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Numerical Computation of Surface Conformal Mappings

Xianfeng David Gu, Wei Zeng, Feng Luo, and Shing-Tung Yau

Abstract. We report recent progress in the computation of conformal mappings from
surfaces with arbitrary topologies to canonical domains. Two major computational
methodologies are emphasized; one is holomorphic differentials based on Riemann
surface theory and the other is surface Ricci flow from geometric analysis. The appli-
cations of surface conformal mapping in the field of engineering are briefly reviewed.

Keywords. Conformal geometry, Ricci flow, holomorphic differential,discrete sur-
face.

2000 MSC. Primary 53A30; Secondary 52C26.

1. Introduction

Conformal mapping plays an important role in mathematics and engineering. Histori-
cally, planar conformal mapping has been broadly applied inmany engineering fields
[57], such as electro-magnetics, vibrating membranes and acoustics, elasticity, heat
transfer and fluid flow. Recently, with the development of 3D scanning technology, in-
creasing of computational power, and further advances in mathematical theories, sur-
face conformal mapping has been developed greatly and applied in computer graphics,
medical imaging, computer vision, geometric modeling and networking fields. This
work focuses on numerical computation of surface conformalmappings; our methods
are based on Hodge theory and surface Ricci flow.

1.1. Surface Conformal Mappings.Let S1 andS2 be two surfaces with Riemannian
metricsg1, g2, andφ : (S1,g1) → (S2,g2) be a diffeomorphism between them. We
sayφ is conformalif the pull back metric induced byφ is proportional to the original
metricg1

(1) φ∗g2 = e2λ g1.

A conformal map preserves angles, as shown in Figure 1.

Infinitesimally, a conformal mapping is a scaling and rotation transformation; it pre-
serves local shapes. For example, it maps infinitesimal circles to infinitesimal circles.
As shown in Figure 1, if a circle packing is given on the plane and pulled back byφ , it
produces a circle packing on the face surface; if a checkerboard is given on the plane,
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FIGURE 1. Conformal mappings preserve angles and infinitesimal cir-
cles.

then pulled back byφ , the checkerboard pattern on the face surface is such that all the
right angles of the squares are preserved.

All Riemann surfaces can be unified by the following theorem:

Theorem 1.1(Poincaré-Klein-Koebe Uniformization). [22, p. 206]Every connected
Riemann surface S is conformally equivalent to D/G with where D is one of the three
canonical spaces:

1. Extended complex planeℂ∪{∞};
2. Complex planeℂ;
3. Unit disk D= {z∈ ℂ∣∣z∣< 1}

where G is a subgroup of M̈obius transformations that acts freely discontinuous on D.
Furthermore, G∼= π1(S), whereπ1(S) is the fundamental group of S.

Definition 1.2 (Circle Domain). A circle domain in a Riemann surface is a domain
such that the components of the complement of the domain are closed geodesic disks
and points. Here a geodesic disk in a Riemann surface is a topological disk whose lift
in the universal cover is a round disk inS2, E2 or ℍ2.

Theorem 1.3(He and Schramm). [36, Thm. 0.1]Let S be an open Riemann surface
with finite genus and at most countably many ends. Then there is a closed Riemann
surfaceS̃, such that S is conformally homeomorphic to a circle domainΩ in S̃. More-
over, the pair(S̃,Ω) is unique up to conformal homeomorphisms.

The uniformization theorem states that the universal covering space of closed metric
surfaces can be conformally mapped to one of three canonicalspaces, the sphereS2,
the planeE2, or the hyperbolic spaceℍ2, as shown in Figure 2. Similarly, uniformiza-
tion theorem holds for surfaces with boundaries as shown in Figure 3, the covering
space can be conformally mapped to a circle domain inS

2, E2 orℍ2.

1.2. Computational Strategies.There are three major approaches for surface con-
formal mappings. The first one is based on surface Ricci flow, the second one is
based on holomorphic differentials using Hodge theory, andthe third one is based on
harmonic mapping using non-linear heat flow.
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FIGURE 2. Uniformization for closed surfaces. The universal covering
space of an oriented closed metric surface can be conformally mapped
to one of the three canonical shapes: the unit sphere, the Euclidean
plane or the hyperbolic space.

FIGURE 3. Uniformization for surfaces with boundaries. The cover-
ing space of an oriented metric surface with boundaries can be confor-
mally mapped to one of the three canonical shapes: the unit sphere,
the Euclidean plane or the hyperbolic space, and all the boundaries are
mapped to geodesic circles.
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Ricci Flow. Suppose we want to find a conformal mapping between two metric sur-
facesφ : (S1,g1)→ (S2,g2). Then the pull back metric induced byφ is φ∗g2 = e2ug1,
whereu : S1 → ℝ is the unknown conformal factor function, satisfying the following
Yamabe equation

K2(φ(p)) =
1

e2u(p)
[K1(p)−∆g1(u(p))], p∈ S1

whereK1,K2 are the Gaussian curvatures induced byg1 andg2, and∆g1 is the Laplace-
Beltrami operator induced byg1. By solving the Yamabe equation, the conformal
factoru can be obtained, and then the mappingφ can be found. The Yamabe equation
can be solved directly by surface Ricci flow:

du
dt

= K2−K1.

Holomorphic Differential . Suppose the target surface(S2,g2) is a region on the com-
plex planeℂ, or a quotient space ofℂ, thendz is a holomorphic 1-form onS2. The
pull back complex differential formω = φ∗dz is a holomorphic 1-form on(S1,g1).
All the holomorphic 1-forms onS1 form a groupΩ1,0. We can compute the basis
of this group, then find the appropriate 1-formω = φ∗dz in Ω1,0, and construct the
mappingφ by integratingω onS1.

Spherical Harmonic Maps. Harmonic maps between two surfaces minimize the har-
monic energy. For genus zero closed surfaces, harmonic mapsare conformal. All
genus zero closed surfaces can be conformally mapped to the unit sphere; two such
kinds of mapping differ by a Möbius transformation. We can use the non-linear heat
flow method to diffuse a degree one map to a harmonic map with special normalization
to a conformal map.

1.3. Outline. The work is organized as follows: Section 2 briefly reviews the existing
works most related to the current one. Section 3 introduces the computational meth-
ods: surface Ricci flow, holomorphic differential form and harmonic map. Section 4
explains the algorithms for computing conformal moduli andconformal mappings us-
ing methods in Section 3. The last Section 5 demonstrates theapplications of confor-
mal geometric methods in several engineering fields, such ascomputer graphics, geo-
metric modeling, medical imaging, computer vision, and wireless sensor networks.

2. Previous Work

Computational conformal geometry is an inter-disciplinary field, and has a long his-
tory. Researchers in mathematics, physics, medicine, computer science and many
other engineering fields have made great contributions to the subject. A thorough
literature review is beyond the scope of this work. In the following, we only briefly
review the most relevant works. Most conformal geometric methods are for planar do-
mains or topological disks (genus zero surface with a singleboundary), whereas our
current work focuses on methods for surfaces with complicated topologies. Therefore,
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many important works for planar domains or topological disks may be skipped due to
the page limit.

2.1. Planar Domains.Conventional computational complex analysis methods focus
on conformal mappings on planar domains. Thorough surveys can be found in [37],
[17], [40],[3], [65] and [68]. Schwarz-Christoffel Mapping has been broadly applied
for computing Riemann mappings, such as in [20] and [2]. Schwarz-Christoffel map-
ping of multiply connected domains can be found in [18] and [15]. Recently, a geo-
desic zipper algorithm based on iterating simple maps has been introduced in [51], and
a linear conformal mapping algorithm based on hyperbolic geometry can be found in
[4]. A robust algorithm based on cross ratio and Delaunay triangulation can be found
in [21]. Circle packing methods lead to the theory of discrete analytic function [60],
which is one of the few planar methods that has actually been used for surface maps.

2.2. Genus Zero Surfaces.In the computer graphics field, there is vast research on
computing conformal mappings, mainly for surfaces with disk topology. Discrete har-
monic maps were constructed in [53], where the cotan formulawas introduced. First
order finite element approximations of the Cauchy-Riemann equations were intro-
duced by Levy et al. [49]. Discrete intrinsic parameterization by minimizing Dirichlet
energy was introduced by [19]. Mean value coordinates were introduced in [23] to
compute generalized harmonic maps. Conformal mappings fortopological spheres
are discussed in [27] and [31]. In the computer graphics field, thorough surveys on
surface conformal mappings for topological disks or topological spheres can be found
in [24] and [45].

2.3. High Genus Surfaces.Two major approaches for computing the conformal struc-
tures of high genus surfaces areholomorphic differentialsanddiscrete curvature flow.

Holomorphic Differential . Discrete holomorphic forms are introduced by Gu and
Yau [29] to compute global conformal structure for high genus surfaces. The method
is based on Hodge theory and uses the heat diffusion method tocompute harmonic
forms in each cohomology class. All the computations are carried out on discrete
polyhedral surfaces. A different approach for constructing the discrete Hodge star
operator can be found in [53] for computing minimal surfaces. Another approach of
discrete holomorphy was introduced in [52] by discretization of the Cauchy-Riemann
equation. The method requires regular connectivity of the mesh. General discrete
exterior calculus was presented in [38].

Gortler et al. [26] used the discrete one-form to parameterize genus one meshes [61].
Tong et al. [64] generalized the 1-form method to incorporate cone singularities, and
applied the method for remeshing and tiling. The holomorphic differential method has
been applied to compute conformal mappings of genus zero surfaces with multiple
boundaries in [77]. Quasi-conformal mapping based on holomorphic differentials can
be found in [74].
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Surface Ricci Flow. Ricci flow was introduced by R. Hamilton in a seminal paper
[35] for Riemannian manifolds of any dimension. Ricci flow has revolutionized the
study of the geometry of surfaces and 3-manifolds and has inspired huge research
activities in geometry. In particular, it leads to a proof ofthe 3-dimensional Poincaré
conjecture. In the paper [34], Hamilton used the 2-dimensional Ricci flow to give a
proof of the uniformization theorem for surfaces of positive genus. This leads the way
for potential applications to computer graphics.

There are many ways to discretize smooth surfaces. The one which is particularly
related to a discretization of conformality is the circle packing metric introduced by
Thurston [62]. The notion of circle packing has appeared in the work of Koebe [44].
Thurston conjectured in [63] that for a discretization of the Jordan domain in the plane,
the sequence of circle packings converge to the Riemann mapping. This was proved
by Rodin and Sullivan [54].

Colin de Verdiere [11] established the first variational principle for circle packing and
proved Thurston’s existence of circle packing metrics. This paved a way for a fast
algorithmic implementation of finding the circle packing metrics, such as the one by
Collins and Stephenson [13]. In [10], Chow and Luo generalized Colin de Verdiere’s
work and introduced the discrete Ricci flow and discrete Ricci energy on surfaces.
They proved a general existence and convergence theorem forthe discrete Ricci flow
and proved that the Ricci energy is convex. The algorithmic implementation of the
discrete Ricci flow was carried out by Jin et al. [41].

Another related discretization method is called circle pattern; it considers both the
combinatorics and the geometry of the original mesh, and canbe regarded as a variant
to circle packings. Circle pattern was proposed by Bowers and Hurdal [7], and has
been proven to be a minimizer of a convex energy by Bobenko andSpringborn [5].
An efficient circle pattern algorithm was developed by Kharevych et al. [43].

Yamabe Flow on Surfaces. The Yamabe problem aims at finding a conformal metric
with constant scalar curvature for compact Riemannian manifolds. The first proof
(with flaws) was given by Yamabe [69] and was corrected and extended to a complete
proof by several researchers including Trudinger [66], Aubin [1] and Schoen [58]. A
comprehensive survey on this topic was given by Lee and Parker in [48].

In [50] Luo studied the discrete Yamabe flow on surfaces. He introduced a notion of
discrete conformal change of polyhedral metric, which plays a key role in developing
the discrete Yamabe flow and the associated variational principle in the field. Based
on the discrete conformal class and geometric consideration, Luo gave the discrete
Yamabe energy as an integration of a differential 1-form andproved that this energy
is a locally convex function. He also deduced from it that thecurvature evolution of
the Yamabe flow is a heat equation.

Another recent work by Gu et al. [30], which used the originaldiscrete Yamabe
energy from [50], has produced an equally efficient algorithm for finding the discrete
conformal metrics. In addition, discrete hyperbolic Yamabe flow was discussed in
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[6]. It is applied for computing hyperbolic structure and the canonical homotopy class
representative in [72].

3. Computational Methods

In this section, we briefly introduce the major computational methods. In the next
section, we will apply these methods for computing conformal mappings for surfaces
with different topologies.

3.1. Surface Ricci Flow.Surface Ricci flow is a powerful tool to construct confor-
mal Riemannian metrics with prescribed Gaussian curvatures. Discrete surface Ricci
flow generalizes the curvature flow method from smooth surfaces to discrete triangular
meshes. The key insight to discrete Ricci flow is based on the following observation:
conformal mappings transform infinitesimal circle fields toinfinitesimal circle fields.
Discrete Ricci flow replaces infinitesimal circles by circles with finite radii, and mod-
ifies the circle radii to deform the discrete metric, to achieve the desired curvature.

Classical Surface Ricci Flow.

Definition 3.1 (Isothermal Coordinates). Let S be a smooth surface with a Riemannian
metricg. Isothermal coordinates z= u+ iv for g satisfy

(2) g= e2λ (u,v)(du2+dv2) = e2λ (z)dzd̄z.

Locally, isothermal coordinates always exist [8]. An atlaswith all local coordinates
being isothermal is a conformal atlas, such that all the chart transition functions are
bi-holomorphic.

The Gaussian curvature of the surface is given by

(3) K(u,v) =−∆gλ ,

where∆g = e−2λ (u,v)( ∂ 2

∂u2 +
∂ 2

∂v2) is the Laplace-Beltrami operator induced byg. Al-
though the Gaussian curvature is intrinsic to the Riemannian metric, the total Gaussian
curvature is a topological invariant according to the Gauss-Bonnet theorem:

(4)
∫

S
KdA= 2πχ(S),

whereχ(S) is the Euler number of the surface.

Supposeg1 andg2 are two Riemannian metrics on the smooth surfaceS, and they
induce Gauss curvaturesK1 andK2, respectively. If there is a differential function
λ : S→ ℝ, such that

(5) g2 = e2λ g1,

then the followingYamabe equationholds

(6) K2 =
1

e2λ (K1−∆g1λ ).
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The Yambe equation can be solved by Hamilton’s Ricci flow. Suppose the metric
g= (gi j ) in local coordinate, Hamilton’s Ricci flow is

(7)
dgi j

dt
=−Kgi j .

During the flow, the Gaussian curvature will evolve according to a heat diffusion pro-
cess.

Theorem 3.2 (Hamilton and Chow). [9, Thm. B.1, p. 504]Suppose S is a closed
surface with a Riemannian metric. Then the normalized Ricciflow will converge to a
Riemannian metric of constant Gaussian curvature.

Background Geometry. In engineering fields, smooth surfaces are approximated by
polyhedral surfaces, namely, a triangle mesh.

Definition 3.3 (Triangle Mesh). A triangle meshΣ is a2 dimensional simplicial com-
plex, which is homeomorphic to a surface.

It is generally assumed that a meshΣ is embedded in the three dimensional Euclidean
spaceℝ3, and therefore each face is Euclidean. In this case, we say the mesh is with
Euclidean background geometry. Similarly, we can assume that a mesh is embedded
in the three dimensional sphereS3 or hyperbolic spaceℍ3, then each face is a spherical
or a hyperbolic triangle. We say the mesh is with spherical orhyperbolic background
geometry.

Discrete Riemannian Metric. A discrete Riemannian metric on a meshΣ is a piece-
wise constant curvature metric with cone singularities at the vertices. The edge lengths
are sufficient to define a discrete Riemannian metric,

(8) l : E →ℝ
+,

as long as, for each face[vi ,v j ,vk], the edge lengths satisfy the triangle inequality:
l i j + l jk > lki for all the three background geometries, and another inequality: l i j +
l jk + lki < 2π for spherical geometry.

Cosine Laws. In the smooth case, the curvatures are determined by the Riemannian
metrics as in (3). In the discrete case, the angles of each triangle are determined by
the edge lengths. According to different background geometries, there are different
cosine laws. For simplicity, we useei to denote the edge across from the vertexvi ,
namelyei = [v j ,vk], andl i the edge length ofei . The cosine laws are given as:

(9)
l2
k = l2

i + l2
j −2l i l j cosθk E

2

coshlk = coshl i coshl j −sinhl i sinhl j cosθk ℍ2

coslk = cosl i cosl j −sinl i sinl j cosθk S2
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FIGURE 4. Different configurations for discrete conformal metric de-
formation.

Discrete Gaussian Curvature. The discrete Gaussian curvatureKi at a vertexvi ∈ Σ
can be computed as the angle deficit,

(10) Ki =

{

2π −∑[vi ,v j ,vk]∈Σ θ jk
i , vi ∕∈ ∂Σ

π −∑[vi ,v j ,vk]∈Σ θ jk
i , vi ∈ ∂Σ

whereθ jk
i represents the corner angle attached to vertexvi in the face[vi,v j ,vk], and

∂Σ represents the boundary of the mesh.

Discrete Gauss-Bonnet Theorem. The Gauss-Bonnet Theorem 4 states that the total
curvature is a topological invariant. It still holds on meshes as follows.

(11) ∑
vi∈V

Ki +λ ∑
fi∈F

Ai = 2πχ(M),

where the second term is the integral of the ambient constantGaussian curvature on
the faces;Ai denotes the area of facefi , andλ represents the constant curvature for the
background geometry:+1 for the spherical geometry, 0 for the Euclidean geometry,
and−1 for the hyperbolic geometry.

Discrete Conformal Metric Deformation. In the smooth case,Conformal deforma-
tion of a Riemannian metricis defined as

(12) g→ e2λ g, λ : S→ ℝ.
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FIGURE 5. Geometric interpretation of discrete conformal metric de-
formation.

In the discrete case, there are many ways to define conformal metric deformation.
Figure 4 illustrates some of them. Generally, we associate each vertexvi with a circle
(vi ,γi) centered atvi with radiusγi . On an edge[vi ,v j ], two circles intersect at an angle
Θi j . During the conformal deformation, the radii of circles canbe modified, but the
intersection angles are preserved. Geometrically, the discrete conformal deformation
can be interpreted as follows [25]: see Figure 5, there exists a unique circle, the so
calledradial circle, that is orthogonal to three vertex circles. The radial circle center
is denoted aso. We connect the radial circle center to three vertices, to get three rays−→ovi ,

−→ovj and−→ovk. We deform the triangle by infinitesimally moving the vertexvi along
−→ovi to ov′i , and construct a new circle(v′i ,γ ′i ), such that the intersection angles among
the circles are preserved,Θ′

i j = Θi j , Θ′
ki = Θki.

The discrete conformal metric deformation can be generalized to all other configura-
tions, with different circle intersection angles (including zero or virtual angles), and
different circle radii (including zero radii). In Figure 4,the radial circle is well defined
for all cases, as are the rays from the radial circle center tothe vertices. Therefore,
discrete conformal metric deformations are well defined as well. The precise analyt-
ical formulae for discrete conformal metric deformation are explained as follows: let
u : V → ℝ be thediscrete conformal factor, which measures the local area distortion.
If the vertex circles are with finite radii, thenui can be formulated as

ui =

⎧

⎨

⎩

logγi E2

logtanhγi
2 ℍ2

logtanγi
2 S2

(13)

1. Tangential Circle PackingFigure 4 (a), the intersection angles are 0’s. There-
fore, the edge length is given by

(14) l i j = γi + γ j ,

for both the Euclidean case and the hyperbolic case, e.g. [13].
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2. General Circle PackingFigure 4 (b), the intersection angles are acute,Θi j ∈
(0, π

2). The edge length is

(15) l i j =
√

γ2
i + γ2

j +2γiγ j cosΘi j

for the Euclidean case, and

(16) l i j = cosh−1(coshγi coshγ j +sinhγi sinhγ j cosΘi j )

in hyperbolic geometry, e.g. [10] and [41].
3. Inversive Distance Circle PackingIn Figure 4 (c), all the circles intersect at

”virtual” angles. The cosΘi j is replaced by the so-calledinversive distance Ii j ,
during the deformation,Ii j ’s are never changed. The edge length are given by

(17) l i j =
√

γ2
i + γ2

j +2γiγ j Ii j

for Euclidean case, and

(18) l i j = cosh−1(coshγi coshγ j +sinhγi sinhγ j Ii j )

in hyperbolic geometry, e.g. [33] and [70].
4. Combinatorial Yamabe FlowFigure 4 (d), all the circles are degenerated to

points,γi = 0. The discrete conformal factor is still sensible. The edgelength is
given by

(19) l i j = eui eu j l0
i j ,

in Euclidean background geometry, e.g. [50], and

(20) sinh
l i j
2

= eui sinh
l0
i j

2
eu j ,

in hyperbolic background geometry, e.g. [6] and [72], wherel0
i j is the initial

edge length of[vi ,v j ].

Admissible Metric Space. In the following, we want to clarify the spaces of all pos-
sible metrics and all possible curvatures of a discrete surface.

Let the vertex set beV = {v1,v2, ⋅ ⋅ ⋅ ,vn}. We represent a discrete metric onΣ by a
vectoru = (u1,u2, ⋅ ⋅ ⋅ ,un)

T . Similarly, we represent the Gaussian curvatures at mesh
vertices by the curvature vectork = (K1,K2, ⋅ ⋅ ⋅ ,Kn)

T . All the possibleu’s form the
admissible metric space, and all the possiblek’s form theadmissible curvature space.

According to the Gauss-Bonnet theory (see (11)), the total curvature must be 2πχ(Σ),
and therefore the curvature space isn−1 dimensional. We add one linear constraint to
the metric vectoru, ∑ui = 0, for the normalized metric. As a result, the metric space
is alson−1 dimensional. For the circle packing metric, if all the intersection angles
are acute including zero, then the edge lengths induced by a circle packing satisfy
the triangle inequality. There is no further constraint onu. Therefore, the admissible
metric space is simplyℝn−1.
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A curvature vectork is admissibleif there exists a metric vectoru, which induces
k. The admissible curvature space is a convex polytope. The detailed proof can be
found in [10]. The admissible curvature space for weighted meshes with hyperbolic
or spherical background geometries is more complicated. Werefer the readers to [10]
for a detailed discussion.

Unfortunately, admissible metric spaces for inversive distance circle packing with both
Euclidean and hyperbolic background geometries are non-convex. The admissible
metric spaces for the combinatorial Yamabe flow with both Euclidean and hyperbolic
background geometries are non-convex.

For tangential and general circle packing cases with bothE2 andℍ2 background ge-
ometries, see Figure 4 (a) and (b), the correspondence between the curvaturek and
metricu is globally one-to-one. This is called theglobal rigidity property. For inver-
sive distance circle packing and combinatorial Yamabe flow cases with bothE2 and
ℍ2 background geometries (see Figure 4 (c) and (d)) only local rigidity holds. This
is caused by the non-convexity of their metric spaces. In practice, non-global rigidity
causes many difficulties.

Discrete Ricci Flow and Entropy Energy. In all configurations, the discrete Ricci
flow is defined as follows:

(21)
dui(t)

dt
= (K̄i −Ki),

whereK̄i is the user defined target curvature andKi is the curvature induced by the
current metric. The discrete Ricci flow has exactly the same form as the smooth
Ricci flow, which conformally deforms the discrete metric according to the Gaussian
curvature.

The discrete Ricci flow can be formulated in the variational setting, namely, it is a
negative gradient flow of a special energy form, the so-called entropy energy. The
energy is given by

(22) f (u) =
∫ u

u0

n

∑
i=1

(K̄i −Ki)dui,

whereu0 is an arbitrary initial metric.

Computing the desired metric with user-defined curvature{K̄i} is equivalent to mini-
mizing the discrete entropy energy. In the case of the tangential circle packing metric
with both Euclidean and hyperbolic background geometries,the discrete Ricci en-
ergy (see (22)) was first proven to be strictly convex in the seminal work of Colin de
Verdiere [11]. It was generalized to the general circle packing metric in [10]. The
global minimum uniquely exists, corresponding to the desired metric, which induces
the prescribed curvature. The discrete Ricci flow convergesto this global minimum.
Although the spherical Ricci energy is not strictly convex,the desired metric̄u is still
a critical point of the energy.
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The Hessian matrices for discrete entropy are positive definite for both the Euclidean
case (with one normalization constraint∑i ui = 0) and the hyperbolic case. The en-
ergy can be optimized using Newton’s method. The Hessian matrix can be computed
using the following formula. For all configurations with Euclidean metric, suppose
the distance from the radial circle center to edge[vi ,v j ] is di j as shown in Figure 5
(right), then

(23)
∂θi

∂u j
=

di j

l i j
,

furthermore

(24)
∂θ j

∂ui
=

∂θi

∂u j
,

∂θi

∂ui
=−∂θi

∂u j
− ∂θi

∂uk
.

We define the edge weightwi j for edge[vi ,v j ], which is adjacent to[vi ,v j ,vk] and
[v j ,vi ,vl ] as

(25) wi j =
dk

i j +dl
i j

l i j
.

The Hessian matrixH = (hi j ) is given by the discrete Laplace form

(26) hi j =

⎧

⎨

⎩

0, [vi ,v j ] ∕∈ E
−wi j , i ∕= j

∑kwik, i = j

With hyperbolic background geometry, the computation of the Hessian matrix is much
more complicated. In the following, we give the formula for one face directly, for both
circle packing cases:

(27)

⎛

⎝

dθi
dθ j
dθk

⎞

⎠=
−1
A

⎛

⎝

1−a2 ab−c ca−b
ab−c 1−b2 bc−a
ca−b bc−a 1−c2

⎞

⎠

⎛

⎜

⎝

1
a2−1

0 0
0 1

b2−1
0

0 0 1
c2−1

⎞

⎟

⎠

(28)

⎛

⎝

0 ay−z az−y
bx−z 0 bz−x
cx−y cy−x 0

⎞

⎠

⎛

⎝

dui
duj
duk

⎞

⎠

where(a,b,c) = (coshl i ,coshl j ,coshlk) and(x,y,z) = (coshγi ,coshγ j ,coshγk), A is
double the area of the triangleA= sinhl i sinhl j sinθk.

For hyperbolic Yamabe flow case,

(29)
∂θi

∂u j
=

∂θ j

∂ui
=

−1
A

1+c−a−b
1+c

and

(30)
∂θi

∂ui
=

−1
A

2abc−b2−c2+ab+ac−b−c
(1+b)(1+c)

.
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For tangential and general circle packing cases, with bothℝ2 andℍ2 background ge-
ometries, Newton’s method leads to the solution efficiently. For the inversive distance
circle packing case and the combinatorial Yamabe flow case, with bothℝ2 andℍ2

background geometries, because of the non-convexity of themetric spaces, Newton’s
method may get stuck at the boundary of the metric spaces; this raises intrinsic diffi-
culty in practical computation.

Algorithmic details for general combinatorial Ricci flow can be found in [41], inver-
sive distance circle packing metric in [70], and combinatorial Yamabe flow in [72].

3.2. Gu-Yau’s Method: Holomorphic Differentials. Gu-Yau’s method computes
the Holomorphic 1-form group on a metric surface based on Hodge theory. This
method is more efficient and stable than the discrete Ricci flow method.

3.2.1. Classical Hodge Theory.Suppose the metric surface(S,g) is with isothermal
coordinate charts{(Uα ,φα)}. On a local chart(Uα ,φα), the local coordinates are
zα = uα + ivα . A real differential 1-formτ has the local representation

(31) τ = fα(uα ,vα)duα +gα(uα ,vα)dvα .

The exterior differential operatord acts onτ

(32) dτ = (
∂gα
∂uα

− ∂ fα
∂vα

)duα ∧dvα .

The Hodge star operator★ acts onτ

(33) ★τ = fα(uα ,vα)dvα −gα(uα ,vα)duα .

Theco-differential operatorδ is defined asδ = −★d★. If both dτ = 0 andδτ = 0,
thenτ is called aharmonic 1-form.

Theorem 3.4 (Hodge). [47, Thm. 5.1, p. 280]Consider the de Rham cohomology
group Hk(S,ℝ), each cohomologous class has a unique harmonic form.

ω is a complex differential form, such that on each local chartwith complex coordi-
nateszα ,

(34) ω = fα(zα)dzα ,

where fα is a holomorphic function,∂ fα (zα)
∂ z̄α

= 0, thenω is called aholomorphic
differential 1-form. Furthermore,ω can be decomposed as two conjugate harmonic
1-forms,

(35) ω = τ +
√
−1★ τ.

All the holomorphic 1-forms form a group, our goal is to compute the basis of the
group.
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3.2.2. Discrete Hodge Theory.In the discrete case, we triangulate the surface to a
simplicial complex (a triangular mesh), and build chain complexes. The 0, 1 and 2
dimensional simplexes are vertices, edges and faces. A k-simplex, formed by vertices
{v0,v1, ⋅ ⋅ ⋅ ,vk} in a specific order, is denoted as[v0,v1, ⋅ ⋅ ⋅ ,vk]. The k-dimensional
chain space is defined as

(36) Ck = {∑
i

ziσi ,zi ∈ ℤ},

where{σi} are all the k-simplexes in the mesh. The boundary operators are linear
operators

(37) ∂k : Ck →Ck−1,

∂0vi = 0, ∂ [v0,v1] = v1− v0, ∂ [v0,v1,v2] = [v0,v1] + [v1,v2] + [v2,v0]. The k-th sim-
plicial homology group is given by

(38) Hk(M,ℤ) = Ker∂k/Img∂k+1.

Theco-chain spaces Ck is defined as

(39) Ck = {linear f unctionals on Ck}.
Thediscrete exterior differential operator dk :Ck →Ck+1 is a linear operator. Suppose
σ ∈Ck+1 is a(k+1)-chain,ω ∈Ck is ak-cochain, thendk is defined as

(40) (dkω)(σ) = ω(∂k+1σ).

The k-th simplicial cohomology group is given by

(41) Hk(M,ℤ) = Kerdk/Imgdk+1.

SupposeS is a triangle mesh, itsPoincaŕe dualS̃ is its Voronoi diagram. Letvi ∈ Sbe
a vertex, then ˜vi is a 2-cell inS̃,

(42) ṽi := {p∈ S∣d(p,vi)≤ d(p,v j),∀ j ∕= i}
whered is the metric on the polygonal surface. Letσ ∈ Sbe an edge, then its dualσ̃
is given by

(43) σ̃ =
∩

v∈∂σ
ṽ.

Let ω ∈Ck be a k-form onS, then thediscrete Hodge star operatoris defined as

(44) ★ : Ck(S)→C2−k(S̃),★ω(σ̃) =
∣σ̃ ∣
∣σ ∣ω(σ),

where∣ ⋅ ∣ represents the volume of the simplexσ . Thediscrete co-exterior-differential
operator δ is defined asδ = − ★ d★. A discrete harmonic k-formω ∈ C1 satisfies
dω = 0,δω = 0.

Theorem 3.5(Discrete Hodge). Suppose S is a polyhedral surface, then each coho-
mologous class in Hk(S,ℝ) has a unique discrete harmonic k-form.
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3.2.3. Algorithm.

Step 1. Homology Basis. We compute aCW-cell decompositionof the surface repre-
sented as a triangle mesh,

(45) S0 ⊂ S1 ⊂ S2 = S,

where thek-dimensional skeleton Sk = Sk−1∪D1
k ∪D2

k ⋅ ⋅ ⋅∪Dn
k, Di

k arek-dimensional
cells (disks), such that the boundaries of these cells are onSk−1,

(46) ∂Di
k ⊂ Sk−1.

All the loop generators ofS1 {γ1,γ2, ⋅ ⋅ ⋅ ,γ2g} form a basis for the fundamental group
π1(S). These loops also form a basis of the first homology basisH1(S,ℤ). Figure 6
shows the homology group generators of a genus two surface.

FIGURE 6. Computing homology group basis.

Step 2. Cohomology Group Basis. Let γk be a base loop forH1(S,ℤ), then we slice
Salongγk to get an open surfacẽSk, such that the boundary ofS̃k is given by

(47) ∂ S̃k = γ+k − γ−k ,

γ+k ,γ−1
k are the two boundary loops oñSk. Then we construct a functionhk : S̃k → ℝ,

such that

(48) hk(p) = 1, ∀p∈ γ+k ; hk(p) = 0, ∀p∈ γ−k ;

andhk(p) is random for all interior points oñSk. Thendhk is an exact 1-form oñSk.
Because of the consistency along the boundaries,dhk is also a closed 1-form (but not
exact) onS, denoted asτk. Then

(49) {τ1,τ2, ⋅ ⋅ ⋅ ,τ2g}
form a basis for the first cohomology groupH1(S,ℝ).

Step 3. Harmonic 1-form Basis. According to the Hodge theory, for each closed 1-
form τk, there exists a 0-formgk : S→ℝ, such thatτk+dgk is a harmonic 1-form. The
0-form gk can be obtained by solvingδ (τk+dgk) = 0, whereδ is the co-differential
operator. We denote the harmonic 1-form asωk = τk+dgk. Then

(50) {ω1,ω2, ⋅ ⋅ ⋅ ,ω2g}
form a basis for the cohomology groupH1(S,ℝ).
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FIGURE 7. Computing harmonic 1-form group basis.

By direct computation, thediscrete co-exterior differential operatorδ : C1 →C0 has
the formula

(51) δ (ω)(vi) = ∑
[vi ,v j ]∈Σ

wi j (ω[v j ,vi ]),

wherewi j is the cotangent edge weight 67. Figure 7 shows the harmonic 1-form group
generators of a genus two surface.

FIGURE 8. Computing holomorphic 1-form group basis.

Step 4. Holomorphic 1-form Basis. A holomorphic 1-form can be constructed by a
harmonic 1-form and its conjugateωk+ i ★ωk, where★ is the Hodge star operator. The
conjugate form of a harmonic 1-form is still a harmonic 1-form, in the space spanned
by {ωi}, and thus can be expressed using linear combinations of theωi ’s. Therefore,

(52) ★ωk =
2g

∑
i=1

ckiωi ,

wherecki’s are unknown real numbers. By solving the following linearsystem

(53)
∫

S
ω j ∧★ωk =

2g

∑
i=1

cki

∫

S
ω j ∧ωi , j = 1,2, ⋅ ⋅ ⋅ ,2g,

we can find all the unknowns and get the conjugate form. Then

(54) {ω1+ i ★ω1,ω2+ i ★ω2, ⋅ ⋅ ⋅ ,ω2g+ i ★ω2g}
form a basis for holomorphic 1-form group of the surface.
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Thediscrete wedge operator∧ :C1×C1→C2 is defined as follows. Given[vi ,v j ,vk]∈
Σ, ω1,ω2 ∈C1 are discrete closed 1-forms, then

(55) ω1∧ω2([vi,v j ,vk]) =
1
2

∣

∣

∣

∣

ω1([vi,v j ]) ω2([vi,v j ])
ω1([v j ,vk]) ω2([v j ,vk])

∣

∣

∣

∣

.

Let ω,τ be two discrete harmonic 1-forms, locallyω = c1dx+c2dy andτ = d1dx+
d2dy, then locally

(56) ω ∧★τ =

∣

∣

∣

∣

c1 c2
d1 d2

∣

∣

∣

∣

dx∧dy.

Figure 8 shows the holomorphic 1-form group basis for the genus two surface.

3.3. Non-linear Heat Flow. The Non-linear heat flow method can be applied to com-
pute conformal maps between genus zero closed surfaces.

3.3.1. Classical Surface Harmonic Maps.For the 2-sphere in the standard metric,
we have,

Theorem 3.6(Schoen and Yau). [59, Cor. p. 12]Harmonic maps between genus zero
closed metric surfaces are conformal maps.

In order to compute a conformal map from a topological sphereS to the unit sphere
S2, φ : S→ S2, we only need to compute a harmonic map between them. Harmonic
maps can be computed using theheat flow method,

(57)
∂φ(p, t)

∂ t
=−∆pφ(p, t).

The initial mapφ(p,0) can be set as theGauss map, wherep ∈ S is a point on the
surface andn(p) ∈ S2 is the normal atp. The Gauss map isφ(p,0) = n(p). Because
S

2 is embedded inℝ3, we treatφ as a vector valued functionφ = (φ1,φ2,φ3), where
eachφk is a function. Then its Laplacian is given by

(58) ∆pφ(p, t) = (∆pφ1(p, t),∆pφ2(p, t),∆pφ3(p, t)).

Then we project the Laplacian to the tangent spaces ofφ(p). The normal component
of the Laplacian is given by,

(59) ∆⊥
p φ(p, t) = ⟨∆pφ(p, t),φ(p, t)⟩φ(p, t),

where⟨,⟩ is the inner product inℝ3. The tangential component of the Laplacian is
given by

(60) ∆∥
pφ(p, t) = ∆pφ(p, t)−∆⊥

p φ(p, t).

Definition 3.7 (Nonlinear Heat Flow). Nonlinear heat flow is defined as

(61)
∂φ(p, t)

∂ t
=−∆∥

pφ(p, t).
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The stereographic projectionmaps the unit sphere to the whole complex plane,τ :
S2 → ℂ,

(62) τ(x,y,z) =
(

x
1−z

,
y

1−z

)

.

Let ρ be aMöbius transformation,

(63) ρ(z) =
az+b
cz+d

, a,b,c,d ∈ ℂ, ad−bc= 1.

τ−1 ∘ρ ∘ τ : S2 → S2 is a conformal mapping of the unit sphere. All such mappings
form a 6 dimensional group, the so-calledspherical M̈obius transformation group.

Because the conformal maps are not unique, differing by a Möbius transformation on
the sphere, a special normalization condition needs to be added during the flow. The
following is a common condition,

(64)
∫

S
φ(p)ds= 0.

For genus zero closed surfaces, harmonic maps are conformal.

3.3.2. Discrete Surface Harmonic Maps.On a discrete surfaceΣ, the functions are
approximated by piecewise linear functions. Suppose[vi ,v j ,vk] is a face, for any point
p∈ [vi ,v j ,vk], the barycentric coordinates ofp are

(65) p= αvi +βv j + γvk, 0≤ α,β ,γ ≤ 1, α +β + γ = 1,

then f (p) = α f (vi)+β f (v j)+ γ f (vk). By the Finite Element Method [53], thedis-
crete harmonic energyof f has the representation

(66) E( f ) =
1
2 ∑
[vi ,v j ]∈Σ

wi j ( f (vi)− f (v j))
2,

wherewi j is theedge weight

(67) wi j = cotθk
i j +cotθ l

i j ,

θk
i j is the corner angle on face[vi ,v j ,vk] at the vertexvk, andθ l

i j is the corner angle
on face[vi,v j ,vl ] at the vertexvl . If [vi,v j ] is only adjacent to one face[vi,v j ,vk], then
the term cotθ l

i j should be omitted. Similarly, the discreteLaplace-Beltrami operator
is given by

(68) ∆ f (vi) = ∑
[vi ,v j ]∈Σ

wi j ( f (vi)− f (v j)).

We can compute the Gauss map first, then diffuse the Gauss map to a harmonic map
with the normalization condition (64). Algorithmic details for discrete spherical har-
monic maps can be found in [31].
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4. Conformal Modulus and Conformal Mapping

In this section, we apply the discrete surface Ricci flow and holomorphic differential
methods to compute conformal mappings of surfaces with various topologies.

4.1. Topological Quadrilateral. SupposeS is a surface of genus zero with a single
boundary, and four marked boundary points{p1, p2, p3, p4} sorted counter-clockwise.
ThenS is called a topological quadrilateral, and denoted asQ(p1, p2, p3, p4). There
exists a unique conformal mapφ : S→ℂ, such thatφ mapsQ to a rectangle,φ(p1) =
0, φ(p2) = 1.

Holomorphic Differential Method . Assume the boundary ofQ consists of four seg-
ments∂Q= γ1+ γ2+ γ3+ γ4, such that

(69) ∂γ1 = p2− p1, ∂γ2 = p3− p2, ∂γ3 = p4− p3, γ4 = p1− p4.

We compute two harmonic functionsf1, f2 → ℝ, such that

(70)

⎧





⎨





⎩

∆ f1 = 0
f1∣γ1 = 0
f1∣γ3 = 1
∂ f1
∂n ∣γ2∪γ4 = 0

⎧





⎨





⎩

∆ f2 = 0
f2∣γ2 = 0
f2∣γ4 = 1
∂ f2
∂n ∣γ1∪γ3 = 0

The Laplace-Beltrami operator∆ = dδ + δd. On a surface,∆ f = 0 is equivalent to
δd f = 0. Thed f1 andd f2 are two exact harmonic 1-forms. We need to find a scalar
λ , such that★d f1 = λd f2, this can be achieved by solving the following equation,

(71)
∫

S
d f1∧★d f1 = λ

∫

S
d f1∧d f2.

The geometric interpretation ofλ is the conformal modulus of the quadrilateral. Then
the desired holomorphic 1-formω = d f1+ iλd f2. The conformal mapping is given
by

(72) φ(p) =
∫ p

q
ω,

whereq is the base point and the path fromq to p is arbitrarily chosen. Figure 9 shows
the conformal mapping of a topological quadrilateral to theplanar rectangle.

Ricci Flow Method. We can set the target Gaussian curvature to be zero everywhere,
except at the four corners{p1, p2, p3, p4}, where the target curvatures are set to be
π/2. Then we run Euclidean Ricci flow, which gives us a flat metricon the surface.
By isometrically embedding the surface onto the plane, we map the surface onto a
planar rectangle.

4.2. Topological Annulus. SupposeS is a topological annulus with a Riemannian
metric g and the boundary ofS are two loops∂S= γ1− γ2, then there exists a con-
formal mappingφ : S→ ℂ, which mapsS to the canonical annulus,φ(γ1) is the unit
circle andφ(γ2) is another concentric circle with radiusγ. The mappingφ is unique
up to a planar rotation.
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p1 p2

p3p4

(a) Input surface (b) Conformally mapped (c) Checkerboard
to a rectangle texture mapping

FIGURE 9. Conformal module for a topological quadrilateral. The
face surface with four boundary corners (a) is conformally mapped to a
planar rectangle (b). A checkerboard texture is placed on the rectangle
and pulled back to the face surface (c), all the right angles of checkers
are well preserved.

Holomorphic 1-form Method . The holomorphic 1-form group is one dimensional.
We compute the generatorω, such thatImgω(dr) = 0, wheredr is any tangent vector
along the boundary, and

∫

γ1
ω = 1. Let p be a base point on the surface, for any other

pointq, define

(73) φ(q) = exp2π i
∫ q

p ω .

φ is the desired conformal mapping, as shown in Figure 10.

Ricci Flow Method. We can set the target Gaussian curvature to be zero everywhere,
including the boundary vertices, and run Euclidean discrete surface Ricci flow, then
we obtain a flat metric. We find a curveγ connectingγ1 and γ2, such thatγ is a
straight line segment under the flat metric and orthogonal tothe two boundaries. We
slice the surface alongγ to getS̃, andγ becomes two boundary segmentsγ+ andγ−.
We then isometrically embed̃S onto the plane. After a planar rigid motion, and a
normalization,S̃ is a rectangle with unit height, andγ− is on the real axis,γ1 is on the
imaginary axis. Then we use the exponential map exp2π iz to mapS̃ to the canonical
planar annulus.

4.3. Topological Disk. SupposeS is a topological disk with a Riemannian metric,
then it can be conformally mapped to the unit planar disk. Twosuch mappings differ
by a Möbius transformation

(74) z→ eiθ z−z0

1− z̄0z
,

as shown in Figure 11.

The computation is straight forward. We punch a small hole atthe pointz0 to make the
surface a topological annulus and map the annulus onto the canonical planar annulus
using the method in the last subsection. When the size of the punched holes shrink to
a point, the obtained mappings converge to the real Riemann mapping.
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(a) Input surface (b) Conformally mapped (c) Checkerboard
to an annulus texture mapping

FIGURE 10. Conformal module for a topological annulus. The face
surface (a) is conformally mapped to a planar annulus (b). A checker-
board texture is placed on the annulus and pulled back to the face sur-
face (c), all the right angles of checkers are well preserved.

FIGURE 11. Riemann mapping for a topological disk. Two such map-
pings differ by a Möbius transformation.

4.4. Multiply Connected Domain. SupposeS is a surface of genus zero with multi-
ple boundaries, thenS is called a multiply connected domain. SupposeS is a multiply
connected domain with a Riemannian metricg, then there exists a conformal map-
ping φ : S→ ℂ, which mapsS to the unit disk with circular holes. Such conformal
mappings are unique up to Möbius transformations.

Let S be the multiply connected domain, then its boundary consists of n connected
components,

(75) ∂S= γ0− γ1− γ2 ⋅ ⋅ ⋅− γn,

whereγ0 is the exterior boundary and{γk,k > 0} are sorted by their total lengths.
There are two methods to compute the conformal modulus and the conformal map-
ping.

Ricci Flow Method. We set the target curvature in the following way,

1. For all interior verticesvi ∕∈ ∂S, K̄(vi) is zero.
2. For all vertices onγ0 or γ1, K̄(vi) is zero.
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3. Letvi ∈ γk,k ∕= 0,1, suppose the total length under the current metric is∣γk∣, the
two boundary edges attaching tovi areei andei+1, then set

(76) K̄(vi) =−π
∣ei∣+ ∣ei+1∣

∣γk∣
.

Note that in the curvature flow, the edge lengths∣ei ∣, ∣ei+1∣, ∣γk∣ are changing.
Therefore, theK̄(vi) need to be updated accordingly.

By running discrete curvature flow with time variant target curvature, the procedure
will converge, and a unique flat metric will be obtained. Thenwe find a shortest pathτ
connectingγ0 andγ1, and sliceSalongτ to get a surfacẽS. The flat metric will flatten
S̃onto a planar parallelogram with circular holes. Then we usean exponential map to
map the parallelogram to a disk with circular holes.

Generalized Koebe’s Method. The algorithm is based on using the holomorphic 1-
form to compute the conformal mapping of a topological annulus.

1. Fill all boundaryγk’s with topological disksDk’s, ∂Dk = γk,k = 0,1,2, ⋅ ⋅ ⋅ ,n.
The resulting surface is a topological sphereS̃= S∪D0∪D1∪⋅ ⋅ ⋅∪Dn.

2. Remove two disksDi andD j from S̃, denote the topological annulus asS̃i j =
S̃/{Di ∪D j}.

3. Map the annulus̃Si j to a canonical planar annulus, denote the image ofφ asS̃i j .
4. Choose another two disksDk andDl , further remove them from̃Si j , denoted the

three holed annulus as̃Si jkl = S̃i j/{Dk∪Dl}.
5. Compute a small circle(ck, rk) completely contained inγk, reflect S̃i jkl with

respect to the small circle

(77) z→ r2
k

∣z−ck∣2
(z−ck)+ck,

this mapsγi,γ j to be interior circles, andγk to be the exterior boundary.
6. Fill circular holes bounded byγi andγ j by circular disksD̃i andD̃ j , ∂ D̃i = γi ,

∂ D̃ j = γ j , S̃kl = S̃i jkl ∪ D̃i ∪ D̃ j .
7. Repeat step 3 through 6, until all the holes are circular enough.

The convergence rate is governed by the following theorem. Suppose the surface has
n boundary components. At each step, we filln−2 holes and map the surface to an
annulus, the remaining 2 boundary components are mapped to the inner and outer
circles of the annulus.

Theorem 4.1(Generalized Koebe). [77, Thm. 1.2]Given a genus zero surface with n
boundaries, there exist constants C1 > 0, 0<C2 < 1, for step k, such that fk(∞) = ∞
and fk(z) = z+O(z−1) near the∞ point, for all z∈ ℂ,

(78) ∣ fk∘ f−1(z)−z∣<C1C
2[ k

n ]
2 ,

where f is the limit conformal mapping and[ k
n] denotes the greatest integer not ex-

ceedingk
n.
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(a) Input surface (b) Conformally mapped (c) Checkerboard
to a circle domain texture mapping

FIGURE 12. Conformal module for a topological multiply connected
domain. The face surface (a) is conformally mapped to a planar circle
domain (b). A checkerboard texture is placed on the circle domain and
pulled back to the face surface (c), all the right angles of checkers are
well preserved.

Figure 12 shows the canonical conformal mapping of a multiply connected domain,
which is a region of a 3D human face surface, obtained by structured light scanning
[32].

Slit Map . All multiply connected domains can be conformally mapped to canonical
planar domains, which are annuli with concentric circular slits or rectangles with hor-
izontal slits [71].

Suppose the boundary ofS is a set of loops∂S= {γ0,γ1, ⋅ ⋅ ⋅ ,γn}, whereγ0 is the exte-
rior boundary. Then a set of basis of holomorphic 1-forms canbe found,ω1,ω2, ⋅ ⋅ ⋅ ,ωn,
such that the integration ofωi alongγ j equals toδi j , whereδi j is the Kronecker sym-
bol. Special holomorphic 1-forms can be found, such that

(79) Im(
∫

γi

ω) =

⎧

⎨

⎩

2π i = 0
−2π i = 1

0 otherwise
.

Then if we choose a base pointp0 on the surface, for any pointp, we choose an
arbitrary pathγ on the surface and define a complex functionφ(p) = e

∫

γ ω , which
maps the surface to an annulus.γ0 is mapped to the outer boundary,γ1 to the inner
boundary, and all other boundaries are mapped to the concentric circular slits. Then
the (complex) logarithm ofφ maps the surface periodically to a rectangle, with all
the circular slits mapped to horizontal slits. We callφ a circular slit mapand logφ a
horizontal slit map.

The algorithm for computing a slit map is straightforward.

1. Compute a set of holomorphic 1-form bases of the surface,{ωi}.
2. Compute a holomorphic 1-form represented as the linear combination of the

basisω = ∑λiωi , such that (79) holds.
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FIGURE 13. Slit map for a multiply connected domain.

Figure 13 shows the circular and horizontal slit maps for a multiply connected annulus
with 3 holes.

Crowdy and Marshall [16] introduced a constructive method to compute conformal
mappings between canonical multiply connected domains, which is based on Green’s
functions and harmonic measures in potential theory. Our holomorphic differential
method is similar to their construction, because the holomorphic 1-form satisfying
(79) is closely related to harmonic measure.

4.5. Genus Zero Closed Surface.The genus zero closed surface can be conformally
mapped to a unit sphere. The mapping is not unique, two such conformal mappings
differ by a spherical Möbius transformation, as shown in Figure 14.

FIGURE 14. Genus zero closed surface.

Harmonic Map Method . Given a genus zero closed surfaceS, first we compute the
Gauss mapφ : S→ S2, then use the non-linear heat diffusion method to optimize
the harmonic energy with a normalization condition, such that the mass center of the
image surface is at the origin. Figure 14 shows a conformal mapping from a brain
cortical surface to the unit sphere.

Holomorphic 1-form Method . We first remove one triangle and make the genus zero
surface become a topological disk. Then we conformally map it to a planar triangle
by the holomorphic 1-form method and then obtain the unit sphere by theinverse
stereographic projection,

(x,y,z) = (
2u

1+u2+v2 ,
2v

1+u2+v2 ,
−1+u2+v2

1+u2+v2 ), (u,v) ∈ ℂ.
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Then we move the mass center of the image to the origin with a spherical Möbius
transformation. We can also use a curvature flow map to map thetopological disk to
the plane.

Inversely, for a topological disk, we can convert it to a genus zero closed symmet-
ric surface bydoubling, and then map the doubled surface to the unit sphere. The
hemispherical conformal mapping of the original surface isobtained. As shown in
Figure 15, the conformal mapping preserves the intrinsic symmetry of the doubled
surface. The image of the mapping and the area distortion factor on the image are
both symmetric.

FIGURE 15. Spherical map for a topological disk by doubling.

4.6. Genus One Closed Surface.

Holomorphic 1-form Method . First we compute a basis for the fundamental group
π1(S), {γ1,γ2}. Then we compute the holomorophic 1-form basisω1,ω2, such that
∫

γi
ω j = δi j . Then we slice the surface alongγ1,γ2 to get a fundamental domaiñS. The

conformal mappingφ : S̃→ ℂ is given by

(80) φ(p) =
∫ p

q
ω1,

whereq is the base point; the path fromq to p in S̃ can be arbitrarily chosen. Sup-
posea+ ib =

∫

γ2
ω1, thena+ ib is the conformal modulus of the torus. The deck

transformation group generators are

(81) T1(z) = z+1, T2(z) = z+a+ ib.

By using all deck transformations to translateφ(S̃), we can conformally map the uni-
versal covering space ofSonto the whole complex planeℂ; the fundamental domain
of the lattice generated by{T1,T2} is a parallelogram.

Curvature Flow Method . We can set the target curvature to be zero everywhere, and
run Ricci flow to compute a flat metric conformal to the original metric. Then we
can isometrically flatten the fundamental domainS̃onto the complex plane, denoting
the mapping asφ . The deck transformation generators are given by the translations
{T1,T2}. T1 mapsφ(γ+1 ) to φ(γ−1 ) andT2 mapsφ(γ+2 ) to φ(γ−2 ).

Figure 16 shows the computational result for a genus one closed surface.
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FIGURE 16. Genus one closed surface.

4.7. Genus One Surface with Boundaries.We use the Ricci flow method to com-
pute the canonical conformal mapping and the conformal modulus. Suppose the
boundary of the surface hasn loops,∂S= γ1+ γ2+ ⋅ ⋅ ⋅+ γn. We set the target cur-
vature in the following way,

1. For all interior verticesvi ∕∈ ∂S, K̄(vi) is zero.
2. Let vi ∈ γk, suppose the total length under the current metric is∣γk∣, the two

boundary edges attaching tovi areei andei+1, then set

(82) K̄(vi) =−π
∣ei∣+ ∣ei+1∣

∣γk∣
.

Note that during the curvature flow, the edge lengths∣ei ∣, ∣ei+1∣, ∣γk∣ are changing.
Therefore, theK̄(vi) are updated accordingly.

By running discrete curvature flow with time variant target curvature, the procedure
will converge, and a unique flat metric will be obtained. Thenwe compute the homol-
ogy group basis{γ1,γ2} and slice the surface along the base loops to get a fundamental
domain. By isometric embedding̃Swith the new metric, we get the conformal map-
ping φ : S̃→ ℂ. Similarly, we compute the generators of the deck transformation
group{T1,T2}, T1 mapsφ(γ+1 ) to φ(γ−1 ), T2 mapsφ(γ+2 ) to φ(γ−2 ). Then we can
use the deck transformation to map the whole universal covering space ofSonto the
complex plane with circular holes.

FIGURE 17. Genus one surface with boundaries, Costa’s minimal sur-
face [12].

Figure 17 shows the computational result for a genus one surface with three bound-
aries, the famous Costa’s minimal surface [12].
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4.8. High Genus Surface.For a high genus closed surface, we use hyperbolic Ricci
flow to compute the hyperbolic metric by setting the target curvature to be zero every-
where. Then we compute a canonical homology group basis{a1,b1,a2,b2, ⋅ ⋅ ⋅ ,ag,bg}.
Then we slice the surface along the base loops to get a fundamental domainS̃, the
boundary ofS̃isa1b1a−1

1 b−1
1 ⋅ ⋅ ⋅agbga−1

g b−1
g , then isometrically flatteñSto the Poincaré

disk using the hyperbolic metric.

The Poincaré disk is the interior of the unit disk on the complex plane,D = {∣z∣ <
1,z∈ ℂ}, with hyperbolic metric

(83) ds2 =
dzd̄z

(1−zz̄)2 ,

therefore, the Poincaré disk is a conformal model for the hyperbolic spaceℍ2. The
hyperbolic lines throughp andq are circular arcs passing throughp andq, which
are orthogonal to the unit circle. The hyperbolic circle(c, r) on the Poincaré disk is
identical to the Euclidean circle(C,R),

(84) C=
1− t2

1− t2cc̄
c, R=

√

CC̄− cc̄− t2

1− t2cc̄
, t = tanh

r
2
.

The angles in a hyperbolic triangle can be computed from the edge lengths using the
hyperbolic cosine law. Therefore, by using Euclidean geometry we can accomplish
all hyperbolic compass and straightedge constructions in the Poincaré disk. We can
flatten triangle by triangle and isometrically embed the whole fundamental domaiñS
onto the Poincaré disk. We denote the conformal mapping asφ : S̃→ D.

We can then compute the deck transformation group generators. In this case, the deck
transformation group is called theFuchsian group. All the Fuchsian transformations
are hyperbolic rigid motions, which are Möbius transformations with the form of (74).
The Möbius transformationαk maps the boundary segmentφ(b−1

k ) to φ(bk), theβk

mapsφ(ak) to φ(a−1
k ). Then

(85) {α1,β1,α2,β2, ⋅ ⋅ ⋅ ,αg,βg}

forms a basis set of the Fuchsian group generators.

For high genus surfaces with boundaries, the conformal mapping which maps them
to hyperbolic circular domains can be computed in a similar way. According to The-
orem 1.3, the surface can be conformally mapped to the Poincaré disk, such that the
boundaries are mapped to hyperbolic circles. By applying hyperbolic Ricci flow with
the constraint that the holonomy along each boundary loop istrivial, the hyperbolic
metric can be obtained directly.

Figure 18 shows the isometric embedding of finite portions ofthe universal cover-
ing spaces of two high genus surfaces on the Poincaré disk with their uniformization
hyperbolic metrics. The algorithmic details can be found in[41].
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FIGURE 18. Uniformization for high genus surfaces.

5. Applications

Computational conformal geometry has been broadly appliedin many engineering
fields. In the following, we briefly introduce some of our recent projects, which are
the most direct applications of computational conformal geometry in the computer
science field.

5.1. Graphics. Conformal geometric methods have broad applications in computer
graphics. Isothermal coordinates are natural for global surface parameterization pur-
poses [29]. Because conformal mapping doesn’t distort the local shapes, it is desirable
for texture mapping. Figure 19 shows one example of using holomorphic 1-forms for
texture mapping.

Special flat metrics are valuable for designing vector fieldson surfaces, which plays
an important role for non-photorealistic rendering and special art form design. Figure
20 shows the examples for vector fields design on surfaces using the curvature flow
method [46].

FIGURE 19. Global conformal surface parameterization using holo-
morphic 1-forms.

5.2. Geometric Modeling. One of the most fundamental problems in geometric mod-
eling is to systematically generalize conventional splineschemes from Euclidean do-
mains to manifold domains. This relates to the general geometric structures on the
surface.
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FIGURE 20. Vector field design using special flat metrics.

Definition 5.1 ((G,X) structure). Suppose X is a topological space, G is a transfor-
mation group of X. Let M be a manifold with an atlasA, if all the coordinate charts
(Uα ,φα) are defined on the space X,φα : Uα → X; and all chart transition functions
φαβ are in group G, then the atlas is a(G,X) atlas. The maximal(G,X) atlas is a
(G,X) structure.

For example, suppose the manifold is a surface. IfX is the affine planeA, G is the
affine transformation groupA f f(A), then the(G,X) structure is the affine structure.
Similarly, if X is the hyperbolic planeℍ2, andG is the hyperbolic isometric trans-
formation (Möbius transformation), then(G,X) is a hyperbolic structure; ifX is the
real projective planeℝℙ2, G is the real projective transformation groupPGL(2,R),
then the(G,X) structure is a real projective structure of the surface. Real projective
structure can be constructed from the hyperbolic structure.

Conventional spline schemes are constructed based on affineinvariance. If the mani-
fold has an affine structure, then affine geometry can be defined on the manifold and
conventional splines can be directly defined on the manifold. Due to the topological
obstruction, general manifolds don’t have affine structures, but by removing several
singularities, general surfaces can admit affine structures. Details can be found in [28].

Affine structures can be explicitly constructed using conformal geometric methods.
For example, we can concentrate all the curvatures at the prescribed singularity posi-
tions, and set the target curvatures to be zeros everywhere else. Then we use curvature
flow to compute a flat metric with cone singularities from the prescribed curvature.
The flat metric induces an atlas on the punctured surface (with singularities removed),
such that all the transition functions are rigid motions on the plane. Another approach
is to use holomorphic 1-forms; a holomorphic 1-form inducesa flat metric with cone
singularities at the zeros, where the curvatures are−2kπ . Figure 21 shows the mani-
fold splines constructed using the curvature flow method.

Compared to other methods for constructing domains with prescribed singularity posi-
tions, such as the one based on trivial connection [14], the major advantage of this one
is that it gives global conformal parameterizations of the spline surface, namely, the
isothermal coordinates. Differential operators, such as gradient and Laplace-Beltrami



00 (0000), No. 0 Surface Conformal Mappings 31

Spline surface Knot structure Control net

FIGURE 21. Manifold splines with extraordinary points (the centers
of the yellow regions).

operators, have the simplest form under isothermal coordinates, which greatly simpli-
fies the downstream physical simulation tasks based on the splines.

5.3. Medical Imaging. Conformal geometry has been applied for many fields in
medical imaging. For example, in the field of brain imaging, it is crucial to register
different brain cortex surfaces. Because brain surfaces are highly convoluted, and dif-
ferent people have different anatomic structures, it is quite challenging to find a good
matching between cortex surfaces. Figure 14 illustrates one solution [31] by mapping
brains to the unit sphere in a canonical way. Then by finding anautomorphism of the
sphere, the registration between surfaces can be easily established.

In virtual colonoscopy [39], the colon surface is reconstructed from CT images. By
using conformal geometric methods, one can flatten the wholecolon surface onto a
planar rectangle. Then polyps and other abnormalities can be found efficiently on
the planar image. Figure 22 shows an example for virtual colon flattening based on
conformal mapping.

FIGURE 22. Colon conformal flattening.

5.4. Vision. Surface matching is a fundamental problem in computer vision. We
focuses on multiply connected surfaces, such as a human facesurface, where there
are holes for the eyes and mouth. If the surfaces are isometric, then their conformal



32 Gu, Zeng, Luo, and Yau CMFT

moduli should match and they can be conformally flattened to the same canonical
circle domain. This is the basis for a recognition algorithm. The main framework of
surface matching can be formulated as follows:

SupposeS1,S2 are two given surfaces,f : S1 → S2 is the desired matching. We com-
puteφi : Si → Di which mapsSi conformally onto the canonical domainDi . We con-
struct a diffeomorphism map̄f : D1 → D2, which incorporates the feature constraints.
The final mapφ is induced byf = φ2 ∘ f̄ ∘ φ−1

1 . Figure 23 shows one example of
surface matching among a human face with different expressions. The human face
surfaces are shown on the left,the matching results using consistent texture mapping
are shown on the right. For details, we refer readers to [67] and [78]. Conformal geo-
metric invariants can also be applied for shape analysis andrecognition. Details can
be found in [75].

FIGURE 23. Matching among faces with different expressions.

Teichmüller theory can be applied for surface classification in [73, 42]. By using
Ricci curvature flow, we can compute the hyperbolic uniformization metric. Then we
compute the pants decomposition using geodesics and compute the Fenchel-Nielsen
coordinates. In Figure 24, a canonical fundamental group basis is computed (a). Then
a fundamental domain is isometrically mapped to the Poincaré disk with the uni-
formization metric (b). By using Fuchsian transformation,the fundamental domain
is transferred (c) and a finite portion of the universal covering space is constructed in
(d). Figure 25 shows the pipeline for computing the Teichmüller coordinates. The
geodesics on the hyperbolic disk are found in (a), and the surface is decomposed by
these geodesics (b). The shortest geodesics between two boundaries of each pair of
hyperbolic pants are computed in (c), (d) and (e). The twisting angle is computed in
(f). Details can be found in [42].

5.5. Wireless Sensor Network.In the wireless sensor network field, it is important
to design a Riemannian metric to ensure the delivery of packets and balance the com-
putational load among all the sensors. Because each sensor can only collect the infor-
mation in its local neighbors, it is desirable to use greedy routing. Basically, each node
has virtual coordinates. The sensor sends the packet to its direct neighbor, which is the
closest one to the destination. If the network has concave holes, as shown in Figure
26, the routing may get stuck at the nodes along the inner boundaries. We use Ricci
flow to compute the virtual coordinates, such that all inner holes become circles or
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FIGURE 24. Computing finite portion of the universal covering space
on the hyperbolic space.

FIGURE 25. Computing the Fenchel-Nielsen coordinates in the Te-
ichmüller space for a genus two surface.

hyperbolic geodesics, then greedy routing delivery is guaranteed. The delivery path is
guided by geodesics under the special Riemannian metric. The covering spaces with
Euclidean and hyperbolic geometry pave a new way to handle load balancing and data
storage problems. Using the virtual coordinates, many shortest paths will pass through
the nodes on the inner boundaries. Therefore, the nodes on the inner boundaries will
be overloaded. Then, we can reflect the network about the inner circular boundaries
or hyperbolic geodesics. All such reflections form the so-called Schottky group in the
Euclidean case (b), or the so-called Fuchsian group in the hyperbolic case (a). We
then perform the routing on the covering space. This method ensures delivery and
improves load balancing using greedy routing. Implementation details can be found
in [55], [76], and [56].
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(a) Hyperbolic universal covering space
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FIGURE 26. Ricci flow for greedy routing and load balancing in wire-
less sensor network.
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