]N = 0. The rest of the argument is then similar to 
Theorem I. 

Remark. By a little more argument, which will appear later, one can in fact prove the following. 
Let M be a n-dimensional compact spin manifold which cannot be Iibered over a circle. Suppose M 
admits an effective circle action. Then R U w, U. . * * U ok = 0 where fI is the (n - k)-dimensional 
,&class and w,, . . . , ok are one-dimensional cohomology classes. 

93. A FIXED POINT THEOREM FOR COMPACT GROUP ACTION 

A famous theorem of Cartan says that for a complete simply connected manifold with 
non-positive curvature, any compact subgroup of isometries has a fixed point, We remark here 
that a similar theorem holds for positively curved manifolds. We shall use the result of Gromoll 
and Meyer [4]. The recent result of R. Greene and H. Wu on smoothing strictly convex function 
will also be used. 

PROPOSITION 6. Let M be a Riemannian manifold which admits a proper strictly convex 
function. Let G be any compact group of isometries. Then M is G-equivariantly diffeomorphic to 
the Euclidean space. 

Proof. Let f be the proper strictly convex functions. Then as usual, one can average the 
function j in the following manner: Define f(x) = J& j(g(x)) dg where dg is the Haar measure on 
G. Since g is an isometry, f(g(x)) is still strictly convex and so is f(.r). (Recall that a function is 
called strictly convex if its restriction to every geodesic is strictly convex.) 

On the other hand, it is a simple exercise to show that f is also proper. Therefore, the 
invariant function f has a unique minimum at some point p. Such a point is clearly a fixed point of 
G. 

In order to prove the proposition, we remark that recently R. Greene and H. Wu [9] have been 
able to prove that strictly convex function can be approximated by smooth strictly convex 
function. Therefore, we can assume j is smooth. 

Clearly, p is the unique critical point of f Without loss of generality, we may assume 
f(p) = 0. Applying the Morse lemma, we can find a coordinate system near p so that 

f(x) = 2 xiz. 
i=l 

With the aid of this coordinate system, we now prove that for some small positive number E, 
f-‘([O, l )) is G-equivariantly diffeomorphic to the Euclidean space. 

For each g E G, let J(g) be the jacobian matrix of g at the origin. Thus J defines the isotropic 
representation of G into the group of automorphisms of the tangent space of M at p. Since for 

each g, g preserves the form i ~2, it is clear that J(g) is an orthogonal transformation with 
i-l 

respect to the above coordinate system. Considering J(g)-‘g as transformations from a small ball 
into itself, we can average them over G with respect to the Haar measure. Hence H = lo J(g)-‘g 
is a smooth mapping from a small ball B into R”. 

By using Taylor’s expansion, one sees that the jacobian matrix of H is the identity matrix at 
the origin. Therefore, by choosing B small enough, we may assume that H is a diffeomorphism 
from B into H(B). It is also easy to see that we may assume H(B) is strictly convex. Now for 
every g E G, we have J(g)H = Hg. Hence, H serves as a G-equivariant diffeomorphism from B 
into H(B) where G acts orthogonally on H(B) with the origin belonging to H(B). Since H(B) is 
strictly convex, a radial deformation then shows H(B) is G-equivariantly diffeomorphic to R”. 
This proves that for small 6, f-‘([0, e)) is G-equivariently to R”. (Note that the idea of defining 
the transformation H is not new and goes back to H. Cartan’s work on linearizing holomorphic 
vector fields near a critical point.) 

Therefore, it remains to prove that f-‘([0, z)) is equivariantly diffeomorphic to f-*(10, E)). 
This can be seen as follows. 

Let F, be the one parameter family of diffeomorphisms generated by Vf/lVfl’ SO that 

FD(x) = x for all x. Then f(F,(x))=f(x)+ t and the map q(x) = F&,,,,-~c,,,(x) defines a 

diffeomorphism between f-‘(0, e) and f-‘(0, CD). Using the local representation f(x) = i x?, we 
i=l 

see that F,(x) = (ti/l(t/lxI’) + 11)x and (D(X) = (Y/RI/~ -Ix]*) + 11)x near p. Therefore, cp is the 
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COROLLARY. Let M be a complete non-compact positively curved manifold. Let G be any 
compact group of isometn’es of M. Then M is G-equivan’antly diffeomorphic to the Euclidean 
space. 

Proof. From the paper of Gromoll and Meyer (see also [9]), we know that on such manifolds, 
there is always a proper strictly convex function. 

Remarks. 1. In Proposition 6, if we replace strict convexity by convexity, compact group of 
isometries need not have a fixed point. However, the following is true: Given a complete 
Riemannian manifold such that every geodesic ball is convex, then any compact group of 
isometries has a fixed point (see [IO]). 

2. A suitable equivariant version of the Gromoll-Cheeger theorem can be formulated and 
should not be hard to prove. 

3. The non-equivariant version of Proposition 6 is also proved by R. Green and H. Wu[9]. 

Finally, let us apply the same procedure to holomorphic group actions. Recall that a function 
defined on a complex manifold is called strictly plurisurharmonic if its restriction to every 
complex curve is strictly subharmonic. A submanifold N of a complex manifold M is called 
totally real if /T,N fl T,N = (0)Vx E N where J is the complex structure of M and T(N) is the 
tangent bundle of N. 

PROPOSITION 7. Let G be a compact group acting holomorphically on a complex manifold M. 
Suppose M admits a proper smooth strictly plurisubharmonic function. Then an orbit of G is 
totally real. 

Proof. As in Proposition 6, we can assume that the plurisubharmonic function f is invariant 
under the group action. 

Let Z be the set of M where f attains its minimum. Then according to Harvey and Wells [ 1 I], 
for each point z0 E Z, there is a totally real submanifold N of M such that in a neighborhood of 
i-o, Z C N. 

Since G acts holomorphically and leaves Z invariant, it is clear that G(zo) is totally real. 

COROLLARY. Let M be a two-dimensional Stein manifold whose tangent bundle is topologically 
trivial. Then for any compact connected semi-simple Liegroup G acting holomorphically on M, G 
has a fixed point. 

Proof. It is well-known that every Stein manifold admits a proper strictly plurisubharmonic 
function. Therefore, Proposition 7 is applicable and G(yO) is totally real for some y0 E M. 

If dim G(yo) I I, then as G is semi-simple, G(yO) = yo. 
It remains to consider the case dim G(yo) = 2. Since the tangent bundle of G(yo) is equivalent 

to its normal bundle and since M has trivial tangent bundle, the orbit G(y,,) must be a torus. The 
semi-simplicity of G then shows that G must fix yO. 
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