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Abstract. We reportrecent progress in the computation of conformalpireys from
surfaces with arbitrary topologies to canonical domainso Tajor computational
methodologies are emphasized; one is holomorphic diffederbased on Riemann
surface theory and the other is surface Ricci flow from gedmanalysis. The appli-
cations of surface conformal mapping in the field of engiimegaire briefly reviewed.
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1. Introduction

Conformal mapping plays an important role in mathematicseargineering. Histori-

cally, planar conformal mapping has been broadly appliedany engineering fields
[57], such as electro-magnetics, vibrating membranes andsdics, elasticity, heat
transfer and fluid flow. Recently, with the development of 8Brsing technology, in-
creasing of computational power, and further advances thenaatical theories, sur-
face conformal mapping has been developed greatly andegidplcomputer graphics,
medical imaging, computer vision, geometric modeling aativorking fields. This

work focuses on numerical computation of surface conformegbpings; our methods
are based on Hodge theory and surface Ricci flow.

1.1. Surface Conformal Mappings.LetS; andS, be two surfaces with Riemannian
metricsgi, 02, and @ : (S1,01) — (S,092) be a diffeomorphism between them. We
say @ is conformalif the pull back metric induced by is proportional to the original
metricgs

(1) 0’0 =e"gr.
A conformal map preserves angles, as shown in Figure 1.

Infinitesimally, a conformal mapping is a scaling and ratatiransformation; it pre-
serves local shapes. For example, it maps infinitesimdkesito infinitesimal circles.
As shown in Figure 1, if a circle packing is given on the plané pulled back byp, it

produces a circle packing on the face surface; if a checkedds given on the plane,
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FIGURE 1. Conformal mappings preserve angles and infinitesimal cir
cles.

then pulled back by, the checkerboard pattern on the face surface is such tlilagal
right angles of the squares are preserved.

All Riemann surfaces can be unified by the following theorem:

Theorem 1.1(Poincaré-Klein-Koebe Uniformization)22, p. 206]Every connected
Riemann surface S is conformally equivalent t&@with where D is one of the three
canonical spaces:

1. Extended complex plarfeu {co};
2. Complex plan&;
3. Unitdisk D= {ze€ C||7| < 1}

where G is a subgroup of &bius transformations that acts freely discontinuous on D.
Furthermore, G= mq(S), whererg (S) is the fundamental group of S.

Definition 1.2 (Circle Domain) A circle domain in a Riemann surface is a domain
such that the components of the complement of the domainasedcgeodesic disks
and points. Here a geodesic disk in a Riemann surface is ddgjpal disk whose lift

in the universal cover is a round disk §%, E2 or HZ.

Theorem 1.3(He and Schramm)[36, Thm. 0.1]Let S be an open Riemann surface
with finite genus and at most countably many ends. Then thexeciosed Riemann
surfaceS, such that S is conformally homeomorphic to a circle dorfim S. More-
over, the pain(S Q) is unique up to conformal homeomorphisms.

The uniformization theorem states that the universal éogespace of closed metric
surfaces can be conformally mapped to one of three cancspeaks, the sphegg,
the plan€E?, or the hyperbolic spadé?, as shown in Figure 2. Similarly, uniformiza-
tion theorem holds for surfaces with boundaries as showngar€ 3, the covering
space can be conformally mapped to a circle doma8fjiE? or H2.

1.2. Computational Strategies.There are three major approaches for surface con-
formal mappings. The first one is based on surface Ricci floe,second one is
based on holomorphic differentials using Hodge theory,thedhird one is based on
harmonic mapping using non-linear heat flow.



00 (0000), No. 0 Surface Conformal Mappings

FIGURE 2. Uniformization for closed surfaces. The universal congr
space of an oriented closed metric surface can be conformaibped
to one of the three canonical shapes: the unit sphere, thigdEac
plane or the hyperbolic space.

FIGURE 3. Uniformization for surfaces with boundaries. The cover-
ing space of an oriented metric surface with boundaries easohfor-
mally mapped to one of the three canonical shapes: the unérsp
the Euclidean plane or the hyperbolic space, and all thedemiss are
mapped to geodesic circles.



4 Gu, Zeng, Luo, and Yau CMFT

Ricci Flow. Suppose we want to find a conformal mapping between two onstirk
facesg: (S1,91) — (S,92). Then the pull back metric induced lpjis g, = gy,
whereu: S — R is the unknown conformal factor function, satisfying thédwing
Yamabe equation

K2(9(P)) = oy [Ka(P) — By (u(P))], P Sy

whereKy, K; are the Gaussian curvatures inducedpgindg,, andAg, is the Laplace-
Beltrami operator induced bg;. By solving the Yamabe equation, the conformal
factoru can be obtained, and then the mappgncan be found. The Yamabe equation
can be solved directly by surface Ricci flow:

3—? =Ky —Kj.
Holomorphic Differential . Suppose the target surfa(®, g») is a region on the com-
plex planeC, or a quotient space @, thendzis a holomorphic 1-form oi%;. The
pull back complex differential formw = @*dzis a holomorphic 1-form oniS;, g1).
All the holomorphic 1-forms org; form a groupQ°. We can compute the basis
of this group, then find the appropriate 1-foun= @*dzin Q19 and construct the
mappingg by integratingw on S;.
Spherical Harmonic Maps. Harmonic maps between two surfaces minimize the har-
monic energy. For genus zero closed surfaces, harmonic arapsonformal. All
genus zero closed surfaces can be conformally mapped tanthsplnere; two such
kinds of mapping differ by a Mobius transformation. We cae the non-linear heat
flow method to diffuse a degree one map to a harmonic map wétialnormalization
to a conformal map.

1.3. Outline. The work is organized as follows: Section 2 briefly revieweséhisting
works most related to the current one. Section 3 introduoesomputational meth-
ods: surface Ricci flow, holomorphic differential form anarimonic map. Section 4
explains the algorithms for computing conformal moduli aodformal mappings us-
ing methods in Section 3. The last Section 5 demonstratespibiecations of confor-
mal geometric methods in several engineering fields, suchmaputer graphics, geo-
metric modeling, medical imaging, computer vision, andalass sensor networks.

2. Previous Work

Computational conformal geometry is an inter-disciplyngeld, and has a long his-
tory. Researchers in mathematics, physics, medicine, atangcience and many
other engineering fields have made great contributions éostibject. A thorough
literature review is beyond the scope of this work. In thédiwing, we only briefly

review the most relevant works. Most conformal geometrithoeés are for planar do-
mains or topological disks (genus zero surface with a sibglendary), whereas our
current work focuses on methods for surfaces with com@atadpologies. Therefore,
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many important works for planar domains or topological disiay be skipped due to
the page limit.

2.1. Planar Domains. Conventional computational complex analysis methodsfocu
on conformal mappings on planar domains. Thorough survayde found in [37],
[17], [40],[3], [65] and [68]. Schwarz-Christoffel Mapmirhas been broadly applied
for computing Riemann mappings, such as in [20] and [2]. SchvChristoffel map-
ping of multiply connected domains can be found in [18] ar].[Recently, a geo-
desic zipper algorithm based on iterating simple maps has inéroduced in [51], and

a linear conformal mapping algorithm based on hyperbolangetry can be found in
[4]. A robust algorithm based on cross ratio and Delaunangulation can be found
in [21]. Circle packing methods lead to the theory of disem@alytic function [60],
which is one of the few planar methods that has actually beed for surface maps.

2.2. Genus Zero SurfacesIn the computer graphics field, there is vast research on
computing conformal mappings, mainly for surfaces wittkdegpology. Discrete har-
monic maps were constructed in [53], where the cotan formalaintroduced. First
order finite element approximations of the Cauchy-Riemasuegons were intro-
duced by Levy et al. [49]. Discrete intrinsic parametei@aby minimizing Dirichlet
energy was introduced by [19]. Mean value coordinates wareduced in [23] to
compute generalized harmonic maps. Conformal mappingsfmiogical spheres
are discussed in [27] and [31]. In the computer graphics,fidldrough surveys on
surface conformal mappings for topological disks or togadal spheres can be found

in [24] and [45].

2.3. High Genus Surfaces.Two major approaches for computing the conformal struc-
tures of high genus surfaces d&@omorphic differentialsnddiscrete curvature flow

Holomorphic Differential . Discrete holomorphic forms are introduced by Gu and
Yau [29] to compute global conformal structure for high gesurfaces. The method
is based on Hodge theory and uses the heat diffusion methoohipute harmonic
forms in each cohomology class. All the computations areezhiout on discrete
polyhedral surfaces. A different approach for construgtime discrete Hodge star
operator can be found in [53] for computing minimal surfac&eother approach of
discrete holomorphy was introduced in [52] by discretmaif the Cauchy-Riemann
equation. The method requires regular connectivity of tlesim General discrete
exterior calculus was presented in [38].

Gortler et al. [26] used the discrete one-form to parametegenus one meshes [61].
Tong et al. [64] generalized the 1-form method to incorp@ne singularities, and
applied the method for remeshing and tiling. The holomarplifferential method has
been applied to compute conformal mappings of genus zefacgsr with multiple
boundaries in [77]. Quasi-conformal mapping based on hotpiric differentials can
be found in [74].
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Surface Ricci Flow. Ricci flow was introduced by R. Hamilton in a seminal paper
[35] for Riemannian manifolds of any dimension. Ricci flonsha&volutionized the
study of the geometry of surfaces and 3-manifolds and hasrets huge research
activities in geometry. In particular, it leads to a prootioé 3-dimensional Poincaré
conjecture. In the paper [34], Hamilton used the 2-dimemai®icci flow to give a
proof of the uniformization theorem for surfaces of postgenus. This leads the way
for potential applications to computer graphics.

There are many ways to discretize smooth surfaces. The orah ughparticularly
related to a discretization of conformality is the circleckiag metric introduced by
Thurston [62]. The notion of circle packing has appearedh@work of Koebe [44].
Thurston conjectured in [63] that for a discretization & fflordan domain in the plane,
the sequence of circle packings converge to the Riemanningpphis was proved
by Rodin and Sullivan [54].

Colin de Verdiere [11] established the first variationahpiple for circle packing and

proved Thurston’s existence of circle packing metrics. sTpaved a way for a fast
algorithmic implementation of finding the circle packingtmes, such as the one by
Collins and Stephenson [13]. In [10], Chow and Luo geneedli€olin de Verdiere’s

work and introduced the discrete Ricci flow and discrete Reoergy on surfaces.
They proved a general existence and convergence theordirefdiscrete Ricci flow

and proved that the Ricci energy is convex. The algorithmmplementation of the

discrete Ricci flow was carried out by Jin et al. [41].

Another related discretization method is called circletgrat, it considers both the
combinatorics and the geometry of the original mesh, andeaegarded as a variant
to circle packings. Circle pattern was proposed by Bowedstrdal [7], and has
been proven to be a minimizer of a convex energy by BobenkoSamohgborn [5].
An efficient circle pattern algorithm was developed by Kkhgoh et al. [43].

Yamabe Flow on SurfacesThe Yamabe problem aims at finding a conformal metric
with constant scalar curvature for compact Riemannian folaisi. The first proof
(with flaws) was given by Yamabe [69] and was corrected anelneldd to a complete
proof by several researchers including Trudinger [66], iAylh] and Schoen [58]. A
comprehensive survey on this topic was given by Lee and Parké8].

In [50] Luo studied the discrete Yamabe flow on surfaces. Heduced a notion of
discrete conformal change of polyhedral metric, which playkey role in developing
the discrete Yamabe flow and the associated variationatiptein the field. Based
on the discrete conformal class and geometric consideratioo gave the discrete
Yamabe energy as an integration of a differential 1-form prayed that this energy
is a locally convex function. He also deduced from it that¢bevature evolution of
the Yamabe flow is a heat equation.

Another recent work by Gu et al. [30], which used the origidecrete Yamabe
energy from [50], has produced an equally efficient algaritor finding the discrete
conformal metrics. In addition, discrete hyperbolic Yamdlow was discussed in
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[6]. Itis applied for computing hyperbolic structure ane ttanonical homotopy class
representative in [72].

3. Computational Methods

In this section, we briefly introduce the major computatianathods. In the next
section, we will apply these methods for computing confdnmappings for surfaces
with different topologies.

3.1. Surface Ricci Flow. Surface Ricci flow is a powerful tool to construct confor-
mal Riemannian metrics with prescribed Gaussian curvatiDescrete surface Ricci
flow generalizes the curvature flow method from smooth sed#g discrete triangular
meshes. The key insight to discrete Ricci flow is based onalh@ing observation:
conformal mappings transform infinitesimal circle fieldsriibnitesimal circle fields.
Discrete Ricci flow replaces infinitesimal circles by cisclgith finite radii, and mod-
ifies the circle radii to deform the discrete metric, to aehithe desired curvature.

Classical Surface Ricci Flow

Definition 3.1 (Isothermal Coordinates).et S be a smooth surface with a Riemannian
metricg. Isothermal coordinates=z u-+ iv for g satisfy

(2) g=e W (dP+dV¥) = e @dzdz

Locally, isothermal coordinates always exist [8]. An attth all local coordinates
being isothermal is a conformal atlas, such that all thetdinansition functions are
bi-holomorphic.

The Gaussian curvature of the surface is given by
(3) K(u,v) = —AgA,
wherelg = e‘”‘(“"o(a‘?—uz2 + (f—;) is the Laplace-Beltrami operator induced ¢pyAl-

though the Gaussian curvature is intrinsic to the Riemammietric, the total Gaussian
curvature is a topological invariant according to the GeBgsnet theorem:

(4) /S KdA= 271 (S),

wherey (S) is the Euler number of the surface.

Supposay; andgy are two Riemannian metrics on the smooth surf&cand they
induce Gauss curvaturds and Ky, respectively. If there is a differential function
A 1 S— R, such that

(5) g =gy,
then the followingvamabe equatioholds

1
(6) Ko = =5+ (K1 —AgA).

2
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The Yambe equation can be solved by Hamilton’s Ricci flow. fage the metric
g = (gij) in local coordinate, Hamilton’s Ricci flow is

dg;j
(7) T —Kgij.
During the flow, the Gaussian curvature will evolve accogdima heat diffusion pro-
cess.

Theorem 3.2 (Hamilton and Chow) [9, Thm. B.1, p. 504]Suppose S is a closed
surface with a Riemannian metric. Then the normalized Riicai will converge to a
Riemannian metric of constant Gaussian curvature.

Background Geometry. In engineering fields, smooth surfaces are approximated by
polyhedral surfaces, namely, a triangle mesh.

Definition 3.3 (Triangle Mesh) A triangle meslt is a2 dimensional simplicial com-
plex, which is homeomorphic to a surface.

It is generally assumed that a mesis embedded in the three dimensional Euclidean
spaceR?, and therefore each face is Euclidean. In this case, we sayésh is with
Euclidean background geometry. Similarly, we can assumeatimesh is embedded
in the three dimensional sphef&or hyperbolic spacEl®, then each face is a spherical
or a hyperbolic triangle. We say the mesh is with sphericélymerbolic background
geometry.

Discrete Riemannian Metric. A discrete Riemannian metric on a mesks a piece-
wise constant curvature metric with cone singularitieeatertices. The edge lengths
are sufficient to define a discrete Riemannian metric,

(8) | :E - RT,

as long as, for each fadei,vj, V|, the edge lengths satisfy the triangle inequality:
lij +1jk >l for all the three background geometries, and another iryudj +
lik + ki < 2mfor spherical geometry.

Cosine Laws In the smooth case, the curvatures are determined by thmeaRi@an
metrics as in (3). In the discrete case, the angles of eamhgle are determined by
the edge lengths. According to different background gedesetthere are different
cosine laws. For simplicity, we usg to denote the edge across from the venrgx
namelye = [vj, V], andl; the edge length of. The cosine laws are given as:

12 I2+12 — 21l cost E?
(9) cosHy = cosHjcoshj —sinhljsinhlj cos6 H?2
cosy = codljcodj—sinlisinljcost S?
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(c) Inversive Distance Circle Packing (d) Combinatoriamédbe flow

FIGURE 4. Different configurations for discrete conformal metres d
formation.

Discrete Gaussian Curvature The discrete Gaussian curvatifeat a vertex; € =
can be computed as the angle deficit,

21— v/ ij Vi o0
(10) Kj = Z[V|7V17Vk]ez Ijk7 I ¢
m— Z[vi,vj,vk]ez Qi , Vi €OJZ
whereeijk represents the corner angle attached to verstéx the facelvi,vj, v, and
0% represents the boundary of the mesh.

Discrete Gauss-Bonnet TheoremThe Gauss-Bonnet Theorem 4 states that the total
curvature is a topological invariant. It still holds on mesfas follows.

(11) EV Ki+A fz A = 2mx (M),
Vi€ iEF

where the second term is the integral of the ambient con&anssian curvature on
the facesA; denotes the area of fadg andA represents the constant curvature for the
background geometry+1 for the spherical geometry, 0 for the Euclidean geometry,
and—1 for the hyperbolic geometry.

Discrete Conformal Metric Deformation. In the smooth cas&€onformal deforma-
tion of a Riemannian metris defined as

(12) g—elg, A:SoR.
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FIGURE 5. Geometric interpretation of discrete conformal metee d
formation.

In the discrete case, there are many ways to define conforratlcndeformation.
Figure 4 illustrates some of them. Generally, we assocath egertex; with a circle
(vi, ) centered a¥; with radiusy;. On an edgévi, vj], two circles intersect at an angle
©jj. During the conformal deformation, the radii of circles demodified, but the
intersection angles are preserved. Geometrically, theretiss conformal deformation
can be interpreted as follows [25]: see Figure 5, there £®sinique circle, the so
calledradial circle, that is orthogonal to three vertex circles. The radialleicenter
Is denoted as. We connect the radial circle center to three vertices, talgee rays
ovi, 0V, andowk. We deform the triangle by infinitesimally moving the verigxalong
OV to 0V, and construct a new circl, y¥), such that the intersection angles among
the circles are preserve@; = 0jj, ©}; = Oi.

The discrete conformal metric deformation can be geneli all other configura-
tions, with different circle intersection angles (incladizero or virtual angles), and
different circle radii (including zero radii). In Figure the radial circle is well defined
for all cases, as are the rays from the radial circle centéneovertices. Therefore,
discrete conformal metric deformations are well defined al.\Whe precise analyt-
ical formulae for discrete conformal metric deformatiors axplained as follows: let
u:V — R be thediscrete conformal factomwhich measures the local area distortion.
If the vertex circles are with finite radii, thep can be formulated as

logy E?
(13) U= logtann¥ H?
logtan¥  S?

1. Tangential Circle Packindrigure 4 (a), the intersection angles are 0’'s. There-
fore, the edge length is given by

(14) lij =v+VY,

for both the Euclidean case and the hyperbolic case, e.§. [13
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2. General Circle Packing-igure 4 (b), the intersection angles are ac@g,c
(0,%). The edge length is

(15) lij =\/Vi2+ij+2V|VjC°5@ij
for the Euclidean case, and
(16) lij = cosh*(coshy; coshy; + sinhy sinhy; cos9;;)

in hyperbolic geometry, e.g. [10] and [41].

3. Inversive Distance Circle Packinbp Figure 4 (c), all the circles intersect at
"virtual” angles. The co®)j; is replaced by the so-calledversive distancejl,
during the deformatiori;j’s are never changed. The edge length are given by

(17) |u=¢%+ﬁ+mwm
for Euclidean case, and
(18) lij = cosh*(coshy coshy; + sinhy sinhy;lij)

in hyperbolic geometry, e.g. [33] and [70].
4. Combinatorial Yamabe Flowrigure 4 (d), all the circles are degenerated to
points,y = 0. The discrete conformal factor is still sensible. The déggth is

given by
(19) ij = elelil],
in Euclidean background geometry, e.g. [50], and
LT R
= e —el
(20) smhi e S|nh2e ,

in hyperbolic background geometry, e.g. [6] and [72], whlé]?rés the initial
edge length ofv;, vj].

Admissible Metric Space In the following, we want to clarify the spaces of all pos-
sible metrics and all possible curvatures of a discreteasarf

Let the vertex set b¥ = {vi,vo,---,vh}. We represent a discrete metric Brby a
vectoru = (ug,Up,---,un)T. Similarly, we represent the Gaussian curvatures at mesh
vertices by the curvature vectlr= (Ky,Kp,---,Kn)T. All the possibleu’s form the
admissible metric spacand all the possiblk’s form theadmissible curvature space

According to the Gauss-Bonnet theory (see (11)), the totatature must be 2y (Z),

and therefore the curvature spacaisl1 dimensional. We add one linear constraint to
the metric vectou, y uj = 0, for the normalized metric. As a result, the metric space
is alson— 1 dimensional. For the circle packing metric, if all the nsi&ction angles
are acute including zero, then the edge lengths induced hncle packing satisfy
the triangle inequality. There is no further constraintuwmTherefore, the admissible
metric space is simplR"1.
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A curvature vectok is admissibleif there exists a metric vectar, which induces
k. The admissible curvature space is a convex polytope. Ttalet proof can be
found in [10]. The admissible curvature space for weightexines with hyperbolic
or spherical background geometries is more complicated.éfée the readers to [10]
for a detailed discussion.

Unfortunately, admissible metric spaces for inversivéedise circle packing with both
Euclidean and hyperbolic background geometries are namexo The admissible
metric spaces for the combinatorial Yamabe flow with bothli#ean and hyperbolic
background geometries are non-convex.

For tangential and general circle packing cases with EStandH? background ge-
ometries, see Figure 4 (a) and (b), the correspondence éetive curvatur& and

metricu is globally one-to-one. This is called tigéobal rigidity property. For inver-
sive distance circle packing and combinatorial Yamabe flages with bottE? and

H? background geometries (see Figure 4 (c) and (d)) only ldgality holds. This

is caused by the non-convexity of their metric spaces. lot@, non-global rigidity
causes many difficulties.

Discrete Ricci Flow and Entropy Energy. In all configurations, the discrete Ricci
flow is defined as follows:

du(t —
(21) %z(Ki—Ki),
whereK; is the user defined target curvature dfids the curvature induced by the
current metric. The discrete Ricci flow has exactly the saorenfas the smooth
Ricci flow, which conformally deforms the discrete metricaing to the Gaussian
curvature.

The discrete Ricci flow can be formulated in the variatioredtisg, namely, it is a
negative gradient flow of a special energy form, the so-dadietropy energy The
energy is given by

(22) fw=[ Z(K‘ ~Kp)du,

whereug is an arbitrary initial metric.

Computing the desired metric with user-defined curvafl&e is equivalent to mini-

mizing the discrete entropy energy. In the case of the tarjaircle packing metric
with both Euclidean and hyperbolic background geomettias,discrete Ricci en-
ergy (see (22)) was first proven to be strictly convex in threisal work of Colin de

Verdiere [11]. It was generalized to the general circle paghnetric in [10]. The

global minimum uniquely exists, corresponding to the abkimetric, which induces
the prescribed curvature. The discrete Ricci flow convetgekis global minimum.

Although the spherical Ricci energy is not strictly conviise desired metria is still

a critical point of the energy.
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The Hessian matrices for discrete entropy are positive iteefior both the Euclidean
case (with one normalization constraifitu; = 0) and the hyperbolic case. The en-
ergy can be optimized using Newton’s method. The Hessianxan be computed
using the following formula. For all configurations with Hidean metric, suppose
the distance from the radial circle center to edgev;] is djj as shown in Figure 5
(right), then

06 B dij
(23) 0—U] = Wv
furthermore
24) 96, 08 06 __ 08 06

ou  du;’ du  du; dug
We define the edge weight;; for edge|vi,v;], which is adjacent tqvi,vj,vy] and
[Vj,Vi,vi] as
df +df; |
Iij
The Hessian matriki = (hjj) is given by the discrete Laplace form

0, [vi,vj]¢E
(26) hij =4 —Wij, 17 ]
2kWik, 1=]
With hyperbolic background geometry, the computation efidessian matrix is much

more complicated. In the following, we give the formula foredface directly, for both
circle packing cases:

dé [ 1-a ab—c ca-b z5 0 0
(27) dg; | =—-[ ab—c 1-b?> bc—a 0 2 0
1

(25) Wij =

déy A\ ca-b bcea 1-&

0 ay—-z az-y du
(28) bx—z 0 bz—x du
cx—y cy—x 0 du

where(a, b, c) = (coshj,cosHj,cosHy) and(x,y,z) = (coshy,coshyj,coshy), Ais
double the area of the triangbe= sinhl; sinhl sin6.

For hyperbolic Yamabe flow case,
06, 06; —ll+c-a-b

2 = =
(29) ouj oui A 1+c
and
_ _h2_c2 _h—
(30) 06.__12abc bc—c-+ab+ac—b-c

au A (1+b)(1+0)
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For tangential and general circle packing cases, with BStandH? background ge-
ometries, Newton’s method leads to the solution efficierity the inversive distance
circle packing case and the combinatorial Yamabe flow cagh, both R? and H?
background geometries, because of the non-convexity ahettec spaces, Newton’s
method may get stuck at the boundary of the metric spacestaisies intrinsic diffi-
culty in practical computation.

Algorithmic details for general combinatorial Ricci flowrcae found in [41], inver-
sive distance circle packing metric in [70], and combiniaioramabe flow in [72].

3.2. Gu-Yau’'s Method: Holomorphic Differentials. Gu-Yau’s method computes
the Holomorphic 1-form group on a metric surface based ongdatieory. This
method is more efficient and stable than the discrete Riowirh@thod.

3.2.1. Classical Hodge TheorySuppose the metric surfa¢8, g) is with isothermal
coordinate chartg(Uq,@y)}. On a local char{Ug, @y ), the local coordinates are
Zq = Ug +ivg. A real differential 1-formr has the local representation

(31) T = fa(Ua,Va)dUa+ga(UQ,Va)dVa.
The exterior differential operatatacts ont
09a Odfq
2 — (o _
(32) dr <o"'ua o,.Va)dua/\dva

The Hodge star operataracts ont

(33) *T = fa(Ua,Va)dVg—ga(ud,Va>dUa.
The co-differential operatod is defined a® = — xdx*. If bothdr = 0 anddt = 0,
thenrt is called aharmonic 1-form

Theorem 3.4(Hodge) [47, Thm. 5.1, p. 280Consider the de Rham cohomology
group H(S,R), each cohomologous class has a unique harmonic form.

w is a complex differential form, such that on each local chaith complex coordi-
nateszy,

(34) w = fq(za)dzq,

where fy is a holomorphic function,‘”gziazf’) = 0, thenw is called aholomorphic

differential 1-form Furthermorew can be decomposed as two conjugate harmonic
1-forms,

(35) W=T+vV—1%T.

All the holomorphic 1-forms form a group, our goal is to cortgthe basis of the
group.
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3.2.2. Discrete Hodge Theory.In the discrete case, we triangulate the surface to a
simplicial complex (a triangular mesh), and build chain pteres. The 0, 1 and 2
dimensional simplexes are vertices, edges and faces. wjlax, formed by vertices
{Vo,V1,- -+ ,V} in a specific order, is denoted &®,vs,---,V. The k-dimensional
chain space is defined as

(36) Ce={> 701,z € Z},

where{g;} are all the k-simplexes in the mesh. The boundary operaterfireear
operators

(37) Ok - G — Cy_1,

ooVi = 0, d[Vo, V1] = V1 — Vo, 9|Vo, V1, V2| = [Vo, V1] + [V1,V2] + [V2,V0]. The k-th sim-
plicial homology group is given by

(38) Hk(M,Z) = Kerdy/Imgok. 1.
Theco-chain spaces'Qs defined as
(39) C* = {linear functionals on ¢}.

Thediscrete exterior differential operatoidCK — Ckt1is a linear operator. Suppose
0 € Cy1isa(k+1)-chain,w e CKis ak-cochain, them is defined as

(40) (dkw)(0) = W(0110).
The k-th simplicial cohomology group is given by
(41) HX(M,Z) = Kerdy/Imgdy, 1.

SupposeSis a triangle mesh, itBoincare dualSis its Voronoi diagram. Let; € Sbe
a vertex, themw;’is a 2-cell inS,

(42) Vi i={p € §d(p,vi) <d(p,vj),vj #i}
whered is the metric on the polygonal surface. leet Sbe an edge, then its dual
is given by
(43) =V
vedo

Let w e CK be a k-form orS, then thediscrete Hodge star operatds defined as
(44) *:CK(S) = C?K(§),xw(F) = Uw(a),

where| - | represents the volume of the simplexThediscrete co-exterior-differential
operator & is defined a®d = — xdx. A discrete harmonic k-fornw e C! satisfies
dw=0,0w=0.

Theorem 3.5(Discrete Hodge) Suppose S is a polyhedral surface, then each coho-
mologous class in (S R) has a unique discrete harmonic k-form.
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3.2.3. Algorithm.

Step 1. Homology BasisWe compute &W-cell decompositioaf the surface repre-
sented as a triangle mesh,

(45) SCSCHR=S

where thek-dimensional skeleton S= S¢_; UDEUDZ--- UD}, D}, arek-dimensional
cells (disks), such that the boundaries of these cells af& on

(46) D} C Sc_1.

All the loop generators ob;, {y1, s, -, yog} form a basis for the fundamental group
m(S). These loops also form a basis of the first homology bis(S, Z). Figure 6
shows the homology group generators of a genus two surface.

FIGURE 6. Computing homology group basis.

Step 2. Cohomology Group BasisLet y be a base loop fafl; (S, Z), then we slice
Salongy to get an open surfac®, such that the boundary & is given by

(47) 0Sc=W — ¥

ylj, yk‘1 are the two boundary loops &. Then we construct a functidn : § — R,
such that

(48) h(p)=1, Vpey: h(p) =0, Vpey:

andhg(p) is random for all interior points o6 Thendh is an exact 1-form 0.
Because of the consistency along the boundadilasis also a closed 1-form (but not
exact) onS, denoted ask. Then

(49) {T17T27"' 7T29}
form a basis for the first conomology groti#(S,R).

Step 3. Harmonic 1-form Basis According to the Hodge theory, for each closed 1-
form 1, there exists a 0-formg, : S— R, such thatry + dgk is a harmonic 1-form. The
0-form g can be obtained by solvind( 1k + dgk) = 0, whered is the co-differential
operator. We denote the harmonic 1-formuas= 1c+dgk. Then

form a basis for the conomology groif? (S R).
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S

)

FIGURE 7. Computing harmonic 1-form group basis.

By direct computation, thdiscrete co-exterior differential operatdr: Ct — C° has
the formula

(51) S(w)(v) = > wij(w[vj,vi]),

[Vi ,V]']EZ

wherew;; is the cotangent edge weight 67. Figure 7 shows the harmeloicrigroup
generators of a genus two surface.

FIGURE 8. Computing holomorphic 1-form group basis.

Step 4. Holomorphic 1-form Basis A holomorphic 1-form can be constructed by a
harmonic 1-form and its conjugade + i x wx, wherex is the Hodge star operator. The
conjugate form of a harmonic 1-form is still a harmonic 1rfipin the space spanned
by {a }, and thus can be expressed using linear combinations of theTherefore,

29
(52) *0k =) Ckid,
2

wherecy’s are unknown real numbers. By solving the following linegstem
29
(53) /ij*wk=Zlcki/wj/\aa,j=1,2,---,29,
S = S

we can find all the unknowns and get the conjugate form. Then
(54) {on +i% @, @ +ixay, -, Wg+ixwng}

form a basis for holomorphic 1-form group of the surface.
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Thediscrete wedge operator: C! x C! — C?is defined as follows. Givelw;, vj, ] €
T, wy, wp € Cl are discrete closed 1-forms, then
1 M([VUVJ']) Q)Z([Vivvi])

(55) A2V Vid) = 51 (vivid) - wal(viowd)

Let w, T be two discrete harmonic 1-forms, locally= c;dx+ cody andt = didx+
d>dy, then locally

CL G

d dxAdy.

(56) WAXT = ‘

Figure 8 shows the holomorphic 1-form group basis for theugéwo surface.

3.3. Non-linear Heat Flow. The Non-linear heat flow method can be applied to com-
pute conformal maps between genus zero closed surfaces.

3.3.1. Classical Surface Harmonic MapsFor the 2-sphere in the standard metric,
we have,

Theorem 3.6(Schoen and Yau)59, Cor. p. 12Harmonic maps between genus zero
closed metric surfaces are conformal maps.

In order to compute a conformal map from a topological splsa@the unit sphere
S?, @ : S— S?, we only need to compute a harmonic map between them. Hacmoni
maps can be computed using theat flow methaod

ao(p,t
(57) P20~ avaip)
The initial mapg(p,0) can be set as th@auss mapwherep € Sis a point on the
surface anah(p) € S? is the normal ap. The Gauss map i@(p,0) = n(p). Because
S? is embedded ifR3, we treaty as a vector valued functiop = (@1, @, @), where
eachg is a function. Then its Laplacian is given by

(58) Dp(p,t) = (Bp@r(p,t),Ap@2(p,t), Ap@s(p,t)).

Then we project the Laplacian to the tangent spaceg pf. The normal component
of the Laplacian is given by,

(59) Dy o(p,t) = (Bp@(p,t), (P, 1) @(p,t),

where(,) is the inner product ifR3. The tangential component of the Laplacian is
given by

(60) Apo(p,1) = Bp(p,t) — A5 @(p,1).

Definition 3.7 (Nonlinear Heat Flow) Nonlinear heat flow is defined as
2¢(p,t

(61) P00 — _Nlo(p.b).

ot
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The stereographic projectiomaps the unit sphere to the whole complex plane,
S? - C,

R
(62) T(X,y,Z)— (l_zul_z)-
Let p be aMobius transformation
az+b
63 =— b,c,d d—bc=1
(63) p(2) ord *Po €C, ad-—bc

T lopor:S?— S?is a conformal mapping of the unit sphere. All such mappings
form a 6 dimensional group, the so-callggherical Mdbius transformation group

Because the conformal maps are not unique, differing by hidgtransformation on
the sphere, a special normalization condition needs to dedaduring the flow. The
following is a common condition,

(64) /S(p( p)ds=0.

For genus zero closed surfaces, harmonic maps are conformal

3.3.2. Discrete Surface Harmonic Maps.On a discrete surfacg, the functions are
approximated by piecewise linear functions. Supguse;, v is a face, for any point
p € [vi,Vj, V], the barycentric coordinates pfare

(65) p=avi+pvj+yw, 0<a,fy<l a+B+y=1
thenf(p) = af(vi) +Bf(vj)+ yf(w). By the Finite Element Method [53], thais-
crete harmonic energgf f has the representation
(66) E(f)=5 5 wy(f(v)—f(v))?
[vi,vjlex
wherew;; is theedge weight
(67) wij = cot6 + cot8;,

Gi'j is the corner angle on fade, vj,v] at the vertexy, and Gi'j is the corner angle
on facelvi,vj,Vv|] at the vertew;. If [vi,v;] is only adjacent to one fade;, vj, v, then
the term cot9i'j should be omitted. Similarly, the discrdtaplace-Beltrami operator
is given by
(68) Af(v) =% wi(f(wi) = f(v))).

[vi,vjlex
We can compute the Gauss map first, then diffuse the Gaussongalparmonic map

with the normalization condition (64). Algorithmic detailor discrete spherical har-
monic maps can be found in [31].
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4. Conformal Modulus and Conformal Mapping

In this section, we apply the discrete surface Ricci flow aoldimorphic differential
methods to compute conformal mappings of surfaces witlouariopologies.

4.1. Topological Quadrilateral. SupposeSis a surface of genus zero with a single
boundary, and four marked boundary poifis, p2, ps, pa} sorted counter-clockwise.
ThenSis called a topological quadrilateral, and denote®@agl, p2, p3, p4). There
exists a unique conformal map: S— C, such thatp mapsQ to a rectangleg(p;) =

0, (p< p2> =1.

Holomorphic Differential Method . Assume the boundary &) consists of four seg-
mentsdQ = y1 + Yo+ V5 + Y4, such that

(69) Jdvi=p2—pP1, 9Vo=pP3—P2, OY3=Psa—P3, Ya=P1—Pas
We compute two harmonic functiorfg, f» — R, such that

Afq =0 Afo =0

faly, =0 faly, =0
(70) 1y, -1 £2f|y4 =1

af

a_rll\VzUVA =0 6_r12|V1UY3 =0

The Laplace-Beltrami operatdy = dd + dd. On a surfaceAf = 0 is equivalent to
odf = 0. Thed f; andd f, are two exact harmonic 1-forms. We need to find a scalar
A, such thatd f; = Ad fp, this can be achieved by solving the following equation,

(71) /dflA*dflz)\/dfl/\dfz.
S S

The geometric interpretation afis the conformal modulus of the quadrilateral. Then
the desired holomorphic 1-form = d f; +iAd f,. The conformal mapping is given

by

p
72 —
(72) @(p) /q w,

whereq is the base point and the path frayto pis arbitrarily chosen. Figure 9 shows
the conformal mapping of a topological quadrilateral topghanar rectangle.

Ricci Flow Method. We can set the target Gaussian curvature to be zero everywhe
except at the four cornergps, P2, P3, P4}, Where the target curvatures are set to be
/2. Then we run Euclidean Ricci flow, which gives us a flat matriche surface.
By isometrically embedding the surface onto the plane, wp tha surface onto a
planar rectangle.

4.2. Topological Annulus. SupposeSis a topological annulus with a Riemannian
metricg and the boundary db are two loopsdS = y1 — y», then there exists a con-
formal mappingp : S— C, which mapsSto the canonical annulug(y;) is the unit
circle andg(y,) is another concentric circle with radiys The mappingp is unique
up to a planar rotation.
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(@) Input surface (b) Conformally mapped (c) Checkerboard
to a rectangle texture mapping

FIGURE 9. Conformal module for a topological quadrilateral. The
face surface with four boundary corners (a) is conformalkpped to a
planar rectangle (b). A checkerboard texture is placed emabtangle
and pulled back to the face surface (c), all the right anglefheckers
are well preserved.

Holomorphic 1-form Method. The holomorphic 1-form group is one dimensional.
We compute the generatar, such thatmgw(dr) = 0, wheredr is any tangent vector
along the boundary, anﬂ,l w = 1. Letp be a base point on the surface, for any other
pointq, define

(73) o(q) = exf™ .
@ is the desired conformal mapping, as shown in Figure 10.

Ricci Flow Method. We can set the target Gaussian curvature to be zero everywhe
including the boundary vertices, and run Euclidean discsetface Ricci flow, then
we obtain a flat metric. We find a curyeconnectingy; and y», such thaty is a
straight line segment under the flat metric and orthogonti¢dwo boundaries. We
slice the surface alongto getS, andy becomes two boundary segmenptsandy .

We then isometrically embefl onto the plane. After a planar rigid motion, and a
normalizationSis a rectangle with unit height, and is on the real axisy; is on the
imaginary axis. Then we use the exponential mag?8po mapSto the canonical
planar annulus.

4.3. Topological Disk. SupposeSis a topological disk with a Riemannian metric,
then it can be conformally mapped to the unit planar disk. $wch mappings differ
by a Mobius transformation

Z_

74 gl = =
(74) z— 1 %7

as shown in Figure 11.

The computation is straight forward. We punch a small hoteepointzy to make the
surface a topological annulus and map the annulus onto tiengzal planar annulus
using the method in the last subsection. When the size ofutheled holes shrink to
a point, the obtained mappings converge to the real Riemappimg.
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(a) Input surface (b) Conformally mapped (c) Checkerboard
to an annulus texture mapping

FIGURE 10. Conformal module for a topological annulus. The face
surface (a) is conformally mapped to a planar annulus (b)h&cker-
board texture is placed on the annulus and pulled back tcatteedur-
face (c), all the right angles of checkers are well preserved

FIGURE 11. Riemann mapping for a topological disk. Two such map-
pings differ by a Mobius transformation.

4.4. Multiply Connected Domain. Supposesis a surface of genus zero with multi-
ple boundaries, the@is called a multiply connected domain. Supp&se a multiply
connected domain with a Riemannian metgjahen there exists a conformal map-
ping ¢ : S— C, which mapsSto the unit disk with circular holes. Such conformal
mappings are unique up to Mobius transformations.

Let S be the multiply connected domain, then its boundary camsith connected
components,

(75) O0S=Y—Yi—Yo - —

whereyy is the exterior boundary anfi,k > 0} are sorted by their total lengths.
There are two methods to compute the conformal modulus addhformal map-
ping.

Ricci Flow Method. We set the target curvature in the following way,

1. For all interior vertices; ¢ dS, K(v;) is zero.
2. For all vertices oy or y1, K(Vv;) is zero.
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3. Letv; € W,k # 0,1, suppose the total length under the current metriigjsthe
two boundary edges attachingvicareg ande . 1, then set
(76) Rvi) = —la 18l
|
Note that in the curvature flow, the edge lengt@s |e.1|,|%| are changing.
Therefore, th&K(v;) need to be updated accordingly.

By running discrete curvature flow with time variant targetvature, the procedure
will converge, and a unique flat metric will be obtained. Thenfind a shortest path
connectingyp andy;, and sliceSalongr to get a surfac&. The flat metric will flatten
Sonto a planar parallelogram with circular holes. Then wearsexponential map to
map the parallelogram to a disk with circular holes.

Generalized Koebe’s Method The algorithm is based on using the holomorphic 1-
form to compute the conformal mapping of a topological ansul

1. Fill all boundaryy’s with topological diskDy’s, dDx = W,k =0,1,2,---.n.
The resulting surface is a topological sph&ee SUDgUD1U---UDp.

2. ~Remove two disk®; andDj from S denote the topological annulus éqs =

S/{Dbju D }. N B

. Map the annulu§;; to a canonical planar annulus, denote the image asS; .

4. Choose another two disk andDy, further remove them frorﬁ‘” , denoted the
three holed annulus & = S;j/{DxUD) }.

5. Compute a small circlécy,rx) completely contained iny, reflectéjm with
respect to the small circle

w

(77) i

Z—C C
|Z—Ck|2( k>+ ks

this mapsy, y; to be interior circles, ang to be the exterior boundary.

6. Fill circular holes bounded by andy; by circular disksD; andDj, dD; = y,
dDj =j, Su = Sjk UD; UD;.

7. Repeat step 3 through 6, until all the holes are circulaugh.

The convergence rate is governed by the following theorempp8se the surface has
n boundary components. At each step, werfit 2 holes and map the surface to an
annulus, the remaining 2 boundary components are mappédt tmner and outer
circles of the annulus.

Theorem 4.1(Generalized Koebe)77, Thm. 1.2]Given a genus zero surface with n
boundaries, there exist constants €0, 0 < C; < 1, for step k, such thatfeo) = oo
and §(z) = z+0O(z 1) near theewo point, for all ze C,
[

(78) Ifo t-1(2) — 2 < C.Ca,
where f is the limit conformal mapping alﬂﬁl] denotes the greatest integer not ex-
ceedingX

On-
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(@) Input surface (b) Conformally mapped (c) Checkerboard
to a circle domain texture mapping

FIGURE 12. Conformal module for a topological multiply connected
domain. The face surface (a) is conformally mapped to a pleinge
domain (b). A checkerboard texture is placed on the circlealo and
pulled back to the face surface (c), all the right angles etckkrs are
well preserved.

Figure 12 shows the canonical conformal mapping of a mylipinnected domain,
which is a region of a 3D human face surface, obtained by tstred light scanning
[32].

Slit Map. All multiply connected domains can be conformally mappeddnonical
planar domains, which are annuli with concentric circulas r rectangles with hor-
izontal slits [71].

Suppose the boundary 8fs a set of loop®S= {yo, 1, - , ¥a}, Wherey is the exte-
rior boundary. Then a set of basis of holomorphic 1-formstmafound s, wp, - - - , th,

such that the integration @ alongy; equals tod;, whered;j is the Kronecker sym-
bol. Special holomorphic 1-forms can be found, such that

21 i=0
(79) Im( / w={ —21m i=1
Y 0 otherwise

Then if we choose a base poipg on the surface, for any poirmt, we choose an
arbitrary pathy on the surface and define a complex functip(p) = ely®, which
maps the surface to an annulug.is mapped to the outer boundagy,to the inner
boundary, and all other boundaries are mapped to the carceintular slits. Then
the (complex) logarithm ofp maps the surface periodically to a rectangle, with all
the circular slits mapped to horizontal slits. We apla circular slit mapand logp a
horizontal slit map

The algorithm for computing a slit map is straightforward.
1. Compute a set of holomorphic 1-form bases of the surfaog,

2. Compute a holomorphic 1-form represented as the lineabowation of the
basisw = $ Ajw, such that (79) holds.
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FIGURE 13. Slit map for a multiply connected domain.

Figure 13 shows the circular and horizontal slit maps for &iply connected annulus
with 3 holes.

Crowdy and Marshall [16] introduced a constructive methm@dampute conformal
mappings between canonical multiply connected domainghwh based on Green’s
functions and harmonic measures in potential theory. Olorhorphic differential
method is similar to their construction, because the holpmo 1-form satisfying
(79) is closely related to harmonic measure.

4.5. Genus Zero Closed SurfaceThe genus zero closed surface can be conformally
mapped to a unit sphere. The mapping is not unique, two sutfoicnal mappings
differ by a spherical Modbius transformation, as shown igure 14.

FIGURE 14. Genus zero closed surface.

Harmonic Map Method. Given a genus zero closed surf&dirst we compute the
Gauss mapp : S— S?, then use the non-linear heat diffusion method to optimize
the harmonic energy with a normalization condition, suct the mass center of the
image surface is at the origin. Figure 14 shows a conformalpimg from a brain
cortical surface to the unit sphere.

Holomorphic 1-form Method. We first remove one triangle and make the genus zero
surface become a topological disk. Then we conformally nhap & planar triangle

by the holomorphic 1-form method and then obtain the unitesplby theinverse
stereographic projection

2u 2v —14+u2+\2

u,v) € C.
L+£+er+uz+ﬁ’1+ul+ﬁ)’(’)€

(x,2) = (
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Then we move the mass center of the image to the origin withhargmal Mobius
transformation. We can also use a curvature flow map to mapwotogical disk to
the plane.

Inversely, for a topological disk, we can convert it to a gemero closed symmet-

ric surface bydoubling and then map the doubled surface to the unit sphere. The
hemispherical conformal mapping of the original surfacehbsained. As shown in
Figure 15, the conformal mapping preserves the intrinsioragtry of the doubled
surface. The image of the mapping and the area distortidorfan the image are
both symmetric.

FIGURE 15. Spherical map for a topological disk by doubling.

4.6. Genus One Closed Surface.

Holomorphic 1-form Method. First we compute a basis for the fundamental group
m(S), {v,y}. Then we compute the holomorophic 1-form basis wy, such that
fv. wj = &j. Then we slice the surface alopg > to get a fundamental domash The

conformal mapping : S— C is given by
p
(80) o) = [ o,

whereq is the base point; the path fromto p in Scan be arbitrarily chosen. Sup-
posea+ib = fyzwl, thena+ib is the conformal modulus of the torus. The deck
transformation group generators are

(81) Ti(z) =z+1, T(z) =z+a+ib.

By using all deck transformations to translgt€s), we can conformally map the uni-
versal covering space &onto the whole complex plar@; the fundamental domain
of the lattice generated byT1, T»} is a parallelogram.

Curvature Flow Method. We can set the target curvature to be zero everywhere, and
run Ricci flow to compute a flat metric conformal to the oridingetric. Then we

can isometrically flatten the fundamental dom&ionto the complex plane, denoting
the mapping ag. The deck transformation generators are given by the &tosk
{T1,T2}. o mapsg(yy") to ¢(y; ) andT2 mapsg(y; ) to ¢(y; ).

Figure 16 shows the computational result for a genus onedlssrface.
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FIGURE 16. Genus one closed surface.

4.7. Genus One Surface with BoundariesWe use the Ricci flow method to com-
pute the canonical conformal mapping and the conformal nusduSuppose the
boundary of the surface hasloops,dS= y1 + y»+--- + ¥h. We set the target cur-
vature in the following way,

1. For all interior vertices; ¢ dS, K(v;) is zero.
2. Letv; € y, suppose the total length under the current metrigis the two
boundary edges attaching\tpareg andeg_ 1, then set

oy lal e
(82) K(vi) = 717“4(| .

Note that during the curvature flow, the edge lendghs|e 1/, | k| are changing.
Therefore, thé&k(v;) are updated accordingly.

By running discrete curvature flow with time variant targetvature, the procedure
will converge, and a unique flat metric will be obtained. Tinancompute the homol-
ogy group basi$yi, >} and slice the surface along the base loops to get a fundamenta
domain. By isometric embeddirfgwith the new metric, we get the conformal map-
ping ¢ : S— C. Similarly, we compute the generators of the deck transébion
group {T1, T2}, To maps@(y;) to @(y; ), T» maps@(y; ) to ¢(y; ). Then we can

use the deck transformation to map the whole universal auyspace ofS onto the
complex plane with circular holes.

FIGURE 17. Genus one surface with boundaries, Costa’s minimal sur-
face [12].

Figure 17 shows the computational result for a genus onaitkith three bound-
aries, the famous Costa’s minimal surface [12].
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4.8. High Genus Surface.For a high genus closed surface, we use hyperbolic Ricci
flow to compute the hyperbolic metric by setting the targevature to be zero every-
where. Then we compute a canonical homology group Hasi®, az, by, - - -, ag, bg}.
Then we slice the surface along the base loops to get a fundahtmainS, the
boundary oSisaybia; th; - - agbgag by t, then isometrically flatteBto the Poincaré
disk using the hyperbolic metric.

The Poincaré disk is the interior of the unit disk on the ctammplane,D = {|z] <
1,z C}, with hyperbolic metric

dzdz
83 d = —"— _
(83) -7
therefore, the Poincaré disk is a conformal model for theehlgolic spacél?®. The
hyperbolic lines througtp and q are circular arcs passing throughand g, which
are orthogonal to the unit circle. The hyperbolic cir¢ter) on the Poincaré disk is
identical to the Euclidean circl€, R),

1-—t?2 | — cc—t2 r
84 C=———¢ R=4/CC———., t=tanh=.
(84) 1—t2cc”’ 1—t2cC’ 2

The angles in a hyperbolic triangle can be computed from dge éengths using the
hyperbolic cosine law. Therefore, by using Euclidean gdom&e can accomplish
all hyperbolic compass and straightedge constructionserPincaré disk. We can
flatten triangle by triangle and isometrically embed the lglfondamental domaif
onto the Poincaré disk. We denote the conformal mapping:&— D.

We can then compute the deck transformation group gensratothis case, the deck
transformation group is called tltaichsian group All the Fuchsian transformations
are hyperbolic rigid motions, which are Mobius transfotioras with the form of (74).
The Mobius transformation, maps the boundary segmep(tblzl) to ¢(by), the Bk

mapse(ax) to g(a. ). Then
(85) {01,B1,02,B2,- -+, ag, By}

forms a basis set of the Fuchsian group generators.

For high genus surfaces with boundaries, the conformal mgpphich maps them
to hyperbolic circular domains can be computed in a similay.wAccording to The-
orem 1.3, the surface can be conformally mapped to the P@rlisk, such that the
boundaries are mapped to hyperbolic circles. By applyingehyolic Ricci flow with
the constraint that the holonomy along each boundary lodgvial, the hyperbolic
metric can be obtained directly.

Figure 18 shows the isometric embedding of finite portionshefuniversal cover-
ing spaces of two high genus surfaces on the Poincaré dikkthnir uniformization
hyperbolic metrics. The algorithmic details can be founfit.
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FIGURE 18. Uniformization for high genus surfaces.

5. Applications

Computational conformal geometry has been broadly apptiedany engineering
fields. In the following, we briefly introduce some of our reterojects, which are
the most direct applications of computational conformadrgetry in the computer
science field.

5.1. Graphics. Conformal geometric methods have broad applications inpcaen
graphics. Isothermal coordinates are natural for globdhsa parameterization pur-
poses [29]. Because conformal mapping doesn’t distortited shapes, it is desirable
for texture mapping. Figure 19 shows one example of usingrhotphic 1-forms for
texture mapping.

Special flat metrics are valuable for designing vector fieldsurfaces, which plays
an important role for non-photorealistic rendering anccggdart form design. Figure
20 shows the examples for vector fields design on surfaceg tise curvature flow
method [46].

FIGURE 19. Global conformal surface parameterization using holo-
morphic 1-forms.

5.2. Geometric Modeling. One of the most fundamental problems in geometric mod-
eling is to systematically generalize conventional spfickkemes from Euclidean do-
mains to manifold domains. This relates to the general géwrstructures on the
surface.
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.
4

FIGURE 20. Vector field design using special flat metrics.

Definition 5.1 ((G, X) structure) Suppose X is a topological space, G is a transfor-
mation group of X. Let M be a manifold with an atlAsif all the coordinate charts
(Ua, @y ) are defined on the space ¥, : Ug — X; and all chart transition functions
@qp are in group G, then the atlas is @, X) atlas. The maxima(G, X) atlas is a
(G, X) structure.

For example, suppose the manifold is a surfaceX 1§ the affine plané, G is the
affine transformation group f f(A), then the(G, X) structure is the affine structure.
Similarly, if X is the hyperbolic planél?, andG is the hyperbolic isometric trans-
formation (Mobius transformation), theis, X) is a hyperbolic structure; X is the
real projective plan®P?, G is the real projective transformation gro®iL(2,R),
then the(G, X) structure is a real projective structure of the surface.| Regective
structure can be constructed from the hyperbolic structure

Conventional spline schemes are constructed based on afferéance. If the mani-
fold has an affine structure, then affine geometry can be deinghe manifold and
conventional splines can be directly defined on the manifblde to the topological
obstruction, general manifolds don’t have affine strugubeit by removing several
singularities, general surfaces can admit affine strustubetails can be found in [28].

Affine structures can be explicitly constructed using comfa geometric methods.
For example, we can concentrate all the curvatures at tisemqioed singularity posi-
tions, and set the target curvatures to be zeros everywlsereldhen we use curvature
flow to compute a flat metric with cone singularities from thregeribed curvature.
The flat metric induces an atlas on the punctured surfact g@wigularities removed),
such that all the transition functions are rigid motionsloaplane. Another approach
is to use holomorphic 1-forms; a holomorphic 1-form induadkat metric with cone
singularities at the zeros, where the curvatures-tiert. Figure 21 shows the mani-
fold splines constructed using the curvature flow method.

Compared to other methods for constructing domains witbgoileed singularity posi-
tions, such as the one based on trivial connection [14], thenadvantage of this one
is that it gives global conformal parameterizations of tpkng surface, namely, the
isothermal coordinates. Differential operators, suchradignt and Laplace-Beltrami
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FIGURE 21. Manifold splines with extraordinary points (the ceater
of the yellow regions).

operators, have the simplest form under isothermal coatel& which greatly simpli-
fies the downstream physical simulation tasks based on timesp

5.3. Medical Imaging. Conformal geometry has been applied for many fields in
medical imaging. For example, in the field of brain imagingsicrucial to register
different brain cortex surfaces. Because brain surfaeehighly convoluted, and dif-
ferent people have different anatomic structures, it iseqeiallenging to find a good
matching between cortex surfaces. Figure 14 illustratessotution [31] by mapping
brains to the unit sphere in a canonical way. Then by findingutomorphism of the
sphere, the registration between surfaces can be easilylisbed.

In virtual colonoscopy [39], the colon surface is reconstied from CT images. By
using conformal geometric methods, one can flatten the wdatn surface onto a
planar rectangle. Then polyps and other abnormalities eafolnd efficiently on
the planar image. Figure 22 shows an example for virtualrc@igtening based on
conformal mapping.

FIGURE 22. Colon conformal flattening.

5.4. Vision. Surface matching is a fundamental problem in computer nisigve
focuses on multiply connected surfaces, such as a humarstafaece, where there
are holes for the eyes and mouth. If the surfaces are isamn#tan their conformal
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moduli should match and they can be conformally flattenechéosame canonical
circle domain. This is the basis for a recognition algoritiFhe main framework of
surface matching can be formulated as follows:

Supposes;, S, are two given surfaced,: S — S is the desired matching. We com-
puteq : § — D; which mapsS conformally onto the canonical domay. We con-
struct a diffeomorphism map: D; — D, which incorporates the feature constraints.
The final mapg is induced byf = @ o fo (p1*1. Figure 23 shows one example of
surface matching among a human face with different expyassi The human face
surfaces are shown on the left,the matching results usingistent texture mapping
are shown on the right. For details, we refer readers to [6d][@8]. Conformal geo-
metric invariants can also be applied for shape analysigesmhnition. Details can
be found in [75].

FIGURE 23. Matching among faces with different expressions.

Teichmuller theory can be applied for surface classificain [73, 42]. By using
Ricci curvature flow, we can compute the hyperbolic unifaation metric. Then we
compute the pants decomposition using geodesics and certtpuFenchel-Nielsen
coordinates. In Figure 24, a canonical fundamental grogslimcomputed (a). Then
a fundamental domain is isometrically mapped to the Poincsk with the uni-
formization metric (b). By using Fuchsian transformatitme fundamental domain
is transferred (c) and a finite portion of the universal congespace is constructed in
(d). Figure 25 shows the pipeline for computing the Teichemnicoordinates. The
geodesics on the hyperbolic disk are found in (a), and thaceiis decomposed by
these geodesics (b). The shortest geodesics between twddrtes of each pair of
hyperbolic pants are computed in (c), (d) and (e). The tngséingle is computed in
(). Details can be found in [42].

5.5. Wireless Sensor Network.In the wireless sensor network field, it is important
to design a Riemannian metric to ensure the delivery of gacked balance the com-
putational load among all the sensors. Because each semsonty collect the infor-
mation in its local neighbors, it is desirable to use greeaying. Basically, each node
has virtual coordinates. The sensor sends the packet toats deighbor, which is the
closest one to the destination. If the network has concaleshas shown in Figure
26, the routing may get stuck at the nodes along the innerdzoies. We use Ricci
flow to compute the virtual coordinates, such that all inngled become circles or
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(a) (b) (c) (d)

FIGURE 24. Computing finite portion of the universal covering space
on the hyperbolic space.

(@) (b) © @ Q) (®

FIGURE 25. Computing the Fenchel-Nielsen coordinates in the Te-
ichmuller space for a genus two surface.

hyperbolic geodesics, then greedy routing delivery is goted. The delivery path is
guided by geodesics under the special Riemannian metrie.cobering spaces with
Euclidean and hyperbolic geometry pave a new way to handtebalancing and data
storage problems. Using the virtual coordinates, manytsbpaths will pass through
the nodes on the inner boundaries. Therefore, the nodesanrtar boundaries will

be overloaded. Then, we can reflect the network about the ireeillar boundaries

or hyperbolic geodesics. All such reflections form the sibledeSchottky group in the

Euclidean case (b), or the so-called Fuchsian group in tiperbplic case (a). We
then perform the routing on the covering space. This metmsdires delivery and
improves load balancing using greedy routing. Implemémtadetails can be found
in [55], [76], and [56].
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(b) Euclidean covering space

FIGURE 26. Ricci flow for greedy routing and load balancing in wire-
less sensor network.
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